blob: 436f3c98e639447c4f3206e86a99f46817105e00 [file] [log] [blame]
Raymond Hettinger40f62172002-12-29 23:03:38 +00001import unittest
R David Murraye3e1c172013-04-02 12:47:23 -04002import unittest.mock
Tim Peters46c04e12002-05-05 20:40:00 +00003import random
Antoine Pitrou346cbd32017-05-27 17:50:54 +02004import os
Raymond Hettinger40f62172002-12-29 23:03:38 +00005import time
Raymond Hettinger5f078ff2003-06-24 20:29:04 +00006import pickle
Raymond Hettinger2f726e92003-10-05 09:09:15 +00007import warnings
Dong-hee Na6989af02020-06-21 18:44:58 +09008import test.support
9
R David Murraye3e1c172013-04-02 12:47:23 -040010from functools import partial
Victor Stinnerbd1b49a2016-10-19 10:11:37 +020011from math import log, exp, pi, fsum, sin, factorial
Benjamin Petersonee8712c2008-05-20 21:35:26 +000012from test import support
Raymond Hettingere8f1e002016-09-06 17:15:29 -070013from fractions import Fraction
masklinn1e27b572020-12-19 05:33:36 +010014from collections import abc, Counter
csabellaf111fd22017-05-11 11:19:35 -040015
Ezio Melotti3e4a98b2013-04-19 05:45:27 +030016class TestBasicOps:
Raymond Hettinger40f62172002-12-29 23:03:38 +000017 # Superclass with tests common to all generators.
18 # Subclasses must arrange for self.gen to retrieve the Random instance
19 # to be tested.
Tim Peters46c04e12002-05-05 20:40:00 +000020
Raymond Hettinger40f62172002-12-29 23:03:38 +000021 def randomlist(self, n):
22 """Helper function to make a list of random numbers"""
Guido van Rossum805365e2007-05-07 22:24:25 +000023 return [self.gen.random() for i in range(n)]
Tim Peters46c04e12002-05-05 20:40:00 +000024
Raymond Hettinger40f62172002-12-29 23:03:38 +000025 def test_autoseed(self):
26 self.gen.seed()
27 state1 = self.gen.getstate()
Raymond Hettinger3081d592003-08-09 18:30:57 +000028 time.sleep(0.1)
Mike53f7a7c2017-12-14 14:04:53 +030029 self.gen.seed() # different seeds at different times
Raymond Hettinger40f62172002-12-29 23:03:38 +000030 state2 = self.gen.getstate()
31 self.assertNotEqual(state1, state2)
Tim Peters46c04e12002-05-05 20:40:00 +000032
Raymond Hettinger40f62172002-12-29 23:03:38 +000033 def test_saverestore(self):
34 N = 1000
35 self.gen.seed()
36 state = self.gen.getstate()
37 randseq = self.randomlist(N)
38 self.gen.setstate(state) # should regenerate the same sequence
39 self.assertEqual(randseq, self.randomlist(N))
40
41 def test_seedargs(self):
Mark Dickinson95aeae02012-06-24 11:05:30 +010042 # Seed value with a negative hash.
43 class MySeed(object):
44 def __hash__(self):
45 return -1729
Xtreaka06d6832019-09-12 09:13:20 +010046 for arg in [None, 0, 1, -1, 10**20, -(10**20),
Victor Stinner00d7cd82020-03-10 15:15:14 +010047 False, True, 3.14, 'a']:
Raymond Hettinger40f62172002-12-29 23:03:38 +000048 self.gen.seed(arg)
Xtreaka06d6832019-09-12 09:13:20 +010049
50 for arg in [1+2j, tuple('abc'), MySeed()]:
51 with self.assertWarns(DeprecationWarning):
52 self.gen.seed(arg)
53
Guido van Rossum805365e2007-05-07 22:24:25 +000054 for arg in [list(range(3)), dict(one=1)]:
Xtreaka06d6832019-09-12 09:13:20 +010055 with self.assertWarns(DeprecationWarning):
56 self.assertRaises(TypeError, self.gen.seed, arg)
Raymond Hettingerf763a722010-09-07 00:38:15 +000057 self.assertRaises(TypeError, self.gen.seed, 1, 2, 3, 4)
Raymond Hettinger58335872004-07-09 14:26:18 +000058 self.assertRaises(TypeError, type(self.gen), [])
Raymond Hettinger40f62172002-12-29 23:03:38 +000059
R David Murraye3e1c172013-04-02 12:47:23 -040060 @unittest.mock.patch('random._urandom') # os.urandom
61 def test_seed_when_randomness_source_not_found(self, urandom_mock):
62 # Random.seed() uses time.time() when an operating system specific
csabellaf111fd22017-05-11 11:19:35 -040063 # randomness source is not found. To test this on machines where it
R David Murraye3e1c172013-04-02 12:47:23 -040064 # exists, run the above test, test_seedargs(), again after mocking
65 # os.urandom() so that it raises the exception expected when the
66 # randomness source is not available.
67 urandom_mock.side_effect = NotImplementedError
68 self.test_seedargs()
69
Antoine Pitrou5e394332012-11-04 02:10:33 +010070 def test_shuffle(self):
71 shuffle = self.gen.shuffle
72 lst = []
73 shuffle(lst)
74 self.assertEqual(lst, [])
75 lst = [37]
76 shuffle(lst)
77 self.assertEqual(lst, [37])
78 seqs = [list(range(n)) for n in range(10)]
79 shuffled_seqs = [list(range(n)) for n in range(10)]
80 for shuffled_seq in shuffled_seqs:
81 shuffle(shuffled_seq)
82 for (seq, shuffled_seq) in zip(seqs, shuffled_seqs):
83 self.assertEqual(len(seq), len(shuffled_seq))
84 self.assertEqual(set(seq), set(shuffled_seq))
Antoine Pitrou5e394332012-11-04 02:10:33 +010085 # The above tests all would pass if the shuffle was a
86 # no-op. The following non-deterministic test covers that. It
87 # asserts that the shuffled sequence of 1000 distinct elements
88 # must be different from the original one. Although there is
89 # mathematically a non-zero probability that this could
90 # actually happen in a genuinely random shuffle, it is
91 # completely negligible, given that the number of possible
92 # permutations of 1000 objects is 1000! (factorial of 1000),
93 # which is considerably larger than the number of atoms in the
94 # universe...
95 lst = list(range(1000))
96 shuffled_lst = list(range(1000))
97 shuffle(shuffled_lst)
98 self.assertTrue(lst != shuffled_lst)
99 shuffle(lst)
100 self.assertTrue(lst != shuffled_lst)
csabellaf111fd22017-05-11 11:19:35 -0400101 self.assertRaises(TypeError, shuffle, (1, 2, 3))
102
103 def test_shuffle_random_argument(self):
104 # Test random argument to shuffle.
105 shuffle = self.gen.shuffle
106 mock_random = unittest.mock.Mock(return_value=0.5)
107 seq = bytearray(b'abcdefghijk')
Raymond Hettinger190fac92020-05-02 16:45:32 -0700108 with self.assertWarns(DeprecationWarning):
109 shuffle(seq, mock_random)
csabellaf111fd22017-05-11 11:19:35 -0400110 mock_random.assert_called_with()
Antoine Pitrou5e394332012-11-04 02:10:33 +0100111
Raymond Hettingerdc4872e2010-09-07 10:06:56 +0000112 def test_choice(self):
113 choice = self.gen.choice
114 with self.assertRaises(IndexError):
115 choice([])
116 self.assertEqual(choice([50]), 50)
117 self.assertIn(choice([25, 75]), [25, 75])
118
Raymond Hettinger40f62172002-12-29 23:03:38 +0000119 def test_sample(self):
120 # For the entire allowable range of 0 <= k <= N, validate that
121 # the sample is of the correct length and contains only unique items
122 N = 100
Guido van Rossum805365e2007-05-07 22:24:25 +0000123 population = range(N)
124 for k in range(N+1):
Raymond Hettinger40f62172002-12-29 23:03:38 +0000125 s = self.gen.sample(population, k)
126 self.assertEqual(len(s), k)
Raymond Hettingera690a992003-11-16 16:17:49 +0000127 uniq = set(s)
Raymond Hettinger40f62172002-12-29 23:03:38 +0000128 self.assertEqual(len(uniq), k)
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000129 self.assertTrue(uniq <= set(population))
Raymond Hettinger8ec78812003-01-04 05:55:11 +0000130 self.assertEqual(self.gen.sample([], 0), []) # test edge case N==k==0
R David Murraye3e1c172013-04-02 12:47:23 -0400131 # Exception raised if size of sample exceeds that of population
132 self.assertRaises(ValueError, self.gen.sample, population, N+1)
Raymond Hettingerbf871262016-11-21 14:34:33 -0800133 self.assertRaises(ValueError, self.gen.sample, [], -1)
Raymond Hettinger40f62172002-12-29 23:03:38 +0000134
Raymond Hettinger7b0cf762003-01-17 17:23:23 +0000135 def test_sample_distribution(self):
136 # For the entire allowable range of 0 <= k <= N, validate that
137 # sample generates all possible permutations
138 n = 5
139 pop = range(n)
140 trials = 10000 # large num prevents false negatives without slowing normal case
Guido van Rossum805365e2007-05-07 22:24:25 +0000141 for k in range(n):
Raymond Hettingerffdb8bb2004-09-27 15:29:05 +0000142 expected = factorial(n) // factorial(n-k)
Raymond Hettinger7b0cf762003-01-17 17:23:23 +0000143 perms = {}
Guido van Rossum805365e2007-05-07 22:24:25 +0000144 for i in range(trials):
Raymond Hettinger7b0cf762003-01-17 17:23:23 +0000145 perms[tuple(self.gen.sample(pop, k))] = None
146 if len(perms) == expected:
147 break
148 else:
149 self.fail()
150
Raymond Hettinger66d09f12003-09-06 04:25:54 +0000151 def test_sample_inputs(self):
152 # SF bug #801342 -- population can be any iterable defining __len__()
Raymond Hettinger66d09f12003-09-06 04:25:54 +0000153 self.gen.sample(range(20), 2)
Guido van Rossum805365e2007-05-07 22:24:25 +0000154 self.gen.sample(range(20), 2)
Raymond Hettinger66d09f12003-09-06 04:25:54 +0000155 self.gen.sample(str('abcdefghijklmnopqrst'), 2)
156 self.gen.sample(tuple('abcdefghijklmnopqrst'), 2)
157
Thomas Wouters49fd7fa2006-04-21 10:40:58 +0000158 def test_sample_on_dicts(self):
Raymond Hettinger1acde192008-01-14 01:00:53 +0000159 self.assertRaises(TypeError, self.gen.sample, dict.fromkeys('abcdef'), 2)
Thomas Wouters49fd7fa2006-04-21 10:40:58 +0000160
Raymond Hettinger4fe00202020-04-19 00:36:42 -0700161 def test_sample_on_sets(self):
162 with self.assertWarns(DeprecationWarning):
163 population = {10, 20, 30, 40, 50, 60, 70}
164 self.gen.sample(population, k=5)
165
masklinn1e27b572020-12-19 05:33:36 +0100166 def test_sample_on_seqsets(self):
167 class SeqSet(abc.Sequence, abc.Set):
168 def __init__(self, items):
169 self._items = items
170
171 def __len__(self):
172 return len(self._items)
173
174 def __getitem__(self, index):
175 return self._items[index]
176
177 population = SeqSet([2, 4, 1, 3])
178 with warnings.catch_warnings():
179 warnings.simplefilter("error", DeprecationWarning)
180 self.gen.sample(population, k=2)
181
Raymond Hettinger81a5fc32020-05-08 07:53:15 -0700182 def test_sample_with_counts(self):
183 sample = self.gen.sample
184
185 # General case
186 colors = ['red', 'green', 'blue', 'orange', 'black', 'brown', 'amber']
187 counts = [500, 200, 20, 10, 5, 0, 1 ]
188 k = 700
189 summary = Counter(sample(colors, counts=counts, k=k))
190 self.assertEqual(sum(summary.values()), k)
191 for color, weight in zip(colors, counts):
192 self.assertLessEqual(summary[color], weight)
193 self.assertNotIn('brown', summary)
194
195 # Case that exhausts the population
196 k = sum(counts)
197 summary = Counter(sample(colors, counts=counts, k=k))
198 self.assertEqual(sum(summary.values()), k)
199 for color, weight in zip(colors, counts):
200 self.assertLessEqual(summary[color], weight)
201 self.assertNotIn('brown', summary)
202
203 # Case with population size of 1
204 summary = Counter(sample(['x'], counts=[10], k=8))
205 self.assertEqual(summary, Counter(x=8))
206
207 # Case with all counts equal.
208 nc = len(colors)
209 summary = Counter(sample(colors, counts=[10]*nc, k=10*nc))
210 self.assertEqual(summary, Counter(10*colors))
211
212 # Test error handling
213 with self.assertRaises(TypeError):
214 sample(['red', 'green', 'blue'], counts=10, k=10) # counts not iterable
215 with self.assertRaises(ValueError):
216 sample(['red', 'green', 'blue'], counts=[-3, -7, -8], k=2) # counts are negative
217 with self.assertRaises(ValueError):
218 sample(['red', 'green', 'blue'], counts=[0, 0, 0], k=2) # counts are zero
219 with self.assertRaises(ValueError):
220 sample(['red', 'green'], counts=[10, 10], k=21) # population too small
221 with self.assertRaises(ValueError):
222 sample(['red', 'green', 'blue'], counts=[1, 2], k=2) # too few counts
223 with self.assertRaises(ValueError):
224 sample(['red', 'green', 'blue'], counts=[1, 2, 3, 4], k=2) # too many counts
225
226 def test_sample_counts_equivalence(self):
227 # Test the documented strong equivalence to a sample with repeated elements.
228 # We run this test on random.Random() which makes deterministic selections
229 # for a given seed value.
230 sample = random.sample
231 seed = random.seed
232
233 colors = ['red', 'green', 'blue', 'orange', 'black', 'amber']
234 counts = [500, 200, 20, 10, 5, 1 ]
235 k = 700
236 seed(8675309)
237 s1 = sample(colors, counts=counts, k=k)
238 seed(8675309)
239 expanded = [color for (color, count) in zip(colors, counts) for i in range(count)]
240 self.assertEqual(len(expanded), sum(counts))
241 s2 = sample(expanded, k=k)
242 self.assertEqual(s1, s2)
243
244 pop = 'abcdefghi'
245 counts = [10, 9, 8, 7, 6, 5, 4, 3, 2]
246 seed(8675309)
247 s1 = ''.join(sample(pop, counts=counts, k=30))
248 expanded = ''.join([letter for (letter, count) in zip(pop, counts) for i in range(count)])
249 seed(8675309)
250 s2 = ''.join(sample(expanded, k=30))
251 self.assertEqual(s1, s2)
252
Raymond Hettinger28aa4a02016-09-07 00:08:44 -0700253 def test_choices(self):
254 choices = self.gen.choices
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700255 data = ['red', 'green', 'blue', 'yellow']
256 str_data = 'abcd'
257 range_data = range(4)
258 set_data = set(range(4))
259
260 # basic functionality
261 for sample in [
Raymond Hettinger9016f282016-09-26 21:45:57 -0700262 choices(data, k=5),
263 choices(data, range(4), k=5),
Raymond Hettinger28aa4a02016-09-07 00:08:44 -0700264 choices(k=5, population=data, weights=range(4)),
265 choices(k=5, population=data, cum_weights=range(4)),
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700266 ]:
267 self.assertEqual(len(sample), 5)
268 self.assertEqual(type(sample), list)
269 self.assertTrue(set(sample) <= set(data))
270
271 # test argument handling
Raymond Hettinger28aa4a02016-09-07 00:08:44 -0700272 with self.assertRaises(TypeError): # missing arguments
273 choices(2)
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700274
Raymond Hettinger9016f282016-09-26 21:45:57 -0700275 self.assertEqual(choices(data, k=0), []) # k == 0
276 self.assertEqual(choices(data, k=-1), []) # negative k behaves like ``[0] * -1``
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700277 with self.assertRaises(TypeError):
Raymond Hettinger9016f282016-09-26 21:45:57 -0700278 choices(data, k=2.5) # k is a float
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700279
Raymond Hettinger9016f282016-09-26 21:45:57 -0700280 self.assertTrue(set(choices(str_data, k=5)) <= set(str_data)) # population is a string sequence
281 self.assertTrue(set(choices(range_data, k=5)) <= set(range_data)) # population is a range
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700282 with self.assertRaises(TypeError):
Raymond Hettinger9016f282016-09-26 21:45:57 -0700283 choices(set_data, k=2) # population is not a sequence
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700284
Raymond Hettinger9016f282016-09-26 21:45:57 -0700285 self.assertTrue(set(choices(data, None, k=5)) <= set(data)) # weights is None
286 self.assertTrue(set(choices(data, weights=None, k=5)) <= set(data))
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700287 with self.assertRaises(ValueError):
Raymond Hettinger9016f282016-09-26 21:45:57 -0700288 choices(data, [1,2], k=5) # len(weights) != len(population)
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700289 with self.assertRaises(TypeError):
Raymond Hettinger9016f282016-09-26 21:45:57 -0700290 choices(data, 10, k=5) # non-iterable weights
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700291 with self.assertRaises(TypeError):
Raymond Hettinger9016f282016-09-26 21:45:57 -0700292 choices(data, [None]*4, k=5) # non-numeric weights
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700293 for weights in [
294 [15, 10, 25, 30], # integer weights
295 [15.1, 10.2, 25.2, 30.3], # float weights
296 [Fraction(1, 3), Fraction(2, 6), Fraction(3, 6), Fraction(4, 6)], # fractional weights
297 [True, False, True, False] # booleans (include / exclude)
298 ]:
Raymond Hettinger9016f282016-09-26 21:45:57 -0700299 self.assertTrue(set(choices(data, weights, k=5)) <= set(data))
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700300
301 with self.assertRaises(ValueError):
Raymond Hettinger9016f282016-09-26 21:45:57 -0700302 choices(data, cum_weights=[1,2], k=5) # len(weights) != len(population)
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700303 with self.assertRaises(TypeError):
Raymond Hettinger9016f282016-09-26 21:45:57 -0700304 choices(data, cum_weights=10, k=5) # non-iterable cum_weights
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700305 with self.assertRaises(TypeError):
Raymond Hettinger9016f282016-09-26 21:45:57 -0700306 choices(data, cum_weights=[None]*4, k=5) # non-numeric cum_weights
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700307 with self.assertRaises(TypeError):
Raymond Hettinger9016f282016-09-26 21:45:57 -0700308 choices(data, range(4), cum_weights=range(4), k=5) # both weights and cum_weights
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700309 for weights in [
310 [15, 10, 25, 30], # integer cum_weights
311 [15.1, 10.2, 25.2, 30.3], # float cum_weights
312 [Fraction(1, 3), Fraction(2, 6), Fraction(3, 6), Fraction(4, 6)], # fractional cum_weights
313 ]:
Raymond Hettinger9016f282016-09-26 21:45:57 -0700314 self.assertTrue(set(choices(data, cum_weights=weights, k=5)) <= set(data))
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700315
Raymond Hettinger7b166522016-10-14 01:19:38 -0400316 # Test weight focused on a single element of the population
317 self.assertEqual(choices('abcd', [1, 0, 0, 0]), ['a'])
318 self.assertEqual(choices('abcd', [0, 1, 0, 0]), ['b'])
319 self.assertEqual(choices('abcd', [0, 0, 1, 0]), ['c'])
320 self.assertEqual(choices('abcd', [0, 0, 0, 1]), ['d'])
321
322 # Test consistency with random.choice() for empty population
323 with self.assertRaises(IndexError):
324 choices([], k=1)
325 with self.assertRaises(IndexError):
326 choices([], weights=[], k=1)
327 with self.assertRaises(IndexError):
328 choices([], cum_weights=[], k=5)
329
Raymond Hettingerddf71712018-06-27 01:08:31 -0700330 def test_choices_subnormal(self):
Min ho Kim96e12d52019-07-22 06:12:33 +1000331 # Subnormal weights would occasionally trigger an IndexError
Raymond Hettingerddf71712018-06-27 01:08:31 -0700332 # in choices() when the value returned by random() was large
333 # enough to make `random() * total` round up to the total.
334 # See https://bugs.python.org/msg275594 for more detail.
335 choices = self.gen.choices
336 choices(population=[1, 2], weights=[1e-323, 1e-323], k=5000)
337
Raymond Hettinger041d8b42019-11-23 02:22:13 -0800338 def test_choices_with_all_zero_weights(self):
339 # See issue #38881
340 with self.assertRaises(ValueError):
341 self.gen.choices('AB', [0.0, 0.0])
342
Ram Rachumb0dfc752020-09-29 04:32:10 +0300343 def test_choices_negative_total(self):
344 with self.assertRaises(ValueError):
345 self.gen.choices('ABC', [3, -5, 1])
346
347 def test_choices_infinite_total(self):
348 with self.assertRaises(ValueError):
349 self.gen.choices('A', [float('inf')])
350 with self.assertRaises(ValueError):
351 self.gen.choices('AB', [0.0, float('inf')])
352 with self.assertRaises(ValueError):
353 self.gen.choices('AB', [-float('inf'), 123])
354 with self.assertRaises(ValueError):
355 self.gen.choices('AB', [0.0, float('nan')])
356 with self.assertRaises(ValueError):
357 self.gen.choices('AB', [float('-inf'), float('inf')])
358
Raymond Hettinger40f62172002-12-29 23:03:38 +0000359 def test_gauss(self):
360 # Ensure that the seed() method initializes all the hidden state. In
361 # particular, through 2.2.1 it failed to reset a piece of state used
362 # by (and only by) the .gauss() method.
363
364 for seed in 1, 12, 123, 1234, 12345, 123456, 654321:
365 self.gen.seed(seed)
366 x1 = self.gen.random()
367 y1 = self.gen.gauss(0, 1)
368
369 self.gen.seed(seed)
370 x2 = self.gen.random()
371 y2 = self.gen.gauss(0, 1)
372
373 self.assertEqual(x1, x2)
374 self.assertEqual(y1, y2)
375
Antoine Pitrou75a33782020-04-17 19:32:14 +0200376 def test_getrandbits(self):
377 # Verify ranges
378 for k in range(1, 1000):
379 self.assertTrue(0 <= self.gen.getrandbits(k) < 2**k)
380 self.assertEqual(self.gen.getrandbits(0), 0)
381
382 # Verify all bits active
383 getbits = self.gen.getrandbits
384 for span in [1, 2, 3, 4, 31, 32, 32, 52, 53, 54, 119, 127, 128, 129]:
385 all_bits = 2**span-1
386 cum = 0
387 cpl_cum = 0
388 for i in range(100):
389 v = getbits(span)
390 cum |= v
391 cpl_cum |= all_bits ^ v
392 self.assertEqual(cum, all_bits)
393 self.assertEqual(cpl_cum, all_bits)
394
395 # Verify argument checking
396 self.assertRaises(TypeError, self.gen.getrandbits)
397 self.assertRaises(TypeError, self.gen.getrandbits, 1, 2)
398 self.assertRaises(ValueError, self.gen.getrandbits, -1)
399 self.assertRaises(TypeError, self.gen.getrandbits, 10.1)
400
Raymond Hettinger5f078ff2003-06-24 20:29:04 +0000401 def test_pickling(self):
Serhiy Storchakabad12572014-12-15 14:03:42 +0200402 for proto in range(pickle.HIGHEST_PROTOCOL + 1):
403 state = pickle.dumps(self.gen, proto)
404 origseq = [self.gen.random() for i in range(10)]
405 newgen = pickle.loads(state)
406 restoredseq = [newgen.random() for i in range(10)]
407 self.assertEqual(origseq, restoredseq)
Raymond Hettinger40f62172002-12-29 23:03:38 +0000408
Dong-hee Na6989af02020-06-21 18:44:58 +0900409 @test.support.cpython_only
410 def test_bug_41052(self):
411 # _random.Random should not be allowed to serialization
412 import _random
413 for proto in range(pickle.HIGHEST_PROTOCOL + 1):
414 r = _random.Random()
415 self.assertRaises(TypeError, pickle.dumps, r, proto)
416
AMIRb8fde8b2020-12-22 03:15:50 +0330417 @test.support.cpython_only
418 def test_bug_42008(self):
419 # _random.Random should call seed with first element of arg tuple
420 import _random
421 r1 = _random.Random()
422 r1.seed(8675309)
423 r2 = _random.Random(8675309)
424 self.assertEqual(r1.random(), r2.random())
425
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000426 def test_bug_1727780(self):
427 # verify that version-2-pickles can be loaded
428 # fine, whether they are created on 32-bit or 64-bit
429 # platforms, and that version-3-pickles load fine.
430 files = [("randv2_32.pck", 780),
431 ("randv2_64.pck", 866),
432 ("randv3.pck", 343)]
433 for file, value in files:
Serhiy Storchaka5b10b982019-03-05 10:06:26 +0200434 with open(support.findfile(file),"rb") as f:
435 r = pickle.load(f)
Raymond Hettinger05156612010-09-07 04:44:52 +0000436 self.assertEqual(int(r.random()*1000), value)
437
438 def test_bug_9025(self):
439 # Had problem with an uneven distribution in int(n*random())
440 # Verify the fix by checking that distributions fall within expectations.
441 n = 100000
442 randrange = self.gen.randrange
443 k = sum(randrange(6755399441055744) % 3 == 2 for i in range(n))
444 self.assertTrue(0.30 < k/n < .37, (k/n))
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000445
Victor Stinner9f5fe792020-04-17 19:05:35 +0200446 def test_randbytes(self):
447 # Verify ranges
448 for n in range(1, 10):
449 data = self.gen.randbytes(n)
450 self.assertEqual(type(data), bytes)
451 self.assertEqual(len(data), n)
452
453 self.assertEqual(self.gen.randbytes(0), b'')
454
455 # Verify argument checking
456 self.assertRaises(TypeError, self.gen.randbytes)
457 self.assertRaises(TypeError, self.gen.randbytes, 1, 2)
458 self.assertRaises(ValueError, self.gen.randbytes, -1)
459 self.assertRaises(TypeError, self.gen.randbytes, 1.0)
460
461
Ezio Melotti3e4a98b2013-04-19 05:45:27 +0300462try:
463 random.SystemRandom().random()
464except NotImplementedError:
465 SystemRandom_available = False
466else:
467 SystemRandom_available = True
468
469@unittest.skipUnless(SystemRandom_available, "random.SystemRandom not available")
470class SystemRandom_TestBasicOps(TestBasicOps, unittest.TestCase):
Raymond Hettinger23f12412004-09-13 22:23:21 +0000471 gen = random.SystemRandom()
Raymond Hettinger356a4592004-08-30 06:14:31 +0000472
473 def test_autoseed(self):
474 # Doesn't need to do anything except not fail
475 self.gen.seed()
476
477 def test_saverestore(self):
478 self.assertRaises(NotImplementedError, self.gen.getstate)
479 self.assertRaises(NotImplementedError, self.gen.setstate, None)
480
481 def test_seedargs(self):
482 # Doesn't need to do anything except not fail
483 self.gen.seed(100)
484
Raymond Hettinger356a4592004-08-30 06:14:31 +0000485 def test_gauss(self):
486 self.gen.gauss_next = None
487 self.gen.seed(100)
488 self.assertEqual(self.gen.gauss_next, None)
489
490 def test_pickling(self):
Serhiy Storchakabad12572014-12-15 14:03:42 +0200491 for proto in range(pickle.HIGHEST_PROTOCOL + 1):
492 self.assertRaises(NotImplementedError, pickle.dumps, self.gen, proto)
Raymond Hettinger356a4592004-08-30 06:14:31 +0000493
494 def test_53_bits_per_float(self):
495 # This should pass whenever a C double has 53 bit precision.
496 span = 2 ** 53
497 cum = 0
Guido van Rossum805365e2007-05-07 22:24:25 +0000498 for i in range(100):
Raymond Hettinger356a4592004-08-30 06:14:31 +0000499 cum |= int(self.gen.random() * span)
500 self.assertEqual(cum, span-1)
501
502 def test_bigrand(self):
503 # The randrange routine should build-up the required number of bits
504 # in stages so that all bit positions are active.
505 span = 2 ** 500
506 cum = 0
Guido van Rossum805365e2007-05-07 22:24:25 +0000507 for i in range(100):
Raymond Hettinger356a4592004-08-30 06:14:31 +0000508 r = self.gen.randrange(span)
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000509 self.assertTrue(0 <= r < span)
Raymond Hettinger356a4592004-08-30 06:14:31 +0000510 cum |= r
511 self.assertEqual(cum, span-1)
512
513 def test_bigrand_ranges(self):
514 for i in [40,80, 160, 200, 211, 250, 375, 512, 550]:
Zachary Warea6edea52013-11-26 14:50:10 -0600515 start = self.gen.randrange(2 ** (i-2))
516 stop = self.gen.randrange(2 ** i)
Raymond Hettinger356a4592004-08-30 06:14:31 +0000517 if stop <= start:
Zachary Warea6edea52013-11-26 14:50:10 -0600518 continue
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000519 self.assertTrue(start <= self.gen.randrange(start, stop) < stop)
Raymond Hettinger356a4592004-08-30 06:14:31 +0000520
521 def test_rangelimits(self):
522 for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]:
523 self.assertEqual(set(range(start,stop)),
Guido van Rossum805365e2007-05-07 22:24:25 +0000524 set([self.gen.randrange(start,stop) for i in range(100)]))
Raymond Hettinger356a4592004-08-30 06:14:31 +0000525
R David Murraye3e1c172013-04-02 12:47:23 -0400526 def test_randrange_nonunit_step(self):
527 rint = self.gen.randrange(0, 10, 2)
528 self.assertIn(rint, (0, 2, 4, 6, 8))
529 rint = self.gen.randrange(0, 2, 2)
530 self.assertEqual(rint, 0)
531
532 def test_randrange_errors(self):
533 raises = partial(self.assertRaises, ValueError, self.gen.randrange)
534 # Empty range
535 raises(3, 3)
536 raises(-721)
537 raises(0, 100, -12)
538 # Non-integer start/stop
539 raises(3.14159)
540 raises(0, 2.71828)
541 # Zero and non-integer step
542 raises(0, 42, 0)
543 raises(0, 42, 3.14159)
544
Raymond Hettingera9621bb2020-12-28 11:10:34 -0800545 def test_randrange_argument_handling(self):
546 randrange = self.gen.randrange
547 with self.assertWarns(DeprecationWarning):
548 randrange(10.0, 20, 2)
549 with self.assertWarns(DeprecationWarning):
550 randrange(10, 20.0, 2)
551 with self.assertWarns(DeprecationWarning):
552 randrange(10, 20, 1.0)
553 with self.assertWarns(DeprecationWarning):
554 randrange(10, 20, 2.0)
555 with self.assertWarns(DeprecationWarning):
556 with self.assertRaises(ValueError):
557 randrange(10.5)
558 with self.assertWarns(DeprecationWarning):
559 with self.assertRaises(ValueError):
560 randrange(10, 20.5)
561 with self.assertWarns(DeprecationWarning):
562 with self.assertRaises(ValueError):
563 randrange(10, 20, 1.5)
564
Raymond Hettinger356a4592004-08-30 06:14:31 +0000565 def test_randbelow_logic(self, _log=log, int=int):
566 # check bitcount transition points: 2**i and 2**(i+1)-1
567 # show that: k = int(1.001 + _log(n, 2))
568 # is equal to or one greater than the number of bits in n
Guido van Rossum805365e2007-05-07 22:24:25 +0000569 for i in range(1, 1000):
Guido van Rossume2a383d2007-01-15 16:59:06 +0000570 n = 1 << i # check an exact power of two
Raymond Hettinger356a4592004-08-30 06:14:31 +0000571 numbits = i+1
572 k = int(1.00001 + _log(n, 2))
573 self.assertEqual(k, numbits)
Guido van Rossume61fd5b2007-07-11 12:20:59 +0000574 self.assertEqual(n, 2**(k-1))
Raymond Hettinger356a4592004-08-30 06:14:31 +0000575
576 n += n - 1 # check 1 below the next power of two
577 k = int(1.00001 + _log(n, 2))
Benjamin Peterson577473f2010-01-19 00:09:57 +0000578 self.assertIn(k, [numbits, numbits+1])
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000579 self.assertTrue(2**k > n > 2**(k-2))
Raymond Hettinger356a4592004-08-30 06:14:31 +0000580
581 n -= n >> 15 # check a little farther below the next power of two
582 k = int(1.00001 + _log(n, 2))
583 self.assertEqual(k, numbits) # note the stronger assertion
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000584 self.assertTrue(2**k > n > 2**(k-1)) # note the stronger assertion
Raymond Hettinger356a4592004-08-30 06:14:31 +0000585
586
Ezio Melotti3e4a98b2013-04-19 05:45:27 +0300587class MersenneTwister_TestBasicOps(TestBasicOps, unittest.TestCase):
Raymond Hettinger40f62172002-12-29 23:03:38 +0000588 gen = random.Random()
589
Raymond Hettingerf763a722010-09-07 00:38:15 +0000590 def test_guaranteed_stable(self):
591 # These sequences are guaranteed to stay the same across versions of python
592 self.gen.seed(3456147, version=1)
593 self.assertEqual([self.gen.random().hex() for i in range(4)],
594 ['0x1.ac362300d90d2p-1', '0x1.9d16f74365005p-1',
595 '0x1.1ebb4352e4c4dp-1', '0x1.1a7422abf9c11p-1'])
Raymond Hettingerf763a722010-09-07 00:38:15 +0000596 self.gen.seed("the quick brown fox", version=2)
597 self.assertEqual([self.gen.random().hex() for i in range(4)],
Raymond Hettinger3fcf0022010-12-08 01:13:53 +0000598 ['0x1.1239ddfb11b7cp-3', '0x1.b3cbb5c51b120p-4',
599 '0x1.8c4f55116b60fp-1', '0x1.63eb525174a27p-1'])
Raymond Hettingerf763a722010-09-07 00:38:15 +0000600
Raymond Hettingerc7bab7c2016-08-31 15:01:08 -0700601 def test_bug_27706(self):
602 # Verify that version 1 seeds are unaffected by hash randomization
603
604 self.gen.seed('nofar', version=1) # hash('nofar') == 5990528763808513177
605 self.assertEqual([self.gen.random().hex() for i in range(4)],
606 ['0x1.8645314505ad7p-1', '0x1.afb1f82e40a40p-5',
607 '0x1.2a59d2285e971p-1', '0x1.56977142a7880p-6'])
608
609 self.gen.seed('rachel', version=1) # hash('rachel') == -9091735575445484789
610 self.assertEqual([self.gen.random().hex() for i in range(4)],
611 ['0x1.0b294cc856fcdp-1', '0x1.2ad22d79e77b8p-3',
612 '0x1.3052b9c072678p-2', '0x1.578f332106574p-3'])
613
614 self.gen.seed('', version=1) # hash('') == 0
615 self.assertEqual([self.gen.random().hex() for i in range(4)],
616 ['0x1.b0580f98a7dbep-1', '0x1.84129978f9c1ap-1',
617 '0x1.aeaa51052e978p-2', '0x1.092178fb945a6p-2'])
618
Oren Milmand780b2d2017-09-28 10:50:01 +0300619 def test_bug_31478(self):
620 # There shouldn't be an assertion failure in _random.Random.seed() in
621 # case the argument has a bad __abs__() method.
622 class BadInt(int):
623 def __abs__(self):
624 return None
625 try:
626 self.gen.seed(BadInt())
627 except TypeError:
628 pass
629
Raymond Hettinger132a7d72017-09-17 09:04:30 -0700630 def test_bug_31482(self):
631 # Verify that version 1 seeds are unaffected by hash randomization
632 # when the seeds are expressed as bytes rather than strings.
633 # The hash(b) values listed are the Python2.7 hash() values
634 # which were used for seeding.
635
636 self.gen.seed(b'nofar', version=1) # hash('nofar') == 5990528763808513177
637 self.assertEqual([self.gen.random().hex() for i in range(4)],
638 ['0x1.8645314505ad7p-1', '0x1.afb1f82e40a40p-5',
639 '0x1.2a59d2285e971p-1', '0x1.56977142a7880p-6'])
640
641 self.gen.seed(b'rachel', version=1) # hash('rachel') == -9091735575445484789
642 self.assertEqual([self.gen.random().hex() for i in range(4)],
643 ['0x1.0b294cc856fcdp-1', '0x1.2ad22d79e77b8p-3',
644 '0x1.3052b9c072678p-2', '0x1.578f332106574p-3'])
645
646 self.gen.seed(b'', version=1) # hash('') == 0
647 self.assertEqual([self.gen.random().hex() for i in range(4)],
648 ['0x1.b0580f98a7dbep-1', '0x1.84129978f9c1ap-1',
649 '0x1.aeaa51052e978p-2', '0x1.092178fb945a6p-2'])
650
651 b = b'\x00\x20\x40\x60\x80\xA0\xC0\xE0\xF0'
652 self.gen.seed(b, version=1) # hash(b) == 5015594239749365497
653 self.assertEqual([self.gen.random().hex() for i in range(4)],
654 ['0x1.52c2fde444d23p-1', '0x1.875174f0daea4p-2',
655 '0x1.9e9b2c50e5cd2p-1', '0x1.fa57768bd321cp-2'])
656
Raymond Hettinger58335872004-07-09 14:26:18 +0000657 def test_setstate_first_arg(self):
658 self.assertRaises(ValueError, self.gen.setstate, (1, None, None))
659
660 def test_setstate_middle_arg(self):
bladebryan9616a822017-04-21 23:10:46 -0700661 start_state = self.gen.getstate()
Raymond Hettinger58335872004-07-09 14:26:18 +0000662 # Wrong type, s/b tuple
663 self.assertRaises(TypeError, self.gen.setstate, (2, None, None))
664 # Wrong length, s/b 625
665 self.assertRaises(ValueError, self.gen.setstate, (2, (1,2,3), None))
666 # Wrong type, s/b tuple of 625 ints
667 self.assertRaises(TypeError, self.gen.setstate, (2, ('a',)*625, None))
668 # Last element s/b an int also
669 self.assertRaises(TypeError, self.gen.setstate, (2, (0,)*624+('a',), None))
Serhiy Storchaka178f0b62015-07-24 09:02:53 +0300670 # Last element s/b between 0 and 624
671 with self.assertRaises((ValueError, OverflowError)):
672 self.gen.setstate((2, (1,)*624+(625,), None))
673 with self.assertRaises((ValueError, OverflowError)):
674 self.gen.setstate((2, (1,)*624+(-1,), None))
bladebryan9616a822017-04-21 23:10:46 -0700675 # Failed calls to setstate() should not have changed the state.
676 bits100 = self.gen.getrandbits(100)
677 self.gen.setstate(start_state)
678 self.assertEqual(self.gen.getrandbits(100), bits100)
Raymond Hettinger58335872004-07-09 14:26:18 +0000679
R David Murraye3e1c172013-04-02 12:47:23 -0400680 # Little trick to make "tuple(x % (2**32) for x in internalstate)"
681 # raise ValueError. I cannot think of a simple way to achieve this, so
682 # I am opting for using a generator as the middle argument of setstate
683 # which attempts to cast a NaN to integer.
684 state_values = self.gen.getstate()[1]
685 state_values = list(state_values)
686 state_values[-1] = float('nan')
687 state = (int(x) for x in state_values)
688 self.assertRaises(TypeError, self.gen.setstate, (2, state, None))
689
Raymond Hettinger40f62172002-12-29 23:03:38 +0000690 def test_referenceImplementation(self):
691 # Compare the python implementation with results from the original
692 # code. Create 2000 53-bit precision random floats. Compare only
693 # the last ten entries to show that the independent implementations
694 # are tracking. Here is the main() function needed to create the
695 # list of expected random numbers:
696 # void main(void){
697 # int i;
698 # unsigned long init[4]={61731, 24903, 614, 42143}, length=4;
699 # init_by_array(init, length);
700 # for (i=0; i<2000; i++) {
701 # printf("%.15f ", genrand_res53());
702 # if (i%5==4) printf("\n");
703 # }
704 # }
705 expected = [0.45839803073713259,
706 0.86057815201978782,
707 0.92848331726782152,
708 0.35932681119782461,
709 0.081823493762449573,
710 0.14332226470169329,
711 0.084297823823520024,
712 0.53814864671831453,
713 0.089215024911993401,
714 0.78486196105372907]
715
Guido van Rossume2a383d2007-01-15 16:59:06 +0000716 self.gen.seed(61731 + (24903<<32) + (614<<64) + (42143<<96))
Raymond Hettinger40f62172002-12-29 23:03:38 +0000717 actual = self.randomlist(2000)[-10:]
718 for a, e in zip(actual, expected):
719 self.assertAlmostEqual(a,e,places=14)
720
721 def test_strong_reference_implementation(self):
722 # Like test_referenceImplementation, but checks for exact bit-level
723 # equality. This should pass on any box where C double contains
724 # at least 53 bits of precision (the underlying algorithm suffers
725 # no rounding errors -- all results are exact).
726 from math import ldexp
727
Guido van Rossume2a383d2007-01-15 16:59:06 +0000728 expected = [0x0eab3258d2231f,
729 0x1b89db315277a5,
730 0x1db622a5518016,
731 0x0b7f9af0d575bf,
732 0x029e4c4db82240,
733 0x04961892f5d673,
734 0x02b291598e4589,
735 0x11388382c15694,
736 0x02dad977c9e1fe,
737 0x191d96d4d334c6]
738 self.gen.seed(61731 + (24903<<32) + (614<<64) + (42143<<96))
Raymond Hettinger40f62172002-12-29 23:03:38 +0000739 actual = self.randomlist(2000)[-10:]
740 for a, e in zip(actual, expected):
Guido van Rossume2a383d2007-01-15 16:59:06 +0000741 self.assertEqual(int(ldexp(a, 53)), e)
Raymond Hettinger40f62172002-12-29 23:03:38 +0000742
743 def test_long_seed(self):
744 # This is most interesting to run in debug mode, just to make sure
745 # nothing blows up. Under the covers, a dynamically resized array
746 # is allocated, consuming space proportional to the number of bits
747 # in the seed. Unfortunately, that's a quadratic-time algorithm,
748 # so don't make this horribly big.
Guido van Rossume2a383d2007-01-15 16:59:06 +0000749 seed = (1 << (10000 * 8)) - 1 # about 10K bytes
Raymond Hettinger40f62172002-12-29 23:03:38 +0000750 self.gen.seed(seed)
751
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000752 def test_53_bits_per_float(self):
753 # This should pass whenever a C double has 53 bit precision.
754 span = 2 ** 53
755 cum = 0
Guido van Rossum805365e2007-05-07 22:24:25 +0000756 for i in range(100):
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000757 cum |= int(self.gen.random() * span)
758 self.assertEqual(cum, span-1)
759
760 def test_bigrand(self):
761 # The randrange routine should build-up the required number of bits
762 # in stages so that all bit positions are active.
763 span = 2 ** 500
764 cum = 0
Guido van Rossum805365e2007-05-07 22:24:25 +0000765 for i in range(100):
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000766 r = self.gen.randrange(span)
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000767 self.assertTrue(0 <= r < span)
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000768 cum |= r
769 self.assertEqual(cum, span-1)
770
771 def test_bigrand_ranges(self):
772 for i in [40,80, 160, 200, 211, 250, 375, 512, 550]:
Zachary Warea6edea52013-11-26 14:50:10 -0600773 start = self.gen.randrange(2 ** (i-2))
774 stop = self.gen.randrange(2 ** i)
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000775 if stop <= start:
Zachary Warea6edea52013-11-26 14:50:10 -0600776 continue
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000777 self.assertTrue(start <= self.gen.randrange(start, stop) < stop)
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000778
779 def test_rangelimits(self):
780 for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]:
Raymond Hettingera690a992003-11-16 16:17:49 +0000781 self.assertEqual(set(range(start,stop)),
Guido van Rossum805365e2007-05-07 22:24:25 +0000782 set([self.gen.randrange(start,stop) for i in range(100)]))
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000783
Antoine Pitrou75a33782020-04-17 19:32:14 +0200784 def test_getrandbits(self):
785 super().test_getrandbits()
786
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000787 # Verify cross-platform repeatability
788 self.gen.seed(1234567)
789 self.assertEqual(self.gen.getrandbits(100),
Guido van Rossume2a383d2007-01-15 16:59:06 +0000790 97904845777343510404718956115)
Raymond Hettinger58335872004-07-09 14:26:18 +0000791
Wolfgang Maierba3a87a2018-04-17 17:16:17 +0200792 def test_randrange_uses_getrandbits(self):
793 # Verify use of getrandbits by randrange
794 # Use same seed as in the cross-platform repeatability test
Antoine Pitrou75a33782020-04-17 19:32:14 +0200795 # in test_getrandbits above.
Wolfgang Maierba3a87a2018-04-17 17:16:17 +0200796 self.gen.seed(1234567)
797 # If randrange uses getrandbits, it should pick getrandbits(100)
798 # when called with a 100-bits stop argument.
799 self.assertEqual(self.gen.randrange(2**99),
800 97904845777343510404718956115)
801
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000802 def test_randbelow_logic(self, _log=log, int=int):
803 # check bitcount transition points: 2**i and 2**(i+1)-1
804 # show that: k = int(1.001 + _log(n, 2))
805 # is equal to or one greater than the number of bits in n
Guido van Rossum805365e2007-05-07 22:24:25 +0000806 for i in range(1, 1000):
Guido van Rossume2a383d2007-01-15 16:59:06 +0000807 n = 1 << i # check an exact power of two
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000808 numbits = i+1
809 k = int(1.00001 + _log(n, 2))
810 self.assertEqual(k, numbits)
Guido van Rossume61fd5b2007-07-11 12:20:59 +0000811 self.assertEqual(n, 2**(k-1))
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000812
813 n += n - 1 # check 1 below the next power of two
814 k = int(1.00001 + _log(n, 2))
Benjamin Peterson577473f2010-01-19 00:09:57 +0000815 self.assertIn(k, [numbits, numbits+1])
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000816 self.assertTrue(2**k > n > 2**(k-2))
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000817
818 n -= n >> 15 # check a little farther below the next power of two
819 k = int(1.00001 + _log(n, 2))
820 self.assertEqual(k, numbits) # note the stronger assertion
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000821 self.assertTrue(2**k > n > 2**(k-1)) # note the stronger assertion
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000822
Wolfgang Maierba3a87a2018-04-17 17:16:17 +0200823 def test_randbelow_without_getrandbits(self):
R David Murraye3e1c172013-04-02 12:47:23 -0400824 # Random._randbelow() can only use random() when the built-in one
825 # has been overridden but no new getrandbits() method was supplied.
R David Murraye3e1c172013-04-02 12:47:23 -0400826 maxsize = 1<<random.BPF
827 with warnings.catch_warnings():
828 warnings.simplefilter("ignore", UserWarning)
829 # Population range too large (n >= maxsize)
Wolfgang Maierba3a87a2018-04-17 17:16:17 +0200830 self.gen._randbelow_without_getrandbits(
831 maxsize+1, maxsize=maxsize
832 )
833 self.gen._randbelow_without_getrandbits(5640, maxsize=maxsize)
Raymond Hettinger4168f1e2020-05-01 10:34:19 -0700834 # issue 33203: test that _randbelow returns zero on
Wolfgang Maier091e95e2018-04-05 17:19:44 +0200835 # n == 0 also in its getrandbits-independent branch.
Raymond Hettinger4168f1e2020-05-01 10:34:19 -0700836 x = self.gen._randbelow_without_getrandbits(0, maxsize=maxsize)
837 self.assertEqual(x, 0)
Wolfgang Maierba3a87a2018-04-17 17:16:17 +0200838
R David Murraye3e1c172013-04-02 12:47:23 -0400839 # This might be going too far to test a single line, but because of our
840 # noble aim of achieving 100% test coverage we need to write a case in
841 # which the following line in Random._randbelow() gets executed:
842 #
843 # rem = maxsize % n
844 # limit = (maxsize - rem) / maxsize
845 # r = random()
846 # while r >= limit:
847 # r = random() # <== *This line* <==<
848 #
849 # Therefore, to guarantee that the while loop is executed at least
850 # once, we need to mock random() so that it returns a number greater
851 # than 'limit' the first time it gets called.
852
853 n = 42
854 epsilon = 0.01
855 limit = (maxsize - (maxsize % n)) / maxsize
Wolfgang Maierba3a87a2018-04-17 17:16:17 +0200856 with unittest.mock.patch.object(random.Random, 'random') as random_mock:
857 random_mock.side_effect = [limit + epsilon, limit - epsilon]
858 self.gen._randbelow_without_getrandbits(n, maxsize=maxsize)
859 self.assertEqual(random_mock.call_count, 2)
R David Murraye3e1c172013-04-02 12:47:23 -0400860
Thomas Wouters902d6eb2007-01-09 23:18:33 +0000861 def test_randrange_bug_1590891(self):
862 start = 1000000000000
863 stop = -100000000000000000000
864 step = -200
865 x = self.gen.randrange(start, stop, step)
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000866 self.assertTrue(stop < x <= start)
Thomas Wouters902d6eb2007-01-09 23:18:33 +0000867 self.assertEqual((x+stop)%step, 0)
868
Raymond Hettinger30d00e52016-10-29 16:55:36 -0700869 def test_choices_algorithms(self):
Raymond Hettinger24e42392016-11-13 00:42:56 -0500870 # The various ways of specifying weights should produce the same results
Raymond Hettinger30d00e52016-10-29 16:55:36 -0700871 choices = self.gen.choices
Raymond Hettinger6023d332016-11-21 15:32:08 -0800872 n = 104729
Raymond Hettinger30d00e52016-10-29 16:55:36 -0700873
874 self.gen.seed(8675309)
875 a = self.gen.choices(range(n), k=10000)
876
877 self.gen.seed(8675309)
878 b = self.gen.choices(range(n), [1]*n, k=10000)
879 self.assertEqual(a, b)
880
881 self.gen.seed(8675309)
882 c = self.gen.choices(range(n), cum_weights=range(1, n+1), k=10000)
883 self.assertEqual(a, c)
884
penguindustin96466302019-05-06 14:57:17 -0400885 # American Roulette
Raymond Hettinger77d574d2016-10-29 17:42:36 -0700886 population = ['Red', 'Black', 'Green']
887 weights = [18, 18, 2]
888 cum_weights = [18, 36, 38]
889 expanded_population = ['Red'] * 18 + ['Black'] * 18 + ['Green'] * 2
890
891 self.gen.seed(9035768)
892 a = self.gen.choices(expanded_population, k=10000)
893
894 self.gen.seed(9035768)
895 b = self.gen.choices(population, weights, k=10000)
896 self.assertEqual(a, b)
897
898 self.gen.seed(9035768)
899 c = self.gen.choices(population, cum_weights=cum_weights, k=10000)
900 self.assertEqual(a, c)
901
Victor Stinner9f5fe792020-04-17 19:05:35 +0200902 def test_randbytes(self):
903 super().test_randbytes()
904
905 # Mersenne Twister randbytes() is deterministic
906 # and does not depend on the endian and bitness.
907 seed = 8675309
Serhiy Storchaka223221b2020-04-17 23:51:28 +0300908 expected = b'3\xa8\xf9f\xf4\xa4\xd06\x19\x8f\x9f\x82\x02oe\xf0'
Victor Stinner9f5fe792020-04-17 19:05:35 +0200909
910 self.gen.seed(seed)
911 self.assertEqual(self.gen.randbytes(16), expected)
912
913 # randbytes(0) must not consume any entropy
914 self.gen.seed(seed)
915 self.assertEqual(self.gen.randbytes(0), b'')
916 self.assertEqual(self.gen.randbytes(16), expected)
917
918 # Four randbytes(4) calls give the same output than randbytes(16)
919 self.gen.seed(seed)
920 self.assertEqual(b''.join([self.gen.randbytes(4) for _ in range(4)]),
921 expected)
922
Serhiy Storchaka223221b2020-04-17 23:51:28 +0300923 # Each randbytes(1), randbytes(2) or randbytes(3) call consumes
924 # 4 bytes of entropy
Victor Stinner9f5fe792020-04-17 19:05:35 +0200925 self.gen.seed(seed)
Serhiy Storchaka223221b2020-04-17 23:51:28 +0300926 expected1 = expected[3::4]
927 self.assertEqual(b''.join(self.gen.randbytes(1) for _ in range(4)),
928 expected1)
929
930 self.gen.seed(seed)
931 expected2 = b''.join(expected[i + 2: i + 4]
Victor Stinner9f5fe792020-04-17 19:05:35 +0200932 for i in range(0, len(expected), 4))
933 self.assertEqual(b''.join(self.gen.randbytes(2) for _ in range(4)),
934 expected2)
935
936 self.gen.seed(seed)
Serhiy Storchaka223221b2020-04-17 23:51:28 +0300937 expected3 = b''.join(expected[i + 1: i + 4]
Victor Stinner9f5fe792020-04-17 19:05:35 +0200938 for i in range(0, len(expected), 4))
939 self.assertEqual(b''.join(self.gen.randbytes(3) for _ in range(4)),
940 expected3)
941
Serhiy Storchaka223221b2020-04-17 23:51:28 +0300942 def test_randbytes_getrandbits(self):
943 # There is a simple relation between randbytes() and getrandbits()
944 seed = 2849427419
945 gen2 = random.Random()
946 self.gen.seed(seed)
947 gen2.seed(seed)
948 for n in range(9):
949 self.assertEqual(self.gen.randbytes(n),
950 gen2.getrandbits(n * 8).to_bytes(n, 'little'))
951
Victor Stinner9f5fe792020-04-17 19:05:35 +0200952
Raymond Hettinger2d0c2562009-02-19 09:53:18 +0000953def gamma(z, sqrt2pi=(2.0*pi)**0.5):
954 # Reflection to right half of complex plane
955 if z < 0.5:
956 return pi / sin(pi*z) / gamma(1.0-z)
957 # Lanczos approximation with g=7
958 az = z + (7.0 - 0.5)
959 return az ** (z-0.5) / exp(az) * sqrt2pi * fsum([
960 0.9999999999995183,
961 676.5203681218835 / z,
962 -1259.139216722289 / (z+1.0),
963 771.3234287757674 / (z+2.0),
964 -176.6150291498386 / (z+3.0),
965 12.50734324009056 / (z+4.0),
966 -0.1385710331296526 / (z+5.0),
967 0.9934937113930748e-05 / (z+6.0),
968 0.1659470187408462e-06 / (z+7.0),
969 ])
Raymond Hettinger3dd990c2003-01-05 09:20:06 +0000970
Raymond Hettinger15ec3732003-01-05 01:08:34 +0000971class TestDistributions(unittest.TestCase):
972 def test_zeroinputs(self):
973 # Verify that distributions can handle a series of zero inputs'
974 g = random.Random()
Guido van Rossum805365e2007-05-07 22:24:25 +0000975 x = [g.random() for i in range(50)] + [0.0]*5
Raymond Hettinger15ec3732003-01-05 01:08:34 +0000976 g.random = x[:].pop; g.uniform(1,10)
977 g.random = x[:].pop; g.paretovariate(1.0)
978 g.random = x[:].pop; g.expovariate(1.0)
979 g.random = x[:].pop; g.weibullvariate(1.0, 1.0)
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200980 g.random = x[:].pop; g.vonmisesvariate(1.0, 1.0)
Raymond Hettinger15ec3732003-01-05 01:08:34 +0000981 g.random = x[:].pop; g.normalvariate(0.0, 1.0)
982 g.random = x[:].pop; g.gauss(0.0, 1.0)
983 g.random = x[:].pop; g.lognormvariate(0.0, 1.0)
984 g.random = x[:].pop; g.vonmisesvariate(0.0, 1.0)
985 g.random = x[:].pop; g.gammavariate(0.01, 1.0)
986 g.random = x[:].pop; g.gammavariate(1.0, 1.0)
987 g.random = x[:].pop; g.gammavariate(200.0, 1.0)
988 g.random = x[:].pop; g.betavariate(3.0, 3.0)
Christian Heimesfe337bf2008-03-23 21:54:12 +0000989 g.random = x[:].pop; g.triangular(0.0, 1.0, 1.0/3.0)
Raymond Hettinger15ec3732003-01-05 01:08:34 +0000990
Raymond Hettinger3dd990c2003-01-05 09:20:06 +0000991 def test_avg_std(self):
992 # Use integration to test distribution average and standard deviation.
993 # Only works for distributions which do not consume variates in pairs
994 g = random.Random()
995 N = 5000
Guido van Rossum805365e2007-05-07 22:24:25 +0000996 x = [i/float(N) for i in range(1,N)]
Raymond Hettinger3dd990c2003-01-05 09:20:06 +0000997 for variate, args, mu, sigmasqrd in [
998 (g.uniform, (1.0,10.0), (10.0+1.0)/2, (10.0-1.0)**2/12),
Christian Heimesfe337bf2008-03-23 21:54:12 +0000999 (g.triangular, (0.0, 1.0, 1.0/3.0), 4.0/9.0, 7.0/9.0/18.0),
Raymond Hettinger3dd990c2003-01-05 09:20:06 +00001000 (g.expovariate, (1.5,), 1/1.5, 1/1.5**2),
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +02001001 (g.vonmisesvariate, (1.23, 0), pi, pi**2/3),
Raymond Hettinger3dd990c2003-01-05 09:20:06 +00001002 (g.paretovariate, (5.0,), 5.0/(5.0-1),
1003 5.0/((5.0-1)**2*(5.0-2))),
1004 (g.weibullvariate, (1.0, 3.0), gamma(1+1/3.0),
1005 gamma(1+2/3.0)-gamma(1+1/3.0)**2) ]:
1006 g.random = x[:].pop
1007 y = []
Guido van Rossum805365e2007-05-07 22:24:25 +00001008 for i in range(len(x)):
Raymond Hettinger3dd990c2003-01-05 09:20:06 +00001009 try:
1010 y.append(variate(*args))
1011 except IndexError:
1012 pass
1013 s1 = s2 = 0
1014 for e in y:
1015 s1 += e
1016 s2 += (e - mu) ** 2
1017 N = len(y)
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +02001018 self.assertAlmostEqual(s1/N, mu, places=2,
1019 msg='%s%r' % (variate.__name__, args))
1020 self.assertAlmostEqual(s2/(N-1), sigmasqrd, places=2,
1021 msg='%s%r' % (variate.__name__, args))
1022
1023 def test_constant(self):
1024 g = random.Random()
1025 N = 100
1026 for variate, args, expected in [
1027 (g.uniform, (10.0, 10.0), 10.0),
1028 (g.triangular, (10.0, 10.0), 10.0),
Raymond Hettinger978c6ab2014-05-25 17:25:27 -07001029 (g.triangular, (10.0, 10.0, 10.0), 10.0),
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +02001030 (g.expovariate, (float('inf'),), 0.0),
1031 (g.vonmisesvariate, (3.0, float('inf')), 3.0),
1032 (g.gauss, (10.0, 0.0), 10.0),
1033 (g.lognormvariate, (0.0, 0.0), 1.0),
1034 (g.lognormvariate, (-float('inf'), 0.0), 0.0),
1035 (g.normalvariate, (10.0, 0.0), 10.0),
1036 (g.paretovariate, (float('inf'),), 1.0),
1037 (g.weibullvariate, (10.0, float('inf')), 10.0),
1038 (g.weibullvariate, (0.0, 10.0), 0.0),
1039 ]:
1040 for i in range(N):
1041 self.assertEqual(variate(*args), expected)
Raymond Hettinger3dd990c2003-01-05 09:20:06 +00001042
Mark Dickinsonbe5f9192013-02-10 14:16:10 +00001043 def test_von_mises_range(self):
1044 # Issue 17149: von mises variates were not consistently in the
1045 # range [0, 2*PI].
1046 g = random.Random()
1047 N = 100
1048 for mu in 0.0, 0.1, 3.1, 6.2:
1049 for kappa in 0.0, 2.3, 500.0:
1050 for _ in range(N):
1051 sample = g.vonmisesvariate(mu, kappa)
1052 self.assertTrue(
1053 0 <= sample <= random.TWOPI,
1054 msg=("vonmisesvariate({}, {}) produced a result {} out"
1055 " of range [0, 2*pi]").format(mu, kappa, sample))
1056
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +02001057 def test_von_mises_large_kappa(self):
1058 # Issue #17141: vonmisesvariate() was hang for large kappas
1059 random.vonmisesvariate(0, 1e15)
1060 random.vonmisesvariate(0, 1e100)
1061
R David Murraye3e1c172013-04-02 12:47:23 -04001062 def test_gammavariate_errors(self):
1063 # Both alpha and beta must be > 0.0
1064 self.assertRaises(ValueError, random.gammavariate, -1, 3)
1065 self.assertRaises(ValueError, random.gammavariate, 0, 2)
1066 self.assertRaises(ValueError, random.gammavariate, 2, 0)
1067 self.assertRaises(ValueError, random.gammavariate, 1, -3)
1068
leodema63d15222018-12-24 07:54:25 +01001069 # There are three different possibilities in the current implementation
1070 # of random.gammavariate(), depending on the value of 'alpha'. What we
1071 # are going to do here is to fix the values returned by random() to
1072 # generate test cases that provide 100% line coverage of the method.
R David Murraye3e1c172013-04-02 12:47:23 -04001073 @unittest.mock.patch('random.Random.random')
leodema63d15222018-12-24 07:54:25 +01001074 def test_gammavariate_alpha_greater_one(self, random_mock):
R David Murraye3e1c172013-04-02 12:47:23 -04001075
leodema63d15222018-12-24 07:54:25 +01001076 # #1: alpha > 1.0.
1077 # We want the first random number to be outside the
R David Murraye3e1c172013-04-02 12:47:23 -04001078 # [1e-7, .9999999] range, so that the continue statement executes
1079 # once. The values of u1 and u2 will be 0.5 and 0.3, respectively.
1080 random_mock.side_effect = [1e-8, 0.5, 0.3]
1081 returned_value = random.gammavariate(1.1, 2.3)
1082 self.assertAlmostEqual(returned_value, 2.53)
1083
leodema63d15222018-12-24 07:54:25 +01001084 @unittest.mock.patch('random.Random.random')
1085 def test_gammavariate_alpha_equal_one(self, random_mock):
R David Murraye3e1c172013-04-02 12:47:23 -04001086
leodema63d15222018-12-24 07:54:25 +01001087 # #2.a: alpha == 1.
1088 # The execution body of the while loop executes once.
1089 # Then random.random() returns 0.45,
1090 # which causes while to stop looping and the algorithm to terminate.
1091 random_mock.side_effect = [0.45]
1092 returned_value = random.gammavariate(1.0, 3.14)
1093 self.assertAlmostEqual(returned_value, 1.877208182372648)
1094
1095 @unittest.mock.patch('random.Random.random')
1096 def test_gammavariate_alpha_equal_one_equals_expovariate(self, random_mock):
1097
1098 # #2.b: alpha == 1.
1099 # It must be equivalent of calling expovariate(1.0 / beta).
1100 beta = 3.14
1101 random_mock.side_effect = [1e-8, 1e-8]
1102 gammavariate_returned_value = random.gammavariate(1.0, beta)
1103 expovariate_returned_value = random.expovariate(1.0 / beta)
1104 self.assertAlmostEqual(gammavariate_returned_value, expovariate_returned_value)
1105
1106 @unittest.mock.patch('random.Random.random')
1107 def test_gammavariate_alpha_between_zero_and_one(self, random_mock):
1108
1109 # #3: 0 < alpha < 1.
1110 # This is the most complex region of code to cover,
R David Murraye3e1c172013-04-02 12:47:23 -04001111 # as there are multiple if-else statements. Let's take a look at the
1112 # source code, and determine the values that we need accordingly:
1113 #
1114 # while 1:
1115 # u = random()
1116 # b = (_e + alpha)/_e
1117 # p = b*u
1118 # if p <= 1.0: # <=== (A)
1119 # x = p ** (1.0/alpha)
1120 # else: # <=== (B)
1121 # x = -_log((b-p)/alpha)
1122 # u1 = random()
1123 # if p > 1.0: # <=== (C)
1124 # if u1 <= x ** (alpha - 1.0): # <=== (D)
1125 # break
1126 # elif u1 <= _exp(-x): # <=== (E)
1127 # break
1128 # return x * beta
1129 #
1130 # First, we want (A) to be True. For that we need that:
1131 # b*random() <= 1.0
1132 # r1 = random() <= 1.0 / b
1133 #
1134 # We now get to the second if-else branch, and here, since p <= 1.0,
1135 # (C) is False and we take the elif branch, (E). For it to be True,
1136 # so that the break is executed, we need that:
1137 # r2 = random() <= _exp(-x)
1138 # r2 <= _exp(-(p ** (1.0/alpha)))
1139 # r2 <= _exp(-((b*r1) ** (1.0/alpha)))
1140
1141 _e = random._e
1142 _exp = random._exp
1143 _log = random._log
1144 alpha = 0.35
1145 beta = 1.45
1146 b = (_e + alpha)/_e
1147 epsilon = 0.01
1148
1149 r1 = 0.8859296441566 # 1.0 / b
1150 r2 = 0.3678794411714 # _exp(-((b*r1) ** (1.0/alpha)))
1151
1152 # These four "random" values result in the following trace:
1153 # (A) True, (E) False --> [next iteration of while]
1154 # (A) True, (E) True --> [while loop breaks]
1155 random_mock.side_effect = [r1, r2 + epsilon, r1, r2]
1156 returned_value = random.gammavariate(alpha, beta)
1157 self.assertAlmostEqual(returned_value, 1.4499999999997544)
1158
1159 # Let's now make (A) be False. If this is the case, when we get to the
1160 # second if-else 'p' is greater than 1, so (C) evaluates to True. We
1161 # now encounter a second if statement, (D), which in order to execute
1162 # must satisfy the following condition:
1163 # r2 <= x ** (alpha - 1.0)
1164 # r2 <= (-_log((b-p)/alpha)) ** (alpha - 1.0)
1165 # r2 <= (-_log((b-(b*r1))/alpha)) ** (alpha - 1.0)
1166 r1 = 0.8959296441566 # (1.0 / b) + epsilon -- so that (A) is False
1167 r2 = 0.9445400408898141
1168
1169 # And these four values result in the following trace:
1170 # (B) and (C) True, (D) False --> [next iteration of while]
1171 # (B) and (C) True, (D) True [while loop breaks]
1172 random_mock.side_effect = [r1, r2 + epsilon, r1, r2]
1173 returned_value = random.gammavariate(alpha, beta)
1174 self.assertAlmostEqual(returned_value, 1.5830349561760781)
1175
1176 @unittest.mock.patch('random.Random.gammavariate')
1177 def test_betavariate_return_zero(self, gammavariate_mock):
1178 # betavariate() returns zero when the Gamma distribution
1179 # that it uses internally returns this same value.
1180 gammavariate_mock.return_value = 0.0
1181 self.assertEqual(0.0, random.betavariate(2.71828, 3.14159))
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +02001182
Serhiy Storchakaec1622d2018-05-08 15:45:15 +03001183
Wolfgang Maierba3a87a2018-04-17 17:16:17 +02001184class TestRandomSubclassing(unittest.TestCase):
1185 def test_random_subclass_with_kwargs(self):
1186 # SF bug #1486663 -- this used to erroneously raise a TypeError
1187 class Subclass(random.Random):
1188 def __init__(self, newarg=None):
1189 random.Random.__init__(self)
1190 Subclass(newarg=1)
1191
1192 def test_subclasses_overriding_methods(self):
1193 # Subclasses with an overridden random, but only the original
1194 # getrandbits method should not rely on getrandbits in for randrange,
1195 # but should use a getrandbits-independent implementation instead.
1196
1197 # subclass providing its own random **and** getrandbits methods
1198 # like random.SystemRandom does => keep relying on getrandbits for
1199 # randrange
1200 class SubClass1(random.Random):
1201 def random(self):
Serhiy Storchakaec1622d2018-05-08 15:45:15 +03001202 called.add('SubClass1.random')
1203 return random.Random.random(self)
Wolfgang Maierba3a87a2018-04-17 17:16:17 +02001204
1205 def getrandbits(self, n):
Serhiy Storchakaec1622d2018-05-08 15:45:15 +03001206 called.add('SubClass1.getrandbits')
1207 return random.Random.getrandbits(self, n)
1208 called = set()
1209 SubClass1().randrange(42)
1210 self.assertEqual(called, {'SubClass1.getrandbits'})
Wolfgang Maierba3a87a2018-04-17 17:16:17 +02001211
1212 # subclass providing only random => can only use random for randrange
1213 class SubClass2(random.Random):
1214 def random(self):
Serhiy Storchakaec1622d2018-05-08 15:45:15 +03001215 called.add('SubClass2.random')
1216 return random.Random.random(self)
1217 called = set()
1218 SubClass2().randrange(42)
1219 self.assertEqual(called, {'SubClass2.random'})
Wolfgang Maierba3a87a2018-04-17 17:16:17 +02001220
1221 # subclass defining getrandbits to complement its inherited random
1222 # => can now rely on getrandbits for randrange again
1223 class SubClass3(SubClass2):
1224 def getrandbits(self, n):
Serhiy Storchakaec1622d2018-05-08 15:45:15 +03001225 called.add('SubClass3.getrandbits')
1226 return random.Random.getrandbits(self, n)
1227 called = set()
1228 SubClass3().randrange(42)
1229 self.assertEqual(called, {'SubClass3.getrandbits'})
1230
1231 # subclass providing only random and inherited getrandbits
1232 # => random takes precedence
1233 class SubClass4(SubClass3):
1234 def random(self):
1235 called.add('SubClass4.random')
1236 return random.Random.random(self)
1237 called = set()
1238 SubClass4().randrange(42)
1239 self.assertEqual(called, {'SubClass4.random'})
1240
1241 # Following subclasses don't define random or getrandbits directly,
1242 # but inherit them from classes which are not subclasses of Random
1243 class Mixin1:
1244 def random(self):
1245 called.add('Mixin1.random')
1246 return random.Random.random(self)
1247 class Mixin2:
1248 def getrandbits(self, n):
1249 called.add('Mixin2.getrandbits')
1250 return random.Random.getrandbits(self, n)
1251
1252 class SubClass5(Mixin1, random.Random):
1253 pass
1254 called = set()
1255 SubClass5().randrange(42)
1256 self.assertEqual(called, {'Mixin1.random'})
1257
1258 class SubClass6(Mixin2, random.Random):
1259 pass
1260 called = set()
1261 SubClass6().randrange(42)
1262 self.assertEqual(called, {'Mixin2.getrandbits'})
1263
1264 class SubClass7(Mixin1, Mixin2, random.Random):
1265 pass
1266 called = set()
1267 SubClass7().randrange(42)
1268 self.assertEqual(called, {'Mixin1.random'})
1269
1270 class SubClass8(Mixin2, Mixin1, random.Random):
1271 pass
1272 called = set()
1273 SubClass8().randrange(42)
1274 self.assertEqual(called, {'Mixin2.getrandbits'})
1275
Wolfgang Maierba3a87a2018-04-17 17:16:17 +02001276
Raymond Hettinger40f62172002-12-29 23:03:38 +00001277class TestModule(unittest.TestCase):
1278 def testMagicConstants(self):
1279 self.assertAlmostEqual(random.NV_MAGICCONST, 1.71552776992141)
1280 self.assertAlmostEqual(random.TWOPI, 6.28318530718)
1281 self.assertAlmostEqual(random.LOG4, 1.38629436111989)
1282 self.assertAlmostEqual(random.SG_MAGICCONST, 2.50407739677627)
1283
1284 def test__all__(self):
1285 # tests validity but not completeness of the __all__ list
Benjamin Petersonc9c0f202009-06-30 23:06:06 +00001286 self.assertTrue(set(random.__all__) <= set(dir(random)))
Raymond Hettinger40f62172002-12-29 23:03:38 +00001287
Antoine Pitrou346cbd32017-05-27 17:50:54 +02001288 @unittest.skipUnless(hasattr(os, "fork"), "fork() required")
1289 def test_after_fork(self):
1290 # Test the global Random instance gets reseeded in child
1291 r, w = os.pipe()
Victor Stinnerda5e9302017-08-09 17:59:05 +02001292 pid = os.fork()
1293 if pid == 0:
1294 # child process
Antoine Pitrou346cbd32017-05-27 17:50:54 +02001295 try:
1296 val = random.getrandbits(128)
1297 with open(w, "w") as f:
1298 f.write(str(val))
1299 finally:
1300 os._exit(0)
1301 else:
Victor Stinnerda5e9302017-08-09 17:59:05 +02001302 # parent process
Antoine Pitrou346cbd32017-05-27 17:50:54 +02001303 os.close(w)
1304 val = random.getrandbits(128)
1305 with open(r, "r") as f:
1306 child_val = eval(f.read())
1307 self.assertNotEqual(val, child_val)
1308
Victor Stinner278c1e12020-03-31 20:08:12 +02001309 support.wait_process(pid, exitcode=0)
Victor Stinnerda5e9302017-08-09 17:59:05 +02001310
Thomas Woutersb2137042007-02-01 18:02:27 +00001311
Raymond Hettinger40f62172002-12-29 23:03:38 +00001312if __name__ == "__main__":
Ezio Melotti3e4a98b2013-04-19 05:45:27 +03001313 unittest.main()