blob: 7129525c788767622219f32702944b90ac9c605e [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001:mod:`math` --- Mathematical functions
2======================================
3
4.. module:: math
5 :synopsis: Mathematical functions (sin() etc.).
6
Łukasz Langa288234f2013-01-18 13:40:43 +01007.. testsetup::
8
9 from math import fsum
Georg Brandl116aa622007-08-15 14:28:22 +000010
Terry Jan Reedyfa089b92016-06-11 15:02:54 -040011--------------
12
Georg Brandl116aa622007-08-15 14:28:22 +000013This module is always available. It provides access to the mathematical
14functions defined by the C standard.
15
16These functions cannot be used with complex numbers; use the functions of the
17same name from the :mod:`cmath` module if you require support for complex
18numbers. The distinction between functions which support complex numbers and
19those which don't is made since most users do not want to learn quite as much
20mathematics as required to understand complex numbers. Receiving an exception
21instead of a complex result allows earlier detection of the unexpected complex
22number used as a parameter, so that the programmer can determine how and why it
23was generated in the first place.
24
25The following functions are provided by this module. Except when explicitly
26noted otherwise, all return values are floats.
27
Georg Brandl116aa622007-08-15 14:28:22 +000028
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +000029Number-theoretic and representation functions
30---------------------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +000031
32.. function:: ceil(x)
33
Georg Brandl2a033732008-04-05 17:37:09 +000034 Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
35 If *x* is not a float, delegates to ``x.__ceil__()``, which should return an
Serhiy Storchakabfdcd432013-10-13 23:09:14 +030036 :class:`~numbers.Integral` value.
Christian Heimes072c0f12008-01-03 23:01:04 +000037
38
39.. function:: copysign(x, y)
40
Andrew Kuchling8cb1ec32014-02-16 11:11:25 -050041 Return a float with the magnitude (absolute value) of *x* but the sign of
42 *y*. On platforms that support signed zeros, ``copysign(1.0, -0.0)``
43 returns *-1.0*.
Christian Heimes072c0f12008-01-03 23:01:04 +000044
Serhiy Storchakadbaf7462017-05-04 12:25:09 +030045
Georg Brandl116aa622007-08-15 14:28:22 +000046.. function:: fabs(x)
47
48 Return the absolute value of *x*.
49
Serhiy Storchakadbaf7462017-05-04 12:25:09 +030050
Georg Brandlc28e1fa2008-06-10 19:20:26 +000051.. function:: factorial(x)
52
Benjamin Petersonfea6a942008-07-02 16:11:42 +000053 Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or
Georg Brandlc28e1fa2008-06-10 19:20:26 +000054 is negative.
Georg Brandl116aa622007-08-15 14:28:22 +000055
Serhiy Storchakadbaf7462017-05-04 12:25:09 +030056
Georg Brandl116aa622007-08-15 14:28:22 +000057.. function:: floor(x)
58
Georg Brandl2a033732008-04-05 17:37:09 +000059 Return the floor of *x*, the largest integer less than or equal to *x*.
60 If *x* is not a float, delegates to ``x.__floor__()``, which should return an
Serhiy Storchakabfdcd432013-10-13 23:09:14 +030061 :class:`~numbers.Integral` value.
Georg Brandl116aa622007-08-15 14:28:22 +000062
63
64.. function:: fmod(x, y)
65
66 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
67 Python expression ``x % y`` may not return the same result. The intent of the C
68 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
69 precision) equal to ``x - n*y`` for some integer *n* such that the result has
70 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
71 returns a result with the sign of *y* instead, and may not be exactly computable
72 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
73 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
74 represented exactly as a float, and rounds to the surprising ``1e100``. For
75 this reason, function :func:`fmod` is generally preferred when working with
76 floats, while Python's ``x % y`` is preferred when working with integers.
77
78
79.. function:: frexp(x)
80
81 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
82 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
83 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
84 apart" the internal representation of a float in a portable way.
85
86
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000087.. function:: fsum(iterable)
88
89 Return an accurate floating point sum of values in the iterable. Avoids
Raymond Hettingerf3936f82009-02-19 05:48:05 +000090 loss of precision by tracking multiple intermediate partial sums::
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000091
Raymond Hettingerf3936f82009-02-19 05:48:05 +000092 >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
Mark Dickinson5a55b612009-06-28 20:59:42 +000093 0.9999999999999999
Raymond Hettingerf3936f82009-02-19 05:48:05 +000094 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
95 1.0
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000096
Raymond Hettingerf3936f82009-02-19 05:48:05 +000097 The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
98 typical case where the rounding mode is half-even. On some non-Windows
99 builds, the underlying C library uses extended precision addition and may
100 occasionally double-round an intermediate sum causing it to be off in its
101 least significant bit.
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000102
Raymond Hettinger477be822009-02-19 06:44:30 +0000103 For further discussion and two alternative approaches, see the `ASPN cookbook
104 recipes for accurate floating point summation
Georg Brandl5d941342016-02-26 19:37:12 +0100105 <https://code.activestate.com/recipes/393090/>`_\.
Raymond Hettinger477be822009-02-19 06:44:30 +0000106
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000107
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300108.. function:: gcd(a, b)
109
110 Return the greatest common divisor of the integers *a* and *b*. If either
111 *a* or *b* is nonzero, then the value of ``gcd(a, b)`` is the largest
112 positive integer that divides both *a* and *b*. ``gcd(0, 0)`` returns
113 ``0``.
114
Benjamin Petersone960d182015-05-12 17:24:17 -0400115 .. versionadded:: 3.5
116
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300117
Tal Einatd5519ed2015-05-31 22:05:00 +0300118.. function:: isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
119
120 Return ``True`` if the values *a* and *b* are close to each other and
121 ``False`` otherwise.
122
123 Whether or not two values are considered close is determined according to
124 given absolute and relative tolerances.
125
126 *rel_tol* is the relative tolerance -- it is the maximum allowed difference
127 between *a* and *b*, relative to the larger absolute value of *a* or *b*.
128 For example, to set a tolerance of 5%, pass ``rel_tol=0.05``. The default
129 tolerance is ``1e-09``, which assures that the two values are the same
130 within about 9 decimal digits. *rel_tol* must be greater than zero.
131
132 *abs_tol* is the minimum absolute tolerance -- useful for comparisons near
133 zero. *abs_tol* must be at least zero.
134
135 If no errors occur, the result will be:
136 ``abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)``.
137
138 The IEEE 754 special values of ``NaN``, ``inf``, and ``-inf`` will be
139 handled according to IEEE rules. Specifically, ``NaN`` is not considered
140 close to any other value, including ``NaN``. ``inf`` and ``-inf`` are only
141 considered close to themselves.
142
143 .. versionadded:: 3.5
144
145 .. seealso::
146
147 :pep:`485` -- A function for testing approximate equality
148
149
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000150.. function:: isfinite(x)
151
152 Return ``True`` if *x* is neither an infinity nor a NaN, and
153 ``False`` otherwise. (Note that ``0.0`` *is* considered finite.)
154
Mark Dickinsonc7622422010-07-11 19:47:37 +0000155 .. versionadded:: 3.2
156
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000157
Christian Heimes072c0f12008-01-03 23:01:04 +0000158.. function:: isinf(x)
159
Mark Dickinsonc7622422010-07-11 19:47:37 +0000160 Return ``True`` if *x* is a positive or negative infinity, and
161 ``False`` otherwise.
Christian Heimes072c0f12008-01-03 23:01:04 +0000162
Christian Heimes072c0f12008-01-03 23:01:04 +0000163
164.. function:: isnan(x)
165
Mark Dickinsonc7622422010-07-11 19:47:37 +0000166 Return ``True`` if *x* is a NaN (not a number), and ``False`` otherwise.
Christian Heimes072c0f12008-01-03 23:01:04 +0000167
Christian Heimes072c0f12008-01-03 23:01:04 +0000168
Georg Brandl116aa622007-08-15 14:28:22 +0000169.. function:: ldexp(x, i)
170
171 Return ``x * (2**i)``. This is essentially the inverse of function
172 :func:`frexp`.
173
174
175.. function:: modf(x)
176
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000177 Return the fractional and integer parts of *x*. Both results carry the sign
178 of *x* and are floats.
Georg Brandl116aa622007-08-15 14:28:22 +0000179
Christian Heimes400adb02008-02-01 08:12:03 +0000180
Pablo Galindobc098512019-02-07 07:04:02 +0000181.. function:: prod(iterable, *, start=1)
182
183 Calculate the product of all the elements in the input *iterable*.
184 The default *start* value for the product is ``1``.
185
186 When the iterable is empty, return the start value. This function is
187 intended specifically for use with numeric values and may reject
188 non-numeric types.
189
190 .. versionadded:: 3.8
191
192
Mark Dickinsona0ce3752017-04-05 18:34:27 +0100193.. function:: remainder(x, y)
194
195 Return the IEEE 754-style remainder of *x* with respect to *y*. For
196 finite *x* and finite nonzero *y*, this is the difference ``x - n*y``,
197 where ``n`` is the closest integer to the exact value of the quotient ``x /
198 y``. If ``x / y`` is exactly halfway between two consecutive integers, the
199 nearest *even* integer is used for ``n``. The remainder ``r = remainder(x,
200 y)`` thus always satisfies ``abs(r) <= 0.5 * abs(y)``.
201
202 Special cases follow IEEE 754: in particular, ``remainder(x, math.inf)`` is
203 *x* for any finite *x*, and ``remainder(x, 0)`` and
204 ``remainder(math.inf, x)`` raise :exc:`ValueError` for any non-NaN *x*.
205 If the result of the remainder operation is zero, that zero will have
206 the same sign as *x*.
207
208 On platforms using IEEE 754 binary floating-point, the result of this
209 operation is always exactly representable: no rounding error is introduced.
210
211 .. versionadded:: 3.7
212
213
Christian Heimes400adb02008-02-01 08:12:03 +0000214.. function:: trunc(x)
215
Serhiy Storchakabfdcd432013-10-13 23:09:14 +0300216 Return the :class:`~numbers.Real` value *x* truncated to an
217 :class:`~numbers.Integral` (usually an integer). Delegates to
Eric Appelt308eab92018-03-10 02:44:12 -0600218 :meth:`x.__trunc__() <object.__trunc__>`.
Christian Heimes400adb02008-02-01 08:12:03 +0000219
Christian Heimes400adb02008-02-01 08:12:03 +0000220
Georg Brandl116aa622007-08-15 14:28:22 +0000221Note that :func:`frexp` and :func:`modf` have a different call/return pattern
222than their C equivalents: they take a single argument and return a pair of
223values, rather than returning their second return value through an 'output
224parameter' (there is no such thing in Python).
225
226For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
227floating-point numbers of sufficiently large magnitude are exact integers.
228Python floats typically carry no more than 53 bits of precision (the same as the
229platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
230necessarily has no fractional bits.
231
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000232
233Power and logarithmic functions
234-------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000235
Georg Brandl116aa622007-08-15 14:28:22 +0000236.. function:: exp(x)
237
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300238 Return *e* raised to the power *x*, where *e* = 2.718281... is the base
239 of natural logarithms. This is usually more accurate than ``math.e ** x``
240 or ``pow(math.e, x)``.
241
Georg Brandl116aa622007-08-15 14:28:22 +0000242
Mark Dickinson664b5112009-12-16 20:23:42 +0000243.. function:: expm1(x)
244
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300245 Return *e* raised to the power *x*, minus 1. Here *e* is the base of natural
246 logarithms. For small floats *x*, the subtraction in ``exp(x) - 1``
Raymond Hettinger1081d482011-03-31 12:04:53 -0700247 can result in a `significant loss of precision
Georg Brandl5d941342016-02-26 19:37:12 +0100248 <https://en.wikipedia.org/wiki/Loss_of_significance>`_\; the :func:`expm1`
Raymond Hettinger1081d482011-03-31 12:04:53 -0700249 function provides a way to compute this quantity to full precision::
Mark Dickinson664b5112009-12-16 20:23:42 +0000250
251 >>> from math import exp, expm1
252 >>> exp(1e-5) - 1 # gives result accurate to 11 places
253 1.0000050000069649e-05
254 >>> expm1(1e-5) # result accurate to full precision
255 1.0000050000166668e-05
256
Mark Dickinson45f992a2009-12-19 11:20:49 +0000257 .. versionadded:: 3.2
258
Mark Dickinson664b5112009-12-16 20:23:42 +0000259
Georg Brandl116aa622007-08-15 14:28:22 +0000260.. function:: log(x[, base])
261
Georg Brandla6053b42009-09-01 08:11:14 +0000262 With one argument, return the natural logarithm of *x* (to base *e*).
263
264 With two arguments, return the logarithm of *x* to the given *base*,
265 calculated as ``log(x)/log(base)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000266
Georg Brandl116aa622007-08-15 14:28:22 +0000267
Christian Heimes53876d92008-04-19 00:31:39 +0000268.. function:: log1p(x)
269
270 Return the natural logarithm of *1+x* (base *e*). The
271 result is calculated in a way which is accurate for *x* near zero.
272
Christian Heimes53876d92008-04-19 00:31:39 +0000273
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200274.. function:: log2(x)
275
Benjamin Petersoneaee1382011-05-08 19:48:08 -0500276 Return the base-2 logarithm of *x*. This is usually more accurate than
277 ``log(x, 2)``.
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200278
279 .. versionadded:: 3.3
280
Victor Stinner9415afc2011-09-21 03:35:18 +0200281 .. seealso::
282
283 :meth:`int.bit_length` returns the number of bits necessary to represent
284 an integer in binary, excluding the sign and leading zeros.
285
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200286
Georg Brandl116aa622007-08-15 14:28:22 +0000287.. function:: log10(x)
288
Georg Brandla6053b42009-09-01 08:11:14 +0000289 Return the base-10 logarithm of *x*. This is usually more accurate
290 than ``log(x, 10)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000291
292
293.. function:: pow(x, y)
294
Christian Heimesa342c012008-04-20 21:01:16 +0000295 Return ``x`` raised to the power ``y``. Exceptional cases follow
296 Annex 'F' of the C99 standard as far as possible. In particular,
297 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
298 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
299 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
300 is undefined, and raises :exc:`ValueError`.
Christian Heimes53876d92008-04-19 00:31:39 +0000301
Ezio Melotti739d5492013-02-23 04:53:44 +0200302 Unlike the built-in ``**`` operator, :func:`math.pow` converts both
303 its arguments to type :class:`float`. Use ``**`` or the built-in
304 :func:`pow` function for computing exact integer powers.
305
Georg Brandl116aa622007-08-15 14:28:22 +0000306
307.. function:: sqrt(x)
308
309 Return the square root of *x*.
310
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300311
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000312Trigonometric functions
313-----------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000314
Georg Brandl116aa622007-08-15 14:28:22 +0000315.. function:: acos(x)
316
317 Return the arc cosine of *x*, in radians.
318
319
320.. function:: asin(x)
321
322 Return the arc sine of *x*, in radians.
323
324
325.. function:: atan(x)
326
327 Return the arc tangent of *x*, in radians.
328
329
330.. function:: atan2(y, x)
331
332 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
333 The vector in the plane from the origin to point ``(x, y)`` makes this angle
334 with the positive X axis. The point of :func:`atan2` is that the signs of both
335 inputs are known to it, so it can compute the correct quadrant for the angle.
Mark Dickinson603b7532010-04-06 19:55:03 +0000336 For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
Georg Brandl116aa622007-08-15 14:28:22 +0000337 -1)`` is ``-3*pi/4``.
338
339
340.. function:: cos(x)
341
342 Return the cosine of *x* radians.
343
344
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -0700345.. function:: dist(p, q)
346
347 Return the Euclidean distance between two points *p* and *q*, each
348 given as a tuple of coordinates. The two tuples must be the same size.
349
350 Roughly equivalent to::
351
352 sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))
353
354 .. versionadded:: 3.8
355
356
Raymond Hettingerc6dabe32018-07-28 07:48:04 -0700357.. function:: hypot(*coordinates)
Georg Brandl116aa622007-08-15 14:28:22 +0000358
Raymond Hettingerc6dabe32018-07-28 07:48:04 -0700359 Return the Euclidean norm, ``sqrt(sum(x**2 for x in coordinates))``.
360 This is the length of the vector from the origin to the point
361 given by the coordinates.
362
363 For a two dimensional point ``(x, y)``, this is equivalent to computing
364 the hypotenuse of a right triangle using the Pythagorean theorem,
365 ``sqrt(x*x + y*y)``.
366
367 .. versionchanged:: 3.8
368 Added support for n-dimensional points. Formerly, only the two
369 dimensional case was supported.
Georg Brandl116aa622007-08-15 14:28:22 +0000370
371
372.. function:: sin(x)
373
374 Return the sine of *x* radians.
375
376
377.. function:: tan(x)
378
379 Return the tangent of *x* radians.
380
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300381
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000382Angular conversion
383------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000384
Georg Brandl116aa622007-08-15 14:28:22 +0000385.. function:: degrees(x)
386
Benjamin Peterson19a3f172015-05-12 19:15:53 -0400387 Convert angle *x* from radians to degrees.
Georg Brandl116aa622007-08-15 14:28:22 +0000388
389
390.. function:: radians(x)
391
Benjamin Peterson19a3f172015-05-12 19:15:53 -0400392 Convert angle *x* from degrees to radians.
Georg Brandl116aa622007-08-15 14:28:22 +0000393
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300394
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000395Hyperbolic functions
396--------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000397
Georg Brandl5d941342016-02-26 19:37:12 +0100398`Hyperbolic functions <https://en.wikipedia.org/wiki/Hyperbolic_function>`_
Raymond Hettinger1081d482011-03-31 12:04:53 -0700399are analogs of trigonometric functions that are based on hyperbolas
400instead of circles.
Georg Brandl116aa622007-08-15 14:28:22 +0000401
Christian Heimesa342c012008-04-20 21:01:16 +0000402.. function:: acosh(x)
403
404 Return the inverse hyperbolic cosine of *x*.
405
Christian Heimesa342c012008-04-20 21:01:16 +0000406
407.. function:: asinh(x)
408
409 Return the inverse hyperbolic sine of *x*.
410
Christian Heimesa342c012008-04-20 21:01:16 +0000411
412.. function:: atanh(x)
413
414 Return the inverse hyperbolic tangent of *x*.
415
Christian Heimesa342c012008-04-20 21:01:16 +0000416
Georg Brandl116aa622007-08-15 14:28:22 +0000417.. function:: cosh(x)
418
419 Return the hyperbolic cosine of *x*.
420
421
422.. function:: sinh(x)
423
424 Return the hyperbolic sine of *x*.
425
426
427.. function:: tanh(x)
428
429 Return the hyperbolic tangent of *x*.
430
Christian Heimes53876d92008-04-19 00:31:39 +0000431
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000432Special functions
433-----------------
434
Mark Dickinson45f992a2009-12-19 11:20:49 +0000435.. function:: erf(x)
436
Georg Brandl5d941342016-02-26 19:37:12 +0100437 Return the `error function <https://en.wikipedia.org/wiki/Error_function>`_ at
Raymond Hettinger1081d482011-03-31 12:04:53 -0700438 *x*.
439
440 The :func:`erf` function can be used to compute traditional statistical
441 functions such as the `cumulative standard normal distribution
Georg Brandl5d941342016-02-26 19:37:12 +0100442 <https://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function>`_::
Raymond Hettinger1081d482011-03-31 12:04:53 -0700443
444 def phi(x):
445 'Cumulative distribution function for the standard normal distribution'
446 return (1.0 + erf(x / sqrt(2.0))) / 2.0
Mark Dickinson45f992a2009-12-19 11:20:49 +0000447
448 .. versionadded:: 3.2
449
450
451.. function:: erfc(x)
452
Raymond Hettinger1081d482011-03-31 12:04:53 -0700453 Return the complementary error function at *x*. The `complementary error
Georg Brandl5d941342016-02-26 19:37:12 +0100454 function <https://en.wikipedia.org/wiki/Error_function>`_ is defined as
Raymond Hettinger12e6c252011-03-31 13:59:24 -0700455 ``1.0 - erf(x)``. It is used for large values of *x* where a subtraction
456 from one would cause a `loss of significance
Georg Brandl5d941342016-02-26 19:37:12 +0100457 <https://en.wikipedia.org/wiki/Loss_of_significance>`_\.
Mark Dickinson45f992a2009-12-19 11:20:49 +0000458
459 .. versionadded:: 3.2
460
461
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000462.. function:: gamma(x)
463
Georg Brandl5d941342016-02-26 19:37:12 +0100464 Return the `Gamma function <https://en.wikipedia.org/wiki/Gamma_function>`_ at
Raymond Hettinger12e6c252011-03-31 13:59:24 -0700465 *x*.
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000466
Mark Dickinson56e09662009-10-01 16:13:29 +0000467 .. versionadded:: 3.2
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000468
469
Mark Dickinson05d2e082009-12-11 20:17:17 +0000470.. function:: lgamma(x)
471
472 Return the natural logarithm of the absolute value of the Gamma
473 function at *x*.
474
Mark Dickinson45f992a2009-12-19 11:20:49 +0000475 .. versionadded:: 3.2
Mark Dickinson05d2e082009-12-11 20:17:17 +0000476
477
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000478Constants
Mark Dickinson60fe6b02009-06-02 12:53:15 +0000479---------
Georg Brandl116aa622007-08-15 14:28:22 +0000480
481.. data:: pi
482
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300483 The mathematical constant *π* = 3.141592..., to available precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000484
485
486.. data:: e
487
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300488 The mathematical constant *e* = 2.718281..., to available precision.
489
Georg Brandl116aa622007-08-15 14:28:22 +0000490
Guido van Rossum0a891d72016-08-15 09:12:52 -0700491.. data:: tau
492
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300493 The mathematical constant *τ* = 6.283185..., to available precision.
494 Tau is a circle constant equal to 2\ *π*, the ratio of a circle's circumference to
Guido van Rossum0a891d72016-08-15 09:12:52 -0700495 its radius. To learn more about Tau, check out Vi Hart's video `Pi is (still)
496 Wrong <https://www.youtube.com/watch?v=jG7vhMMXagQ>`_, and start celebrating
Sanyam Khurana338cd832018-01-20 05:55:37 +0530497 `Tau day <https://tauday.com/>`_ by eating twice as much pie!
Christian Heimes53876d92008-04-19 00:31:39 +0000498
Georg Brandl4770d6e2016-08-16 07:08:46 +0200499 .. versionadded:: 3.6
500
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300501
Mark Dickinsona5d0c7c2015-01-11 11:55:29 +0000502.. data:: inf
503
504 A floating-point positive infinity. (For negative infinity, use
505 ``-math.inf``.) Equivalent to the output of ``float('inf')``.
506
507 .. versionadded:: 3.5
508
509
510.. data:: nan
511
512 A floating-point "not a number" (NaN) value. Equivalent to the output of
513 ``float('nan')``.
514
515 .. versionadded:: 3.5
516
517
Georg Brandl495f7b52009-10-27 15:28:25 +0000518.. impl-detail::
Georg Brandl116aa622007-08-15 14:28:22 +0000519
520 The :mod:`math` module consists mostly of thin wrappers around the platform C
Mark Dickinson603b7532010-04-06 19:55:03 +0000521 math library functions. Behavior in exceptional cases follows Annex F of
522 the C99 standard where appropriate. The current implementation will raise
523 :exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)``
524 (where C99 Annex F recommends signaling invalid operation or divide-by-zero),
525 and :exc:`OverflowError` for results that overflow (for example,
Benjamin Peterson08bf91c2010-04-11 16:12:57 +0000526 ``exp(1000.0)``). A NaN will not be returned from any of the functions
527 above unless one or more of the input arguments was a NaN; in that case,
528 most functions will return a NaN, but (again following C99 Annex F) there
Mark Dickinson603b7532010-04-06 19:55:03 +0000529 are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or
530 ``hypot(float('nan'), float('inf'))``.
Georg Brandl116aa622007-08-15 14:28:22 +0000531
Mark Dickinson42dfeec2010-04-06 22:13:37 +0000532 Note that Python makes no effort to distinguish signaling NaNs from
533 quiet NaNs, and behavior for signaling NaNs remains unspecified.
534 Typical behavior is to treat all NaNs as though they were quiet.
Christian Heimes53876d92008-04-19 00:31:39 +0000535
Georg Brandl116aa622007-08-15 14:28:22 +0000536
537.. seealso::
538
539 Module :mod:`cmath`
540 Complex number versions of many of these functions.