blob: 24ce9226079443c876d97f0954c08d6fe80cfd7c [file] [log] [blame]
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001/****************************************************************
2 *
3 * The author of this software is David M. Gay.
4 *
5 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose without fee is hereby granted, provided that this entire notice
9 * is included in all copies of any software which is or includes a copy
10 * or modification of this software and in all copies of the supporting
11 * documentation for such software.
12 *
13 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14 * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17 *
18 ***************************************************************/
19
20/****************************************************************
21 * This is dtoa.c by David M. Gay, downloaded from
22 * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for
23 * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith.
Mark Dickinson7f0ea322009-04-17 16:06:28 +000024 *
25 * Please remember to check http://www.netlib.org/fp regularly (and especially
26 * before any Python release) for bugfixes and updates.
27 *
28 * The major modifications from Gay's original code are as follows:
Mark Dickinsonb08a53a2009-04-16 19:52:09 +000029 *
30 * 0. The original code has been specialized to Python's needs by removing
31 * many of the #ifdef'd sections. In particular, code to support VAX and
32 * IBM floating-point formats, hex NaNs, hex floats, locale-aware
33 * treatment of the decimal point, and setting of the inexact flag have
34 * been removed.
35 *
36 * 1. We use PyMem_Malloc and PyMem_Free in place of malloc and free.
37 *
38 * 2. The public functions strtod, dtoa and freedtoa all now have
39 * a _Py_dg_ prefix.
40 *
41 * 3. Instead of assuming that PyMem_Malloc always succeeds, we thread
42 * PyMem_Malloc failures through the code. The functions
43 *
44 * Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b
45 *
46 * of return type *Bigint all return NULL to indicate a malloc failure.
47 * Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on
48 * failure. bigcomp now has return type int (it used to be void) and
49 * returns -1 on failure and 0 otherwise. _Py_dg_dtoa returns NULL
50 * on failure. _Py_dg_strtod indicates failure due to malloc failure
51 * by returning -1.0, setting errno=ENOMEM and *se to s00.
52 *
53 * 4. The static variable dtoa_result has been removed. Callers of
54 * _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free
55 * the memory allocated by _Py_dg_dtoa.
56 *
57 * 5. The code has been reformatted to better fit with Python's
58 * C style guide (PEP 7).
59 *
Mark Dickinson7f0ea322009-04-17 16:06:28 +000060 * 6. A bug in the memory allocation has been fixed: to avoid FREEing memory
61 * that hasn't been MALLOC'ed, private_mem should only be used when k <=
62 * Kmax.
63 *
Mark Dickinson725bfd82009-05-03 20:33:40 +000064 * 7. _Py_dg_strtod has been modified so that it doesn't accept strings with
65 * leading whitespace.
66 *
Mark Dickinsonb08a53a2009-04-16 19:52:09 +000067 ***************************************************************/
68
69/* Please send bug reports for the original dtoa.c code to David M. Gay (dmg
70 * at acm dot org, with " at " changed at "@" and " dot " changed to ".").
71 * Please report bugs for this modified version using the Python issue tracker
72 * (http://bugs.python.org). */
73
74/* On a machine with IEEE extended-precision registers, it is
75 * necessary to specify double-precision (53-bit) rounding precision
76 * before invoking strtod or dtoa. If the machine uses (the equivalent
77 * of) Intel 80x87 arithmetic, the call
78 * _control87(PC_53, MCW_PC);
79 * does this with many compilers. Whether this or another call is
80 * appropriate depends on the compiler; for this to work, it may be
81 * necessary to #include "float.h" or another system-dependent header
82 * file.
83 */
84
85/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
86 *
87 * This strtod returns a nearest machine number to the input decimal
88 * string (or sets errno to ERANGE). With IEEE arithmetic, ties are
89 * broken by the IEEE round-even rule. Otherwise ties are broken by
90 * biased rounding (add half and chop).
91 *
92 * Inspired loosely by William D. Clinger's paper "How to Read Floating
93 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
94 *
95 * Modifications:
96 *
97 * 1. We only require IEEE, IBM, or VAX double-precision
98 * arithmetic (not IEEE double-extended).
99 * 2. We get by with floating-point arithmetic in a case that
100 * Clinger missed -- when we're computing d * 10^n
101 * for a small integer d and the integer n is not too
102 * much larger than 22 (the maximum integer k for which
103 * we can represent 10^k exactly), we may be able to
104 * compute (d*10^k) * 10^(e-k) with just one roundoff.
105 * 3. Rather than a bit-at-a-time adjustment of the binary
106 * result in the hard case, we use floating-point
107 * arithmetic to determine the adjustment to within
108 * one bit; only in really hard cases do we need to
109 * compute a second residual.
110 * 4. Because of 3., we don't need a large table of powers of 10
111 * for ten-to-e (just some small tables, e.g. of 10^k
112 * for 0 <= k <= 22).
113 */
114
115/* Linking of Python's #defines to Gay's #defines starts here. */
116
117#include "Python.h"
118
119/* if PY_NO_SHORT_FLOAT_REPR is defined, then don't even try to compile
120 the following code */
121#ifndef PY_NO_SHORT_FLOAT_REPR
122
123#include "float.h"
124
125#define MALLOC PyMem_Malloc
126#define FREE PyMem_Free
127
128/* This code should also work for ARM mixed-endian format on little-endian
129 machines, where doubles have byte order 45670123 (in increasing address
130 order, 0 being the least significant byte). */
131#ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754
132# define IEEE_8087
133#endif
134#if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) || \
135 defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)
136# define IEEE_MC68k
137#endif
138#if defined(IEEE_8087) + defined(IEEE_MC68k) != 1
139#error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined."
140#endif
141
142/* The code below assumes that the endianness of integers matches the
143 endianness of the two 32-bit words of a double. Check this. */
144#if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \
145 defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754))
146#error "doubles and ints have incompatible endianness"
147#endif
148
149#if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754)
150#error "doubles and ints have incompatible endianness"
151#endif
152
153
154#if defined(HAVE_UINT32_T) && defined(HAVE_INT32_T)
155typedef PY_UINT32_T ULong;
156typedef PY_INT32_T Long;
157#else
158#error "Failed to find an exact-width 32-bit integer type"
159#endif
160
161#if defined(HAVE_UINT64_T)
162#define ULLong PY_UINT64_T
163#else
164#undef ULLong
165#endif
166
167#undef DEBUG
168#ifdef Py_DEBUG
169#define DEBUG
170#endif
171
172/* End Python #define linking */
173
174#ifdef DEBUG
175#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
176#endif
177
178#ifndef PRIVATE_MEM
179#define PRIVATE_MEM 2304
180#endif
181#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
182static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
183
184#ifdef __cplusplus
185extern "C" {
186#endif
187
188typedef union { double d; ULong L[2]; } U;
189
190#ifdef IEEE_8087
191#define word0(x) (x)->L[1]
192#define word1(x) (x)->L[0]
193#else
194#define word0(x) (x)->L[0]
195#define word1(x) (x)->L[1]
196#endif
197#define dval(x) (x)->d
198
199#ifndef STRTOD_DIGLIM
200#define STRTOD_DIGLIM 40
201#endif
202
Mark Dickinson81612e82010-01-12 23:04:19 +0000203/* maximum permitted exponent value for strtod; exponents larger than
204 MAX_ABS_EXP in absolute value get truncated to +-MAX_ABS_EXP. MAX_ABS_EXP
205 should fit into an int. */
206#ifndef MAX_ABS_EXP
207#define MAX_ABS_EXP 19999U
Mark Dickinsonb08a53a2009-04-16 19:52:09 +0000208#endif
209
210/* The following definition of Storeinc is appropriate for MIPS processors.
211 * An alternative that might be better on some machines is
212 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
213 */
214#if defined(IEEE_8087)
215#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
216 ((unsigned short *)a)[0] = (unsigned short)c, a++)
217#else
218#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
219 ((unsigned short *)a)[1] = (unsigned short)c, a++)
220#endif
221
222/* #define P DBL_MANT_DIG */
223/* Ten_pmax = floor(P*log(2)/log(5)) */
224/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
225/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
226/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
227
228#define Exp_shift 20
229#define Exp_shift1 20
230#define Exp_msk1 0x100000
231#define Exp_msk11 0x100000
232#define Exp_mask 0x7ff00000
233#define P 53
234#define Nbits 53
235#define Bias 1023
236#define Emax 1023
237#define Emin (-1022)
238#define Exp_1 0x3ff00000
239#define Exp_11 0x3ff00000
240#define Ebits 11
241#define Frac_mask 0xfffff
242#define Frac_mask1 0xfffff
243#define Ten_pmax 22
244#define Bletch 0x10
245#define Bndry_mask 0xfffff
246#define Bndry_mask1 0xfffff
247#define LSB 1
248#define Sign_bit 0x80000000
249#define Log2P 1
250#define Tiny0 0
251#define Tiny1 1
252#define Quick_max 14
253#define Int_max 14
254
255#ifndef Flt_Rounds
256#ifdef FLT_ROUNDS
257#define Flt_Rounds FLT_ROUNDS
258#else
259#define Flt_Rounds 1
260#endif
261#endif /*Flt_Rounds*/
262
263#define Rounding Flt_Rounds
264
265#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
266#define Big1 0xffffffff
267
Mark Dickinsonb08a53a2009-04-16 19:52:09 +0000268/* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */
269
270typedef struct BCinfo BCinfo;
271struct
272BCinfo {
Mark Dickinson853c3bb2010-01-14 15:37:49 +0000273 int dsign, e0, nd, nd0, scale;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +0000274};
275
276#define FFFFFFFF 0xffffffffUL
277
278#define Kmax 7
279
280/* struct Bigint is used to represent arbitrary-precision integers. These
281 integers are stored in sign-magnitude format, with the magnitude stored as
282 an array of base 2**32 digits. Bigints are always normalized: if x is a
283 Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero.
284
285 The Bigint fields are as follows:
286
287 - next is a header used by Balloc and Bfree to keep track of lists
288 of freed Bigints; it's also used for the linked list of
289 powers of 5 of the form 5**2**i used by pow5mult.
290 - k indicates which pool this Bigint was allocated from
291 - maxwds is the maximum number of words space was allocated for
292 (usually maxwds == 2**k)
293 - sign is 1 for negative Bigints, 0 for positive. The sign is unused
294 (ignored on inputs, set to 0 on outputs) in almost all operations
295 involving Bigints: a notable exception is the diff function, which
296 ignores signs on inputs but sets the sign of the output correctly.
297 - wds is the actual number of significant words
298 - x contains the vector of words (digits) for this Bigint, from least
299 significant (x[0]) to most significant (x[wds-1]).
300*/
301
302struct
303Bigint {
304 struct Bigint *next;
305 int k, maxwds, sign, wds;
306 ULong x[1];
307};
308
309typedef struct Bigint Bigint;
310
311/* Memory management: memory is allocated from, and returned to, Kmax+1 pools
312 of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds ==
313 1 << k. These pools are maintained as linked lists, with freelist[k]
314 pointing to the head of the list for pool k.
315
316 On allocation, if there's no free slot in the appropriate pool, MALLOC is
317 called to get more memory. This memory is not returned to the system until
318 Python quits. There's also a private memory pool that's allocated from
319 in preference to using MALLOC.
320
321 For Bigints with more than (1 << Kmax) digits (which implies at least 1233
322 decimal digits), memory is directly allocated using MALLOC, and freed using
323 FREE.
324
325 XXX: it would be easy to bypass this memory-management system and
326 translate each call to Balloc into a call to PyMem_Malloc, and each
327 Bfree to PyMem_Free. Investigate whether this has any significant
328 performance on impact. */
329
330static Bigint *freelist[Kmax+1];
331
332/* Allocate space for a Bigint with up to 1<<k digits */
333
334static Bigint *
335Balloc(int k)
336{
337 int x;
338 Bigint *rv;
339 unsigned int len;
340
341 if (k <= Kmax && (rv = freelist[k]))
342 freelist[k] = rv->next;
343 else {
344 x = 1 << k;
345 len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
346 /sizeof(double);
Mark Dickinson7f0ea322009-04-17 16:06:28 +0000347 if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) {
Mark Dickinsonb08a53a2009-04-16 19:52:09 +0000348 rv = (Bigint*)pmem_next;
349 pmem_next += len;
350 }
351 else {
352 rv = (Bigint*)MALLOC(len*sizeof(double));
353 if (rv == NULL)
354 return NULL;
355 }
356 rv->k = k;
357 rv->maxwds = x;
358 }
359 rv->sign = rv->wds = 0;
360 return rv;
361}
362
363/* Free a Bigint allocated with Balloc */
364
365static void
366Bfree(Bigint *v)
367{
368 if (v) {
369 if (v->k > Kmax)
370 FREE((void*)v);
371 else {
372 v->next = freelist[v->k];
373 freelist[v->k] = v;
374 }
375 }
376}
377
378#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
379 y->wds*sizeof(Long) + 2*sizeof(int))
380
381/* Multiply a Bigint b by m and add a. Either modifies b in place and returns
382 a pointer to the modified b, or Bfrees b and returns a pointer to a copy.
383 On failure, return NULL. In this case, b will have been already freed. */
384
385static Bigint *
386multadd(Bigint *b, int m, int a) /* multiply by m and add a */
387{
388 int i, wds;
389#ifdef ULLong
390 ULong *x;
391 ULLong carry, y;
392#else
393 ULong carry, *x, y;
394 ULong xi, z;
395#endif
396 Bigint *b1;
397
398 wds = b->wds;
399 x = b->x;
400 i = 0;
401 carry = a;
402 do {
403#ifdef ULLong
404 y = *x * (ULLong)m + carry;
405 carry = y >> 32;
Mark Dickinsonfd2ad8b2009-04-17 19:29:46 +0000406 *x++ = (ULong)(y & FFFFFFFF);
Mark Dickinsonb08a53a2009-04-16 19:52:09 +0000407#else
408 xi = *x;
409 y = (xi & 0xffff) * m + carry;
410 z = (xi >> 16) * m + (y >> 16);
411 carry = z >> 16;
412 *x++ = (z << 16) + (y & 0xffff);
413#endif
414 }
415 while(++i < wds);
416 if (carry) {
417 if (wds >= b->maxwds) {
418 b1 = Balloc(b->k+1);
419 if (b1 == NULL){
420 Bfree(b);
421 return NULL;
422 }
423 Bcopy(b1, b);
424 Bfree(b);
425 b = b1;
426 }
427 b->x[wds++] = (ULong)carry;
428 b->wds = wds;
429 }
430 return b;
431}
432
433/* convert a string s containing nd decimal digits (possibly containing a
434 decimal separator at position nd0, which is ignored) to a Bigint. This
435 function carries on where the parsing code in _Py_dg_strtod leaves off: on
436 entry, y9 contains the result of converting the first 9 digits. Returns
437 NULL on failure. */
438
439static Bigint *
Mark Dickinson853c3bb2010-01-14 15:37:49 +0000440s2b(const char *s, int nd0, int nd, ULong y9)
Mark Dickinsonb08a53a2009-04-16 19:52:09 +0000441{
442 Bigint *b;
443 int i, k;
444 Long x, y;
445
446 x = (nd + 8) / 9;
447 for(k = 0, y = 1; x > y; y <<= 1, k++) ;
448 b = Balloc(k);
449 if (b == NULL)
450 return NULL;
451 b->x[0] = y9;
452 b->wds = 1;
453
Mark Dickinson853c3bb2010-01-14 15:37:49 +0000454 if (nd <= 9)
455 return b;
456
457 s += 9;
458 for (i = 9; i < nd0; i++) {
459 b = multadd(b, 10, *s++ - '0');
460 if (b == NULL)
461 return NULL;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +0000462 }
Mark Dickinson853c3bb2010-01-14 15:37:49 +0000463 s++;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +0000464 for(; i < nd; i++) {
465 b = multadd(b, 10, *s++ - '0');
466 if (b == NULL)
467 return NULL;
468 }
469 return b;
470}
471
472/* count leading 0 bits in the 32-bit integer x. */
473
474static int
475hi0bits(ULong x)
476{
477 int k = 0;
478
479 if (!(x & 0xffff0000)) {
480 k = 16;
481 x <<= 16;
482 }
483 if (!(x & 0xff000000)) {
484 k += 8;
485 x <<= 8;
486 }
487 if (!(x & 0xf0000000)) {
488 k += 4;
489 x <<= 4;
490 }
491 if (!(x & 0xc0000000)) {
492 k += 2;
493 x <<= 2;
494 }
495 if (!(x & 0x80000000)) {
496 k++;
497 if (!(x & 0x40000000))
498 return 32;
499 }
500 return k;
501}
502
503/* count trailing 0 bits in the 32-bit integer y, and shift y right by that
504 number of bits. */
505
506static int
507lo0bits(ULong *y)
508{
509 int k;
510 ULong x = *y;
511
512 if (x & 7) {
513 if (x & 1)
514 return 0;
515 if (x & 2) {
516 *y = x >> 1;
517 return 1;
518 }
519 *y = x >> 2;
520 return 2;
521 }
522 k = 0;
523 if (!(x & 0xffff)) {
524 k = 16;
525 x >>= 16;
526 }
527 if (!(x & 0xff)) {
528 k += 8;
529 x >>= 8;
530 }
531 if (!(x & 0xf)) {
532 k += 4;
533 x >>= 4;
534 }
535 if (!(x & 0x3)) {
536 k += 2;
537 x >>= 2;
538 }
539 if (!(x & 1)) {
540 k++;
541 x >>= 1;
542 if (!x)
543 return 32;
544 }
545 *y = x;
546 return k;
547}
548
549/* convert a small nonnegative integer to a Bigint */
550
551static Bigint *
552i2b(int i)
553{
554 Bigint *b;
555
556 b = Balloc(1);
557 if (b == NULL)
558 return NULL;
559 b->x[0] = i;
560 b->wds = 1;
561 return b;
562}
563
564/* multiply two Bigints. Returns a new Bigint, or NULL on failure. Ignores
565 the signs of a and b. */
566
567static Bigint *
568mult(Bigint *a, Bigint *b)
569{
570 Bigint *c;
571 int k, wa, wb, wc;
572 ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
573 ULong y;
574#ifdef ULLong
575 ULLong carry, z;
576#else
577 ULong carry, z;
578 ULong z2;
579#endif
580
581 if (a->wds < b->wds) {
582 c = a;
583 a = b;
584 b = c;
585 }
586 k = a->k;
587 wa = a->wds;
588 wb = b->wds;
589 wc = wa + wb;
590 if (wc > a->maxwds)
591 k++;
592 c = Balloc(k);
593 if (c == NULL)
594 return NULL;
595 for(x = c->x, xa = x + wc; x < xa; x++)
596 *x = 0;
597 xa = a->x;
598 xae = xa + wa;
599 xb = b->x;
600 xbe = xb + wb;
601 xc0 = c->x;
602#ifdef ULLong
603 for(; xb < xbe; xc0++) {
604 if ((y = *xb++)) {
605 x = xa;
606 xc = xc0;
607 carry = 0;
608 do {
609 z = *x++ * (ULLong)y + *xc + carry;
610 carry = z >> 32;
Mark Dickinsonfd2ad8b2009-04-17 19:29:46 +0000611 *xc++ = (ULong)(z & FFFFFFFF);
Mark Dickinsonb08a53a2009-04-16 19:52:09 +0000612 }
613 while(x < xae);
614 *xc = (ULong)carry;
615 }
616 }
617#else
618 for(; xb < xbe; xb++, xc0++) {
619 if (y = *xb & 0xffff) {
620 x = xa;
621 xc = xc0;
622 carry = 0;
623 do {
624 z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
625 carry = z >> 16;
626 z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
627 carry = z2 >> 16;
628 Storeinc(xc, z2, z);
629 }
630 while(x < xae);
631 *xc = carry;
632 }
633 if (y = *xb >> 16) {
634 x = xa;
635 xc = xc0;
636 carry = 0;
637 z2 = *xc;
638 do {
639 z = (*x & 0xffff) * y + (*xc >> 16) + carry;
640 carry = z >> 16;
641 Storeinc(xc, z, z2);
642 z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
643 carry = z2 >> 16;
644 }
645 while(x < xae);
646 *xc = z2;
647 }
648 }
649#endif
650 for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
651 c->wds = wc;
652 return c;
653}
654
655/* p5s is a linked list of powers of 5 of the form 5**(2**i), i >= 2 */
656
657static Bigint *p5s;
658
659/* multiply the Bigint b by 5**k. Returns a pointer to the result, or NULL on
660 failure; if the returned pointer is distinct from b then the original
661 Bigint b will have been Bfree'd. Ignores the sign of b. */
662
663static Bigint *
664pow5mult(Bigint *b, int k)
665{
666 Bigint *b1, *p5, *p51;
667 int i;
668 static int p05[3] = { 5, 25, 125 };
669
670 if ((i = k & 3)) {
671 b = multadd(b, p05[i-1], 0);
672 if (b == NULL)
673 return NULL;
674 }
675
676 if (!(k >>= 2))
677 return b;
678 p5 = p5s;
679 if (!p5) {
680 /* first time */
681 p5 = i2b(625);
682 if (p5 == NULL) {
683 Bfree(b);
684 return NULL;
685 }
686 p5s = p5;
687 p5->next = 0;
688 }
689 for(;;) {
690 if (k & 1) {
691 b1 = mult(b, p5);
692 Bfree(b);
693 b = b1;
694 if (b == NULL)
695 return NULL;
696 }
697 if (!(k >>= 1))
698 break;
699 p51 = p5->next;
700 if (!p51) {
701 p51 = mult(p5,p5);
702 if (p51 == NULL) {
703 Bfree(b);
704 return NULL;
705 }
706 p51->next = 0;
707 p5->next = p51;
708 }
709 p5 = p51;
710 }
711 return b;
712}
713
714/* shift a Bigint b left by k bits. Return a pointer to the shifted result,
715 or NULL on failure. If the returned pointer is distinct from b then the
716 original b will have been Bfree'd. Ignores the sign of b. */
717
718static Bigint *
719lshift(Bigint *b, int k)
720{
721 int i, k1, n, n1;
722 Bigint *b1;
723 ULong *x, *x1, *xe, z;
724
725 n = k >> 5;
726 k1 = b->k;
727 n1 = n + b->wds + 1;
728 for(i = b->maxwds; n1 > i; i <<= 1)
729 k1++;
730 b1 = Balloc(k1);
731 if (b1 == NULL) {
732 Bfree(b);
733 return NULL;
734 }
735 x1 = b1->x;
736 for(i = 0; i < n; i++)
737 *x1++ = 0;
738 x = b->x;
739 xe = x + b->wds;
740 if (k &= 0x1f) {
741 k1 = 32 - k;
742 z = 0;
743 do {
744 *x1++ = *x << k | z;
745 z = *x++ >> k1;
746 }
747 while(x < xe);
748 if ((*x1 = z))
749 ++n1;
750 }
751 else do
752 *x1++ = *x++;
753 while(x < xe);
754 b1->wds = n1 - 1;
755 Bfree(b);
756 return b1;
757}
758
759/* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and
760 1 if a > b. Ignores signs of a and b. */
761
762static int
763cmp(Bigint *a, Bigint *b)
764{
765 ULong *xa, *xa0, *xb, *xb0;
766 int i, j;
767
768 i = a->wds;
769 j = b->wds;
770#ifdef DEBUG
771 if (i > 1 && !a->x[i-1])
772 Bug("cmp called with a->x[a->wds-1] == 0");
773 if (j > 1 && !b->x[j-1])
774 Bug("cmp called with b->x[b->wds-1] == 0");
775#endif
776 if (i -= j)
777 return i;
778 xa0 = a->x;
779 xa = xa0 + j;
780 xb0 = b->x;
781 xb = xb0 + j;
782 for(;;) {
783 if (*--xa != *--xb)
784 return *xa < *xb ? -1 : 1;
785 if (xa <= xa0)
786 break;
787 }
788 return 0;
789}
790
791/* Take the difference of Bigints a and b, returning a new Bigint. Returns
792 NULL on failure. The signs of a and b are ignored, but the sign of the
793 result is set appropriately. */
794
795static Bigint *
796diff(Bigint *a, Bigint *b)
797{
798 Bigint *c;
799 int i, wa, wb;
800 ULong *xa, *xae, *xb, *xbe, *xc;
801#ifdef ULLong
802 ULLong borrow, y;
803#else
804 ULong borrow, y;
805 ULong z;
806#endif
807
808 i = cmp(a,b);
809 if (!i) {
810 c = Balloc(0);
811 if (c == NULL)
812 return NULL;
813 c->wds = 1;
814 c->x[0] = 0;
815 return c;
816 }
817 if (i < 0) {
818 c = a;
819 a = b;
820 b = c;
821 i = 1;
822 }
823 else
824 i = 0;
825 c = Balloc(a->k);
826 if (c == NULL)
827 return NULL;
828 c->sign = i;
829 wa = a->wds;
830 xa = a->x;
831 xae = xa + wa;
832 wb = b->wds;
833 xb = b->x;
834 xbe = xb + wb;
835 xc = c->x;
836 borrow = 0;
837#ifdef ULLong
838 do {
839 y = (ULLong)*xa++ - *xb++ - borrow;
840 borrow = y >> 32 & (ULong)1;
Mark Dickinsonfd2ad8b2009-04-17 19:29:46 +0000841 *xc++ = (ULong)(y & FFFFFFFF);
Mark Dickinsonb08a53a2009-04-16 19:52:09 +0000842 }
843 while(xb < xbe);
844 while(xa < xae) {
845 y = *xa++ - borrow;
846 borrow = y >> 32 & (ULong)1;
Mark Dickinsonfd2ad8b2009-04-17 19:29:46 +0000847 *xc++ = (ULong)(y & FFFFFFFF);
Mark Dickinsonb08a53a2009-04-16 19:52:09 +0000848 }
849#else
850 do {
851 y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
852 borrow = (y & 0x10000) >> 16;
853 z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
854 borrow = (z & 0x10000) >> 16;
855 Storeinc(xc, z, y);
856 }
857 while(xb < xbe);
858 while(xa < xae) {
859 y = (*xa & 0xffff) - borrow;
860 borrow = (y & 0x10000) >> 16;
861 z = (*xa++ >> 16) - borrow;
862 borrow = (z & 0x10000) >> 16;
863 Storeinc(xc, z, y);
864 }
865#endif
866 while(!*--xc)
867 wa--;
868 c->wds = wa;
869 return c;
870}
871
872/* Given a positive normal double x, return the difference between x and the next
873 double up. Doesn't give correct results for subnormals. */
874
875static double
876ulp(U *x)
877{
878 Long L;
879 U u;
880
881 L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
882 word0(&u) = L;
883 word1(&u) = 0;
884 return dval(&u);
885}
886
887/* Convert a Bigint to a double plus an exponent */
888
889static double
890b2d(Bigint *a, int *e)
891{
892 ULong *xa, *xa0, w, y, z;
893 int k;
894 U d;
895
896 xa0 = a->x;
897 xa = xa0 + a->wds;
898 y = *--xa;
899#ifdef DEBUG
900 if (!y) Bug("zero y in b2d");
901#endif
902 k = hi0bits(y);
903 *e = 32 - k;
904 if (k < Ebits) {
905 word0(&d) = Exp_1 | y >> (Ebits - k);
906 w = xa > xa0 ? *--xa : 0;
907 word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k);
908 goto ret_d;
909 }
910 z = xa > xa0 ? *--xa : 0;
911 if (k -= Ebits) {
912 word0(&d) = Exp_1 | y << k | z >> (32 - k);
913 y = xa > xa0 ? *--xa : 0;
914 word1(&d) = z << k | y >> (32 - k);
915 }
916 else {
917 word0(&d) = Exp_1 | y;
918 word1(&d) = z;
919 }
920 ret_d:
921 return dval(&d);
922}
923
924/* Convert a double to a Bigint plus an exponent. Return NULL on failure.
925
926 Given a finite nonzero double d, return an odd Bigint b and exponent *e
927 such that fabs(d) = b * 2**e. On return, *bbits gives the number of
Mark Dickinson180e4cd2010-01-04 21:33:31 +0000928 significant bits of b; that is, 2**(*bbits-1) <= b < 2**(*bbits).
Mark Dickinsonb08a53a2009-04-16 19:52:09 +0000929
930 If d is zero, then b == 0, *e == -1010, *bbits = 0.
931 */
932
933
934static Bigint *
935d2b(U *d, int *e, int *bits)
936{
937 Bigint *b;
938 int de, k;
939 ULong *x, y, z;
940 int i;
941
942 b = Balloc(1);
943 if (b == NULL)
944 return NULL;
945 x = b->x;
946
947 z = word0(d) & Frac_mask;
948 word0(d) &= 0x7fffffff; /* clear sign bit, which we ignore */
949 if ((de = (int)(word0(d) >> Exp_shift)))
950 z |= Exp_msk1;
951 if ((y = word1(d))) {
952 if ((k = lo0bits(&y))) {
953 x[0] = y | z << (32 - k);
954 z >>= k;
955 }
956 else
957 x[0] = y;
958 i =
959 b->wds = (x[1] = z) ? 2 : 1;
960 }
961 else {
962 k = lo0bits(&z);
963 x[0] = z;
964 i =
965 b->wds = 1;
966 k += 32;
967 }
968 if (de) {
969 *e = de - Bias - (P-1) + k;
970 *bits = P - k;
971 }
972 else {
973 *e = de - Bias - (P-1) + 1 + k;
974 *bits = 32*i - hi0bits(x[i-1]);
975 }
976 return b;
977}
978
979/* Compute the ratio of two Bigints, as a double. The result may have an
980 error of up to 2.5 ulps. */
981
982static double
983ratio(Bigint *a, Bigint *b)
984{
985 U da, db;
986 int k, ka, kb;
987
988 dval(&da) = b2d(a, &ka);
989 dval(&db) = b2d(b, &kb);
990 k = ka - kb + 32*(a->wds - b->wds);
991 if (k > 0)
992 word0(&da) += k*Exp_msk1;
993 else {
994 k = -k;
995 word0(&db) += k*Exp_msk1;
996 }
997 return dval(&da) / dval(&db);
998}
999
1000static const double
1001tens[] = {
1002 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1003 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1004 1e20, 1e21, 1e22
1005};
1006
1007static const double
1008bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1009static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1010 9007199254740992.*9007199254740992.e-256
1011 /* = 2^106 * 1e-256 */
1012};
1013/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1014/* flag unnecessarily. It leads to a song and dance at the end of strtod. */
1015#define Scale_Bit 0x10
1016#define n_bigtens 5
1017
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001018#define ULbits 32
1019#define kshift 5
1020#define kmask 31
1021
1022
1023static int
1024dshift(Bigint *b, int p2)
1025{
1026 int rv = hi0bits(b->x[b->wds-1]) - 4;
1027 if (p2 > 0)
1028 rv -= p2;
1029 return rv & kmask;
1030}
1031
1032/* special case of Bigint division. The quotient is always in the range 0 <=
1033 quotient < 10, and on entry the divisor S is normalized so that its top 4
1034 bits (28--31) are zero and bit 27 is set. */
1035
1036static int
1037quorem(Bigint *b, Bigint *S)
1038{
1039 int n;
1040 ULong *bx, *bxe, q, *sx, *sxe;
1041#ifdef ULLong
1042 ULLong borrow, carry, y, ys;
1043#else
1044 ULong borrow, carry, y, ys;
1045 ULong si, z, zs;
1046#endif
1047
1048 n = S->wds;
1049#ifdef DEBUG
1050 /*debug*/ if (b->wds > n)
1051 /*debug*/ Bug("oversize b in quorem");
1052#endif
1053 if (b->wds < n)
1054 return 0;
1055 sx = S->x;
1056 sxe = sx + --n;
1057 bx = b->x;
1058 bxe = bx + n;
1059 q = *bxe / (*sxe + 1); /* ensure q <= true quotient */
1060#ifdef DEBUG
1061 /*debug*/ if (q > 9)
1062 /*debug*/ Bug("oversized quotient in quorem");
1063#endif
1064 if (q) {
1065 borrow = 0;
1066 carry = 0;
1067 do {
1068#ifdef ULLong
1069 ys = *sx++ * (ULLong)q + carry;
1070 carry = ys >> 32;
1071 y = *bx - (ys & FFFFFFFF) - borrow;
1072 borrow = y >> 32 & (ULong)1;
Mark Dickinsonfd2ad8b2009-04-17 19:29:46 +00001073 *bx++ = (ULong)(y & FFFFFFFF);
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001074#else
1075 si = *sx++;
1076 ys = (si & 0xffff) * q + carry;
1077 zs = (si >> 16) * q + (ys >> 16);
1078 carry = zs >> 16;
1079 y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
1080 borrow = (y & 0x10000) >> 16;
1081 z = (*bx >> 16) - (zs & 0xffff) - borrow;
1082 borrow = (z & 0x10000) >> 16;
1083 Storeinc(bx, z, y);
1084#endif
1085 }
1086 while(sx <= sxe);
1087 if (!*bxe) {
1088 bx = b->x;
1089 while(--bxe > bx && !*bxe)
1090 --n;
1091 b->wds = n;
1092 }
1093 }
1094 if (cmp(b, S) >= 0) {
1095 q++;
1096 borrow = 0;
1097 carry = 0;
1098 bx = b->x;
1099 sx = S->x;
1100 do {
1101#ifdef ULLong
1102 ys = *sx++ + carry;
1103 carry = ys >> 32;
1104 y = *bx - (ys & FFFFFFFF) - borrow;
1105 borrow = y >> 32 & (ULong)1;
Mark Dickinsonfd2ad8b2009-04-17 19:29:46 +00001106 *bx++ = (ULong)(y & FFFFFFFF);
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001107#else
1108 si = *sx++;
1109 ys = (si & 0xffff) + carry;
1110 zs = (si >> 16) + (ys >> 16);
1111 carry = zs >> 16;
1112 y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
1113 borrow = (y & 0x10000) >> 16;
1114 z = (*bx >> 16) - (zs & 0xffff) - borrow;
1115 borrow = (z & 0x10000) >> 16;
1116 Storeinc(bx, z, y);
1117#endif
1118 }
1119 while(sx <= sxe);
1120 bx = b->x;
1121 bxe = bx + n;
1122 if (!*bxe) {
1123 while(--bxe > bx && !*bxe)
1124 --n;
1125 b->wds = n;
1126 }
1127 }
1128 return q;
1129}
1130
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001131/* sulp(x) is a version of ulp(x) that takes bc.scale into account.
Mark Dickinson81612e82010-01-12 23:04:19 +00001132
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001133 Assuming that x is finite and nonnegative (positive zero is fine
1134 here) and x / 2^bc.scale is exactly representable as a double,
1135 sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */
Mark Dickinson81612e82010-01-12 23:04:19 +00001136
1137static double
1138sulp(U *x, BCinfo *bc)
1139{
1140 U u;
1141
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001142 if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) {
Mark Dickinson81612e82010-01-12 23:04:19 +00001143 /* rv/2^bc->scale is subnormal */
1144 word0(&u) = (P+2)*Exp_msk1;
1145 word1(&u) = 0;
1146 return u.d;
1147 }
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001148 else {
1149 assert(word0(x) || word1(x)); /* x != 0.0 */
Mark Dickinson81612e82010-01-12 23:04:19 +00001150 return ulp(x);
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001151 }
Mark Dickinson81612e82010-01-12 23:04:19 +00001152}
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001153
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001154/* The bigcomp function handles some hard cases for strtod, for inputs
1155 with more than STRTOD_DIGLIM digits. It's called once an initial
1156 estimate for the double corresponding to the input string has
1157 already been obtained by the code in _Py_dg_strtod.
1158
1159 The bigcomp function is only called after _Py_dg_strtod has found a
1160 double value rv such that either rv or rv + 1ulp represents the
1161 correctly rounded value corresponding to the original string. It
1162 determines which of these two values is the correct one by
1163 computing the decimal digits of rv + 0.5ulp and comparing them with
1164 the corresponding digits of s0.
1165
1166 In the following, write dv for the absolute value of the number represented
1167 by the input string.
1168
1169 Inputs:
1170
1171 s0 points to the first significant digit of the input string.
1172
1173 rv is a (possibly scaled) estimate for the closest double value to the
1174 value represented by the original input to _Py_dg_strtod. If
1175 bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to
1176 the input value.
1177
1178 bc is a struct containing information gathered during the parsing and
1179 estimation steps of _Py_dg_strtod. Description of fields follows:
1180
1181 bc->dsign is 1 if rv < decimal value, 0 if rv >= decimal value. In
1182 normal use, it should almost always be 1 when bigcomp is entered.
1183
1184 bc->e0 gives the exponent of the input value, such that dv = (integer
1185 given by the bd->nd digits of s0) * 10**e0
1186
1187 bc->nd gives the total number of significant digits of s0. It will
1188 be at least 1.
1189
1190 bc->nd0 gives the number of significant digits of s0 before the
1191 decimal separator. If there's no decimal separator, bc->nd0 ==
1192 bc->nd.
1193
1194 bc->scale is the value used to scale rv to avoid doing arithmetic with
1195 subnormal values. It's either 0 or 2*P (=106).
1196
1197 Outputs:
1198
1199 On successful exit, rv/2^(bc->scale) is the closest double to dv.
1200
1201 Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001202
1203static int
1204bigcomp(U *rv, const char *s0, BCinfo *bc)
1205{
1206 Bigint *b, *d;
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001207 int b2, bbits, d2, dd, i, nd, nd0, odd, p2, p5;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001208
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001209 dd = 0; /* silence compiler warning about possibly unused variable */
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001210 nd = bc->nd;
1211 nd0 = bc->nd0;
Mark Dickinson81612e82010-01-12 23:04:19 +00001212 p5 = nd + bc->e0;
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001213 if (rv->d == 0.) {
1214 /* special case because d2b doesn't handle 0.0 */
1215 b = i2b(0);
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001216 if (b == NULL)
1217 return -1;
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001218 p2 = Emin - P + 1; /* = -1074 for IEEE 754 binary64 */
1219 bbits = 0;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001220 }
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001221 else {
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001222 b = d2b(rv, &p2, &bbits);
1223 if (b == NULL)
1224 return -1;
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001225 p2 -= bc->scale;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001226 }
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001227 /* now rv/2^(bc->scale) = b * 2**p2, and b has bbits significant bits */
1228
1229 /* Replace (b, p2) by (b << i, p2 - i), with i the largest integer such
1230 that b << i has at most P significant bits and p2 - i >= Emin - P +
1231 1. */
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001232 i = P - bbits;
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001233 if (i > p2 - (Emin - P + 1))
1234 i = p2 - (Emin - P + 1);
1235 /* increment i so that we shift b by an extra bit; then or-ing a 1 into
1236 the lsb of b gives us rv/2^(bc->scale) + 0.5ulp. */
1237 b = lshift(b, ++i);
1238 if (b == NULL)
1239 return -1;
1240 /* record whether the lsb of rv/2^(bc->scale) is odd: in the exact halfway
1241 case, this is used for round to even. */
1242 odd = b->x[0] & 2;
1243 b->x[0] |= 1;
1244
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001245 p2 -= p5 + i;
1246 d = i2b(1);
1247 if (d == NULL) {
1248 Bfree(b);
1249 return -1;
1250 }
1251 /* Arrange for convenient computation of quotients:
1252 * shift left if necessary so divisor has 4 leading 0 bits.
1253 */
1254 if (p5 > 0) {
1255 d = pow5mult(d, p5);
1256 if (d == NULL) {
1257 Bfree(b);
1258 return -1;
1259 }
1260 }
1261 else if (p5 < 0) {
1262 b = pow5mult(b, -p5);
1263 if (b == NULL) {
1264 Bfree(d);
1265 return -1;
1266 }
1267 }
1268 if (p2 > 0) {
1269 b2 = p2;
1270 d2 = 0;
1271 }
1272 else {
1273 b2 = 0;
1274 d2 = -p2;
1275 }
1276 i = dshift(d, d2);
1277 if ((b2 += i) > 0) {
1278 b = lshift(b, b2);
1279 if (b == NULL) {
1280 Bfree(d);
1281 return -1;
1282 }
1283 }
1284 if ((d2 += i) > 0) {
1285 d = lshift(d, d2);
1286 if (d == NULL) {
1287 Bfree(b);
1288 return -1;
1289 }
1290 }
1291
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001292 /* if b >= d, round down */
Mark Dickinson81612e82010-01-12 23:04:19 +00001293 if (cmp(b, d) >= 0) {
1294 dd = -1;
1295 goto ret;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001296 }
1297
1298 /* Compare b/d with s0 */
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001299 for(i = 0; i < nd0; i++) {
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001300 b = multadd(b, 10, 0);
1301 if (b == NULL) {
1302 Bfree(d);
1303 return -1;
1304 }
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001305 dd = *s0++ - '0' - quorem(b, d);
1306 if (dd)
1307 goto ret;
1308 if (!b->x[0] && b->wds == 1) {
1309 if (i < nd - 1)
1310 dd = 1;
1311 goto ret;
1312 }
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001313 }
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001314 s0++;
1315 for(; i < nd; i++) {
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001316 b = multadd(b, 10, 0);
1317 if (b == NULL) {
1318 Bfree(d);
1319 return -1;
1320 }
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001321 dd = *s0++ - '0' - quorem(b, d);
1322 if (dd)
1323 goto ret;
1324 if (!b->x[0] && b->wds == 1) {
1325 if (i < nd - 1)
1326 dd = 1;
1327 goto ret;
1328 }
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001329 }
1330 if (b->x[0] || b->wds > 1)
1331 dd = -1;
1332 ret:
1333 Bfree(b);
1334 Bfree(d);
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001335 if (dd > 0 || (dd == 0 && odd))
1336 dval(rv) += sulp(rv, bc);
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001337 return 0;
1338}
1339
1340double
1341_Py_dg_strtod(const char *s00, char **se)
1342{
Mark Dickinson45b63652010-01-16 18:10:25 +00001343 int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, e, e1, error;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001344 int esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
1345 const char *s, *s0, *s1;
1346 double aadj, aadj1;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001347 U aadj2, adj, rv, rv0;
Mark Dickinson45b63652010-01-16 18:10:25 +00001348 ULong y, z, abse;
1349 Long L;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001350 BCinfo bc;
1351 Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
1352
Mark Dickinson45b63652010-01-16 18:10:25 +00001353 sign = nz0 = nz = 0;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001354 dval(&rv) = 0.;
1355 for(s = s00;;s++) switch(*s) {
1356 case '-':
1357 sign = 1;
1358 /* no break */
1359 case '+':
1360 if (*++s)
1361 goto break2;
1362 /* no break */
1363 case 0:
1364 goto ret0;
Mark Dickinson725bfd82009-05-03 20:33:40 +00001365 /* modify original dtoa.c so that it doesn't accept leading whitespace
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001366 case '\t':
1367 case '\n':
1368 case '\v':
1369 case '\f':
1370 case '\r':
1371 case ' ':
1372 continue;
Mark Dickinson725bfd82009-05-03 20:33:40 +00001373 */
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001374 default:
1375 goto break2;
1376 }
1377 break2:
1378 if (*s == '0') {
1379 nz0 = 1;
1380 while(*++s == '0') ;
1381 if (!*s)
1382 goto ret;
1383 }
1384 s0 = s;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001385 for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
Mark Dickinson45b63652010-01-16 18:10:25 +00001386 ;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001387 nd0 = nd;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001388 if (c == '.') {
1389 c = *++s;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001390 if (!nd) {
1391 for(; c == '0'; c = *++s)
1392 nz++;
1393 if (c > '0' && c <= '9') {
1394 s0 = s;
1395 nf += nz;
1396 nz = 0;
1397 goto have_dig;
1398 }
1399 goto dig_done;
1400 }
1401 for(; c >= '0' && c <= '9'; c = *++s) {
1402 have_dig:
1403 nz++;
1404 if (c -= '0') {
1405 nf += nz;
Mark Dickinson45b63652010-01-16 18:10:25 +00001406 nd += nz;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001407 nz = 0;
1408 }
1409 }
1410 }
1411 dig_done:
1412 e = 0;
1413 if (c == 'e' || c == 'E') {
1414 if (!nd && !nz && !nz0) {
1415 goto ret0;
1416 }
1417 s00 = s;
1418 esign = 0;
1419 switch(c = *++s) {
1420 case '-':
1421 esign = 1;
1422 case '+':
1423 c = *++s;
1424 }
1425 if (c >= '0' && c <= '9') {
1426 while(c == '0')
1427 c = *++s;
1428 if (c > '0' && c <= '9') {
Mark Dickinson45b63652010-01-16 18:10:25 +00001429 abse = c - '0';
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001430 s1 = s;
1431 while((c = *++s) >= '0' && c <= '9')
Mark Dickinson45b63652010-01-16 18:10:25 +00001432 abse = 10*abse + c - '0';
1433 if (s - s1 > 8 || abse > MAX_ABS_EXP)
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001434 /* Avoid confusion from exponents
1435 * so large that e might overflow.
1436 */
Mark Dickinson81612e82010-01-12 23:04:19 +00001437 e = (int)MAX_ABS_EXP; /* safe for 16 bit ints */
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001438 else
Mark Dickinson45b63652010-01-16 18:10:25 +00001439 e = (int)abse;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001440 if (esign)
1441 e = -e;
1442 }
1443 else
1444 e = 0;
1445 }
1446 else
1447 s = s00;
1448 }
1449 if (!nd) {
1450 if (!nz && !nz0) {
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001451 ret0:
1452 s = s00;
1453 sign = 0;
1454 }
1455 goto ret;
1456 }
Mark Dickinson45b63652010-01-16 18:10:25 +00001457 e -= nf;
1458 if (!nd0)
1459 nd0 = nd;
1460
1461 /* strip trailing zeros */
1462 for (i = nd; i > 0; ) {
1463 /* scan back until we hit a nonzero digit. significant digit 'i'
1464 is s0[i] if i < nd0, s0[i+1] if i >= nd0. */
1465 --i;
1466 if (s0[i < nd0 ? i : i+1] != '0') {
1467 ++i;
1468 break;
1469 }
1470 }
1471 e += nd - i;
1472 nd = i;
1473 if (nd0 > nd)
1474 nd0 = nd;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001475
1476 /* Now we have nd0 digits, starting at s0, followed by a
1477 * decimal point, followed by nd-nd0 digits. The number we're
1478 * after is the integer represented by those digits times
1479 * 10**e */
1480
Mark Dickinson45b63652010-01-16 18:10:25 +00001481 bc.e0 = e1 = e;
1482
1483 /* Summary of parsing results. The parsing stage gives values
1484 * s0, nd0, nd, e, sign, where:
1485 *
1486 * - s0 points to the first significant digit of the input string s00;
1487 *
1488 * - nd is the total number of significant digits (here, and
1489 * below, 'significant digits' means the set of digits of the
1490 * significand of the input that remain after ignoring leading
1491 * and trailing zeros.
1492 *
1493 * - nd0 indicates the position of the decimal point (if
1494 * present): so the nd significant digits are in s0[0:nd0] and
1495 * s0[nd0+1:nd+1] using the usual Python half-open slice
1496 * notation. (If nd0 < nd, then s0[nd0] necessarily contains
1497 * a '.' character; if nd0 == nd, then it could be anything.)
1498 *
1499 * - e is the adjusted exponent: the absolute value of the number
1500 * represented by the original input string is n * 10**e, where
1501 * n is the integer represented by the concatenation of
1502 * s0[0:nd0] and s0[nd0+1:nd+1]
1503 *
1504 * - sign gives the sign of the input: 1 for negative, 0 for positive
1505 *
1506 * - the first and last significant digits are nonzero
1507 */
1508
1509 /* put first DBL_DIG+1 digits into integer y and z.
1510 *
1511 * - y contains the value represented by the first min(9, nd)
1512 * significant digits
1513 *
1514 * - if nd > 9, z contains the value represented by significant digits
1515 * with indices in [9, min(16, nd)). So y * 10**(min(16, nd) - 9) + z
1516 * gives the value represented by the first min(16, nd) sig. digits.
1517 */
1518
1519 y = z = 0;
1520 for (i = 0; i < nd; i++) {
1521 if (i < 9)
1522 y = 10*y + s0[i < nd0 ? i : i+1] - '0';
1523 else if (i < DBL_DIG+1)
1524 z = 10*z + s0[i < nd0 ? i : i+1] - '0';
1525 else
1526 break;
1527 }
1528
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001529 k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
1530 dval(&rv) = y;
1531 if (k > 9) {
1532 dval(&rv) = tens[k - 9] * dval(&rv) + z;
1533 }
1534 bd0 = 0;
1535 if (nd <= DBL_DIG
1536 && Flt_Rounds == 1
1537 ) {
1538 if (!e)
1539 goto ret;
1540 if (e > 0) {
1541 if (e <= Ten_pmax) {
1542 dval(&rv) *= tens[e];
1543 goto ret;
1544 }
1545 i = DBL_DIG - nd;
1546 if (e <= Ten_pmax + i) {
1547 /* A fancier test would sometimes let us do
1548 * this for larger i values.
1549 */
1550 e -= i;
1551 dval(&rv) *= tens[i];
1552 dval(&rv) *= tens[e];
1553 goto ret;
1554 }
1555 }
1556 else if (e >= -Ten_pmax) {
1557 dval(&rv) /= tens[-e];
1558 goto ret;
1559 }
1560 }
1561 e1 += nd - k;
1562
1563 bc.scale = 0;
1564
1565 /* Get starting approximation = rv * 10**e1 */
1566
1567 if (e1 > 0) {
1568 if ((i = e1 & 15))
1569 dval(&rv) *= tens[i];
1570 if (e1 &= ~15) {
1571 if (e1 > DBL_MAX_10_EXP) {
1572 ovfl:
1573 errno = ERANGE;
1574 /* Can't trust HUGE_VAL */
1575 word0(&rv) = Exp_mask;
1576 word1(&rv) = 0;
1577 goto ret;
1578 }
1579 e1 >>= 4;
1580 for(j = 0; e1 > 1; j++, e1 >>= 1)
1581 if (e1 & 1)
1582 dval(&rv) *= bigtens[j];
1583 /* The last multiplication could overflow. */
1584 word0(&rv) -= P*Exp_msk1;
1585 dval(&rv) *= bigtens[j];
1586 if ((z = word0(&rv) & Exp_mask)
1587 > Exp_msk1*(DBL_MAX_EXP+Bias-P))
1588 goto ovfl;
1589 if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
1590 /* set to largest number */
1591 /* (Can't trust DBL_MAX) */
1592 word0(&rv) = Big0;
1593 word1(&rv) = Big1;
1594 }
1595 else
1596 word0(&rv) += P*Exp_msk1;
1597 }
1598 }
1599 else if (e1 < 0) {
1600 e1 = -e1;
1601 if ((i = e1 & 15))
1602 dval(&rv) /= tens[i];
1603 if (e1 >>= 4) {
1604 if (e1 >= 1 << n_bigtens)
1605 goto undfl;
1606 if (e1 & Scale_Bit)
1607 bc.scale = 2*P;
1608 for(j = 0; e1 > 0; j++, e1 >>= 1)
1609 if (e1 & 1)
1610 dval(&rv) *= tinytens[j];
1611 if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
1612 >> Exp_shift)) > 0) {
1613 /* scaled rv is denormal; clear j low bits */
1614 if (j >= 32) {
1615 word1(&rv) = 0;
1616 if (j >= 53)
1617 word0(&rv) = (P+2)*Exp_msk1;
1618 else
1619 word0(&rv) &= 0xffffffff << (j-32);
1620 }
1621 else
1622 word1(&rv) &= 0xffffffff << j;
1623 }
1624 if (!dval(&rv)) {
1625 undfl:
1626 dval(&rv) = 0.;
1627 errno = ERANGE;
1628 goto ret;
1629 }
1630 }
1631 }
1632
1633 /* Now the hard part -- adjusting rv to the correct value.*/
1634
1635 /* Put digits into bd: true value = bd * 10^e */
1636
1637 bc.nd = nd;
Mark Dickinson81612e82010-01-12 23:04:19 +00001638 bc.nd0 = nd0; /* Only needed if nd > STRTOD_DIGLIM, but done here */
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001639 /* to silence an erroneous warning about bc.nd0 */
1640 /* possibly not being initialized. */
Mark Dickinson81612e82010-01-12 23:04:19 +00001641 if (nd > STRTOD_DIGLIM) {
1642 /* ASSERT(STRTOD_DIGLIM >= 18); 18 == one more than the */
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001643 /* minimum number of decimal digits to distinguish double values */
1644 /* in IEEE arithmetic. */
Mark Dickinson45b63652010-01-16 18:10:25 +00001645
1646 /* Truncate input to 18 significant digits, then discard any trailing
1647 zeros on the result by updating nd, nd0, e and y suitably. (There's
1648 no need to update z; it's not reused beyond this point.) */
1649 for (i = 18; i > 0; ) {
1650 /* scan back until we hit a nonzero digit. significant digit 'i'
1651 is s0[i] if i < nd0, s0[i+1] if i >= nd0. */
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001652 --i;
Mark Dickinson45b63652010-01-16 18:10:25 +00001653 if (s0[i < nd0 ? i : i+1] != '0') {
1654 ++i;
1655 break;
1656 }
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001657 }
1658 e += nd - i;
1659 nd = i;
1660 if (nd0 > nd)
1661 nd0 = nd;
1662 if (nd < 9) { /* must recompute y */
1663 y = 0;
1664 for(i = 0; i < nd0; ++i)
1665 y = 10*y + s0[i] - '0';
Mark Dickinson45b63652010-01-16 18:10:25 +00001666 for(; i < nd; ++i)
1667 y = 10*y + s0[i+1] - '0';
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001668 }
1669 }
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001670 bd0 = s2b(s0, nd0, nd, y);
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001671 if (bd0 == NULL)
1672 goto failed_malloc;
1673
1674 for(;;) {
1675 bd = Balloc(bd0->k);
1676 if (bd == NULL) {
1677 Bfree(bd0);
1678 goto failed_malloc;
1679 }
1680 Bcopy(bd, bd0);
1681 bb = d2b(&rv, &bbe, &bbbits); /* rv = bb * 2^bbe */
1682 if (bb == NULL) {
1683 Bfree(bd);
1684 Bfree(bd0);
1685 goto failed_malloc;
1686 }
1687 bs = i2b(1);
1688 if (bs == NULL) {
1689 Bfree(bb);
1690 Bfree(bd);
1691 Bfree(bd0);
1692 goto failed_malloc;
1693 }
1694
1695 if (e >= 0) {
1696 bb2 = bb5 = 0;
1697 bd2 = bd5 = e;
1698 }
1699 else {
1700 bb2 = bb5 = -e;
1701 bd2 = bd5 = 0;
1702 }
1703 if (bbe >= 0)
1704 bb2 += bbe;
1705 else
1706 bd2 -= bbe;
1707 bs2 = bb2;
1708 j = bbe - bc.scale;
1709 i = j + bbbits - 1; /* logb(rv) */
1710 if (i < Emin) /* denormal */
1711 j += P - Emin;
1712 else
1713 j = P + 1 - bbbits;
1714 bb2 += j;
1715 bd2 += j;
1716 bd2 += bc.scale;
1717 i = bb2 < bd2 ? bb2 : bd2;
1718 if (i > bs2)
1719 i = bs2;
1720 if (i > 0) {
1721 bb2 -= i;
1722 bd2 -= i;
1723 bs2 -= i;
1724 }
1725 if (bb5 > 0) {
1726 bs = pow5mult(bs, bb5);
1727 if (bs == NULL) {
1728 Bfree(bb);
1729 Bfree(bd);
1730 Bfree(bd0);
1731 goto failed_malloc;
1732 }
1733 bb1 = mult(bs, bb);
1734 Bfree(bb);
1735 bb = bb1;
1736 if (bb == NULL) {
1737 Bfree(bs);
1738 Bfree(bd);
1739 Bfree(bd0);
1740 goto failed_malloc;
1741 }
1742 }
1743 if (bb2 > 0) {
1744 bb = lshift(bb, bb2);
1745 if (bb == NULL) {
1746 Bfree(bs);
1747 Bfree(bd);
1748 Bfree(bd0);
1749 goto failed_malloc;
1750 }
1751 }
1752 if (bd5 > 0) {
1753 bd = pow5mult(bd, bd5);
1754 if (bd == NULL) {
1755 Bfree(bb);
1756 Bfree(bs);
1757 Bfree(bd0);
1758 goto failed_malloc;
1759 }
1760 }
1761 if (bd2 > 0) {
1762 bd = lshift(bd, bd2);
1763 if (bd == NULL) {
1764 Bfree(bb);
1765 Bfree(bs);
1766 Bfree(bd0);
1767 goto failed_malloc;
1768 }
1769 }
1770 if (bs2 > 0) {
1771 bs = lshift(bs, bs2);
1772 if (bs == NULL) {
1773 Bfree(bb);
1774 Bfree(bd);
1775 Bfree(bd0);
1776 goto failed_malloc;
1777 }
1778 }
1779 delta = diff(bb, bd);
1780 if (delta == NULL) {
1781 Bfree(bb);
1782 Bfree(bs);
1783 Bfree(bd);
1784 Bfree(bd0);
1785 goto failed_malloc;
1786 }
1787 bc.dsign = delta->sign;
1788 delta->sign = 0;
1789 i = cmp(delta, bs);
1790 if (bc.nd > nd && i <= 0) {
1791 if (bc.dsign)
1792 break; /* Must use bigcomp(). */
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001793
1794 /* Here rv overestimates the truncated decimal value by at most
1795 0.5 ulp(rv). Hence rv either overestimates the true decimal
1796 value by <= 0.5 ulp(rv), or underestimates it by some small
1797 amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of
1798 the true decimal value, so it's possible to exit.
1799
1800 Exception: if scaled rv is a normal exact power of 2, but not
1801 DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the
1802 next double, so the correctly rounded result is either rv - 0.5
1803 ulp(rv) or rv; in this case, use bigcomp to distinguish. */
1804
1805 if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) {
1806 /* rv can't be 0, since it's an overestimate for some
1807 nonzero value. So rv is a normal power of 2. */
1808 j = (int)(word0(&rv) & Exp_mask) >> Exp_shift;
1809 /* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if
1810 rv / 2^bc.scale >= 2^-1021. */
1811 if (j - bc.scale >= 2) {
1812 dval(&rv) -= 0.5 * sulp(&rv, &bc);
1813 break;
1814 }
1815 }
1816
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001817 {
1818 bc.nd = nd;
1819 i = -1; /* Discarded digits make delta smaller. */
1820 }
1821 }
1822
1823 if (i < 0) {
1824 /* Error is less than half an ulp -- check for
1825 * special case of mantissa a power of two.
1826 */
1827 if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask
1828 || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
1829 ) {
1830 break;
1831 }
1832 if (!delta->x[0] && delta->wds <= 1) {
1833 /* exact result */
1834 break;
1835 }
1836 delta = lshift(delta,Log2P);
1837 if (delta == NULL) {
1838 Bfree(bb);
1839 Bfree(bs);
1840 Bfree(bd);
1841 Bfree(bd0);
1842 goto failed_malloc;
1843 }
1844 if (cmp(delta, bs) > 0)
1845 goto drop_down;
1846 break;
1847 }
1848 if (i == 0) {
1849 /* exactly half-way between */
1850 if (bc.dsign) {
1851 if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
1852 && word1(&rv) == (
1853 (bc.scale &&
1854 (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ?
1855 (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
1856 0xffffffff)) {
1857 /*boundary case -- increment exponent*/
1858 word0(&rv) = (word0(&rv) & Exp_mask)
1859 + Exp_msk1
1860 ;
1861 word1(&rv) = 0;
1862 bc.dsign = 0;
1863 break;
1864 }
1865 }
1866 else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
1867 drop_down:
1868 /* boundary case -- decrement exponent */
1869 if (bc.scale) {
1870 L = word0(&rv) & Exp_mask;
1871 if (L <= (2*P+1)*Exp_msk1) {
1872 if (L > (P+2)*Exp_msk1)
1873 /* round even ==> */
1874 /* accept rv */
1875 break;
1876 /* rv = smallest denormal */
Mark Dickinson81612e82010-01-12 23:04:19 +00001877 if (bc.nd >nd)
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001878 break;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001879 goto undfl;
1880 }
1881 }
1882 L = (word0(&rv) & Exp_mask) - Exp_msk1;
1883 word0(&rv) = L | Bndry_mask1;
1884 word1(&rv) = 0xffffffff;
1885 break;
1886 }
1887 if (!(word1(&rv) & LSB))
1888 break;
1889 if (bc.dsign)
1890 dval(&rv) += ulp(&rv);
1891 else {
1892 dval(&rv) -= ulp(&rv);
1893 if (!dval(&rv)) {
Mark Dickinson81612e82010-01-12 23:04:19 +00001894 if (bc.nd >nd)
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001895 break;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001896 goto undfl;
1897 }
1898 }
1899 bc.dsign = 1 - bc.dsign;
1900 break;
1901 }
1902 if ((aadj = ratio(delta, bs)) <= 2.) {
1903 if (bc.dsign)
1904 aadj = aadj1 = 1.;
1905 else if (word1(&rv) || word0(&rv) & Bndry_mask) {
1906 if (word1(&rv) == Tiny1 && !word0(&rv)) {
Mark Dickinson81612e82010-01-12 23:04:19 +00001907 if (bc.nd >nd)
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001908 break;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001909 goto undfl;
1910 }
1911 aadj = 1.;
1912 aadj1 = -1.;
1913 }
1914 else {
1915 /* special case -- power of FLT_RADIX to be */
1916 /* rounded down... */
1917
1918 if (aadj < 2./FLT_RADIX)
1919 aadj = 1./FLT_RADIX;
1920 else
1921 aadj *= 0.5;
1922 aadj1 = -aadj;
1923 }
1924 }
1925 else {
1926 aadj *= 0.5;
1927 aadj1 = bc.dsign ? aadj : -aadj;
1928 if (Flt_Rounds == 0)
1929 aadj1 += 0.5;
1930 }
1931 y = word0(&rv) & Exp_mask;
1932
1933 /* Check for overflow */
1934
1935 if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
1936 dval(&rv0) = dval(&rv);
1937 word0(&rv) -= P*Exp_msk1;
1938 adj.d = aadj1 * ulp(&rv);
1939 dval(&rv) += adj.d;
1940 if ((word0(&rv) & Exp_mask) >=
1941 Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
Mark Dickinsonc4f18682010-01-17 14:39:12 +00001942 if (word0(&rv0) == Big0 && word1(&rv0) == Big1) {
1943 Bfree(bb);
1944 Bfree(bd);
1945 Bfree(bs);
1946 Bfree(bd0);
1947 Bfree(delta);
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001948 goto ovfl;
Mark Dickinsonc4f18682010-01-17 14:39:12 +00001949 }
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001950 word0(&rv) = Big0;
1951 word1(&rv) = Big1;
1952 goto cont;
1953 }
1954 else
1955 word0(&rv) += P*Exp_msk1;
1956 }
1957 else {
1958 if (bc.scale && y <= 2*P*Exp_msk1) {
1959 if (aadj <= 0x7fffffff) {
1960 if ((z = (ULong)aadj) <= 0)
1961 z = 1;
1962 aadj = z;
1963 aadj1 = bc.dsign ? aadj : -aadj;
1964 }
1965 dval(&aadj2) = aadj1;
1966 word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
1967 aadj1 = dval(&aadj2);
1968 }
1969 adj.d = aadj1 * ulp(&rv);
1970 dval(&rv) += adj.d;
1971 }
1972 z = word0(&rv) & Exp_mask;
1973 if (bc.nd == nd) {
1974 if (!bc.scale)
1975 if (y == z) {
1976 /* Can we stop now? */
1977 L = (Long)aadj;
1978 aadj -= L;
1979 /* The tolerances below are conservative. */
1980 if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
1981 if (aadj < .4999999 || aadj > .5000001)
1982 break;
1983 }
1984 else if (aadj < .4999999/FLT_RADIX)
1985 break;
1986 }
1987 }
1988 cont:
1989 Bfree(bb);
1990 Bfree(bd);
1991 Bfree(bs);
1992 Bfree(delta);
1993 }
1994 Bfree(bb);
1995 Bfree(bd);
1996 Bfree(bs);
1997 Bfree(bd0);
1998 Bfree(delta);
1999 if (bc.nd > nd) {
2000 error = bigcomp(&rv, s0, &bc);
2001 if (error)
2002 goto failed_malloc;
2003 }
2004
2005 if (bc.scale) {
2006 word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
2007 word1(&rv0) = 0;
2008 dval(&rv) *= dval(&rv0);
2009 /* try to avoid the bug of testing an 8087 register value */
2010 if (!(word0(&rv) & Exp_mask))
2011 errno = ERANGE;
2012 }
2013 ret:
2014 if (se)
2015 *se = (char *)s;
2016 return sign ? -dval(&rv) : dval(&rv);
2017
2018 failed_malloc:
2019 if (se)
2020 *se = (char *)s00;
2021 errno = ENOMEM;
2022 return -1.0;
2023}
2024
2025static char *
2026rv_alloc(int i)
2027{
2028 int j, k, *r;
2029
2030 j = sizeof(ULong);
2031 for(k = 0;
2032 sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i;
2033 j <<= 1)
2034 k++;
2035 r = (int*)Balloc(k);
2036 if (r == NULL)
2037 return NULL;
2038 *r = k;
2039 return (char *)(r+1);
2040}
2041
2042static char *
2043nrv_alloc(char *s, char **rve, int n)
2044{
2045 char *rv, *t;
2046
2047 rv = rv_alloc(n);
2048 if (rv == NULL)
2049 return NULL;
2050 t = rv;
2051 while((*t = *s++)) t++;
2052 if (rve)
2053 *rve = t;
2054 return rv;
2055}
2056
2057/* freedtoa(s) must be used to free values s returned by dtoa
2058 * when MULTIPLE_THREADS is #defined. It should be used in all cases,
2059 * but for consistency with earlier versions of dtoa, it is optional
2060 * when MULTIPLE_THREADS is not defined.
2061 */
2062
2063void
2064_Py_dg_freedtoa(char *s)
2065{
2066 Bigint *b = (Bigint *)((int *)s - 1);
2067 b->maxwds = 1 << (b->k = *(int*)b);
2068 Bfree(b);
2069}
2070
2071/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
2072 *
2073 * Inspired by "How to Print Floating-Point Numbers Accurately" by
2074 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
2075 *
2076 * Modifications:
2077 * 1. Rather than iterating, we use a simple numeric overestimate
2078 * to determine k = floor(log10(d)). We scale relevant
2079 * quantities using O(log2(k)) rather than O(k) multiplications.
2080 * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
2081 * try to generate digits strictly left to right. Instead, we
2082 * compute with fewer bits and propagate the carry if necessary
2083 * when rounding the final digit up. This is often faster.
2084 * 3. Under the assumption that input will be rounded nearest,
2085 * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
2086 * That is, we allow equality in stopping tests when the
2087 * round-nearest rule will give the same floating-point value
2088 * as would satisfaction of the stopping test with strict
2089 * inequality.
2090 * 4. We remove common factors of powers of 2 from relevant
2091 * quantities.
2092 * 5. When converting floating-point integers less than 1e16,
2093 * we use floating-point arithmetic rather than resorting
2094 * to multiple-precision integers.
2095 * 6. When asked to produce fewer than 15 digits, we first try
2096 * to get by with floating-point arithmetic; we resort to
2097 * multiple-precision integer arithmetic only if we cannot
2098 * guarantee that the floating-point calculation has given
2099 * the correctly rounded result. For k requested digits and
2100 * "uniformly" distributed input, the probability is
2101 * something like 10^(k-15) that we must resort to the Long
2102 * calculation.
2103 */
2104
2105/* Additional notes (METD): (1) returns NULL on failure. (2) to avoid memory
2106 leakage, a successful call to _Py_dg_dtoa should always be matched by a
2107 call to _Py_dg_freedtoa. */
2108
2109char *
2110_Py_dg_dtoa(double dd, int mode, int ndigits,
2111 int *decpt, int *sign, char **rve)
2112{
2113 /* Arguments ndigits, decpt, sign are similar to those
2114 of ecvt and fcvt; trailing zeros are suppressed from
2115 the returned string. If not null, *rve is set to point
2116 to the end of the return value. If d is +-Infinity or NaN,
2117 then *decpt is set to 9999.
2118
2119 mode:
2120 0 ==> shortest string that yields d when read in
2121 and rounded to nearest.
2122 1 ==> like 0, but with Steele & White stopping rule;
2123 e.g. with IEEE P754 arithmetic , mode 0 gives
2124 1e23 whereas mode 1 gives 9.999999999999999e22.
2125 2 ==> max(1,ndigits) significant digits. This gives a
2126 return value similar to that of ecvt, except
2127 that trailing zeros are suppressed.
2128 3 ==> through ndigits past the decimal point. This
2129 gives a return value similar to that from fcvt,
2130 except that trailing zeros are suppressed, and
2131 ndigits can be negative.
2132 4,5 ==> similar to 2 and 3, respectively, but (in
2133 round-nearest mode) with the tests of mode 0 to
2134 possibly return a shorter string that rounds to d.
2135 With IEEE arithmetic and compilation with
2136 -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
2137 as modes 2 and 3 when FLT_ROUNDS != 1.
2138 6-9 ==> Debugging modes similar to mode - 4: don't try
2139 fast floating-point estimate (if applicable).
2140
2141 Values of mode other than 0-9 are treated as mode 0.
2142
2143 Sufficient space is allocated to the return value
2144 to hold the suppressed trailing zeros.
2145 */
2146
2147 int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
2148 j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
2149 spec_case, try_quick;
2150 Long L;
2151 int denorm;
2152 ULong x;
2153 Bigint *b, *b1, *delta, *mlo, *mhi, *S;
2154 U d2, eps, u;
2155 double ds;
2156 char *s, *s0;
2157
2158 /* set pointers to NULL, to silence gcc compiler warnings and make
2159 cleanup easier on error */
2160 mlo = mhi = b = S = 0;
2161 s0 = 0;
2162
2163 u.d = dd;
2164 if (word0(&u) & Sign_bit) {
2165 /* set sign for everything, including 0's and NaNs */
2166 *sign = 1;
2167 word0(&u) &= ~Sign_bit; /* clear sign bit */
2168 }
2169 else
2170 *sign = 0;
2171
2172 /* quick return for Infinities, NaNs and zeros */
2173 if ((word0(&u) & Exp_mask) == Exp_mask)
2174 {
2175 /* Infinity or NaN */
2176 *decpt = 9999;
2177 if (!word1(&u) && !(word0(&u) & 0xfffff))
2178 return nrv_alloc("Infinity", rve, 8);
2179 return nrv_alloc("NaN", rve, 3);
2180 }
2181 if (!dval(&u)) {
2182 *decpt = 1;
2183 return nrv_alloc("0", rve, 1);
2184 }
2185
2186 /* compute k = floor(log10(d)). The computation may leave k
2187 one too large, but should never leave k too small. */
2188 b = d2b(&u, &be, &bbits);
2189 if (b == NULL)
2190 goto failed_malloc;
2191 if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
2192 dval(&d2) = dval(&u);
2193 word0(&d2) &= Frac_mask1;
2194 word0(&d2) |= Exp_11;
2195
2196 /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
2197 * log10(x) = log(x) / log(10)
2198 * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
2199 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
2200 *
2201 * This suggests computing an approximation k to log10(d) by
2202 *
2203 * k = (i - Bias)*0.301029995663981
2204 * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
2205 *
2206 * We want k to be too large rather than too small.
2207 * The error in the first-order Taylor series approximation
2208 * is in our favor, so we just round up the constant enough
2209 * to compensate for any error in the multiplication of
2210 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
2211 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
2212 * adding 1e-13 to the constant term more than suffices.
2213 * Hence we adjust the constant term to 0.1760912590558.
2214 * (We could get a more accurate k by invoking log10,
2215 * but this is probably not worthwhile.)
2216 */
2217
2218 i -= Bias;
2219 denorm = 0;
2220 }
2221 else {
2222 /* d is denormalized */
2223
2224 i = bbits + be + (Bias + (P-1) - 1);
2225 x = i > 32 ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
2226 : word1(&u) << (32 - i);
2227 dval(&d2) = x;
2228 word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
2229 i -= (Bias + (P-1) - 1) + 1;
2230 denorm = 1;
2231 }
2232 ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 +
2233 i*0.301029995663981;
2234 k = (int)ds;
2235 if (ds < 0. && ds != k)
2236 k--; /* want k = floor(ds) */
2237 k_check = 1;
2238 if (k >= 0 && k <= Ten_pmax) {
2239 if (dval(&u) < tens[k])
2240 k--;
2241 k_check = 0;
2242 }
2243 j = bbits - i - 1;
2244 if (j >= 0) {
2245 b2 = 0;
2246 s2 = j;
2247 }
2248 else {
2249 b2 = -j;
2250 s2 = 0;
2251 }
2252 if (k >= 0) {
2253 b5 = 0;
2254 s5 = k;
2255 s2 += k;
2256 }
2257 else {
2258 b2 -= k;
2259 b5 = -k;
2260 s5 = 0;
2261 }
2262 if (mode < 0 || mode > 9)
2263 mode = 0;
2264
2265 try_quick = 1;
2266
2267 if (mode > 5) {
2268 mode -= 4;
2269 try_quick = 0;
2270 }
2271 leftright = 1;
2272 ilim = ilim1 = -1; /* Values for cases 0 and 1; done here to */
2273 /* silence erroneous "gcc -Wall" warning. */
2274 switch(mode) {
2275 case 0:
2276 case 1:
2277 i = 18;
2278 ndigits = 0;
2279 break;
2280 case 2:
2281 leftright = 0;
2282 /* no break */
2283 case 4:
2284 if (ndigits <= 0)
2285 ndigits = 1;
2286 ilim = ilim1 = i = ndigits;
2287 break;
2288 case 3:
2289 leftright = 0;
2290 /* no break */
2291 case 5:
2292 i = ndigits + k + 1;
2293 ilim = i;
2294 ilim1 = i - 1;
2295 if (i <= 0)
2296 i = 1;
2297 }
2298 s0 = rv_alloc(i);
2299 if (s0 == NULL)
2300 goto failed_malloc;
2301 s = s0;
2302
2303
2304 if (ilim >= 0 && ilim <= Quick_max && try_quick) {
2305
2306 /* Try to get by with floating-point arithmetic. */
2307
2308 i = 0;
2309 dval(&d2) = dval(&u);
2310 k0 = k;
2311 ilim0 = ilim;
2312 ieps = 2; /* conservative */
2313 if (k > 0) {
2314 ds = tens[k&0xf];
2315 j = k >> 4;
2316 if (j & Bletch) {
2317 /* prevent overflows */
2318 j &= Bletch - 1;
2319 dval(&u) /= bigtens[n_bigtens-1];
2320 ieps++;
2321 }
2322 for(; j; j >>= 1, i++)
2323 if (j & 1) {
2324 ieps++;
2325 ds *= bigtens[i];
2326 }
2327 dval(&u) /= ds;
2328 }
2329 else if ((j1 = -k)) {
2330 dval(&u) *= tens[j1 & 0xf];
2331 for(j = j1 >> 4; j; j >>= 1, i++)
2332 if (j & 1) {
2333 ieps++;
2334 dval(&u) *= bigtens[i];
2335 }
2336 }
2337 if (k_check && dval(&u) < 1. && ilim > 0) {
2338 if (ilim1 <= 0)
2339 goto fast_failed;
2340 ilim = ilim1;
2341 k--;
2342 dval(&u) *= 10.;
2343 ieps++;
2344 }
2345 dval(&eps) = ieps*dval(&u) + 7.;
2346 word0(&eps) -= (P-1)*Exp_msk1;
2347 if (ilim == 0) {
2348 S = mhi = 0;
2349 dval(&u) -= 5.;
2350 if (dval(&u) > dval(&eps))
2351 goto one_digit;
2352 if (dval(&u) < -dval(&eps))
2353 goto no_digits;
2354 goto fast_failed;
2355 }
2356 if (leftright) {
2357 /* Use Steele & White method of only
2358 * generating digits needed.
2359 */
2360 dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
2361 for(i = 0;;) {
2362 L = (Long)dval(&u);
2363 dval(&u) -= L;
2364 *s++ = '0' + (int)L;
2365 if (dval(&u) < dval(&eps))
2366 goto ret1;
2367 if (1. - dval(&u) < dval(&eps))
2368 goto bump_up;
2369 if (++i >= ilim)
2370 break;
2371 dval(&eps) *= 10.;
2372 dval(&u) *= 10.;
2373 }
2374 }
2375 else {
2376 /* Generate ilim digits, then fix them up. */
2377 dval(&eps) *= tens[ilim-1];
2378 for(i = 1;; i++, dval(&u) *= 10.) {
2379 L = (Long)(dval(&u));
2380 if (!(dval(&u) -= L))
2381 ilim = i;
2382 *s++ = '0' + (int)L;
2383 if (i == ilim) {
2384 if (dval(&u) > 0.5 + dval(&eps))
2385 goto bump_up;
2386 else if (dval(&u) < 0.5 - dval(&eps)) {
2387 while(*--s == '0');
2388 s++;
2389 goto ret1;
2390 }
2391 break;
2392 }
2393 }
2394 }
2395 fast_failed:
2396 s = s0;
2397 dval(&u) = dval(&d2);
2398 k = k0;
2399 ilim = ilim0;
2400 }
2401
2402 /* Do we have a "small" integer? */
2403
2404 if (be >= 0 && k <= Int_max) {
2405 /* Yes. */
2406 ds = tens[k];
2407 if (ndigits < 0 && ilim <= 0) {
2408 S = mhi = 0;
2409 if (ilim < 0 || dval(&u) <= 5*ds)
2410 goto no_digits;
2411 goto one_digit;
2412 }
2413 for(i = 1;; i++, dval(&u) *= 10.) {
2414 L = (Long)(dval(&u) / ds);
2415 dval(&u) -= L*ds;
2416 *s++ = '0' + (int)L;
2417 if (!dval(&u)) {
2418 break;
2419 }
2420 if (i == ilim) {
2421 dval(&u) += dval(&u);
2422 if (dval(&u) > ds || (dval(&u) == ds && L & 1)) {
2423 bump_up:
2424 while(*--s == '9')
2425 if (s == s0) {
2426 k++;
2427 *s = '0';
2428 break;
2429 }
2430 ++*s++;
2431 }
2432 break;
2433 }
2434 }
2435 goto ret1;
2436 }
2437
2438 m2 = b2;
2439 m5 = b5;
2440 if (leftright) {
2441 i =
2442 denorm ? be + (Bias + (P-1) - 1 + 1) :
2443 1 + P - bbits;
2444 b2 += i;
2445 s2 += i;
2446 mhi = i2b(1);
2447 if (mhi == NULL)
2448 goto failed_malloc;
2449 }
2450 if (m2 > 0 && s2 > 0) {
2451 i = m2 < s2 ? m2 : s2;
2452 b2 -= i;
2453 m2 -= i;
2454 s2 -= i;
2455 }
2456 if (b5 > 0) {
2457 if (leftright) {
2458 if (m5 > 0) {
2459 mhi = pow5mult(mhi, m5);
2460 if (mhi == NULL)
2461 goto failed_malloc;
2462 b1 = mult(mhi, b);
2463 Bfree(b);
2464 b = b1;
2465 if (b == NULL)
2466 goto failed_malloc;
2467 }
2468 if ((j = b5 - m5)) {
2469 b = pow5mult(b, j);
2470 if (b == NULL)
2471 goto failed_malloc;
2472 }
2473 }
2474 else {
2475 b = pow5mult(b, b5);
2476 if (b == NULL)
2477 goto failed_malloc;
2478 }
2479 }
2480 S = i2b(1);
2481 if (S == NULL)
2482 goto failed_malloc;
2483 if (s5 > 0) {
2484 S = pow5mult(S, s5);
2485 if (S == NULL)
2486 goto failed_malloc;
2487 }
2488
2489 /* Check for special case that d is a normalized power of 2. */
2490
2491 spec_case = 0;
2492 if ((mode < 2 || leftright)
2493 ) {
2494 if (!word1(&u) && !(word0(&u) & Bndry_mask)
2495 && word0(&u) & (Exp_mask & ~Exp_msk1)
2496 ) {
2497 /* The special case */
2498 b2 += Log2P;
2499 s2 += Log2P;
2500 spec_case = 1;
2501 }
2502 }
2503
2504 /* Arrange for convenient computation of quotients:
2505 * shift left if necessary so divisor has 4 leading 0 bits.
2506 *
2507 * Perhaps we should just compute leading 28 bits of S once
2508 * and for all and pass them and a shift to quorem, so it
2509 * can do shifts and ors to compute the numerator for q.
2510 */
2511 if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f))
2512 i = 32 - i;
2513#define iInc 28
2514 i = dshift(S, s2);
2515 b2 += i;
2516 m2 += i;
2517 s2 += i;
2518 if (b2 > 0) {
2519 b = lshift(b, b2);
2520 if (b == NULL)
2521 goto failed_malloc;
2522 }
2523 if (s2 > 0) {
2524 S = lshift(S, s2);
2525 if (S == NULL)
2526 goto failed_malloc;
2527 }
2528 if (k_check) {
2529 if (cmp(b,S) < 0) {
2530 k--;
2531 b = multadd(b, 10, 0); /* we botched the k estimate */
2532 if (b == NULL)
2533 goto failed_malloc;
2534 if (leftright) {
2535 mhi = multadd(mhi, 10, 0);
2536 if (mhi == NULL)
2537 goto failed_malloc;
2538 }
2539 ilim = ilim1;
2540 }
2541 }
2542 if (ilim <= 0 && (mode == 3 || mode == 5)) {
2543 if (ilim < 0) {
2544 /* no digits, fcvt style */
2545 no_digits:
2546 k = -1 - ndigits;
2547 goto ret;
2548 }
2549 else {
2550 S = multadd(S, 5, 0);
2551 if (S == NULL)
2552 goto failed_malloc;
2553 if (cmp(b, S) <= 0)
2554 goto no_digits;
2555 }
2556 one_digit:
2557 *s++ = '1';
2558 k++;
2559 goto ret;
2560 }
2561 if (leftright) {
2562 if (m2 > 0) {
2563 mhi = lshift(mhi, m2);
2564 if (mhi == NULL)
2565 goto failed_malloc;
2566 }
2567
2568 /* Compute mlo -- check for special case
2569 * that d is a normalized power of 2.
2570 */
2571
2572 mlo = mhi;
2573 if (spec_case) {
2574 mhi = Balloc(mhi->k);
2575 if (mhi == NULL)
2576 goto failed_malloc;
2577 Bcopy(mhi, mlo);
2578 mhi = lshift(mhi, Log2P);
2579 if (mhi == NULL)
2580 goto failed_malloc;
2581 }
2582
2583 for(i = 1;;i++) {
2584 dig = quorem(b,S) + '0';
2585 /* Do we yet have the shortest decimal string
2586 * that will round to d?
2587 */
2588 j = cmp(b, mlo);
2589 delta = diff(S, mhi);
2590 if (delta == NULL)
2591 goto failed_malloc;
2592 j1 = delta->sign ? 1 : cmp(b, delta);
2593 Bfree(delta);
2594 if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
2595 ) {
2596 if (dig == '9')
2597 goto round_9_up;
2598 if (j > 0)
2599 dig++;
2600 *s++ = dig;
2601 goto ret;
2602 }
2603 if (j < 0 || (j == 0 && mode != 1
2604 && !(word1(&u) & 1)
2605 )) {
2606 if (!b->x[0] && b->wds <= 1) {
2607 goto accept_dig;
2608 }
2609 if (j1 > 0) {
2610 b = lshift(b, 1);
2611 if (b == NULL)
2612 goto failed_malloc;
2613 j1 = cmp(b, S);
2614 if ((j1 > 0 || (j1 == 0 && dig & 1))
2615 && dig++ == '9')
2616 goto round_9_up;
2617 }
2618 accept_dig:
2619 *s++ = dig;
2620 goto ret;
2621 }
2622 if (j1 > 0) {
2623 if (dig == '9') { /* possible if i == 1 */
2624 round_9_up:
2625 *s++ = '9';
2626 goto roundoff;
2627 }
2628 *s++ = dig + 1;
2629 goto ret;
2630 }
2631 *s++ = dig;
2632 if (i == ilim)
2633 break;
2634 b = multadd(b, 10, 0);
2635 if (b == NULL)
2636 goto failed_malloc;
2637 if (mlo == mhi) {
2638 mlo = mhi = multadd(mhi, 10, 0);
2639 if (mlo == NULL)
2640 goto failed_malloc;
2641 }
2642 else {
2643 mlo = multadd(mlo, 10, 0);
2644 if (mlo == NULL)
2645 goto failed_malloc;
2646 mhi = multadd(mhi, 10, 0);
2647 if (mhi == NULL)
2648 goto failed_malloc;
2649 }
2650 }
2651 }
2652 else
2653 for(i = 1;; i++) {
2654 *s++ = dig = quorem(b,S) + '0';
2655 if (!b->x[0] && b->wds <= 1) {
2656 goto ret;
2657 }
2658 if (i >= ilim)
2659 break;
2660 b = multadd(b, 10, 0);
2661 if (b == NULL)
2662 goto failed_malloc;
2663 }
2664
2665 /* Round off last digit */
2666
2667 b = lshift(b, 1);
2668 if (b == NULL)
2669 goto failed_malloc;
2670 j = cmp(b, S);
2671 if (j > 0 || (j == 0 && dig & 1)) {
2672 roundoff:
2673 while(*--s == '9')
2674 if (s == s0) {
2675 k++;
2676 *s++ = '1';
2677 goto ret;
2678 }
2679 ++*s++;
2680 }
2681 else {
2682 while(*--s == '0');
2683 s++;
2684 }
2685 ret:
2686 Bfree(S);
2687 if (mhi) {
2688 if (mlo && mlo != mhi)
2689 Bfree(mlo);
2690 Bfree(mhi);
2691 }
2692 ret1:
2693 Bfree(b);
2694 *s = 0;
2695 *decpt = k + 1;
2696 if (rve)
2697 *rve = s;
2698 return s0;
2699 failed_malloc:
2700 if (S)
2701 Bfree(S);
2702 if (mlo && mlo != mhi)
2703 Bfree(mlo);
2704 if (mhi)
2705 Bfree(mhi);
2706 if (b)
2707 Bfree(b);
2708 if (s0)
2709 _Py_dg_freedtoa(s0);
2710 return NULL;
2711}
2712#ifdef __cplusplus
2713}
2714#endif
2715
2716#endif /* PY_NO_SHORT_FLOAT_REPR */