blob: b056ca430a8e8fbc9213384d50c3e876bf681d93 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001:mod:`math` --- Mathematical functions
2======================================
3
4.. module:: math
5 :synopsis: Mathematical functions (sin() etc.).
6
7
8This module is always available. It provides access to the mathematical
9functions defined by the C standard.
10
11These functions cannot be used with complex numbers; use the functions of the
12same name from the :mod:`cmath` module if you require support for complex
13numbers. The distinction between functions which support complex numbers and
14those which don't is made since most users do not want to learn quite as much
15mathematics as required to understand complex numbers. Receiving an exception
16instead of a complex result allows earlier detection of the unexpected complex
17number used as a parameter, so that the programmer can determine how and why it
18was generated in the first place.
19
20The following functions are provided by this module. Except when explicitly
21noted otherwise, all return values are floats.
22
Georg Brandl116aa622007-08-15 14:28:22 +000023
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +000024Number-theoretic and representation functions
25---------------------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +000026
27.. function:: ceil(x)
28
Georg Brandl2a033732008-04-05 17:37:09 +000029 Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
30 If *x* is not a float, delegates to ``x.__ceil__()``, which should return an
31 :class:`Integral` value.
Christian Heimes072c0f12008-01-03 23:01:04 +000032
33
34.. function:: copysign(x, y)
35
Mark Dickinson603b7532010-04-06 19:55:03 +000036 Return *x* with the sign of *y*. On a platform that supports
37 signed zeros, ``copysign(1.0, -0.0)`` returns *-1.0*.
Christian Heimes072c0f12008-01-03 23:01:04 +000038
Georg Brandl116aa622007-08-15 14:28:22 +000039
40.. function:: fabs(x)
41
42 Return the absolute value of *x*.
43
Georg Brandlc28e1fa2008-06-10 19:20:26 +000044.. function:: factorial(x)
45
Benjamin Petersonfea6a942008-07-02 16:11:42 +000046 Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or
Georg Brandlc28e1fa2008-06-10 19:20:26 +000047 is negative.
Georg Brandl116aa622007-08-15 14:28:22 +000048
49.. function:: floor(x)
50
Georg Brandl2a033732008-04-05 17:37:09 +000051 Return the floor of *x*, the largest integer less than or equal to *x*.
52 If *x* is not a float, delegates to ``x.__floor__()``, which should return an
53 :class:`Integral` value.
Georg Brandl116aa622007-08-15 14:28:22 +000054
55
56.. function:: fmod(x, y)
57
58 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
59 Python expression ``x % y`` may not return the same result. The intent of the C
60 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
61 precision) equal to ``x - n*y`` for some integer *n* such that the result has
62 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
63 returns a result with the sign of *y* instead, and may not be exactly computable
64 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
65 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
66 represented exactly as a float, and rounds to the surprising ``1e100``. For
67 this reason, function :func:`fmod` is generally preferred when working with
68 floats, while Python's ``x % y`` is preferred when working with integers.
69
70
71.. function:: frexp(x)
72
73 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
74 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
75 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
76 apart" the internal representation of a float in a portable way.
77
78
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000079.. function:: fsum(iterable)
Ezio Melotti40507922013-01-11 09:09:07 +020080.. testsetup::
81 >>> from math import fsum
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000082
83 Return an accurate floating point sum of values in the iterable. Avoids
Raymond Hettingerf3936f82009-02-19 05:48:05 +000084 loss of precision by tracking multiple intermediate partial sums::
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000085
Raymond Hettingerf3936f82009-02-19 05:48:05 +000086 >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
Mark Dickinson5a55b612009-06-28 20:59:42 +000087 0.9999999999999999
Raymond Hettingerf3936f82009-02-19 05:48:05 +000088 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
89 1.0
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000090
Raymond Hettingerf3936f82009-02-19 05:48:05 +000091 The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
92 typical case where the rounding mode is half-even. On some non-Windows
93 builds, the underlying C library uses extended precision addition and may
94 occasionally double-round an intermediate sum causing it to be off in its
95 least significant bit.
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000096
Raymond Hettinger477be822009-02-19 06:44:30 +000097 For further discussion and two alternative approaches, see the `ASPN cookbook
98 recipes for accurate floating point summation
99 <http://code.activestate.com/recipes/393090/>`_\.
100
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000101
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000102.. function:: isfinite(x)
103
104 Return ``True`` if *x* is neither an infinity nor a NaN, and
105 ``False`` otherwise. (Note that ``0.0`` *is* considered finite.)
106
Mark Dickinsonc7622422010-07-11 19:47:37 +0000107 .. versionadded:: 3.2
108
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000109
Christian Heimes072c0f12008-01-03 23:01:04 +0000110.. function:: isinf(x)
111
Mark Dickinsonc7622422010-07-11 19:47:37 +0000112 Return ``True`` if *x* is a positive or negative infinity, and
113 ``False`` otherwise.
Christian Heimes072c0f12008-01-03 23:01:04 +0000114
Christian Heimes072c0f12008-01-03 23:01:04 +0000115
116.. function:: isnan(x)
117
Mark Dickinsonc7622422010-07-11 19:47:37 +0000118 Return ``True`` if *x* is a NaN (not a number), and ``False`` otherwise.
Christian Heimes072c0f12008-01-03 23:01:04 +0000119
Christian Heimes072c0f12008-01-03 23:01:04 +0000120
Georg Brandl116aa622007-08-15 14:28:22 +0000121.. function:: ldexp(x, i)
122
123 Return ``x * (2**i)``. This is essentially the inverse of function
124 :func:`frexp`.
125
126
127.. function:: modf(x)
128
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000129 Return the fractional and integer parts of *x*. Both results carry the sign
130 of *x* and are floats.
Georg Brandl116aa622007-08-15 14:28:22 +0000131
Christian Heimes400adb02008-02-01 08:12:03 +0000132
133.. function:: trunc(x)
134
135 Return the :class:`Real` value *x* truncated to an :class:`Integral` (usually
Mark Dickinsonbf5c6a92009-01-17 10:21:23 +0000136 an integer). Delegates to ``x.__trunc__()``.
Christian Heimes400adb02008-02-01 08:12:03 +0000137
Christian Heimes400adb02008-02-01 08:12:03 +0000138
Georg Brandl116aa622007-08-15 14:28:22 +0000139Note that :func:`frexp` and :func:`modf` have a different call/return pattern
140than their C equivalents: they take a single argument and return a pair of
141values, rather than returning their second return value through an 'output
142parameter' (there is no such thing in Python).
143
144For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
145floating-point numbers of sufficiently large magnitude are exact integers.
146Python floats typically carry no more than 53 bits of precision (the same as the
147platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
148necessarily has no fractional bits.
149
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000150
151Power and logarithmic functions
152-------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000153
Georg Brandl116aa622007-08-15 14:28:22 +0000154.. function:: exp(x)
155
156 Return ``e**x``.
157
158
Mark Dickinson664b5112009-12-16 20:23:42 +0000159.. function:: expm1(x)
160
Raymond Hettinger1081d482011-03-31 12:04:53 -0700161 Return ``e**x - 1``. For small floats *x*, the subtraction in ``exp(x) - 1``
162 can result in a `significant loss of precision
163 <http://en.wikipedia.org/wiki/Loss_of_significance>`_\; the :func:`expm1`
164 function provides a way to compute this quantity to full precision::
Mark Dickinson664b5112009-12-16 20:23:42 +0000165
166 >>> from math import exp, expm1
167 >>> exp(1e-5) - 1 # gives result accurate to 11 places
168 1.0000050000069649e-05
169 >>> expm1(1e-5) # result accurate to full precision
170 1.0000050000166668e-05
171
Mark Dickinson45f992a2009-12-19 11:20:49 +0000172 .. versionadded:: 3.2
173
Mark Dickinson664b5112009-12-16 20:23:42 +0000174
Georg Brandl116aa622007-08-15 14:28:22 +0000175.. function:: log(x[, base])
176
Georg Brandla6053b42009-09-01 08:11:14 +0000177 With one argument, return the natural logarithm of *x* (to base *e*).
178
179 With two arguments, return the logarithm of *x* to the given *base*,
180 calculated as ``log(x)/log(base)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000181
Georg Brandl116aa622007-08-15 14:28:22 +0000182
Christian Heimes53876d92008-04-19 00:31:39 +0000183.. function:: log1p(x)
184
185 Return the natural logarithm of *1+x* (base *e*). The
186 result is calculated in a way which is accurate for *x* near zero.
187
Christian Heimes53876d92008-04-19 00:31:39 +0000188
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200189.. function:: log2(x)
190
Benjamin Petersoneaee1382011-05-08 19:48:08 -0500191 Return the base-2 logarithm of *x*. This is usually more accurate than
192 ``log(x, 2)``.
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200193
194 .. versionadded:: 3.3
195
Victor Stinner9415afc2011-09-21 03:35:18 +0200196 .. seealso::
197
198 :meth:`int.bit_length` returns the number of bits necessary to represent
199 an integer in binary, excluding the sign and leading zeros.
200
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200201
Georg Brandl116aa622007-08-15 14:28:22 +0000202.. function:: log10(x)
203
Georg Brandla6053b42009-09-01 08:11:14 +0000204 Return the base-10 logarithm of *x*. This is usually more accurate
205 than ``log(x, 10)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000206
207
208.. function:: pow(x, y)
209
Christian Heimesa342c012008-04-20 21:01:16 +0000210 Return ``x`` raised to the power ``y``. Exceptional cases follow
211 Annex 'F' of the C99 standard as far as possible. In particular,
212 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
213 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
214 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
215 is undefined, and raises :exc:`ValueError`.
Christian Heimes53876d92008-04-19 00:31:39 +0000216
Georg Brandl116aa622007-08-15 14:28:22 +0000217
218.. function:: sqrt(x)
219
220 Return the square root of *x*.
221
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000222Trigonometric functions
223-----------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000224
225
226.. function:: acos(x)
227
228 Return the arc cosine of *x*, in radians.
229
230
231.. function:: asin(x)
232
233 Return the arc sine of *x*, in radians.
234
235
236.. function:: atan(x)
237
238 Return the arc tangent of *x*, in radians.
239
240
241.. function:: atan2(y, x)
242
243 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
244 The vector in the plane from the origin to point ``(x, y)`` makes this angle
245 with the positive X axis. The point of :func:`atan2` is that the signs of both
246 inputs are known to it, so it can compute the correct quadrant for the angle.
Mark Dickinson603b7532010-04-06 19:55:03 +0000247 For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
Georg Brandl116aa622007-08-15 14:28:22 +0000248 -1)`` is ``-3*pi/4``.
249
250
251.. function:: cos(x)
252
253 Return the cosine of *x* radians.
254
255
256.. function:: hypot(x, y)
257
258 Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
259 from the origin to point ``(x, y)``.
260
261
262.. function:: sin(x)
263
264 Return the sine of *x* radians.
265
266
267.. function:: tan(x)
268
269 Return the tangent of *x* radians.
270
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000271Angular conversion
272------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000273
274
275.. function:: degrees(x)
276
277 Converts angle *x* from radians to degrees.
278
279
280.. function:: radians(x)
281
282 Converts angle *x* from degrees to radians.
283
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000284Hyperbolic functions
285--------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000286
Raymond Hettinger1081d482011-03-31 12:04:53 -0700287`Hyperbolic functions <http://en.wikipedia.org/wiki/Hyperbolic_function>`_
288are analogs of trigonometric functions that are based on hyperbolas
289instead of circles.
Georg Brandl116aa622007-08-15 14:28:22 +0000290
Christian Heimesa342c012008-04-20 21:01:16 +0000291.. function:: acosh(x)
292
293 Return the inverse hyperbolic cosine of *x*.
294
Christian Heimesa342c012008-04-20 21:01:16 +0000295
296.. function:: asinh(x)
297
298 Return the inverse hyperbolic sine of *x*.
299
Christian Heimesa342c012008-04-20 21:01:16 +0000300
301.. function:: atanh(x)
302
303 Return the inverse hyperbolic tangent of *x*.
304
Christian Heimesa342c012008-04-20 21:01:16 +0000305
Georg Brandl116aa622007-08-15 14:28:22 +0000306.. function:: cosh(x)
307
308 Return the hyperbolic cosine of *x*.
309
310
311.. function:: sinh(x)
312
313 Return the hyperbolic sine of *x*.
314
315
316.. function:: tanh(x)
317
318 Return the hyperbolic tangent of *x*.
319
Christian Heimes53876d92008-04-19 00:31:39 +0000320
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000321Special functions
322-----------------
323
Mark Dickinson45f992a2009-12-19 11:20:49 +0000324.. function:: erf(x)
325
Raymond Hettinger1081d482011-03-31 12:04:53 -0700326 Return the `error function <http://en.wikipedia.org/wiki/Error_function>`_ at
327 *x*.
328
329 The :func:`erf` function can be used to compute traditional statistical
330 functions such as the `cumulative standard normal distribution
331 <http://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function>`_::
332
333 def phi(x):
334 'Cumulative distribution function for the standard normal distribution'
335 return (1.0 + erf(x / sqrt(2.0))) / 2.0
Mark Dickinson45f992a2009-12-19 11:20:49 +0000336
337 .. versionadded:: 3.2
338
339
340.. function:: erfc(x)
341
Raymond Hettinger1081d482011-03-31 12:04:53 -0700342 Return the complementary error function at *x*. The `complementary error
343 function <http://en.wikipedia.org/wiki/Error_function>`_ is defined as
Raymond Hettinger12e6c252011-03-31 13:59:24 -0700344 ``1.0 - erf(x)``. It is used for large values of *x* where a subtraction
345 from one would cause a `loss of significance
Raymond Hettinger1081d482011-03-31 12:04:53 -0700346 <http://en.wikipedia.org/wiki/Loss_of_significance>`_\.
Mark Dickinson45f992a2009-12-19 11:20:49 +0000347
348 .. versionadded:: 3.2
349
350
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000351.. function:: gamma(x)
352
Raymond Hettinger12e6c252011-03-31 13:59:24 -0700353 Return the `Gamma function <http://en.wikipedia.org/wiki/Gamma_function>`_ at
354 *x*.
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000355
Mark Dickinson56e09662009-10-01 16:13:29 +0000356 .. versionadded:: 3.2
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000357
358
Mark Dickinson05d2e082009-12-11 20:17:17 +0000359.. function:: lgamma(x)
360
361 Return the natural logarithm of the absolute value of the Gamma
362 function at *x*.
363
Mark Dickinson45f992a2009-12-19 11:20:49 +0000364 .. versionadded:: 3.2
Mark Dickinson05d2e082009-12-11 20:17:17 +0000365
366
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000367Constants
Mark Dickinson60fe6b02009-06-02 12:53:15 +0000368---------
Georg Brandl116aa622007-08-15 14:28:22 +0000369
370.. data:: pi
371
Mark Dickinson603b7532010-04-06 19:55:03 +0000372 The mathematical constant π = 3.141592..., to available precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000373
374
375.. data:: e
376
Mark Dickinson603b7532010-04-06 19:55:03 +0000377 The mathematical constant e = 2.718281..., to available precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000378
Christian Heimes53876d92008-04-19 00:31:39 +0000379
Georg Brandl495f7b52009-10-27 15:28:25 +0000380.. impl-detail::
Georg Brandl116aa622007-08-15 14:28:22 +0000381
382 The :mod:`math` module consists mostly of thin wrappers around the platform C
Mark Dickinson603b7532010-04-06 19:55:03 +0000383 math library functions. Behavior in exceptional cases follows Annex F of
384 the C99 standard where appropriate. The current implementation will raise
385 :exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)``
386 (where C99 Annex F recommends signaling invalid operation or divide-by-zero),
387 and :exc:`OverflowError` for results that overflow (for example,
Benjamin Peterson08bf91c2010-04-11 16:12:57 +0000388 ``exp(1000.0)``). A NaN will not be returned from any of the functions
389 above unless one or more of the input arguments was a NaN; in that case,
390 most functions will return a NaN, but (again following C99 Annex F) there
Mark Dickinson603b7532010-04-06 19:55:03 +0000391 are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or
392 ``hypot(float('nan'), float('inf'))``.
Georg Brandl116aa622007-08-15 14:28:22 +0000393
Mark Dickinson42dfeec2010-04-06 22:13:37 +0000394 Note that Python makes no effort to distinguish signaling NaNs from
395 quiet NaNs, and behavior for signaling NaNs remains unspecified.
396 Typical behavior is to treat all NaNs as though they were quiet.
Christian Heimes53876d92008-04-19 00:31:39 +0000397
Georg Brandl116aa622007-08-15 14:28:22 +0000398
399.. seealso::
400
401 Module :mod:`cmath`
402 Complex number versions of many of these functions.