blob: 5dcf764bf0eaf7c172ba90ff905462be6148fcdf [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001
2:mod:`random` --- Generate pseudo-random numbers
3================================================
4
5.. module:: random
6 :synopsis: Generate pseudo-random numbers with various common distributions.
7
8
9This module implements pseudo-random number generators for various
10distributions.
11
12For integers, uniform selection from a range. For sequences, uniform selection
13of a random element, a function to generate a random permutation of a list
14in-place, and a function for random sampling without replacement.
15
16On the real line, there are functions to compute uniform, normal (Gaussian),
17lognormal, negative exponential, gamma, and beta distributions. For generating
18distributions of angles, the von Mises distribution is available.
19
20Almost all module functions depend on the basic function :func:`random`, which
21generates a random float uniformly in the semi-open range [0.0, 1.0). Python
22uses the Mersenne Twister as the core generator. It produces 53-bit precision
23floats and has a period of 2\*\*19937-1. The underlying implementation in C is
24both fast and threadsafe. The Mersenne Twister is one of the most extensively
25tested random number generators in existence. However, being completely
26deterministic, it is not suitable for all purposes, and is completely unsuitable
27for cryptographic purposes.
28
29The functions supplied by this module are actually bound methods of a hidden
30instance of the :class:`random.Random` class. You can instantiate your own
Raymond Hettinger28de64f2008-01-13 23:40:30 +000031instances of :class:`Random` to get generators that don't share state.
Georg Brandl116aa622007-08-15 14:28:22 +000032
33Class :class:`Random` can also be subclassed if you want to use a different
34basic generator of your own devising: in that case, override the :meth:`random`,
Raymond Hettinger28de64f2008-01-13 23:40:30 +000035:meth:`seed`, :meth:`getstate`, and :meth:`setstate`.
Benjamin Petersond18de0e2008-07-31 20:21:46 +000036Optionally, a new generator can supply a :meth:`getrandbits` method --- this
Georg Brandl116aa622007-08-15 14:28:22 +000037allows :meth:`randrange` to produce selections over an arbitrarily large range.
38
Georg Brandl116aa622007-08-15 14:28:22 +000039
Georg Brandl116aa622007-08-15 14:28:22 +000040Bookkeeping functions:
41
42
43.. function:: seed([x])
44
45 Initialize the basic random number generator. Optional argument *x* can be any
Guido van Rossum2cc30da2007-11-02 23:46:40 +000046 :term:`hashable` object. If *x* is omitted or ``None``, current system time is used;
Georg Brandl116aa622007-08-15 14:28:22 +000047 current system time is also used to initialize the generator when the module is
48 first imported. If randomness sources are provided by the operating system,
49 they are used instead of the system time (see the :func:`os.urandom` function
50 for details on availability).
51
Georg Brandl5c106642007-11-29 17:41:05 +000052 If *x* is not ``None`` or an int, ``hash(x)`` is used instead. If *x* is an
53 int, *x* is used directly.
Georg Brandl116aa622007-08-15 14:28:22 +000054
55
56.. function:: getstate()
57
58 Return an object capturing the current internal state of the generator. This
59 object can be passed to :func:`setstate` to restore the state.
60
Georg Brandl116aa622007-08-15 14:28:22 +000061
62.. function:: setstate(state)
63
64 *state* should have been obtained from a previous call to :func:`getstate`, and
65 :func:`setstate` restores the internal state of the generator to what it was at
66 the time :func:`setstate` was called.
67
Georg Brandl116aa622007-08-15 14:28:22 +000068
Christian Heimesc3f30c42008-02-22 16:37:40 +000069.. function:: jumpahead(n)
70
71 Change the internal state to one different from and likely far away from the
72 current state. *n* is a non-negative integer which is used to scramble the
73 current state vector. This is most useful in multi-threaded programs, in
74 conjunction with multiple instances of the :class:`Random` class:
75 :meth:`setstate` or :meth:`seed` can be used to force all instances into the
76 same internal state, and then :meth:`jumpahead` can be used to force the
77 instances' states far apart.
78
79
Georg Brandl116aa622007-08-15 14:28:22 +000080.. function:: getrandbits(k)
81
Georg Brandl5c106642007-11-29 17:41:05 +000082 Returns a python integer with *k* random bits. This method is supplied with
83 the MersenneTwister generator and some other generators may also provide it
Georg Brandl116aa622007-08-15 14:28:22 +000084 as an optional part of the API. When available, :meth:`getrandbits` enables
85 :meth:`randrange` to handle arbitrarily large ranges.
86
Georg Brandl116aa622007-08-15 14:28:22 +000087
88Functions for integers:
89
Georg Brandl116aa622007-08-15 14:28:22 +000090.. function:: randrange([start,] stop[, step])
91
92 Return a randomly selected element from ``range(start, stop, step)``. This is
93 equivalent to ``choice(range(start, stop, step))``, but doesn't actually build a
94 range object.
95
Georg Brandl116aa622007-08-15 14:28:22 +000096
97.. function:: randint(a, b)
98
99 Return a random integer *N* such that ``a <= N <= b``.
100
Georg Brandl116aa622007-08-15 14:28:22 +0000101
Georg Brandl55ac8f02007-09-01 13:51:09 +0000102Functions for sequences:
Georg Brandl116aa622007-08-15 14:28:22 +0000103
104.. function:: choice(seq)
105
106 Return a random element from the non-empty sequence *seq*. If *seq* is empty,
107 raises :exc:`IndexError`.
108
109
110.. function:: shuffle(x[, random])
111
112 Shuffle the sequence *x* in place. The optional argument *random* is a
113 0-argument function returning a random float in [0.0, 1.0); by default, this is
114 the function :func:`random`.
115
116 Note that for even rather small ``len(x)``, the total number of permutations of
117 *x* is larger than the period of most random number generators; this implies
118 that most permutations of a long sequence can never be generated.
119
120
121.. function:: sample(population, k)
122
Raymond Hettinger1acde192008-01-14 01:00:53 +0000123 Return a *k* length list of unique elements chosen from the population sequence
124 or set. Used for random sampling without replacement.
Georg Brandl116aa622007-08-15 14:28:22 +0000125
Georg Brandl116aa622007-08-15 14:28:22 +0000126 Returns a new list containing elements from the population while leaving the
127 original population unchanged. The resulting list is in selection order so that
128 all sub-slices will also be valid random samples. This allows raffle winners
129 (the sample) to be partitioned into grand prize and second place winners (the
130 subslices).
131
Guido van Rossum2cc30da2007-11-02 23:46:40 +0000132 Members of the population need not be :term:`hashable` or unique. If the population
Georg Brandl116aa622007-08-15 14:28:22 +0000133 contains repeats, then each occurrence is a possible selection in the sample.
134
135 To choose a sample from a range of integers, use an :func:`range` object as an
136 argument. This is especially fast and space efficient for sampling from a large
137 population: ``sample(range(10000000), 60)``.
138
139The following functions generate specific real-valued distributions. Function
140parameters are named after the corresponding variables in the distribution's
141equation, as used in common mathematical practice; most of these equations can
142be found in any statistics text.
143
144
145.. function:: random()
146
147 Return the next random floating point number in the range [0.0, 1.0).
148
149
150.. function:: uniform(a, b)
151
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000152 Return a random floating point number *N* such that ``a <= N <= b`` for
153 ``a <= b`` and ``b <= N <= a`` for ``b < a``.
Georg Brandl116aa622007-08-15 14:28:22 +0000154
Benjamin Peterson35e8c462008-04-24 02:34:53 +0000155
Christian Heimesfe337bf2008-03-23 21:54:12 +0000156.. function:: triangular(low, high, mode)
157
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000158 Return a random floating point number *N* such that ``low <= N <= high`` and
Christian Heimescc47b052008-03-25 14:56:36 +0000159 with the specified *mode* between those bounds. The *low* and *high* bounds
160 default to zero and one. The *mode* argument defaults to the midpoint
161 between the bounds, giving a symmetric distribution.
Christian Heimesfe337bf2008-03-23 21:54:12 +0000162
Georg Brandl116aa622007-08-15 14:28:22 +0000163
164.. function:: betavariate(alpha, beta)
165
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000166 Beta distribution. Conditions on the parameters are ``alpha > 0`` and
167 ``beta > 0``. Returned values range between 0 and 1.
Georg Brandl116aa622007-08-15 14:28:22 +0000168
169
170.. function:: expovariate(lambd)
171
Mark Dickinson2f947362009-01-07 17:54:07 +0000172 Exponential distribution. *lambd* is 1.0 divided by the desired
173 mean. It should be nonzero. (The parameter would be called
174 "lambda", but that is a reserved word in Python.) Returned values
175 range from 0 to positive infinity if *lambd* is positive, and from
176 negative infinity to 0 if *lambd* is negative.
Georg Brandl116aa622007-08-15 14:28:22 +0000177
178
179.. function:: gammavariate(alpha, beta)
180
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000181 Gamma distribution. (*Not* the gamma function!) Conditions on the
182 parameters are ``alpha > 0`` and ``beta > 0``.
Georg Brandl116aa622007-08-15 14:28:22 +0000183
184
185.. function:: gauss(mu, sigma)
186
Benjamin Petersonb58dda72009-01-18 22:27:04 +0000187 Gaussian distribution. *mu* is the mean, and *sigma* is the standard
188 deviation. This is slightly faster than the :func:`normalvariate` function
189 defined below.
Georg Brandl116aa622007-08-15 14:28:22 +0000190
191
192.. function:: lognormvariate(mu, sigma)
193
194 Log normal distribution. If you take the natural logarithm of this
195 distribution, you'll get a normal distribution with mean *mu* and standard
196 deviation *sigma*. *mu* can have any value, and *sigma* must be greater than
197 zero.
198
199
200.. function:: normalvariate(mu, sigma)
201
202 Normal distribution. *mu* is the mean, and *sigma* is the standard deviation.
203
204
205.. function:: vonmisesvariate(mu, kappa)
206
207 *mu* is the mean angle, expressed in radians between 0 and 2\*\ *pi*, and *kappa*
208 is the concentration parameter, which must be greater than or equal to zero. If
209 *kappa* is equal to zero, this distribution reduces to a uniform random angle
210 over the range 0 to 2\*\ *pi*.
211
212
213.. function:: paretovariate(alpha)
214
215 Pareto distribution. *alpha* is the shape parameter.
216
217
218.. function:: weibullvariate(alpha, beta)
219
220 Weibull distribution. *alpha* is the scale parameter and *beta* is the shape
221 parameter.
222
223
224Alternative Generators:
225
Georg Brandl116aa622007-08-15 14:28:22 +0000226.. class:: SystemRandom([seed])
227
228 Class that uses the :func:`os.urandom` function for generating random numbers
229 from sources provided by the operating system. Not available on all systems.
230 Does not rely on software state and sequences are not reproducible. Accordingly,
231 the :meth:`seed` and :meth:`jumpahead` methods have no effect and are ignored.
232 The :meth:`getstate` and :meth:`setstate` methods raise
233 :exc:`NotImplementedError` if called.
234
Georg Brandl116aa622007-08-15 14:28:22 +0000235
236Examples of basic usage::
237
238 >>> random.random() # Random float x, 0.0 <= x < 1.0
239 0.37444887175646646
240 >>> random.uniform(1, 10) # Random float x, 1.0 <= x < 10.0
241 1.1800146073117523
242 >>> random.randint(1, 10) # Integer from 1 to 10, endpoints included
243 7
244 >>> random.randrange(0, 101, 2) # Even integer from 0 to 100
245 26
246 >>> random.choice('abcdefghij') # Choose a random element
247 'c'
248
249 >>> items = [1, 2, 3, 4, 5, 6, 7]
250 >>> random.shuffle(items)
251 >>> items
252 [7, 3, 2, 5, 6, 4, 1]
253
254 >>> random.sample([1, 2, 3, 4, 5], 3) # Choose 3 elements
255 [4, 1, 5]
256
257
258
259.. seealso::
260
261 M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionally
262 equidistributed uniform pseudorandom number generator", ACM Transactions on
263 Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30 1998.
264
Georg Brandl116aa622007-08-15 14:28:22 +0000265