blob: 705298536ba5f317d3300777a53428b63bc8f548 [file] [log] [blame]
Christian Heimes3feef612008-02-11 06:19:17 +00001:mod:`decimal` --- Decimal fixed point and floating point arithmetic
2====================================================================
Georg Brandl116aa622007-08-15 14:28:22 +00003
4.. module:: decimal
5 :synopsis: Implementation of the General Decimal Arithmetic Specification.
6
Georg Brandl116aa622007-08-15 14:28:22 +00007.. moduleauthor:: Eric Price <eprice at tjhsst.edu>
8.. moduleauthor:: Facundo Batista <facundo at taniquetil.com.ar>
9.. moduleauthor:: Raymond Hettinger <python at rcn.com>
10.. moduleauthor:: Aahz <aahz at pobox.com>
11.. moduleauthor:: Tim Peters <tim.one at comcast.net>
Stefan Krah1919b7e2012-03-21 18:25:23 +010012.. moduleauthor:: Stefan Krah <skrah at bytereef.org>
Georg Brandl116aa622007-08-15 14:28:22 +000013.. sectionauthor:: Raymond D. Hettinger <python at rcn.com>
14
Andrew Kuchling2e3743c2014-03-19 16:23:01 -040015**Source code:** :source:`Lib/decimal.py`
16
Christian Heimesfe337bf2008-03-23 21:54:12 +000017.. import modules for testing inline doctests with the Sphinx doctest builder
18.. testsetup:: *
19
20 import decimal
21 import math
22 from decimal import *
23 # make sure each group gets a fresh context
24 setcontext(Context())
Georg Brandl116aa622007-08-15 14:28:22 +000025
Stefan Krah1919b7e2012-03-21 18:25:23 +010026The :mod:`decimal` module provides support for fast correctly-rounded
27decimal floating point arithmetic. It offers several advantages over the
28:class:`float` datatype:
Georg Brandl116aa622007-08-15 14:28:22 +000029
Christian Heimes3feef612008-02-11 06:19:17 +000030* Decimal "is based on a floating-point model which was designed with people
31 in mind, and necessarily has a paramount guiding principle -- computers must
32 provide an arithmetic that works in the same way as the arithmetic that
33 people learn at school." -- excerpt from the decimal arithmetic specification.
34
Georg Brandl116aa622007-08-15 14:28:22 +000035* Decimal numbers can be represented exactly. In contrast, numbers like
Terry Jan Reedya9314632012-01-13 23:43:13 -050036 :const:`1.1` and :const:`2.2` do not have exact representations in binary
Raymond Hettingerd258d1e2009-04-23 22:06:12 +000037 floating point. End users typically would not expect ``1.1 + 2.2`` to display
38 as :const:`3.3000000000000003` as it does with binary floating point.
Georg Brandl116aa622007-08-15 14:28:22 +000039
40* The exactness carries over into arithmetic. In decimal floating point, ``0.1
Thomas Wouters1b7f8912007-09-19 03:06:30 +000041 + 0.1 + 0.1 - 0.3`` is exactly equal to zero. In binary floating point, the result
Georg Brandl116aa622007-08-15 14:28:22 +000042 is :const:`5.5511151231257827e-017`. While near to zero, the differences
43 prevent reliable equality testing and differences can accumulate. For this
Christian Heimes3feef612008-02-11 06:19:17 +000044 reason, decimal is preferred in accounting applications which have strict
Georg Brandl116aa622007-08-15 14:28:22 +000045 equality invariants.
46
47* The decimal module incorporates a notion of significant places so that ``1.30
48 + 1.20`` is :const:`2.50`. The trailing zero is kept to indicate significance.
49 This is the customary presentation for monetary applications. For
50 multiplication, the "schoolbook" approach uses all the figures in the
51 multiplicands. For instance, ``1.3 * 1.2`` gives :const:`1.56` while ``1.30 *
52 1.20`` gives :const:`1.5600`.
53
54* Unlike hardware based binary floating point, the decimal module has a user
Thomas Wouters1b7f8912007-09-19 03:06:30 +000055 alterable precision (defaulting to 28 places) which can be as large as needed for
Christian Heimesfe337bf2008-03-23 21:54:12 +000056 a given problem:
Georg Brandl116aa622007-08-15 14:28:22 +000057
Mark Dickinson43ef32a2010-11-07 11:24:44 +000058 >>> from decimal import *
Georg Brandl116aa622007-08-15 14:28:22 +000059 >>> getcontext().prec = 6
60 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +000061 Decimal('0.142857')
Georg Brandl116aa622007-08-15 14:28:22 +000062 >>> getcontext().prec = 28
63 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +000064 Decimal('0.1428571428571428571428571429')
Georg Brandl116aa622007-08-15 14:28:22 +000065
66* Both binary and decimal floating point are implemented in terms of published
67 standards. While the built-in float type exposes only a modest portion of its
68 capabilities, the decimal module exposes all required parts of the standard.
69 When needed, the programmer has full control over rounding and signal handling.
Christian Heimes3feef612008-02-11 06:19:17 +000070 This includes an option to enforce exact arithmetic by using exceptions
71 to block any inexact operations.
72
73* The decimal module was designed to support "without prejudice, both exact
74 unrounded decimal arithmetic (sometimes called fixed-point arithmetic)
75 and rounded floating-point arithmetic." -- excerpt from the decimal
76 arithmetic specification.
Georg Brandl116aa622007-08-15 14:28:22 +000077
78The module design is centered around three concepts: the decimal number, the
79context for arithmetic, and signals.
80
81A decimal number is immutable. It has a sign, coefficient digits, and an
82exponent. To preserve significance, the coefficient digits do not truncate
Thomas Wouters1b7f8912007-09-19 03:06:30 +000083trailing zeros. Decimals also include special values such as
Georg Brandl116aa622007-08-15 14:28:22 +000084:const:`Infinity`, :const:`-Infinity`, and :const:`NaN`. The standard also
85differentiates :const:`-0` from :const:`+0`.
86
87The context for arithmetic is an environment specifying precision, rounding
88rules, limits on exponents, flags indicating the results of operations, and trap
89enablers which determine whether signals are treated as exceptions. Rounding
90options include :const:`ROUND_CEILING`, :const:`ROUND_DOWN`,
91:const:`ROUND_FLOOR`, :const:`ROUND_HALF_DOWN`, :const:`ROUND_HALF_EVEN`,
Thomas Wouters1b7f8912007-09-19 03:06:30 +000092:const:`ROUND_HALF_UP`, :const:`ROUND_UP`, and :const:`ROUND_05UP`.
Georg Brandl116aa622007-08-15 14:28:22 +000093
94Signals are groups of exceptional conditions arising during the course of
95computation. Depending on the needs of the application, signals may be ignored,
96considered as informational, or treated as exceptions. The signals in the
97decimal module are: :const:`Clamped`, :const:`InvalidOperation`,
98:const:`DivisionByZero`, :const:`Inexact`, :const:`Rounded`, :const:`Subnormal`,
Stefan Krah1919b7e2012-03-21 18:25:23 +010099:const:`Overflow`, :const:`Underflow` and :const:`FloatOperation`.
Georg Brandl116aa622007-08-15 14:28:22 +0000100
101For each signal there is a flag and a trap enabler. When a signal is
Raymond Hettinger86173da2008-02-01 20:38:12 +0000102encountered, its flag is set to one, then, if the trap enabler is
Georg Brandl116aa622007-08-15 14:28:22 +0000103set to one, an exception is raised. Flags are sticky, so the user needs to
104reset them before monitoring a calculation.
105
106
107.. seealso::
108
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000109 * IBM's General Decimal Arithmetic Specification, `The General Decimal Arithmetic
Raymond Hettinger960dc362009-04-21 03:43:15 +0000110 Specification <http://speleotrove.com/decimal/decarith.html>`_.
Georg Brandl116aa622007-08-15 14:28:22 +0000111
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000112 * IEEE standard 854-1987, `Unofficial IEEE 854 Text
Christian Heimes77c02eb2008-02-09 02:18:51 +0000113 <http://754r.ucbtest.org/standards/854.pdf>`_.
Georg Brandl116aa622007-08-15 14:28:22 +0000114
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000115.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000116
117
118.. _decimal-tutorial:
119
120Quick-start Tutorial
121--------------------
122
123The usual start to using decimals is importing the module, viewing the current
124context with :func:`getcontext` and, if necessary, setting new values for
125precision, rounding, or enabled traps::
126
127 >>> from decimal import *
128 >>> getcontext()
Stefan Krah1919b7e2012-03-21 18:25:23 +0100129 Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000130 capitals=1, clamp=0, flags=[], traps=[Overflow, DivisionByZero,
Christian Heimesfe337bf2008-03-23 21:54:12 +0000131 InvalidOperation])
Georg Brandl116aa622007-08-15 14:28:22 +0000132
133 >>> getcontext().prec = 7 # Set a new precision
134
Mark Dickinsone534a072010-04-04 22:13:14 +0000135Decimal instances can be constructed from integers, strings, floats, or tuples.
136Construction from an integer or a float performs an exact conversion of the
137value of that integer or float. Decimal numbers include special values such as
Georg Brandl116aa622007-08-15 14:28:22 +0000138:const:`NaN` which stands for "Not a number", positive and negative
Stefan Krah1919b7e2012-03-21 18:25:23 +0100139:const:`Infinity`, and :const:`-0`::
Georg Brandl116aa622007-08-15 14:28:22 +0000140
Facundo Batista789bdf02008-06-21 17:29:41 +0000141 >>> getcontext().prec = 28
Georg Brandl116aa622007-08-15 14:28:22 +0000142 >>> Decimal(10)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000143 Decimal('10')
144 >>> Decimal('3.14')
145 Decimal('3.14')
Mark Dickinsone534a072010-04-04 22:13:14 +0000146 >>> Decimal(3.14)
147 Decimal('3.140000000000000124344978758017532527446746826171875')
Georg Brandl116aa622007-08-15 14:28:22 +0000148 >>> Decimal((0, (3, 1, 4), -2))
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000149 Decimal('3.14')
Georg Brandl116aa622007-08-15 14:28:22 +0000150 >>> Decimal(str(2.0 ** 0.5))
Alexander Belopolsky287d1fd2011-01-12 16:37:14 +0000151 Decimal('1.4142135623730951')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000152 >>> Decimal(2) ** Decimal('0.5')
153 Decimal('1.414213562373095048801688724')
154 >>> Decimal('NaN')
155 Decimal('NaN')
156 >>> Decimal('-Infinity')
157 Decimal('-Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000158
Stefan Krah1919b7e2012-03-21 18:25:23 +0100159If the :exc:`FloatOperation` signal is trapped, accidental mixing of
160decimals and floats in constructors or ordering comparisons raises
161an exception::
162
163 >>> c = getcontext()
164 >>> c.traps[FloatOperation] = True
165 >>> Decimal(3.14)
166 Traceback (most recent call last):
167 File "<stdin>", line 1, in <module>
168 decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
169 >>> Decimal('3.5') < 3.7
170 Traceback (most recent call last):
171 File "<stdin>", line 1, in <module>
172 decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
173 >>> Decimal('3.5') == 3.5
174 True
175
176.. versionadded:: 3.3
177
Georg Brandl116aa622007-08-15 14:28:22 +0000178The significance of a new Decimal is determined solely by the number of digits
179input. Context precision and rounding only come into play during arithmetic
Christian Heimesfe337bf2008-03-23 21:54:12 +0000180operations.
181
182.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +0000183
184 >>> getcontext().prec = 6
185 >>> Decimal('3.0')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000186 Decimal('3.0')
Georg Brandl116aa622007-08-15 14:28:22 +0000187 >>> Decimal('3.1415926535')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000188 Decimal('3.1415926535')
Georg Brandl116aa622007-08-15 14:28:22 +0000189 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000190 Decimal('5.85987')
Georg Brandl116aa622007-08-15 14:28:22 +0000191 >>> getcontext().rounding = ROUND_UP
192 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000193 Decimal('5.85988')
Georg Brandl116aa622007-08-15 14:28:22 +0000194
Stefan Krah1919b7e2012-03-21 18:25:23 +0100195If the internal limits of the C version are exceeded, constructing
196a decimal raises :class:`InvalidOperation`::
197
198 >>> Decimal("1e9999999999999999999")
199 Traceback (most recent call last):
200 File "<stdin>", line 1, in <module>
201 decimal.InvalidOperation: [<class 'decimal.InvalidOperation'>]
202
203.. versionchanged:: 3.3
204
Georg Brandl116aa622007-08-15 14:28:22 +0000205Decimals interact well with much of the rest of Python. Here is a small decimal
Christian Heimesfe337bf2008-03-23 21:54:12 +0000206floating point flying circus:
207
208.. doctest::
209 :options: +NORMALIZE_WHITESPACE
Georg Brandl116aa622007-08-15 14:28:22 +0000210
Facundo Batista789bdf02008-06-21 17:29:41 +0000211 >>> data = list(map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split()))
Georg Brandl116aa622007-08-15 14:28:22 +0000212 >>> max(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000213 Decimal('9.25')
Georg Brandl116aa622007-08-15 14:28:22 +0000214 >>> min(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000215 Decimal('0.03')
Georg Brandl116aa622007-08-15 14:28:22 +0000216 >>> sorted(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000217 [Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
218 Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
Georg Brandl116aa622007-08-15 14:28:22 +0000219 >>> sum(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000220 Decimal('19.29')
Georg Brandl116aa622007-08-15 14:28:22 +0000221 >>> a,b,c = data[:3]
222 >>> str(a)
223 '1.34'
224 >>> float(a)
Mark Dickinson8dad7df2009-06-28 20:36:54 +0000225 1.34
226 >>> round(a, 1)
227 Decimal('1.3')
Georg Brandl116aa622007-08-15 14:28:22 +0000228 >>> int(a)
229 1
230 >>> a * 5
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000231 Decimal('6.70')
Georg Brandl116aa622007-08-15 14:28:22 +0000232 >>> a * b
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000233 Decimal('2.5058')
Georg Brandl116aa622007-08-15 14:28:22 +0000234 >>> c % a
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000235 Decimal('0.77')
Georg Brandl116aa622007-08-15 14:28:22 +0000236
Christian Heimesfe337bf2008-03-23 21:54:12 +0000237And some mathematical functions are also available to Decimal:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000238
Facundo Batista789bdf02008-06-21 17:29:41 +0000239 >>> getcontext().prec = 28
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000240 >>> Decimal(2).sqrt()
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000241 Decimal('1.414213562373095048801688724')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000242 >>> Decimal(1).exp()
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000243 Decimal('2.718281828459045235360287471')
244 >>> Decimal('10').ln()
245 Decimal('2.302585092994045684017991455')
246 >>> Decimal('10').log10()
247 Decimal('1')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000248
Georg Brandl116aa622007-08-15 14:28:22 +0000249The :meth:`quantize` method rounds a number to a fixed exponent. This method is
250useful for monetary applications that often round results to a fixed number of
Christian Heimesfe337bf2008-03-23 21:54:12 +0000251places:
Georg Brandl116aa622007-08-15 14:28:22 +0000252
253 >>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000254 Decimal('7.32')
Georg Brandl116aa622007-08-15 14:28:22 +0000255 >>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000256 Decimal('8')
Georg Brandl116aa622007-08-15 14:28:22 +0000257
258As shown above, the :func:`getcontext` function accesses the current context and
259allows the settings to be changed. This approach meets the needs of most
260applications.
261
262For more advanced work, it may be useful to create alternate contexts using the
263Context() constructor. To make an alternate active, use the :func:`setcontext`
264function.
265
266In accordance with the standard, the :mod:`Decimal` module provides two ready to
267use standard contexts, :const:`BasicContext` and :const:`ExtendedContext`. The
268former is especially useful for debugging because many of the traps are
Christian Heimesfe337bf2008-03-23 21:54:12 +0000269enabled:
270
271.. doctest:: newcontext
272 :options: +NORMALIZE_WHITESPACE
Georg Brandl116aa622007-08-15 14:28:22 +0000273
274 >>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
275 >>> setcontext(myothercontext)
276 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000277 Decimal('0.142857142857142857142857142857142857142857142857142857142857')
Georg Brandl116aa622007-08-15 14:28:22 +0000278
279 >>> ExtendedContext
Stefan Krah1919b7e2012-03-21 18:25:23 +0100280 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000281 capitals=1, clamp=0, flags=[], traps=[])
Georg Brandl116aa622007-08-15 14:28:22 +0000282 >>> setcontext(ExtendedContext)
283 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000284 Decimal('0.142857143')
Georg Brandl116aa622007-08-15 14:28:22 +0000285 >>> Decimal(42) / Decimal(0)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000286 Decimal('Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000287
288 >>> setcontext(BasicContext)
289 >>> Decimal(42) / Decimal(0)
290 Traceback (most recent call last):
291 File "<pyshell#143>", line 1, in -toplevel-
292 Decimal(42) / Decimal(0)
293 DivisionByZero: x / 0
294
295Contexts also have signal flags for monitoring exceptional conditions
296encountered during computations. The flags remain set until explicitly cleared,
297so it is best to clear the flags before each set of monitored computations by
298using the :meth:`clear_flags` method. ::
299
300 >>> setcontext(ExtendedContext)
301 >>> getcontext().clear_flags()
302 >>> Decimal(355) / Decimal(113)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000303 Decimal('3.14159292')
Georg Brandl116aa622007-08-15 14:28:22 +0000304 >>> getcontext()
Stefan Krah1919b7e2012-03-21 18:25:23 +0100305 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000306 capitals=1, clamp=0, flags=[Inexact, Rounded], traps=[])
Georg Brandl116aa622007-08-15 14:28:22 +0000307
308The *flags* entry shows that the rational approximation to :const:`Pi` was
309rounded (digits beyond the context precision were thrown away) and that the
310result is inexact (some of the discarded digits were non-zero).
311
312Individual traps are set using the dictionary in the :attr:`traps` field of a
Christian Heimesfe337bf2008-03-23 21:54:12 +0000313context:
Georg Brandl116aa622007-08-15 14:28:22 +0000314
Christian Heimesfe337bf2008-03-23 21:54:12 +0000315.. doctest:: newcontext
316
317 >>> setcontext(ExtendedContext)
Georg Brandl116aa622007-08-15 14:28:22 +0000318 >>> Decimal(1) / Decimal(0)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000319 Decimal('Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000320 >>> getcontext().traps[DivisionByZero] = 1
321 >>> Decimal(1) / Decimal(0)
322 Traceback (most recent call last):
323 File "<pyshell#112>", line 1, in -toplevel-
324 Decimal(1) / Decimal(0)
325 DivisionByZero: x / 0
326
327Most programs adjust the current context only once, at the beginning of the
328program. And, in many applications, data is converted to :class:`Decimal` with
329a single cast inside a loop. With context set and decimals created, the bulk of
330the program manipulates the data no differently than with other Python numeric
331types.
332
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000333.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000334
335
336.. _decimal-decimal:
337
338Decimal objects
339---------------
340
341
Georg Brandlc2a4f4f2009-04-10 09:03:43 +0000342.. class:: Decimal(value="0", context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000343
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000344 Construct a new :class:`Decimal` object based from *value*.
Georg Brandl116aa622007-08-15 14:28:22 +0000345
Raymond Hettinger96798592010-04-02 16:58:27 +0000346 *value* can be an integer, string, tuple, :class:`float`, or another :class:`Decimal`
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000347 object. If no *value* is given, returns ``Decimal('0')``. If *value* is a
Christian Heimesa62da1d2008-01-12 19:39:10 +0000348 string, it should conform to the decimal numeric string syntax after leading
349 and trailing whitespace characters are removed::
Georg Brandl116aa622007-08-15 14:28:22 +0000350
351 sign ::= '+' | '-'
352 digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
353 indicator ::= 'e' | 'E'
354 digits ::= digit [digit]...
355 decimal-part ::= digits '.' [digits] | ['.'] digits
356 exponent-part ::= indicator [sign] digits
357 infinity ::= 'Infinity' | 'Inf'
358 nan ::= 'NaN' [digits] | 'sNaN' [digits]
359 numeric-value ::= decimal-part [exponent-part] | infinity
Georg Brandl48310cd2009-01-03 21:18:54 +0000360 numeric-string ::= [sign] numeric-value | [sign] nan
Georg Brandl116aa622007-08-15 14:28:22 +0000361
Mark Dickinson345adc42009-08-02 10:14:23 +0000362 Other Unicode decimal digits are also permitted where ``digit``
363 appears above. These include decimal digits from various other
364 alphabets (for example, Arabic-Indic and Devanāgarī digits) along
365 with the fullwidth digits ``'\uff10'`` through ``'\uff19'``.
366
Georg Brandl116aa622007-08-15 14:28:22 +0000367 If *value* is a :class:`tuple`, it should have three components, a sign
368 (:const:`0` for positive or :const:`1` for negative), a :class:`tuple` of
369 digits, and an integer exponent. For example, ``Decimal((0, (1, 4, 1, 4), -3))``
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000370 returns ``Decimal('1.414')``.
Georg Brandl116aa622007-08-15 14:28:22 +0000371
Raymond Hettinger96798592010-04-02 16:58:27 +0000372 If *value* is a :class:`float`, the binary floating point value is losslessly
373 converted to its exact decimal equivalent. This conversion can often require
Mark Dickinsone534a072010-04-04 22:13:14 +0000374 53 or more digits of precision. For example, ``Decimal(float('1.1'))``
375 converts to
376 ``Decimal('1.100000000000000088817841970012523233890533447265625')``.
Raymond Hettinger96798592010-04-02 16:58:27 +0000377
Georg Brandl116aa622007-08-15 14:28:22 +0000378 The *context* precision does not affect how many digits are stored. That is
379 determined exclusively by the number of digits in *value*. For example,
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000380 ``Decimal('3.00000')`` records all five zeros even if the context precision is
Georg Brandl116aa622007-08-15 14:28:22 +0000381 only three.
382
383 The purpose of the *context* argument is determining what to do if *value* is a
384 malformed string. If the context traps :const:`InvalidOperation`, an exception
385 is raised; otherwise, the constructor returns a new Decimal with the value of
386 :const:`NaN`.
387
388 Once constructed, :class:`Decimal` objects are immutable.
389
Mark Dickinsone534a072010-04-04 22:13:14 +0000390 .. versionchanged:: 3.2
Georg Brandl67b21b72010-08-17 15:07:14 +0000391 The argument to the constructor is now permitted to be a :class:`float`
392 instance.
Mark Dickinsone534a072010-04-04 22:13:14 +0000393
Stefan Krah1919b7e2012-03-21 18:25:23 +0100394 .. versionchanged:: 3.3
395 :class:`float` arguments raise an exception if the :exc:`FloatOperation`
396 trap is set. By default the trap is off.
397
Benjamin Petersone41251e2008-04-25 01:59:09 +0000398 Decimal floating point objects share many properties with the other built-in
399 numeric types such as :class:`float` and :class:`int`. All of the usual math
400 operations and special methods apply. Likewise, decimal objects can be
401 copied, pickled, printed, used as dictionary keys, used as set elements,
402 compared, sorted, and coerced to another type (such as :class:`float` or
Mark Dickinson5d233fd2010-02-18 14:54:37 +0000403 :class:`int`).
Christian Heimesa62da1d2008-01-12 19:39:10 +0000404
Mark Dickinsona3f37402012-11-18 10:22:05 +0000405 There are some small differences between arithmetic on Decimal objects and
406 arithmetic on integers and floats. When the remainder operator ``%`` is
407 applied to Decimal objects, the sign of the result is the sign of the
408 *dividend* rather than the sign of the divisor::
409
410 >>> (-7) % 4
411 1
412 >>> Decimal(-7) % Decimal(4)
413 Decimal('-3')
414
415 The integer division operator ``//`` behaves analogously, returning the
416 integer part of the true quotient (truncating towards zero) rather than its
Mark Dickinsonec967242012-11-18 10:42:07 +0000417 floor, so as to preserve the usual identity ``x == (x // y) * y + x % y``::
Mark Dickinsona3f37402012-11-18 10:22:05 +0000418
419 >>> -7 // 4
420 -2
421 >>> Decimal(-7) // Decimal(4)
422 Decimal('-1')
423
424 The ``%`` and ``//`` operators implement the ``remainder`` and
425 ``divide-integer`` operations (respectively) as described in the
426 specification.
427
Mark Dickinson08ade6f2010-06-11 10:44:52 +0000428 Decimal objects cannot generally be combined with floats or
429 instances of :class:`fractions.Fraction` in arithmetic operations:
430 an attempt to add a :class:`Decimal` to a :class:`float`, for
431 example, will raise a :exc:`TypeError`. However, it is possible to
432 use Python's comparison operators to compare a :class:`Decimal`
433 instance ``x`` with another number ``y``. This avoids confusing results
434 when doing equality comparisons between numbers of different types.
Mark Dickinsonac256ab2010-04-03 11:08:14 +0000435
Ezio Melotti993a5ee2010-04-04 06:30:08 +0000436 .. versionchanged:: 3.2
Georg Brandl67b21b72010-08-17 15:07:14 +0000437 Mixed-type comparisons between :class:`Decimal` instances and other
438 numeric types are now fully supported.
Mark Dickinsonac256ab2010-04-03 11:08:14 +0000439
Benjamin Petersone41251e2008-04-25 01:59:09 +0000440 In addition to the standard numeric properties, decimal floating point
441 objects also have a number of specialized methods:
Georg Brandl116aa622007-08-15 14:28:22 +0000442
Georg Brandl116aa622007-08-15 14:28:22 +0000443
Benjamin Petersone41251e2008-04-25 01:59:09 +0000444 .. method:: adjusted()
Georg Brandl116aa622007-08-15 14:28:22 +0000445
Benjamin Petersone41251e2008-04-25 01:59:09 +0000446 Return the adjusted exponent after shifting out the coefficient's
447 rightmost digits until only the lead digit remains:
448 ``Decimal('321e+5').adjusted()`` returns seven. Used for determining the
449 position of the most significant digit with respect to the decimal point.
Georg Brandl116aa622007-08-15 14:28:22 +0000450
Georg Brandl116aa622007-08-15 14:28:22 +0000451
Benjamin Petersone41251e2008-04-25 01:59:09 +0000452 .. method:: as_tuple()
Georg Brandl116aa622007-08-15 14:28:22 +0000453
Benjamin Petersone41251e2008-04-25 01:59:09 +0000454 Return a :term:`named tuple` representation of the number:
455 ``DecimalTuple(sign, digits, exponent)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000456
Christian Heimes25bb7832008-01-11 16:17:00 +0000457
Benjamin Petersone41251e2008-04-25 01:59:09 +0000458 .. method:: canonical()
Georg Brandl116aa622007-08-15 14:28:22 +0000459
Benjamin Petersone41251e2008-04-25 01:59:09 +0000460 Return the canonical encoding of the argument. Currently, the encoding of
461 a :class:`Decimal` instance is always canonical, so this operation returns
462 its argument unchanged.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000463
Stefan Krah040e3112012-12-15 22:33:33 +0100464 .. method:: compare(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000465
Georg Brandl05f5ab72008-09-24 09:11:47 +0000466 Compare the values of two Decimal instances. :meth:`compare` returns a
467 Decimal instance, and if either operand is a NaN then the result is a
468 NaN::
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000469
Georg Brandl05f5ab72008-09-24 09:11:47 +0000470 a or b is a NaN ==> Decimal('NaN')
471 a < b ==> Decimal('-1')
472 a == b ==> Decimal('0')
473 a > b ==> Decimal('1')
Georg Brandl116aa622007-08-15 14:28:22 +0000474
Stefan Krah040e3112012-12-15 22:33:33 +0100475 .. method:: compare_signal(other, context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000476
Benjamin Petersone41251e2008-04-25 01:59:09 +0000477 This operation is identical to the :meth:`compare` method, except that all
478 NaNs signal. That is, if neither operand is a signaling NaN then any
479 quiet NaN operand is treated as though it were a signaling NaN.
Georg Brandl116aa622007-08-15 14:28:22 +0000480
Stefan Krah040e3112012-12-15 22:33:33 +0100481 .. method:: compare_total(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000482
Benjamin Petersone41251e2008-04-25 01:59:09 +0000483 Compare two operands using their abstract representation rather than their
484 numerical value. Similar to the :meth:`compare` method, but the result
485 gives a total ordering on :class:`Decimal` instances. Two
486 :class:`Decimal` instances with the same numeric value but different
487 representations compare unequal in this ordering:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000488
Benjamin Petersone41251e2008-04-25 01:59:09 +0000489 >>> Decimal('12.0').compare_total(Decimal('12'))
490 Decimal('-1')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000491
Benjamin Petersone41251e2008-04-25 01:59:09 +0000492 Quiet and signaling NaNs are also included in the total ordering. The
493 result of this function is ``Decimal('0')`` if both operands have the same
494 representation, ``Decimal('-1')`` if the first operand is lower in the
495 total order than the second, and ``Decimal('1')`` if the first operand is
496 higher in the total order than the second operand. See the specification
497 for details of the total order.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000498
Stefan Krah040e3112012-12-15 22:33:33 +0100499 This operation is unaffected by context and is quiet: no flags are changed
500 and no rounding is performed. As an exception, the C version may raise
501 InvalidOperation if the second operand cannot be converted exactly.
502
503 .. method:: compare_total_mag(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000504
Benjamin Petersone41251e2008-04-25 01:59:09 +0000505 Compare two operands using their abstract representation rather than their
506 value as in :meth:`compare_total`, but ignoring the sign of each operand.
507 ``x.compare_total_mag(y)`` is equivalent to
508 ``x.copy_abs().compare_total(y.copy_abs())``.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000509
Stefan Krah040e3112012-12-15 22:33:33 +0100510 This operation is unaffected by context and is quiet: no flags are changed
511 and no rounding is performed. As an exception, the C version may raise
512 InvalidOperation if the second operand cannot be converted exactly.
513
Facundo Batista789bdf02008-06-21 17:29:41 +0000514 .. method:: conjugate()
515
Benjamin Petersondcf97b92008-07-02 17:30:14 +0000516 Just returns self, this method is only to comply with the Decimal
Facundo Batista789bdf02008-06-21 17:29:41 +0000517 Specification.
518
Benjamin Petersone41251e2008-04-25 01:59:09 +0000519 .. method:: copy_abs()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000520
Benjamin Petersone41251e2008-04-25 01:59:09 +0000521 Return the absolute value of the argument. This operation is unaffected
522 by the context and is quiet: no flags are changed and no rounding is
523 performed.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000524
Benjamin Petersone41251e2008-04-25 01:59:09 +0000525 .. method:: copy_negate()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000526
Benjamin Petersone41251e2008-04-25 01:59:09 +0000527 Return the negation of the argument. This operation is unaffected by the
528 context and is quiet: no flags are changed and no rounding is performed.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000529
Stefan Krah040e3112012-12-15 22:33:33 +0100530 .. method:: copy_sign(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000531
Benjamin Petersone41251e2008-04-25 01:59:09 +0000532 Return a copy of the first operand with the sign set to be the same as the
533 sign of the second operand. For example:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000534
Benjamin Petersone41251e2008-04-25 01:59:09 +0000535 >>> Decimal('2.3').copy_sign(Decimal('-1.5'))
536 Decimal('-2.3')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000537
Stefan Krah040e3112012-12-15 22:33:33 +0100538 This operation is unaffected by context and is quiet: no flags are changed
539 and no rounding is performed. As an exception, the C version may raise
540 InvalidOperation if the second operand cannot be converted exactly.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000541
Stefan Krah040e3112012-12-15 22:33:33 +0100542 .. method:: exp(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000543
Benjamin Petersone41251e2008-04-25 01:59:09 +0000544 Return the value of the (natural) exponential function ``e**x`` at the
545 given number. The result is correctly rounded using the
546 :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000547
Benjamin Petersone41251e2008-04-25 01:59:09 +0000548 >>> Decimal(1).exp()
549 Decimal('2.718281828459045235360287471')
550 >>> Decimal(321).exp()
551 Decimal('2.561702493119680037517373933E+139')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000552
Raymond Hettinger771ed762009-01-03 19:20:32 +0000553 .. method:: from_float(f)
554
555 Classmethod that converts a float to a decimal number, exactly.
556
557 Note `Decimal.from_float(0.1)` is not the same as `Decimal('0.1')`.
558 Since 0.1 is not exactly representable in binary floating point, the
559 value is stored as the nearest representable value which is
560 `0x1.999999999999ap-4`. That equivalent value in decimal is
561 `0.1000000000000000055511151231257827021181583404541015625`.
562
Mark Dickinsone534a072010-04-04 22:13:14 +0000563 .. note:: From Python 3.2 onwards, a :class:`Decimal` instance
564 can also be constructed directly from a :class:`float`.
565
Raymond Hettinger771ed762009-01-03 19:20:32 +0000566 .. doctest::
567
568 >>> Decimal.from_float(0.1)
569 Decimal('0.1000000000000000055511151231257827021181583404541015625')
570 >>> Decimal.from_float(float('nan'))
571 Decimal('NaN')
572 >>> Decimal.from_float(float('inf'))
573 Decimal('Infinity')
574 >>> Decimal.from_float(float('-inf'))
575 Decimal('-Infinity')
576
Georg Brandl45f53372009-01-03 21:15:20 +0000577 .. versionadded:: 3.1
Raymond Hettinger771ed762009-01-03 19:20:32 +0000578
Stefan Krah040e3112012-12-15 22:33:33 +0100579 .. method:: fma(other, third, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000580
Benjamin Petersone41251e2008-04-25 01:59:09 +0000581 Fused multiply-add. Return self*other+third with no rounding of the
582 intermediate product self*other.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000583
Benjamin Petersone41251e2008-04-25 01:59:09 +0000584 >>> Decimal(2).fma(3, 5)
585 Decimal('11')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000586
Benjamin Petersone41251e2008-04-25 01:59:09 +0000587 .. method:: is_canonical()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000588
Benjamin Petersone41251e2008-04-25 01:59:09 +0000589 Return :const:`True` if the argument is canonical and :const:`False`
590 otherwise. Currently, a :class:`Decimal` instance is always canonical, so
591 this operation always returns :const:`True`.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000592
Benjamin Petersone41251e2008-04-25 01:59:09 +0000593 .. method:: is_finite()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000594
Benjamin Petersone41251e2008-04-25 01:59:09 +0000595 Return :const:`True` if the argument is a finite number, and
596 :const:`False` if the argument is an infinity or a NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000597
Benjamin Petersone41251e2008-04-25 01:59:09 +0000598 .. method:: is_infinite()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000599
Benjamin Petersone41251e2008-04-25 01:59:09 +0000600 Return :const:`True` if the argument is either positive or negative
601 infinity and :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000602
Benjamin Petersone41251e2008-04-25 01:59:09 +0000603 .. method:: is_nan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000604
Benjamin Petersone41251e2008-04-25 01:59:09 +0000605 Return :const:`True` if the argument is a (quiet or signaling) NaN and
606 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000607
Stefan Krah040e3112012-12-15 22:33:33 +0100608 .. method:: is_normal(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000609
Benjamin Petersone41251e2008-04-25 01:59:09 +0000610 Return :const:`True` if the argument is a *normal* finite number. Return
611 :const:`False` if the argument is zero, subnormal, infinite or a NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000612
Benjamin Petersone41251e2008-04-25 01:59:09 +0000613 .. method:: is_qnan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000614
Benjamin Petersone41251e2008-04-25 01:59:09 +0000615 Return :const:`True` if the argument is a quiet NaN, and
616 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000617
Benjamin Petersone41251e2008-04-25 01:59:09 +0000618 .. method:: is_signed()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000619
Benjamin Petersone41251e2008-04-25 01:59:09 +0000620 Return :const:`True` if the argument has a negative sign and
621 :const:`False` otherwise. Note that zeros and NaNs can both carry signs.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000622
Benjamin Petersone41251e2008-04-25 01:59:09 +0000623 .. method:: is_snan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000624
Benjamin Petersone41251e2008-04-25 01:59:09 +0000625 Return :const:`True` if the argument is a signaling NaN and :const:`False`
626 otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000627
Stefan Krah040e3112012-12-15 22:33:33 +0100628 .. method:: is_subnormal(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000629
Benjamin Petersone41251e2008-04-25 01:59:09 +0000630 Return :const:`True` if the argument is subnormal, and :const:`False`
631 otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000632
Benjamin Petersone41251e2008-04-25 01:59:09 +0000633 .. method:: is_zero()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000634
Benjamin Petersone41251e2008-04-25 01:59:09 +0000635 Return :const:`True` if the argument is a (positive or negative) zero and
636 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000637
Stefan Krah040e3112012-12-15 22:33:33 +0100638 .. method:: ln(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000639
Benjamin Petersone41251e2008-04-25 01:59:09 +0000640 Return the natural (base e) logarithm of the operand. The result is
641 correctly rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000642
Stefan Krah040e3112012-12-15 22:33:33 +0100643 .. method:: log10(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000644
Benjamin Petersone41251e2008-04-25 01:59:09 +0000645 Return the base ten logarithm of the operand. The result is correctly
646 rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000647
Stefan Krah040e3112012-12-15 22:33:33 +0100648 .. method:: logb(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000649
Benjamin Petersone41251e2008-04-25 01:59:09 +0000650 For a nonzero number, return the adjusted exponent of its operand as a
651 :class:`Decimal` instance. If the operand is a zero then
652 ``Decimal('-Infinity')`` is returned and the :const:`DivisionByZero` flag
653 is raised. If the operand is an infinity then ``Decimal('Infinity')`` is
654 returned.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000655
Stefan Krah040e3112012-12-15 22:33:33 +0100656 .. method:: logical_and(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000657
Benjamin Petersone41251e2008-04-25 01:59:09 +0000658 :meth:`logical_and` is a logical operation which takes two *logical
659 operands* (see :ref:`logical_operands_label`). The result is the
660 digit-wise ``and`` of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000661
Stefan Krah040e3112012-12-15 22:33:33 +0100662 .. method:: logical_invert(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000663
Alexandre Vassalotti260484d2009-07-17 11:43:26 +0000664 :meth:`logical_invert` is a logical operation. The
Benjamin Petersone41251e2008-04-25 01:59:09 +0000665 result is the digit-wise inversion of the operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000666
Stefan Krah040e3112012-12-15 22:33:33 +0100667 .. method:: logical_or(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000668
Benjamin Petersone41251e2008-04-25 01:59:09 +0000669 :meth:`logical_or` is a logical operation which takes two *logical
670 operands* (see :ref:`logical_operands_label`). The result is the
671 digit-wise ``or`` of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000672
Stefan Krah040e3112012-12-15 22:33:33 +0100673 .. method:: logical_xor(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000674
Benjamin Petersone41251e2008-04-25 01:59:09 +0000675 :meth:`logical_xor` is a logical operation which takes two *logical
676 operands* (see :ref:`logical_operands_label`). The result is the
677 digit-wise exclusive or of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000678
Stefan Krah040e3112012-12-15 22:33:33 +0100679 .. method:: max(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000680
Benjamin Petersone41251e2008-04-25 01:59:09 +0000681 Like ``max(self, other)`` except that the context rounding rule is applied
682 before returning and that :const:`NaN` values are either signaled or
683 ignored (depending on the context and whether they are signaling or
684 quiet).
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000685
Stefan Krah040e3112012-12-15 22:33:33 +0100686 .. method:: max_mag(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000687
Georg Brandl502d9a52009-07-26 15:02:41 +0000688 Similar to the :meth:`.max` method, but the comparison is done using the
Benjamin Petersone41251e2008-04-25 01:59:09 +0000689 absolute values of the operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000690
Stefan Krah040e3112012-12-15 22:33:33 +0100691 .. method:: min(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000692
Benjamin Petersone41251e2008-04-25 01:59:09 +0000693 Like ``min(self, other)`` except that the context rounding rule is applied
694 before returning and that :const:`NaN` values are either signaled or
695 ignored (depending on the context and whether they are signaling or
696 quiet).
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000697
Stefan Krah040e3112012-12-15 22:33:33 +0100698 .. method:: min_mag(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000699
Georg Brandl502d9a52009-07-26 15:02:41 +0000700 Similar to the :meth:`.min` method, but the comparison is done using the
Benjamin Petersone41251e2008-04-25 01:59:09 +0000701 absolute values of the operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000702
Stefan Krah040e3112012-12-15 22:33:33 +0100703 .. method:: next_minus(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000704
Benjamin Petersone41251e2008-04-25 01:59:09 +0000705 Return the largest number representable in the given context (or in the
706 current thread's context if no context is given) that is smaller than the
707 given operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000708
Stefan Krah040e3112012-12-15 22:33:33 +0100709 .. method:: next_plus(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000710
Benjamin Petersone41251e2008-04-25 01:59:09 +0000711 Return the smallest number representable in the given context (or in the
712 current thread's context if no context is given) that is larger than the
713 given operand.
Georg Brandl116aa622007-08-15 14:28:22 +0000714
Stefan Krah040e3112012-12-15 22:33:33 +0100715 .. method:: next_toward(other, context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000716
Benjamin Petersone41251e2008-04-25 01:59:09 +0000717 If the two operands are unequal, return the number closest to the first
718 operand in the direction of the second operand. If both operands are
719 numerically equal, return a copy of the first operand with the sign set to
720 be the same as the sign of the second operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000721
Stefan Krah040e3112012-12-15 22:33:33 +0100722 .. method:: normalize(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000723
Benjamin Petersone41251e2008-04-25 01:59:09 +0000724 Normalize the number by stripping the rightmost trailing zeros and
725 converting any result equal to :const:`Decimal('0')` to
Senthil Kumarana6bac952011-07-04 11:28:30 -0700726 :const:`Decimal('0e0')`. Used for producing canonical values for attributes
Benjamin Petersone41251e2008-04-25 01:59:09 +0000727 of an equivalence class. For example, ``Decimal('32.100')`` and
728 ``Decimal('0.321000e+2')`` both normalize to the equivalent value
729 ``Decimal('32.1')``.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000730
Stefan Krah040e3112012-12-15 22:33:33 +0100731 .. method:: number_class(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000732
Benjamin Petersone41251e2008-04-25 01:59:09 +0000733 Return a string describing the *class* of the operand. The returned value
734 is one of the following ten strings.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000735
Benjamin Petersone41251e2008-04-25 01:59:09 +0000736 * ``"-Infinity"``, indicating that the operand is negative infinity.
737 * ``"-Normal"``, indicating that the operand is a negative normal number.
738 * ``"-Subnormal"``, indicating that the operand is negative and subnormal.
739 * ``"-Zero"``, indicating that the operand is a negative zero.
740 * ``"+Zero"``, indicating that the operand is a positive zero.
741 * ``"+Subnormal"``, indicating that the operand is positive and subnormal.
742 * ``"+Normal"``, indicating that the operand is a positive normal number.
743 * ``"+Infinity"``, indicating that the operand is positive infinity.
744 * ``"NaN"``, indicating that the operand is a quiet NaN (Not a Number).
745 * ``"sNaN"``, indicating that the operand is a signaling NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000746
Stefan Krahb151f8f2014-04-30 19:15:38 +0200747 .. method:: quantize(exp, rounding=None, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000748
Benjamin Petersone41251e2008-04-25 01:59:09 +0000749 Return a value equal to the first operand after rounding and having the
750 exponent of the second operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000751
Benjamin Petersone41251e2008-04-25 01:59:09 +0000752 >>> Decimal('1.41421356').quantize(Decimal('1.000'))
753 Decimal('1.414')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000754
Benjamin Petersone41251e2008-04-25 01:59:09 +0000755 Unlike other operations, if the length of the coefficient after the
756 quantize operation would be greater than precision, then an
757 :const:`InvalidOperation` is signaled. This guarantees that, unless there
758 is an error condition, the quantized exponent is always equal to that of
759 the right-hand operand.
Georg Brandl116aa622007-08-15 14:28:22 +0000760
Benjamin Petersone41251e2008-04-25 01:59:09 +0000761 Also unlike other operations, quantize never signals Underflow, even if
762 the result is subnormal and inexact.
Georg Brandl116aa622007-08-15 14:28:22 +0000763
Benjamin Petersone41251e2008-04-25 01:59:09 +0000764 If the exponent of the second operand is larger than that of the first
765 then rounding may be necessary. In this case, the rounding mode is
766 determined by the ``rounding`` argument if given, else by the given
767 ``context`` argument; if neither argument is given the rounding mode of
768 the current thread's context is used.
Georg Brandl116aa622007-08-15 14:28:22 +0000769
Stefan Krahb151f8f2014-04-30 19:15:38 +0200770 An error is returned whenever the resulting exponent is greater than
771 :attr:`Emax` or less than :attr:`Etiny`.
Stefan Krahaf3f3a72012-08-30 12:33:55 +0200772
Benjamin Petersone41251e2008-04-25 01:59:09 +0000773 .. method:: radix()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000774
Benjamin Petersone41251e2008-04-25 01:59:09 +0000775 Return ``Decimal(10)``, the radix (base) in which the :class:`Decimal`
776 class does all its arithmetic. Included for compatibility with the
777 specification.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000778
Stefan Krah040e3112012-12-15 22:33:33 +0100779 .. method:: remainder_near(other, context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000780
Mark Dickinson6ae568b2012-10-31 19:44:36 +0000781 Return the remainder from dividing *self* by *other*. This differs from
782 ``self % other`` in that the sign of the remainder is chosen so as to
783 minimize its absolute value. More precisely, the return value is
784 ``self - n * other`` where ``n`` is the integer nearest to the exact
785 value of ``self / other``, and if two integers are equally near then the
786 even one is chosen.
Georg Brandl116aa622007-08-15 14:28:22 +0000787
Mark Dickinson6ae568b2012-10-31 19:44:36 +0000788 If the result is zero then its sign will be the sign of *self*.
789
790 >>> Decimal(18).remainder_near(Decimal(10))
791 Decimal('-2')
792 >>> Decimal(25).remainder_near(Decimal(10))
793 Decimal('5')
794 >>> Decimal(35).remainder_near(Decimal(10))
795 Decimal('-5')
Georg Brandl116aa622007-08-15 14:28:22 +0000796
Stefan Krah040e3112012-12-15 22:33:33 +0100797 .. method:: rotate(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000798
Benjamin Petersone41251e2008-04-25 01:59:09 +0000799 Return the result of rotating the digits of the first operand by an amount
800 specified by the second operand. The second operand must be an integer in
801 the range -precision through precision. The absolute value of the second
802 operand gives the number of places to rotate. If the second operand is
803 positive then rotation is to the left; otherwise rotation is to the right.
804 The coefficient of the first operand is padded on the left with zeros to
805 length precision if necessary. The sign and exponent of the first operand
806 are unchanged.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000807
Stefan Krah040e3112012-12-15 22:33:33 +0100808 .. method:: same_quantum(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000809
Benjamin Petersone41251e2008-04-25 01:59:09 +0000810 Test whether self and other have the same exponent or whether both are
811 :const:`NaN`.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000812
Stefan Krah040e3112012-12-15 22:33:33 +0100813 This operation is unaffected by context and is quiet: no flags are changed
814 and no rounding is performed. As an exception, the C version may raise
815 InvalidOperation if the second operand cannot be converted exactly.
816
817 .. method:: scaleb(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000818
Benjamin Petersone41251e2008-04-25 01:59:09 +0000819 Return the first operand with exponent adjusted by the second.
820 Equivalently, return the first operand multiplied by ``10**other``. The
821 second operand must be an integer.
Georg Brandl116aa622007-08-15 14:28:22 +0000822
Stefan Krah040e3112012-12-15 22:33:33 +0100823 .. method:: shift(other, context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000824
Benjamin Petersone41251e2008-04-25 01:59:09 +0000825 Return the result of shifting the digits of the first operand by an amount
826 specified by the second operand. The second operand must be an integer in
827 the range -precision through precision. The absolute value of the second
828 operand gives the number of places to shift. If the second operand is
829 positive then the shift is to the left; otherwise the shift is to the
830 right. Digits shifted into the coefficient are zeros. The sign and
831 exponent of the first operand are unchanged.
Georg Brandl116aa622007-08-15 14:28:22 +0000832
Stefan Krah040e3112012-12-15 22:33:33 +0100833 .. method:: sqrt(context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000834
Benjamin Petersone41251e2008-04-25 01:59:09 +0000835 Return the square root of the argument to full precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000836
Georg Brandl116aa622007-08-15 14:28:22 +0000837
Stefan Krah040e3112012-12-15 22:33:33 +0100838 .. method:: to_eng_string(context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000839
Benjamin Petersone41251e2008-04-25 01:59:09 +0000840 Convert to an engineering-type string.
Georg Brandl116aa622007-08-15 14:28:22 +0000841
Benjamin Petersone41251e2008-04-25 01:59:09 +0000842 Engineering notation has an exponent which is a multiple of 3, so there
843 are up to 3 digits left of the decimal place. For example, converts
844 ``Decimal('123E+1')`` to ``Decimal('1.23E+3')``
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000845
Stefan Krah040e3112012-12-15 22:33:33 +0100846 .. method:: to_integral(rounding=None, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000847
Benjamin Petersone41251e2008-04-25 01:59:09 +0000848 Identical to the :meth:`to_integral_value` method. The ``to_integral``
849 name has been kept for compatibility with older versions.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000850
Stefan Krah040e3112012-12-15 22:33:33 +0100851 .. method:: to_integral_exact(rounding=None, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000852
Benjamin Petersone41251e2008-04-25 01:59:09 +0000853 Round to the nearest integer, signaling :const:`Inexact` or
854 :const:`Rounded` as appropriate if rounding occurs. The rounding mode is
855 determined by the ``rounding`` parameter if given, else by the given
856 ``context``. If neither parameter is given then the rounding mode of the
857 current context is used.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000858
Stefan Krah040e3112012-12-15 22:33:33 +0100859 .. method:: to_integral_value(rounding=None, context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000860
Benjamin Petersone41251e2008-04-25 01:59:09 +0000861 Round to the nearest integer without signaling :const:`Inexact` or
862 :const:`Rounded`. If given, applies *rounding*; otherwise, uses the
863 rounding method in either the supplied *context* or the current context.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000864
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000865
866.. _logical_operands_label:
867
868Logical operands
869^^^^^^^^^^^^^^^^
870
871The :meth:`logical_and`, :meth:`logical_invert`, :meth:`logical_or`,
872and :meth:`logical_xor` methods expect their arguments to be *logical
873operands*. A *logical operand* is a :class:`Decimal` instance whose
874exponent and sign are both zero, and whose digits are all either
875:const:`0` or :const:`1`.
876
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000877.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000878
879
880.. _decimal-context:
881
882Context objects
883---------------
884
885Contexts are environments for arithmetic operations. They govern precision, set
886rules for rounding, determine which signals are treated as exceptions, and limit
887the range for exponents.
888
889Each thread has its own current context which is accessed or changed using the
890:func:`getcontext` and :func:`setcontext` functions:
891
892
893.. function:: getcontext()
894
895 Return the current context for the active thread.
896
897
898.. function:: setcontext(c)
899
900 Set the current context for the active thread to *c*.
901
Georg Brandle6bcc912008-05-12 18:05:20 +0000902You can also use the :keyword:`with` statement and the :func:`localcontext`
903function to temporarily change the active context.
Georg Brandl116aa622007-08-15 14:28:22 +0000904
Stefan Krah040e3112012-12-15 22:33:33 +0100905.. function:: localcontext(ctx=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000906
907 Return a context manager that will set the current context for the active thread
Stefan Krah040e3112012-12-15 22:33:33 +0100908 to a copy of *ctx* on entry to the with-statement and restore the previous context
Georg Brandl116aa622007-08-15 14:28:22 +0000909 when exiting the with-statement. If no context is specified, a copy of the
910 current context is used.
911
Georg Brandl116aa622007-08-15 14:28:22 +0000912 For example, the following code sets the current decimal precision to 42 places,
913 performs a calculation, and then automatically restores the previous context::
914
Georg Brandl116aa622007-08-15 14:28:22 +0000915 from decimal import localcontext
916
917 with localcontext() as ctx:
918 ctx.prec = 42 # Perform a high precision calculation
919 s = calculate_something()
920 s = +s # Round the final result back to the default precision
921
922New contexts can also be created using the :class:`Context` constructor
923described below. In addition, the module provides three pre-made contexts:
924
925
926.. class:: BasicContext
927
928 This is a standard context defined by the General Decimal Arithmetic
929 Specification. Precision is set to nine. Rounding is set to
930 :const:`ROUND_HALF_UP`. All flags are cleared. All traps are enabled (treated
931 as exceptions) except :const:`Inexact`, :const:`Rounded`, and
932 :const:`Subnormal`.
933
934 Because many of the traps are enabled, this context is useful for debugging.
935
936
937.. class:: ExtendedContext
938
939 This is a standard context defined by the General Decimal Arithmetic
940 Specification. Precision is set to nine. Rounding is set to
941 :const:`ROUND_HALF_EVEN`. All flags are cleared. No traps are enabled (so that
942 exceptions are not raised during computations).
943
Christian Heimes3feef612008-02-11 06:19:17 +0000944 Because the traps are disabled, this context is useful for applications that
Georg Brandl116aa622007-08-15 14:28:22 +0000945 prefer to have result value of :const:`NaN` or :const:`Infinity` instead of
946 raising exceptions. This allows an application to complete a run in the
947 presence of conditions that would otherwise halt the program.
948
949
950.. class:: DefaultContext
951
952 This context is used by the :class:`Context` constructor as a prototype for new
953 contexts. Changing a field (such a precision) has the effect of changing the
Stefan Kraha1193932010-05-29 12:59:18 +0000954 default for new contexts created by the :class:`Context` constructor.
Georg Brandl116aa622007-08-15 14:28:22 +0000955
956 This context is most useful in multi-threaded environments. Changing one of the
957 fields before threads are started has the effect of setting system-wide
958 defaults. Changing the fields after threads have started is not recommended as
959 it would require thread synchronization to prevent race conditions.
960
961 In single threaded environments, it is preferable to not use this context at
962 all. Instead, simply create contexts explicitly as described below.
963
Stefan Krah1919b7e2012-03-21 18:25:23 +0100964 The default values are :attr:`prec`\ =\ :const:`28`,
965 :attr:`rounding`\ =\ :const:`ROUND_HALF_EVEN`,
966 and enabled traps for :class:`Overflow`, :class:`InvalidOperation`, and
967 :class:`DivisionByZero`.
Georg Brandl116aa622007-08-15 14:28:22 +0000968
969In addition to the three supplied contexts, new contexts can be created with the
970:class:`Context` constructor.
971
972
Stefan Krah1919b7e2012-03-21 18:25:23 +0100973.. class:: Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000974
975 Creates a new context. If a field is not specified or is :const:`None`, the
976 default values are copied from the :const:`DefaultContext`. If the *flags*
977 field is not specified or is :const:`None`, all flags are cleared.
978
Stefan Krah1919b7e2012-03-21 18:25:23 +0100979 *prec* is an integer in the range [:const:`1`, :const:`MAX_PREC`] that sets
980 the precision for arithmetic operations in the context.
Georg Brandl116aa622007-08-15 14:28:22 +0000981
Stefan Krah1919b7e2012-03-21 18:25:23 +0100982 The *rounding* option is one of the constants listed in the section
983 `Rounding Modes`_.
Georg Brandl116aa622007-08-15 14:28:22 +0000984
985 The *traps* and *flags* fields list any signals to be set. Generally, new
986 contexts should only set traps and leave the flags clear.
987
988 The *Emin* and *Emax* fields are integers specifying the outer limits allowable
Stefan Krah1919b7e2012-03-21 18:25:23 +0100989 for exponents. *Emin* must be in the range [:const:`MIN_EMIN`, :const:`0`],
990 *Emax* in the range [:const:`0`, :const:`MAX_EMAX`].
Georg Brandl116aa622007-08-15 14:28:22 +0000991
992 The *capitals* field is either :const:`0` or :const:`1` (the default). If set to
993 :const:`1`, exponents are printed with a capital :const:`E`; otherwise, a
994 lowercase :const:`e` is used: :const:`Decimal('6.02e+23')`.
995
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000996 The *clamp* field is either :const:`0` (the default) or :const:`1`.
997 If set to :const:`1`, the exponent ``e`` of a :class:`Decimal`
998 instance representable in this context is strictly limited to the
999 range ``Emin - prec + 1 <= e <= Emax - prec + 1``. If *clamp* is
1000 :const:`0` then a weaker condition holds: the adjusted exponent of
1001 the :class:`Decimal` instance is at most ``Emax``. When *clamp* is
1002 :const:`1`, a large normal number will, where possible, have its
1003 exponent reduced and a corresponding number of zeros added to its
1004 coefficient, in order to fit the exponent constraints; this
1005 preserves the value of the number but loses information about
1006 significant trailing zeros. For example::
1007
1008 >>> Context(prec=6, Emax=999, clamp=1).create_decimal('1.23e999')
1009 Decimal('1.23000E+999')
1010
1011 A *clamp* value of :const:`1` allows compatibility with the
1012 fixed-width decimal interchange formats specified in IEEE 754.
Georg Brandl116aa622007-08-15 14:28:22 +00001013
Benjamin Petersone41251e2008-04-25 01:59:09 +00001014 The :class:`Context` class defines several general purpose methods as well as
1015 a large number of methods for doing arithmetic directly in a given context.
1016 In addition, for each of the :class:`Decimal` methods described above (with
1017 the exception of the :meth:`adjusted` and :meth:`as_tuple` methods) there is
Mark Dickinson84230a12010-02-18 14:49:50 +00001018 a corresponding :class:`Context` method. For example, for a :class:`Context`
1019 instance ``C`` and :class:`Decimal` instance ``x``, ``C.exp(x)`` is
1020 equivalent to ``x.exp(context=C)``. Each :class:`Context` method accepts a
Mark Dickinson5d233fd2010-02-18 14:54:37 +00001021 Python integer (an instance of :class:`int`) anywhere that a
Mark Dickinson84230a12010-02-18 14:49:50 +00001022 Decimal instance is accepted.
Georg Brandl116aa622007-08-15 14:28:22 +00001023
1024
Benjamin Petersone41251e2008-04-25 01:59:09 +00001025 .. method:: clear_flags()
Georg Brandl116aa622007-08-15 14:28:22 +00001026
Benjamin Petersone41251e2008-04-25 01:59:09 +00001027 Resets all of the flags to :const:`0`.
Georg Brandl116aa622007-08-15 14:28:22 +00001028
Stefan Krah1919b7e2012-03-21 18:25:23 +01001029 .. method:: clear_traps()
1030
1031 Resets all of the traps to :const:`0`.
1032
1033 .. versionadded:: 3.3
1034
Benjamin Petersone41251e2008-04-25 01:59:09 +00001035 .. method:: copy()
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001036
Benjamin Petersone41251e2008-04-25 01:59:09 +00001037 Return a duplicate of the context.
Georg Brandl116aa622007-08-15 14:28:22 +00001038
Benjamin Petersone41251e2008-04-25 01:59:09 +00001039 .. method:: copy_decimal(num)
Georg Brandl116aa622007-08-15 14:28:22 +00001040
Benjamin Petersone41251e2008-04-25 01:59:09 +00001041 Return a copy of the Decimal instance num.
Georg Brandl116aa622007-08-15 14:28:22 +00001042
Benjamin Petersone41251e2008-04-25 01:59:09 +00001043 .. method:: create_decimal(num)
Christian Heimesfe337bf2008-03-23 21:54:12 +00001044
Benjamin Petersone41251e2008-04-25 01:59:09 +00001045 Creates a new Decimal instance from *num* but using *self* as
1046 context. Unlike the :class:`Decimal` constructor, the context precision,
1047 rounding method, flags, and traps are applied to the conversion.
Georg Brandl116aa622007-08-15 14:28:22 +00001048
Benjamin Petersone41251e2008-04-25 01:59:09 +00001049 This is useful because constants are often given to a greater precision
1050 than is needed by the application. Another benefit is that rounding
1051 immediately eliminates unintended effects from digits beyond the current
1052 precision. In the following example, using unrounded inputs means that
1053 adding zero to a sum can change the result:
Georg Brandl116aa622007-08-15 14:28:22 +00001054
Benjamin Petersone41251e2008-04-25 01:59:09 +00001055 .. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001056
Benjamin Petersone41251e2008-04-25 01:59:09 +00001057 >>> getcontext().prec = 3
1058 >>> Decimal('3.4445') + Decimal('1.0023')
1059 Decimal('4.45')
1060 >>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
1061 Decimal('4.44')
Georg Brandl116aa622007-08-15 14:28:22 +00001062
Benjamin Petersone41251e2008-04-25 01:59:09 +00001063 This method implements the to-number operation of the IBM specification.
1064 If the argument is a string, no leading or trailing whitespace is
1065 permitted.
1066
Georg Brandl45f53372009-01-03 21:15:20 +00001067 .. method:: create_decimal_from_float(f)
Raymond Hettinger771ed762009-01-03 19:20:32 +00001068
1069 Creates a new Decimal instance from a float *f* but rounding using *self*
Georg Brandl45f53372009-01-03 21:15:20 +00001070 as the context. Unlike the :meth:`Decimal.from_float` class method,
Raymond Hettinger771ed762009-01-03 19:20:32 +00001071 the context precision, rounding method, flags, and traps are applied to
1072 the conversion.
1073
1074 .. doctest::
1075
Georg Brandl45f53372009-01-03 21:15:20 +00001076 >>> context = Context(prec=5, rounding=ROUND_DOWN)
1077 >>> context.create_decimal_from_float(math.pi)
1078 Decimal('3.1415')
1079 >>> context = Context(prec=5, traps=[Inexact])
1080 >>> context.create_decimal_from_float(math.pi)
1081 Traceback (most recent call last):
1082 ...
1083 decimal.Inexact: None
Raymond Hettinger771ed762009-01-03 19:20:32 +00001084
Georg Brandl45f53372009-01-03 21:15:20 +00001085 .. versionadded:: 3.1
Raymond Hettinger771ed762009-01-03 19:20:32 +00001086
Benjamin Petersone41251e2008-04-25 01:59:09 +00001087 .. method:: Etiny()
1088
1089 Returns a value equal to ``Emin - prec + 1`` which is the minimum exponent
1090 value for subnormal results. When underflow occurs, the exponent is set
1091 to :const:`Etiny`.
Georg Brandl116aa622007-08-15 14:28:22 +00001092
Benjamin Petersone41251e2008-04-25 01:59:09 +00001093 .. method:: Etop()
Georg Brandl116aa622007-08-15 14:28:22 +00001094
Benjamin Petersone41251e2008-04-25 01:59:09 +00001095 Returns a value equal to ``Emax - prec + 1``.
Georg Brandl116aa622007-08-15 14:28:22 +00001096
Benjamin Petersone41251e2008-04-25 01:59:09 +00001097 The usual approach to working with decimals is to create :class:`Decimal`
1098 instances and then apply arithmetic operations which take place within the
1099 current context for the active thread. An alternative approach is to use
1100 context methods for calculating within a specific context. The methods are
1101 similar to those for the :class:`Decimal` class and are only briefly
1102 recounted here.
Georg Brandl116aa622007-08-15 14:28:22 +00001103
1104
Benjamin Petersone41251e2008-04-25 01:59:09 +00001105 .. method:: abs(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001106
Benjamin Petersone41251e2008-04-25 01:59:09 +00001107 Returns the absolute value of *x*.
Georg Brandl116aa622007-08-15 14:28:22 +00001108
1109
Benjamin Petersone41251e2008-04-25 01:59:09 +00001110 .. method:: add(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001111
Benjamin Petersone41251e2008-04-25 01:59:09 +00001112 Return the sum of *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001113
1114
Facundo Batista789bdf02008-06-21 17:29:41 +00001115 .. method:: canonical(x)
1116
1117 Returns the same Decimal object *x*.
1118
1119
1120 .. method:: compare(x, y)
1121
1122 Compares *x* and *y* numerically.
1123
1124
1125 .. method:: compare_signal(x, y)
1126
1127 Compares the values of the two operands numerically.
1128
1129
1130 .. method:: compare_total(x, y)
1131
1132 Compares two operands using their abstract representation.
1133
1134
1135 .. method:: compare_total_mag(x, y)
1136
1137 Compares two operands using their abstract representation, ignoring sign.
1138
1139
1140 .. method:: copy_abs(x)
1141
1142 Returns a copy of *x* with the sign set to 0.
1143
1144
1145 .. method:: copy_negate(x)
1146
1147 Returns a copy of *x* with the sign inverted.
1148
1149
1150 .. method:: copy_sign(x, y)
1151
1152 Copies the sign from *y* to *x*.
1153
1154
Benjamin Petersone41251e2008-04-25 01:59:09 +00001155 .. method:: divide(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001156
Benjamin Petersone41251e2008-04-25 01:59:09 +00001157 Return *x* divided by *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001158
1159
Benjamin Petersone41251e2008-04-25 01:59:09 +00001160 .. method:: divide_int(x, y)
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001161
Benjamin Petersone41251e2008-04-25 01:59:09 +00001162 Return *x* divided by *y*, truncated to an integer.
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001163
1164
Benjamin Petersone41251e2008-04-25 01:59:09 +00001165 .. method:: divmod(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001166
Benjamin Petersone41251e2008-04-25 01:59:09 +00001167 Divides two numbers and returns the integer part of the result.
Georg Brandl116aa622007-08-15 14:28:22 +00001168
1169
Facundo Batista789bdf02008-06-21 17:29:41 +00001170 .. method:: exp(x)
1171
1172 Returns `e ** x`.
1173
1174
1175 .. method:: fma(x, y, z)
1176
1177 Returns *x* multiplied by *y*, plus *z*.
1178
1179
1180 .. method:: is_canonical(x)
1181
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001182 Returns ``True`` if *x* is canonical; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001183
1184
1185 .. method:: is_finite(x)
1186
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001187 Returns ``True`` if *x* is finite; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001188
1189
1190 .. method:: is_infinite(x)
1191
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001192 Returns ``True`` if *x* is infinite; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001193
1194
1195 .. method:: is_nan(x)
1196
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001197 Returns ``True`` if *x* is a qNaN or sNaN; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001198
1199
1200 .. method:: is_normal(x)
1201
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001202 Returns ``True`` if *x* is a normal number; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001203
1204
1205 .. method:: is_qnan(x)
1206
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001207 Returns ``True`` if *x* is a quiet NaN; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001208
1209
1210 .. method:: is_signed(x)
1211
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001212 Returns ``True`` if *x* is negative; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001213
1214
1215 .. method:: is_snan(x)
1216
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001217 Returns ``True`` if *x* is a signaling NaN; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001218
1219
1220 .. method:: is_subnormal(x)
1221
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001222 Returns ``True`` if *x* is subnormal; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001223
1224
1225 .. method:: is_zero(x)
1226
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001227 Returns ``True`` if *x* is a zero; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001228
1229
1230 .. method:: ln(x)
1231
1232 Returns the natural (base e) logarithm of *x*.
1233
1234
1235 .. method:: log10(x)
1236
1237 Returns the base 10 logarithm of *x*.
1238
1239
1240 .. method:: logb(x)
1241
1242 Returns the exponent of the magnitude of the operand's MSD.
1243
1244
1245 .. method:: logical_and(x, y)
1246
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001247 Applies the logical operation *and* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001248
1249
1250 .. method:: logical_invert(x)
1251
1252 Invert all the digits in *x*.
1253
1254
1255 .. method:: logical_or(x, y)
1256
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001257 Applies the logical operation *or* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001258
1259
1260 .. method:: logical_xor(x, y)
1261
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001262 Applies the logical operation *xor* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001263
1264
1265 .. method:: max(x, y)
1266
1267 Compares two values numerically and returns the maximum.
1268
1269
1270 .. method:: max_mag(x, y)
1271
1272 Compares the values numerically with their sign ignored.
1273
1274
1275 .. method:: min(x, y)
1276
1277 Compares two values numerically and returns the minimum.
1278
1279
1280 .. method:: min_mag(x, y)
1281
1282 Compares the values numerically with their sign ignored.
1283
1284
Benjamin Petersone41251e2008-04-25 01:59:09 +00001285 .. method:: minus(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001286
Benjamin Petersone41251e2008-04-25 01:59:09 +00001287 Minus corresponds to the unary prefix minus operator in Python.
Georg Brandl116aa622007-08-15 14:28:22 +00001288
1289
Benjamin Petersone41251e2008-04-25 01:59:09 +00001290 .. method:: multiply(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001291
Benjamin Petersone41251e2008-04-25 01:59:09 +00001292 Return the product of *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001293
1294
Facundo Batista789bdf02008-06-21 17:29:41 +00001295 .. method:: next_minus(x)
1296
1297 Returns the largest representable number smaller than *x*.
1298
1299
1300 .. method:: next_plus(x)
1301
1302 Returns the smallest representable number larger than *x*.
1303
1304
1305 .. method:: next_toward(x, y)
1306
1307 Returns the number closest to *x*, in direction towards *y*.
1308
1309
1310 .. method:: normalize(x)
1311
1312 Reduces *x* to its simplest form.
1313
1314
1315 .. method:: number_class(x)
1316
1317 Returns an indication of the class of *x*.
1318
1319
Benjamin Petersone41251e2008-04-25 01:59:09 +00001320 .. method:: plus(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001321
Benjamin Petersone41251e2008-04-25 01:59:09 +00001322 Plus corresponds to the unary prefix plus operator in Python. This
1323 operation applies the context precision and rounding, so it is *not* an
1324 identity operation.
Georg Brandl116aa622007-08-15 14:28:22 +00001325
1326
Stefan Krah040e3112012-12-15 22:33:33 +01001327 .. method:: power(x, y, modulo=None)
Georg Brandl116aa622007-08-15 14:28:22 +00001328
Benjamin Petersone41251e2008-04-25 01:59:09 +00001329 Return ``x`` to the power of ``y``, reduced modulo ``modulo`` if given.
Georg Brandl116aa622007-08-15 14:28:22 +00001330
Benjamin Petersone41251e2008-04-25 01:59:09 +00001331 With two arguments, compute ``x**y``. If ``x`` is negative then ``y``
1332 must be integral. The result will be inexact unless ``y`` is integral and
1333 the result is finite and can be expressed exactly in 'precision' digits.
Stefan Krah1919b7e2012-03-21 18:25:23 +01001334 The rounding mode of the context is used. Results are always correctly-rounded
1335 in the Python version.
1336
1337 .. versionchanged:: 3.3
1338 The C module computes :meth:`power` in terms of the correctly-rounded
1339 :meth:`exp` and :meth:`ln` functions. The result is well-defined but
1340 only "almost always correctly-rounded".
Georg Brandl116aa622007-08-15 14:28:22 +00001341
Benjamin Petersone41251e2008-04-25 01:59:09 +00001342 With three arguments, compute ``(x**y) % modulo``. For the three argument
1343 form, the following restrictions on the arguments hold:
Georg Brandl116aa622007-08-15 14:28:22 +00001344
Benjamin Petersone41251e2008-04-25 01:59:09 +00001345 - all three arguments must be integral
1346 - ``y`` must be nonnegative
1347 - at least one of ``x`` or ``y`` must be nonzero
1348 - ``modulo`` must be nonzero and have at most 'precision' digits
Georg Brandl116aa622007-08-15 14:28:22 +00001349
Mark Dickinson5961b0e2010-02-22 15:41:48 +00001350 The value resulting from ``Context.power(x, y, modulo)`` is
1351 equal to the value that would be obtained by computing ``(x**y)
1352 % modulo`` with unbounded precision, but is computed more
1353 efficiently. The exponent of the result is zero, regardless of
1354 the exponents of ``x``, ``y`` and ``modulo``. The result is
1355 always exact.
Georg Brandl116aa622007-08-15 14:28:22 +00001356
Facundo Batista789bdf02008-06-21 17:29:41 +00001357
1358 .. method:: quantize(x, y)
1359
1360 Returns a value equal to *x* (rounded), having the exponent of *y*.
1361
1362
1363 .. method:: radix()
1364
1365 Just returns 10, as this is Decimal, :)
1366
1367
Benjamin Petersone41251e2008-04-25 01:59:09 +00001368 .. method:: remainder(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001369
Benjamin Petersone41251e2008-04-25 01:59:09 +00001370 Returns the remainder from integer division.
Georg Brandl116aa622007-08-15 14:28:22 +00001371
Benjamin Petersone41251e2008-04-25 01:59:09 +00001372 The sign of the result, if non-zero, is the same as that of the original
1373 dividend.
Georg Brandl116aa622007-08-15 14:28:22 +00001374
Benjamin Petersondcf97b92008-07-02 17:30:14 +00001375
Facundo Batista789bdf02008-06-21 17:29:41 +00001376 .. method:: remainder_near(x, y)
1377
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001378 Returns ``x - y * n``, where *n* is the integer nearest the exact value
1379 of ``x / y`` (if the result is 0 then its sign will be the sign of *x*).
Facundo Batista789bdf02008-06-21 17:29:41 +00001380
1381
1382 .. method:: rotate(x, y)
1383
1384 Returns a rotated copy of *x*, *y* times.
1385
1386
1387 .. method:: same_quantum(x, y)
1388
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001389 Returns ``True`` if the two operands have the same exponent.
Facundo Batista789bdf02008-06-21 17:29:41 +00001390
1391
1392 .. method:: scaleb (x, y)
1393
1394 Returns the first operand after adding the second value its exp.
1395
1396
1397 .. method:: shift(x, y)
1398
1399 Returns a shifted copy of *x*, *y* times.
1400
1401
1402 .. method:: sqrt(x)
1403
1404 Square root of a non-negative number to context precision.
1405
1406
Benjamin Petersone41251e2008-04-25 01:59:09 +00001407 .. method:: subtract(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001408
Benjamin Petersone41251e2008-04-25 01:59:09 +00001409 Return the difference between *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001410
Facundo Batista789bdf02008-06-21 17:29:41 +00001411
1412 .. method:: to_eng_string(x)
1413
1414 Converts a number to a string, using scientific notation.
1415
1416
1417 .. method:: to_integral_exact(x)
1418
1419 Rounds to an integer.
1420
1421
Benjamin Petersone41251e2008-04-25 01:59:09 +00001422 .. method:: to_sci_string(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001423
Benjamin Petersone41251e2008-04-25 01:59:09 +00001424 Converts a number to a string using scientific notation.
Georg Brandl116aa622007-08-15 14:28:22 +00001425
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001426.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001427
Stefan Krah1919b7e2012-03-21 18:25:23 +01001428.. _decimal-rounding-modes:
1429
1430Constants
1431---------
1432
1433The constants in this section are only relevant for the C module. They
1434are also included in the pure Python version for compatibility.
1435
Stefan Krah851a07e2012-03-21 18:47:20 +01001436+---------------------+---------------------+-------------------------------+
1437| | 32-bit | 64-bit |
1438+=====================+=====================+===============================+
1439| .. data:: MAX_PREC | :const:`425000000` | :const:`999999999999999999` |
1440+---------------------+---------------------+-------------------------------+
1441| .. data:: MAX_EMAX | :const:`425000000` | :const:`999999999999999999` |
1442+---------------------+---------------------+-------------------------------+
1443| .. data:: MIN_EMIN | :const:`-425000000` | :const:`-999999999999999999` |
1444+---------------------+---------------------+-------------------------------+
1445| .. data:: MIN_ETINY | :const:`-849999999` | :const:`-1999999999999999997` |
1446+---------------------+---------------------+-------------------------------+
1447
Stefan Krah1919b7e2012-03-21 18:25:23 +01001448
1449.. data:: HAVE_THREADS
1450
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001451 The default value is ``True``. If Python is compiled without threads, the
Stefan Krah1919b7e2012-03-21 18:25:23 +01001452 C version automatically disables the expensive thread local context
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001453 machinery. In this case, the value is ``False``.
Stefan Krah1919b7e2012-03-21 18:25:23 +01001454
1455Rounding modes
1456--------------
1457
1458.. data:: ROUND_CEILING
1459
1460 Round towards :const:`Infinity`.
1461
1462.. data:: ROUND_DOWN
1463
1464 Round towards zero.
1465
1466.. data:: ROUND_FLOOR
1467
1468 Round towards :const:`-Infinity`.
1469
1470.. data:: ROUND_HALF_DOWN
1471
1472 Round to nearest with ties going towards zero.
1473
1474.. data:: ROUND_HALF_EVEN
1475
1476 Round to nearest with ties going to nearest even integer.
1477
1478.. data:: ROUND_HALF_UP
1479
1480 Round to nearest with ties going away from zero.
1481
1482.. data:: ROUND_UP
1483
1484 Round away from zero.
1485
1486.. data:: ROUND_05UP
1487
1488 Round away from zero if last digit after rounding towards zero would have
1489 been 0 or 5; otherwise round towards zero.
1490
Georg Brandl116aa622007-08-15 14:28:22 +00001491
1492.. _decimal-signals:
1493
1494Signals
1495-------
1496
1497Signals represent conditions that arise during computation. Each corresponds to
1498one context flag and one context trap enabler.
1499
Raymond Hettinger86173da2008-02-01 20:38:12 +00001500The context flag is set whenever the condition is encountered. After the
Georg Brandl116aa622007-08-15 14:28:22 +00001501computation, flags may be checked for informational purposes (for instance, to
1502determine whether a computation was exact). After checking the flags, be sure to
1503clear all flags before starting the next computation.
1504
1505If the context's trap enabler is set for the signal, then the condition causes a
1506Python exception to be raised. For example, if the :class:`DivisionByZero` trap
1507is set, then a :exc:`DivisionByZero` exception is raised upon encountering the
1508condition.
1509
1510
1511.. class:: Clamped
1512
1513 Altered an exponent to fit representation constraints.
1514
1515 Typically, clamping occurs when an exponent falls outside the context's
1516 :attr:`Emin` and :attr:`Emax` limits. If possible, the exponent is reduced to
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001517 fit by adding zeros to the coefficient.
Georg Brandl116aa622007-08-15 14:28:22 +00001518
1519
1520.. class:: DecimalException
1521
1522 Base class for other signals and a subclass of :exc:`ArithmeticError`.
1523
1524
1525.. class:: DivisionByZero
1526
1527 Signals the division of a non-infinite number by zero.
1528
1529 Can occur with division, modulo division, or when raising a number to a negative
1530 power. If this signal is not trapped, returns :const:`Infinity` or
1531 :const:`-Infinity` with the sign determined by the inputs to the calculation.
1532
1533
1534.. class:: Inexact
1535
1536 Indicates that rounding occurred and the result is not exact.
1537
1538 Signals when non-zero digits were discarded during rounding. The rounded result
1539 is returned. The signal flag or trap is used to detect when results are
1540 inexact.
1541
1542
1543.. class:: InvalidOperation
1544
1545 An invalid operation was performed.
1546
1547 Indicates that an operation was requested that does not make sense. If not
1548 trapped, returns :const:`NaN`. Possible causes include::
1549
1550 Infinity - Infinity
1551 0 * Infinity
1552 Infinity / Infinity
1553 x % 0
1554 Infinity % x
Georg Brandl116aa622007-08-15 14:28:22 +00001555 sqrt(-x) and x > 0
1556 0 ** 0
1557 x ** (non-integer)
Georg Brandl48310cd2009-01-03 21:18:54 +00001558 x ** Infinity
Georg Brandl116aa622007-08-15 14:28:22 +00001559
1560
1561.. class:: Overflow
1562
1563 Numerical overflow.
1564
Benjamin Petersone41251e2008-04-25 01:59:09 +00001565 Indicates the exponent is larger than :attr:`Emax` after rounding has
1566 occurred. If not trapped, the result depends on the rounding mode, either
1567 pulling inward to the largest representable finite number or rounding outward
1568 to :const:`Infinity`. In either case, :class:`Inexact` and :class:`Rounded`
1569 are also signaled.
Georg Brandl116aa622007-08-15 14:28:22 +00001570
1571
1572.. class:: Rounded
1573
1574 Rounding occurred though possibly no information was lost.
1575
Benjamin Petersone41251e2008-04-25 01:59:09 +00001576 Signaled whenever rounding discards digits; even if those digits are zero
1577 (such as rounding :const:`5.00` to :const:`5.0`). If not trapped, returns
1578 the result unchanged. This signal is used to detect loss of significant
1579 digits.
Georg Brandl116aa622007-08-15 14:28:22 +00001580
1581
1582.. class:: Subnormal
1583
1584 Exponent was lower than :attr:`Emin` prior to rounding.
1585
Benjamin Petersone41251e2008-04-25 01:59:09 +00001586 Occurs when an operation result is subnormal (the exponent is too small). If
1587 not trapped, returns the result unchanged.
Georg Brandl116aa622007-08-15 14:28:22 +00001588
1589
1590.. class:: Underflow
1591
1592 Numerical underflow with result rounded to zero.
1593
1594 Occurs when a subnormal result is pushed to zero by rounding. :class:`Inexact`
1595 and :class:`Subnormal` are also signaled.
1596
Stefan Krah1919b7e2012-03-21 18:25:23 +01001597
1598.. class:: FloatOperation
1599
1600 Enable stricter semantics for mixing floats and Decimals.
1601
1602 If the signal is not trapped (default), mixing floats and Decimals is
1603 permitted in the :class:`~decimal.Decimal` constructor,
1604 :meth:`~decimal.Context.create_decimal` and all comparison operators.
1605 Both conversion and comparisons are exact. Any occurrence of a mixed
1606 operation is silently recorded by setting :exc:`FloatOperation` in the
1607 context flags. Explicit conversions with :meth:`~decimal.Decimal.from_float`
1608 or :meth:`~decimal.Context.create_decimal_from_float` do not set the flag.
1609
1610 Otherwise (the signal is trapped), only equality comparisons and explicit
1611 conversions are silent. All other mixed operations raise :exc:`FloatOperation`.
1612
1613
Georg Brandl116aa622007-08-15 14:28:22 +00001614The following table summarizes the hierarchy of signals::
1615
1616 exceptions.ArithmeticError(exceptions.Exception)
1617 DecimalException
1618 Clamped
1619 DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
1620 Inexact
1621 Overflow(Inexact, Rounded)
1622 Underflow(Inexact, Rounded, Subnormal)
1623 InvalidOperation
1624 Rounded
1625 Subnormal
Stefan Krahb6405ef2012-03-23 14:46:48 +01001626 FloatOperation(DecimalException, exceptions.TypeError)
Georg Brandl116aa622007-08-15 14:28:22 +00001627
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001628.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001629
1630
Stefan Krah1919b7e2012-03-21 18:25:23 +01001631
Georg Brandl116aa622007-08-15 14:28:22 +00001632.. _decimal-notes:
1633
1634Floating Point Notes
1635--------------------
1636
1637
1638Mitigating round-off error with increased precision
1639^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1640
1641The use of decimal floating point eliminates decimal representation error
1642(making it possible to represent :const:`0.1` exactly); however, some operations
1643can still incur round-off error when non-zero digits exceed the fixed precision.
1644
1645The effects of round-off error can be amplified by the addition or subtraction
1646of nearly offsetting quantities resulting in loss of significance. Knuth
1647provides two instructive examples where rounded floating point arithmetic with
1648insufficient precision causes the breakdown of the associative and distributive
Christian Heimesfe337bf2008-03-23 21:54:12 +00001649properties of addition:
1650
1651.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001652
1653 # Examples from Seminumerical Algorithms, Section 4.2.2.
1654 >>> from decimal import Decimal, getcontext
1655 >>> getcontext().prec = 8
1656
1657 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1658 >>> (u + v) + w
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001659 Decimal('9.5111111')
Georg Brandl116aa622007-08-15 14:28:22 +00001660 >>> u + (v + w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001661 Decimal('10')
Georg Brandl116aa622007-08-15 14:28:22 +00001662
1663 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1664 >>> (u*v) + (u*w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001665 Decimal('0.01')
Georg Brandl116aa622007-08-15 14:28:22 +00001666 >>> u * (v+w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001667 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001668
1669The :mod:`decimal` module makes it possible to restore the identities by
Christian Heimesfe337bf2008-03-23 21:54:12 +00001670expanding the precision sufficiently to avoid loss of significance:
1671
1672.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001673
1674 >>> getcontext().prec = 20
1675 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1676 >>> (u + v) + w
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001677 Decimal('9.51111111')
Georg Brandl116aa622007-08-15 14:28:22 +00001678 >>> u + (v + w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001679 Decimal('9.51111111')
Georg Brandl48310cd2009-01-03 21:18:54 +00001680 >>>
Georg Brandl116aa622007-08-15 14:28:22 +00001681 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1682 >>> (u*v) + (u*w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001683 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001684 >>> u * (v+w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001685 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001686
1687
1688Special values
1689^^^^^^^^^^^^^^
1690
1691The number system for the :mod:`decimal` module provides special values
1692including :const:`NaN`, :const:`sNaN`, :const:`-Infinity`, :const:`Infinity`,
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001693and two zeros, :const:`+0` and :const:`-0`.
Georg Brandl116aa622007-08-15 14:28:22 +00001694
1695Infinities can be constructed directly with: ``Decimal('Infinity')``. Also,
1696they can arise from dividing by zero when the :exc:`DivisionByZero` signal is
1697not trapped. Likewise, when the :exc:`Overflow` signal is not trapped, infinity
1698can result from rounding beyond the limits of the largest representable number.
1699
1700The infinities are signed (affine) and can be used in arithmetic operations
1701where they get treated as very large, indeterminate numbers. For instance,
1702adding a constant to infinity gives another infinite result.
1703
1704Some operations are indeterminate and return :const:`NaN`, or if the
1705:exc:`InvalidOperation` signal is trapped, raise an exception. For example,
1706``0/0`` returns :const:`NaN` which means "not a number". This variety of
1707:const:`NaN` is quiet and, once created, will flow through other computations
1708always resulting in another :const:`NaN`. This behavior can be useful for a
1709series of computations that occasionally have missing inputs --- it allows the
1710calculation to proceed while flagging specific results as invalid.
1711
1712A variant is :const:`sNaN` which signals rather than remaining quiet after every
1713operation. This is a useful return value when an invalid result needs to
1714interrupt a calculation for special handling.
1715
Christian Heimes77c02eb2008-02-09 02:18:51 +00001716The behavior of Python's comparison operators can be a little surprising where a
1717:const:`NaN` is involved. A test for equality where one of the operands is a
1718quiet or signaling :const:`NaN` always returns :const:`False` (even when doing
1719``Decimal('NaN')==Decimal('NaN')``), while a test for inequality always returns
1720:const:`True`. An attempt to compare two Decimals using any of the ``<``,
1721``<=``, ``>`` or ``>=`` operators will raise the :exc:`InvalidOperation` signal
1722if either operand is a :const:`NaN`, and return :const:`False` if this signal is
Christian Heimes3feef612008-02-11 06:19:17 +00001723not trapped. Note that the General Decimal Arithmetic specification does not
Christian Heimes77c02eb2008-02-09 02:18:51 +00001724specify the behavior of direct comparisons; these rules for comparisons
1725involving a :const:`NaN` were taken from the IEEE 854 standard (see Table 3 in
1726section 5.7). To ensure strict standards-compliance, use the :meth:`compare`
1727and :meth:`compare-signal` methods instead.
1728
Georg Brandl116aa622007-08-15 14:28:22 +00001729The signed zeros can result from calculations that underflow. They keep the sign
1730that would have resulted if the calculation had been carried out to greater
1731precision. Since their magnitude is zero, both positive and negative zeros are
1732treated as equal and their sign is informational.
1733
1734In addition to the two signed zeros which are distinct yet equal, there are
1735various representations of zero with differing precisions yet equivalent in
1736value. This takes a bit of getting used to. For an eye accustomed to
1737normalized floating point representations, it is not immediately obvious that
Christian Heimesfe337bf2008-03-23 21:54:12 +00001738the following calculation returns a value equal to zero:
Georg Brandl116aa622007-08-15 14:28:22 +00001739
1740 >>> 1 / Decimal('Infinity')
Stefan Krah1919b7e2012-03-21 18:25:23 +01001741 Decimal('0E-1000026')
Georg Brandl116aa622007-08-15 14:28:22 +00001742
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001743.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001744
1745
1746.. _decimal-threads:
1747
1748Working with threads
1749--------------------
1750
1751The :func:`getcontext` function accesses a different :class:`Context` object for
1752each thread. Having separate thread contexts means that threads may make
Stefan Krah1919b7e2012-03-21 18:25:23 +01001753changes (such as ``getcontext().prec=10``) without interfering with other threads.
Georg Brandl116aa622007-08-15 14:28:22 +00001754
1755Likewise, the :func:`setcontext` function automatically assigns its target to
1756the current thread.
1757
1758If :func:`setcontext` has not been called before :func:`getcontext`, then
1759:func:`getcontext` will automatically create a new context for use in the
1760current thread.
1761
1762The new context is copied from a prototype context called *DefaultContext*. To
1763control the defaults so that each thread will use the same values throughout the
1764application, directly modify the *DefaultContext* object. This should be done
1765*before* any threads are started so that there won't be a race condition between
1766threads calling :func:`getcontext`. For example::
1767
1768 # Set applicationwide defaults for all threads about to be launched
1769 DefaultContext.prec = 12
1770 DefaultContext.rounding = ROUND_DOWN
1771 DefaultContext.traps = ExtendedContext.traps.copy()
1772 DefaultContext.traps[InvalidOperation] = 1
1773 setcontext(DefaultContext)
1774
1775 # Afterwards, the threads can be started
1776 t1.start()
1777 t2.start()
1778 t3.start()
1779 . . .
1780
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001781.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001782
1783
1784.. _decimal-recipes:
1785
1786Recipes
1787-------
1788
1789Here are a few recipes that serve as utility functions and that demonstrate ways
1790to work with the :class:`Decimal` class::
1791
1792 def moneyfmt(value, places=2, curr='', sep=',', dp='.',
1793 pos='', neg='-', trailneg=''):
1794 """Convert Decimal to a money formatted string.
1795
1796 places: required number of places after the decimal point
1797 curr: optional currency symbol before the sign (may be blank)
1798 sep: optional grouping separator (comma, period, space, or blank)
1799 dp: decimal point indicator (comma or period)
1800 only specify as blank when places is zero
1801 pos: optional sign for positive numbers: '+', space or blank
1802 neg: optional sign for negative numbers: '-', '(', space or blank
1803 trailneg:optional trailing minus indicator: '-', ')', space or blank
1804
1805 >>> d = Decimal('-1234567.8901')
1806 >>> moneyfmt(d, curr='$')
1807 '-$1,234,567.89'
1808 >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
1809 '1.234.568-'
1810 >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
1811 '($1,234,567.89)'
1812 >>> moneyfmt(Decimal(123456789), sep=' ')
1813 '123 456 789.00'
1814 >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
Christian Heimesdae2a892008-04-19 00:55:37 +00001815 '<0.02>'
Georg Brandl116aa622007-08-15 14:28:22 +00001816
1817 """
Christian Heimesa156e092008-02-16 07:38:31 +00001818 q = Decimal(10) ** -places # 2 places --> '0.01'
Georg Brandl48310cd2009-01-03 21:18:54 +00001819 sign, digits, exp = value.quantize(q).as_tuple()
Georg Brandl116aa622007-08-15 14:28:22 +00001820 result = []
Facundo Batista789bdf02008-06-21 17:29:41 +00001821 digits = list(map(str, digits))
Georg Brandl116aa622007-08-15 14:28:22 +00001822 build, next = result.append, digits.pop
1823 if sign:
1824 build(trailneg)
1825 for i in range(places):
Christian Heimesa156e092008-02-16 07:38:31 +00001826 build(next() if digits else '0')
Raymond Hettinger0ab10e42011-01-08 09:03:11 +00001827 if places:
1828 build(dp)
Christian Heimesdae2a892008-04-19 00:55:37 +00001829 if not digits:
1830 build('0')
Georg Brandl116aa622007-08-15 14:28:22 +00001831 i = 0
1832 while digits:
1833 build(next())
1834 i += 1
1835 if i == 3 and digits:
1836 i = 0
1837 build(sep)
1838 build(curr)
Christian Heimesa156e092008-02-16 07:38:31 +00001839 build(neg if sign else pos)
1840 return ''.join(reversed(result))
Georg Brandl116aa622007-08-15 14:28:22 +00001841
1842 def pi():
1843 """Compute Pi to the current precision.
1844
Georg Brandl6911e3c2007-09-04 07:15:32 +00001845 >>> print(pi())
Georg Brandl116aa622007-08-15 14:28:22 +00001846 3.141592653589793238462643383
1847
1848 """
1849 getcontext().prec += 2 # extra digits for intermediate steps
1850 three = Decimal(3) # substitute "three=3.0" for regular floats
1851 lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
1852 while s != lasts:
1853 lasts = s
1854 n, na = n+na, na+8
1855 d, da = d+da, da+32
1856 t = (t * n) / d
1857 s += t
1858 getcontext().prec -= 2
1859 return +s # unary plus applies the new precision
1860
1861 def exp(x):
1862 """Return e raised to the power of x. Result type matches input type.
1863
Georg Brandl6911e3c2007-09-04 07:15:32 +00001864 >>> print(exp(Decimal(1)))
Georg Brandl116aa622007-08-15 14:28:22 +00001865 2.718281828459045235360287471
Georg Brandl6911e3c2007-09-04 07:15:32 +00001866 >>> print(exp(Decimal(2)))
Georg Brandl116aa622007-08-15 14:28:22 +00001867 7.389056098930650227230427461
Georg Brandl6911e3c2007-09-04 07:15:32 +00001868 >>> print(exp(2.0))
Georg Brandl116aa622007-08-15 14:28:22 +00001869 7.38905609893
Georg Brandl6911e3c2007-09-04 07:15:32 +00001870 >>> print(exp(2+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001871 (7.38905609893+0j)
1872
1873 """
1874 getcontext().prec += 2
1875 i, lasts, s, fact, num = 0, 0, 1, 1, 1
1876 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001877 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001878 i += 1
1879 fact *= i
Georg Brandl48310cd2009-01-03 21:18:54 +00001880 num *= x
1881 s += num / fact
1882 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001883 return +s
1884
1885 def cos(x):
1886 """Return the cosine of x as measured in radians.
1887
Mark Dickinsonb2b23822010-11-21 07:37:49 +00001888 The Taylor series approximation works best for a small value of x.
Raymond Hettinger2a1e3e22010-11-21 02:47:22 +00001889 For larger values, first compute x = x % (2 * pi).
1890
Georg Brandl6911e3c2007-09-04 07:15:32 +00001891 >>> print(cos(Decimal('0.5')))
Georg Brandl116aa622007-08-15 14:28:22 +00001892 0.8775825618903727161162815826
Georg Brandl6911e3c2007-09-04 07:15:32 +00001893 >>> print(cos(0.5))
Georg Brandl116aa622007-08-15 14:28:22 +00001894 0.87758256189
Georg Brandl6911e3c2007-09-04 07:15:32 +00001895 >>> print(cos(0.5+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001896 (0.87758256189+0j)
1897
1898 """
1899 getcontext().prec += 2
1900 i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
1901 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001902 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001903 i += 2
1904 fact *= i * (i-1)
1905 num *= x * x
1906 sign *= -1
Georg Brandl48310cd2009-01-03 21:18:54 +00001907 s += num / fact * sign
1908 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001909 return +s
1910
1911 def sin(x):
1912 """Return the sine of x as measured in radians.
1913
Mark Dickinsonb2b23822010-11-21 07:37:49 +00001914 The Taylor series approximation works best for a small value of x.
Raymond Hettinger2a1e3e22010-11-21 02:47:22 +00001915 For larger values, first compute x = x % (2 * pi).
1916
Georg Brandl6911e3c2007-09-04 07:15:32 +00001917 >>> print(sin(Decimal('0.5')))
Georg Brandl116aa622007-08-15 14:28:22 +00001918 0.4794255386042030002732879352
Georg Brandl6911e3c2007-09-04 07:15:32 +00001919 >>> print(sin(0.5))
Georg Brandl116aa622007-08-15 14:28:22 +00001920 0.479425538604
Georg Brandl6911e3c2007-09-04 07:15:32 +00001921 >>> print(sin(0.5+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001922 (0.479425538604+0j)
1923
1924 """
1925 getcontext().prec += 2
1926 i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
1927 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001928 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001929 i += 2
1930 fact *= i * (i-1)
1931 num *= x * x
1932 sign *= -1
Georg Brandl48310cd2009-01-03 21:18:54 +00001933 s += num / fact * sign
1934 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001935 return +s
1936
1937
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001938.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001939
1940
1941.. _decimal-faq:
1942
1943Decimal FAQ
1944-----------
1945
1946Q. It is cumbersome to type ``decimal.Decimal('1234.5')``. Is there a way to
1947minimize typing when using the interactive interpreter?
1948
Christian Heimesfe337bf2008-03-23 21:54:12 +00001949A. Some users abbreviate the constructor to just a single letter:
Georg Brandl116aa622007-08-15 14:28:22 +00001950
1951 >>> D = decimal.Decimal
1952 >>> D('1.23') + D('3.45')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001953 Decimal('4.68')
Georg Brandl116aa622007-08-15 14:28:22 +00001954
1955Q. In a fixed-point application with two decimal places, some inputs have many
1956places and need to be rounded. Others are not supposed to have excess digits
1957and need to be validated. What methods should be used?
1958
1959A. The :meth:`quantize` method rounds to a fixed number of decimal places. If
Christian Heimesfe337bf2008-03-23 21:54:12 +00001960the :const:`Inexact` trap is set, it is also useful for validation:
Georg Brandl116aa622007-08-15 14:28:22 +00001961
1962 >>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
1963
1964 >>> # Round to two places
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001965 >>> Decimal('3.214').quantize(TWOPLACES)
1966 Decimal('3.21')
Georg Brandl116aa622007-08-15 14:28:22 +00001967
Georg Brandl48310cd2009-01-03 21:18:54 +00001968 >>> # Validate that a number does not exceed two places
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001969 >>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
1970 Decimal('3.21')
Georg Brandl116aa622007-08-15 14:28:22 +00001971
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001972 >>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Georg Brandl116aa622007-08-15 14:28:22 +00001973 Traceback (most recent call last):
1974 ...
Benjamin Peterson25c95f12009-05-08 20:42:26 +00001975 Inexact: None
Georg Brandl116aa622007-08-15 14:28:22 +00001976
1977Q. Once I have valid two place inputs, how do I maintain that invariant
1978throughout an application?
1979
Christian Heimesa156e092008-02-16 07:38:31 +00001980A. Some operations like addition, subtraction, and multiplication by an integer
1981will automatically preserve fixed point. Others operations, like division and
1982non-integer multiplication, will change the number of decimal places and need to
Christian Heimesfe337bf2008-03-23 21:54:12 +00001983be followed-up with a :meth:`quantize` step:
Christian Heimesa156e092008-02-16 07:38:31 +00001984
1985 >>> a = Decimal('102.72') # Initial fixed-point values
1986 >>> b = Decimal('3.17')
1987 >>> a + b # Addition preserves fixed-point
1988 Decimal('105.89')
1989 >>> a - b
1990 Decimal('99.55')
1991 >>> a * 42 # So does integer multiplication
1992 Decimal('4314.24')
1993 >>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
1994 Decimal('325.62')
1995 >>> (b / a).quantize(TWOPLACES) # And quantize division
1996 Decimal('0.03')
1997
1998In developing fixed-point applications, it is convenient to define functions
Christian Heimesfe337bf2008-03-23 21:54:12 +00001999to handle the :meth:`quantize` step:
Christian Heimesa156e092008-02-16 07:38:31 +00002000
2001 >>> def mul(x, y, fp=TWOPLACES):
2002 ... return (x * y).quantize(fp)
2003 >>> def div(x, y, fp=TWOPLACES):
2004 ... return (x / y).quantize(fp)
2005
2006 >>> mul(a, b) # Automatically preserve fixed-point
2007 Decimal('325.62')
2008 >>> div(b, a)
2009 Decimal('0.03')
Georg Brandl116aa622007-08-15 14:28:22 +00002010
2011Q. There are many ways to express the same value. The numbers :const:`200`,
2012:const:`200.000`, :const:`2E2`, and :const:`.02E+4` all have the same value at
2013various precisions. Is there a way to transform them to a single recognizable
2014canonical value?
2015
2016A. The :meth:`normalize` method maps all equivalent values to a single
Christian Heimesfe337bf2008-03-23 21:54:12 +00002017representative:
Georg Brandl116aa622007-08-15 14:28:22 +00002018
2019 >>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
2020 >>> [v.normalize() for v in values]
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002021 [Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]
Georg Brandl116aa622007-08-15 14:28:22 +00002022
2023Q. Some decimal values always print with exponential notation. Is there a way
2024to get a non-exponential representation?
2025
2026A. For some values, exponential notation is the only way to express the number
2027of significant places in the coefficient. For example, expressing
2028:const:`5.0E+3` as :const:`5000` keeps the value constant but cannot show the
2029original's two-place significance.
2030
Christian Heimesa156e092008-02-16 07:38:31 +00002031If an application does not care about tracking significance, it is easy to
Christian Heimesc3f30c42008-02-22 16:37:40 +00002032remove the exponent and trailing zeroes, losing significance, but keeping the
Christian Heimesfe337bf2008-03-23 21:54:12 +00002033value unchanged:
Christian Heimesa156e092008-02-16 07:38:31 +00002034
2035 >>> def remove_exponent(d):
2036 ... return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()
2037
2038 >>> remove_exponent(Decimal('5E+3'))
2039 Decimal('5000')
2040
Georg Brandl116aa622007-08-15 14:28:22 +00002041Q. Is there a way to convert a regular float to a :class:`Decimal`?
2042
Mark Dickinsone534a072010-04-04 22:13:14 +00002043A. Yes, any binary floating point number can be exactly expressed as a
Raymond Hettinger96798592010-04-02 16:58:27 +00002044Decimal though an exact conversion may take more precision than intuition would
2045suggest:
Georg Brandl116aa622007-08-15 14:28:22 +00002046
Christian Heimesfe337bf2008-03-23 21:54:12 +00002047.. doctest::
2048
Raymond Hettinger96798592010-04-02 16:58:27 +00002049 >>> Decimal(math.pi)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002050 Decimal('3.141592653589793115997963468544185161590576171875')
Georg Brandl116aa622007-08-15 14:28:22 +00002051
Georg Brandl116aa622007-08-15 14:28:22 +00002052Q. Within a complex calculation, how can I make sure that I haven't gotten a
2053spurious result because of insufficient precision or rounding anomalies.
2054
2055A. The decimal module makes it easy to test results. A best practice is to
2056re-run calculations using greater precision and with various rounding modes.
2057Widely differing results indicate insufficient precision, rounding mode issues,
2058ill-conditioned inputs, or a numerically unstable algorithm.
2059
2060Q. I noticed that context precision is applied to the results of operations but
2061not to the inputs. Is there anything to watch out for when mixing values of
2062different precisions?
2063
2064A. Yes. The principle is that all values are considered to be exact and so is
2065the arithmetic on those values. Only the results are rounded. The advantage
2066for inputs is that "what you type is what you get". A disadvantage is that the
Christian Heimesfe337bf2008-03-23 21:54:12 +00002067results can look odd if you forget that the inputs haven't been rounded:
2068
2069.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00002070
2071 >>> getcontext().prec = 3
Christian Heimesfe337bf2008-03-23 21:54:12 +00002072 >>> Decimal('3.104') + Decimal('2.104')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002073 Decimal('5.21')
Christian Heimesfe337bf2008-03-23 21:54:12 +00002074 >>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002075 Decimal('5.20')
Georg Brandl116aa622007-08-15 14:28:22 +00002076
2077The solution is either to increase precision or to force rounding of inputs
Christian Heimesfe337bf2008-03-23 21:54:12 +00002078using the unary plus operation:
2079
2080.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00002081
2082 >>> getcontext().prec = 3
2083 >>> +Decimal('1.23456789') # unary plus triggers rounding
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002084 Decimal('1.23')
Georg Brandl116aa622007-08-15 14:28:22 +00002085
2086Alternatively, inputs can be rounded upon creation using the
Christian Heimesfe337bf2008-03-23 21:54:12 +00002087:meth:`Context.create_decimal` method:
Georg Brandl116aa622007-08-15 14:28:22 +00002088
2089 >>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002090 Decimal('1.2345')