blob: ae5182ad3dd349e139ca68278fabc66329b282ca [file] [log] [blame]
Guido van Rossumf06ee5f1996-11-27 19:52:01 +00001#! /usr/bin/env python
Guido van Rossum81762581992-04-21 15:36:23 +00002#
Guido van Rossumb6775db1994-08-01 11:34:53 +00003# Class for profiling python code. rev 1.0 6/2/94
Guido van Rossum81762581992-04-21 15:36:23 +00004#
Guido van Rossumb6775db1994-08-01 11:34:53 +00005# Based on prior profile module by Sjoerd Mullender...
6# which was hacked somewhat by: Guido van Rossum
7#
8# See profile.doc for more information
9
10
11# Copyright 1994, by InfoSeek Corporation, all rights reserved.
12# Written by James Roskind
13#
14# Permission to use, copy, modify, and distribute this Python software
15# and its associated documentation for any purpose (subject to the
16# restriction in the following sentence) without fee is hereby granted,
17# provided that the above copyright notice appears in all copies, and
18# that both that copyright notice and this permission notice appear in
19# supporting documentation, and that the name of InfoSeek not be used in
20# advertising or publicity pertaining to distribution of the software
21# without specific, written prior permission. This permission is
22# explicitly restricted to the copying and modification of the software
23# to remain in Python, compiled Python, or other languages (such as C)
24# wherein the modified or derived code is exclusively imported into a
25# Python module.
26#
27# INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
28# SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
29# FITNESS. IN NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY
30# SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
31# RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
32# CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
33# CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
34
35
Guido van Rossum81762581992-04-21 15:36:23 +000036
37import sys
Guido van Rossum4e160981992-09-02 20:43:20 +000038import os
Guido van Rossumb6775db1994-08-01 11:34:53 +000039import time
Guido van Rossum4e160981992-09-02 20:43:20 +000040import string
Guido van Rossum4e160981992-09-02 20:43:20 +000041import marshal
Guido van Rossum81762581992-04-21 15:36:23 +000042
Guido van Rossum81762581992-04-21 15:36:23 +000043
Guido van Rossumb6775db1994-08-01 11:34:53 +000044# Global variables
45func_norm_dict = {}
46func_norm_counter = 0
Guido van Rossum4f399fb1995-09-30 16:48:54 +000047if hasattr(os, 'getpid'):
48 pid_string = `os.getpid()`
49else:
50 pid_string = ''
Guido van Rossum81762581992-04-21 15:36:23 +000051
Guido van Rossum81762581992-04-21 15:36:23 +000052
Guido van Rossumb6775db1994-08-01 11:34:53 +000053# Sample timer for use with
54#i_count = 0
55#def integer_timer():
56# global i_count
57# i_count = i_count + 1
58# return i_count
59#itimes = integer_timer # replace with C coded timer returning integers
Guido van Rossum81762581992-04-21 15:36:23 +000060
Guido van Rossumb6775db1994-08-01 11:34:53 +000061#**************************************************************************
62# The following are the static member functions for the profiler class
63# Note that an instance of Profile() is *not* needed to call them.
64#**************************************************************************
Guido van Rossum81762581992-04-21 15:36:23 +000065
Guido van Rossum4e160981992-09-02 20:43:20 +000066
67# simplified user interface
68def run(statement, *args):
Guido van Rossum7bc817d1993-12-17 15:25:27 +000069 prof = Profile()
Guido van Rossum4e160981992-09-02 20:43:20 +000070 try:
Guido van Rossumb6775db1994-08-01 11:34:53 +000071 prof = prof.run(statement)
Guido van Rossum4e160981992-09-02 20:43:20 +000072 except SystemExit:
73 pass
Guido van Rossumb6775db1994-08-01 11:34:53 +000074 if args:
Guido van Rossum4e160981992-09-02 20:43:20 +000075 prof.dump_stats(args[0])
Guido van Rossumb6775db1994-08-01 11:34:53 +000076 else:
77 return prof.print_stats()
Guido van Rossume61fa0a1993-10-22 13:56:35 +000078
79# print help
80def help():
81 for dirname in sys.path:
82 fullname = os.path.join(dirname, 'profile.doc')
83 if os.path.exists(fullname):
84 sts = os.system('${PAGER-more} '+fullname)
85 if sts: print '*** Pager exit status:', sts
86 break
87 else:
88 print 'Sorry, can\'t find the help file "profile.doc"',
89 print 'along the Python search path'
Guido van Rossumb6775db1994-08-01 11:34:53 +000090
91
92#**************************************************************************
93# class Profile documentation:
94#**************************************************************************
95# self.cur is always a tuple. Each such tuple corresponds to a stack
96# frame that is currently active (self.cur[-2]). The following are the
97# definitions of its members. We use this external "parallel stack" to
98# avoid contaminating the program that we are profiling. (old profiler
99# used to write into the frames local dictionary!!) Derived classes
100# can change the definition of some entries, as long as they leave
101# [-2:] intact.
102#
103# [ 0] = Time that needs to be charged to the parent frame's function. It is
104# used so that a function call will not have to access the timing data
105# for the parents frame.
106# [ 1] = Total time spent in this frame's function, excluding time in
107# subfunctions
108# [ 2] = Cumulative time spent in this frame's function, including time in
109# all subfunctions to this frame.
110# [-3] = Name of the function that corresonds to this frame.
111# [-2] = Actual frame that we correspond to (used to sync exception handling)
112# [-1] = Our parent 6-tuple (corresonds to frame.f_back)
113#**************************************************************************
114# Timing data for each function is stored as a 5-tuple in the dictionary
115# self.timings[]. The index is always the name stored in self.cur[4].
116# The following are the definitions of the members:
117#
118# [0] = The number of times this function was called, not counting direct
119# or indirect recursion,
120# [1] = Number of times this function appears on the stack, minus one
121# [2] = Total time spent internal to this function
122# [3] = Cumulative time that this function was present on the stack. In
123# non-recursive functions, this is the total execution time from start
124# to finish of each invocation of a function, including time spent in
125# all subfunctions.
126# [5] = A dictionary indicating for each function name, the number of times
127# it was called by us.
128#**************************************************************************
129# We produce function names via a repr() call on the f_code object during
130# profiling. This save a *lot* of CPU time. This results in a string that
131# always looks like:
132# <code object main at 87090, file "/a/lib/python-local/myfib.py", line 76>
133# After we "normalize it, it is a tuple of filename, line, function-name.
134# We wait till we are done profiling to do the normalization.
135# *IF* this repr format changes, then only the normalization routine should
136# need to be fixed.
137#**************************************************************************
138class Profile:
139
Guido van Rossum4f399fb1995-09-30 16:48:54 +0000140 def __init__(self, timer=None):
Guido van Rossumb6775db1994-08-01 11:34:53 +0000141 self.timings = {}
142 self.cur = None
143 self.cmd = ""
144
145 self.dispatch = { \
146 'call' : self.trace_dispatch_call, \
147 'return' : self.trace_dispatch_return, \
148 'exception': self.trace_dispatch_exception, \
149 }
150
Guido van Rossum4f399fb1995-09-30 16:48:54 +0000151 if not timer:
152 if hasattr(os, 'times'):
153 self.timer = os.times
154 self.dispatcher = self.trace_dispatch
Guido van Rossumcbf3dd51997-10-08 15:23:02 +0000155 elif os.name == 'mac':
156 import MacOS
157 self.timer = MacOS.GetTicks
158 self.dispatcher = self.trace_dispatch_mac
159 self.get_time = self.get_time_mac
Guido van Rossum4f399fb1995-09-30 16:48:54 +0000160 else:
161 self.timer = time.time
162 self.dispatcher = self.trace_dispatch_i
Guido van Rossumb6775db1994-08-01 11:34:53 +0000163 else:
Guido van Rossum4f399fb1995-09-30 16:48:54 +0000164 self.timer = timer
Guido van Rossumb6775db1994-08-01 11:34:53 +0000165 t = self.timer() # test out timer function
166 try:
167 if len(t) == 2:
168 self.dispatcher = self.trace_dispatch
169 else:
Guido van Rossum4f399fb1995-09-30 16:48:54 +0000170 self.dispatcher = self.trace_dispatch_l
171 except TypeError:
Guido van Rossumb6775db1994-08-01 11:34:53 +0000172 self.dispatcher = self.trace_dispatch_i
173 self.t = self.get_time()
174 self.simulate_call('profiler')
175
176
177 def get_time(self): # slow simulation of method to acquire time
178 t = self.timer()
179 if type(t) == type(()) or type(t) == type([]):
180 t = reduce(lambda x,y: x+y, t, 0)
181 return t
182
Guido van Rossumcbf3dd51997-10-08 15:23:02 +0000183 def get_time_mac(self):
184 return self.timer()/60.0
Guido van Rossumb6775db1994-08-01 11:34:53 +0000185
186 # Heavily optimized dispatch routine for os.times() timer
187
188 def trace_dispatch(self, frame, event, arg):
189 t = self.timer()
190 t = t[0] + t[1] - self.t # No Calibration constant
191 # t = t[0] + t[1] - self.t - .00053 # Calibration constant
192
193 if self.dispatch[event](frame,t):
194 t = self.timer()
195 self.t = t[0] + t[1]
196 else:
197 r = self.timer()
198 self.t = r[0] + r[1] - t # put back unrecorded delta
199 return
200
201
202
203 # Dispatch routine for best timer program (return = scalar integer)
204
205 def trace_dispatch_i(self, frame, event, arg):
206 t = self.timer() - self.t # - 1 # Integer calibration constant
207 if self.dispatch[event](frame,t):
208 self.t = self.timer()
209 else:
210 self.t = self.timer() - t # put back unrecorded delta
211 return
Guido van Rossumcbf3dd51997-10-08 15:23:02 +0000212
213 # Dispatch routine for macintosh (timer returns time in ticks of 1/60th second)
214
215 def trace_dispatch_mac(self, frame, event, arg):
216 t = self.timer()/60.0 - self.t # - 1 # Integer calibration constant
217 if self.dispatch[event](frame,t):
218 self.t = self.timer()/60.0
219 else:
220 self.t = self.timer()/60.0 - t # put back unrecorded delta
221 return
Guido van Rossumb6775db1994-08-01 11:34:53 +0000222
223
224 # SLOW generic dispatch rountine for timer returning lists of numbers
225
226 def trace_dispatch_l(self, frame, event, arg):
227 t = self.get_time() - self.t
228
229 if self.dispatch[event](frame,t):
230 self.t = self.get_time()
231 else:
232 self.t = self.get_time()-t # put back unrecorded delta
233 return
234
235
236 def trace_dispatch_exception(self, frame, t):
237 rt, rtt, rct, rfn, rframe, rcur = self.cur
238 if (not rframe is frame) and rcur:
239 return self.trace_dispatch_return(rframe, t)
240 return 0
241
242
243 def trace_dispatch_call(self, frame, t):
244 fn = `frame.f_code`
245
246 # The following should be about the best approach, but
247 # we would need a function that maps from id() back to
248 # the actual code object.
249 # fn = id(frame.f_code)
250 # Note we would really use our own function, which would
251 # return the code address, *and* bump the ref count. We
252 # would then fix up the normalize function to do the
253 # actualy repr(fn) call.
254
255 # The following is an interesting alternative
256 # It doesn't do as good a job, and it doesn't run as
257 # fast 'cause repr() is written in C, and this is Python.
258 #fcode = frame.f_code
259 #code = fcode.co_code
260 #if ord(code[0]) == 127: # == SET_LINENO
261 # # see "opcode.h" in the Python source
262 # fn = (fcode.co_filename, ord(code[1]) | \
263 # ord(code[2]) << 8, fcode.co_name)
264 #else:
265 # fn = (fcode.co_filename, 0, fcode.co_name)
266
267 self.cur = (t, 0, 0, fn, frame, self.cur)
268 if self.timings.has_key(fn):
269 cc, ns, tt, ct, callers = self.timings[fn]
270 self.timings[fn] = cc, ns + 1, tt, ct, callers
271 else:
272 self.timings[fn] = 0, 0, 0, 0, {}
273 return 1
274
275 def trace_dispatch_return(self, frame, t):
276 # if not frame is self.cur[-2]: raise "Bad return", self.cur[3]
277
278 # Prefix "r" means part of the Returning or exiting frame
279 # Prefix "p" means part of the Previous or older frame
280
281 rt, rtt, rct, rfn, frame, rcur = self.cur
282 rtt = rtt + t
283 sft = rtt + rct
284
285 pt, ptt, pct, pfn, pframe, pcur = rcur
286 self.cur = pt, ptt+rt, pct+sft, pfn, pframe, pcur
287
288 cc, ns, tt, ct, callers = self.timings[rfn]
289 if not ns:
290 ct = ct + sft
291 cc = cc + 1
292 if callers.has_key(pfn):
293 callers[pfn] = callers[pfn] + 1 # hack: gather more
294 # stats such as the amount of time added to ct courtesy
295 # of this specific call, and the contribution to cc
296 # courtesy of this call.
297 else:
298 callers[pfn] = 1
299 self.timings[rfn] = cc, ns - 1, tt+rtt, ct, callers
300
301 return 1
302
303 # The next few function play with self.cmd. By carefully preloading
304 # our paralell stack, we can force the profiled result to include
305 # an arbitrary string as the name of the calling function.
306 # We use self.cmd as that string, and the resulting stats look
307 # very nice :-).
308
309 def set_cmd(self, cmd):
310 if self.cur[-1]: return # already set
311 self.cmd = cmd
312 self.simulate_call(cmd)
313
314 class fake_code:
315 def __init__(self, filename, line, name):
316 self.co_filename = filename
317 self.co_line = line
318 self.co_name = name
319 self.co_code = '\0' # anything but 127
320
321 def __repr__(self):
322 return (self.co_filename, self.co_line, self.co_name)
323
324 class fake_frame:
325 def __init__(self, code, prior):
326 self.f_code = code
327 self.f_back = prior
328
329 def simulate_call(self, name):
330 code = self.fake_code('profile', 0, name)
331 if self.cur:
332 pframe = self.cur[-2]
333 else:
334 pframe = None
335 frame = self.fake_frame(code, pframe)
336 a = self.dispatch['call'](frame, 0)
337 return
338
339 # collect stats from pending stack, including getting final
340 # timings for self.cmd frame.
341
342 def simulate_cmd_complete(self):
343 t = self.get_time() - self.t
344 while self.cur[-1]:
345 # We *can* cause assertion errors here if
346 # dispatch_trace_return checks for a frame match!
347 a = self.dispatch['return'](self.cur[-2], t)
348 t = 0
349 self.t = self.get_time() - t
350
351
352 def print_stats(self):
353 import pstats
354 pstats.Stats(self).strip_dirs().sort_stats(-1). \
355 print_stats()
356
357 def dump_stats(self, file):
Guido van Rossumcbf3dd51997-10-08 15:23:02 +0000358 f = open(file, 'wb')
Guido van Rossumb6775db1994-08-01 11:34:53 +0000359 self.create_stats()
360 marshal.dump(self.stats, f)
361 f.close()
362
363 def create_stats(self):
364 self.simulate_cmd_complete()
365 self.snapshot_stats()
366
367 def snapshot_stats(self):
368 self.stats = {}
369 for func in self.timings.keys():
370 cc, ns, tt, ct, callers = self.timings[func]
371 nor_func = self.func_normalize(func)
372 nor_callers = {}
373 nc = 0
374 for func_caller in callers.keys():
375 nor_callers[self.func_normalize(func_caller)]=\
376 callers[func_caller]
377 nc = nc + callers[func_caller]
378 self.stats[nor_func] = cc, nc, tt, ct, nor_callers
379
380
381 # Override the following function if you can figure out
382 # a better name for the binary f_code entries. I just normalize
383 # them sequentially in a dictionary. It would be nice if we could
384 # *really* see the name of the underlying C code :-). Sometimes
385 # you can figure out what-is-what by looking at caller and callee
386 # lists (and knowing what your python code does).
387
388 def func_normalize(self, func_name):
389 global func_norm_dict
390 global func_norm_counter
391 global func_sequence_num
392
393 if func_norm_dict.has_key(func_name):
394 return func_norm_dict[func_name]
395 if type(func_name) == type(""):
396 long_name = string.split(func_name)
Guido van Rossum4f399fb1995-09-30 16:48:54 +0000397 file_name = long_name[-3][1:-2]
Guido van Rossumb6775db1994-08-01 11:34:53 +0000398 func = long_name[2]
Guido van Rossum4f399fb1995-09-30 16:48:54 +0000399 lineno = long_name[-1][:-1]
Guido van Rossumb6775db1994-08-01 11:34:53 +0000400 if '?' == func: # Until I find out how to may 'em...
401 file_name = 'python'
402 func_norm_counter = func_norm_counter + 1
403 func = pid_string + ".C." + `func_norm_counter`
404 result = file_name , string.atoi(lineno) , func
405 else:
406 result = func_name
407 func_norm_dict[func_name] = result
408 return result
409
410
411 # The following two methods can be called by clients to use
412 # a profiler to profile a statement, given as a string.
413
414 def run(self, cmd):
415 import __main__
416 dict = __main__.__dict__
Guido van Rossum6cb84f31996-05-28 23:00:42 +0000417 return self.runctx(cmd, dict, dict)
Guido van Rossumb6775db1994-08-01 11:34:53 +0000418
419 def runctx(self, cmd, globals, locals):
420 self.set_cmd(cmd)
Guido van Rossum4f399fb1995-09-30 16:48:54 +0000421 sys.setprofile(self.dispatcher)
Guido van Rossumb6775db1994-08-01 11:34:53 +0000422 try:
Guido van Rossum9c3241d1995-08-10 19:46:50 +0000423 exec cmd in globals, locals
Guido van Rossumb6775db1994-08-01 11:34:53 +0000424 finally:
425 sys.setprofile(None)
Guido van Rossum6cb84f31996-05-28 23:00:42 +0000426 return self
Guido van Rossumb6775db1994-08-01 11:34:53 +0000427
428 # This method is more useful to profile a single function call.
429 def runcall(self, func, *args):
Guido van Rossum8afa8241995-06-22 18:52:35 +0000430 self.set_cmd(`func`)
Guido van Rossum4f399fb1995-09-30 16:48:54 +0000431 sys.setprofile(self.dispatcher)
Guido van Rossumb6775db1994-08-01 11:34:53 +0000432 try:
Guido van Rossum6cb84f31996-05-28 23:00:42 +0000433 return apply(func, args)
Guido van Rossumb6775db1994-08-01 11:34:53 +0000434 finally:
435 sys.setprofile(None)
Guido van Rossumb6775db1994-08-01 11:34:53 +0000436
437
438 #******************************************************************
439 # The following calculates the overhead for using a profiler. The
440 # problem is that it takes a fair amount of time for the profiler
441 # to stop the stopwatch (from the time it recieves an event).
442 # Similarly, there is a delay from the time that the profiler
443 # re-starts the stopwatch before the user's code really gets to
444 # continue. The following code tries to measure the difference on
445 # a per-event basis. The result can the be placed in the
446 # Profile.dispatch_event() routine for the given platform. Note
447 # that this difference is only significant if there are a lot of
448 # events, and relatively little user code per event. For example,
449 # code with small functions will typically benefit from having the
450 # profiler calibrated for the current platform. This *could* be
451 # done on the fly during init() time, but it is not worth the
452 # effort. Also note that if too large a value specified, then
453 # execution time on some functions will actually appear as a
454 # negative number. It is *normal* for some functions (with very
455 # low call counts) to have such negative stats, even if the
456 # calibration figure is "correct."
457 #
458 # One alternative to profile-time calibration adjustments (i.e.,
459 # adding in the magic little delta during each event) is to track
460 # more carefully the number of events (and cumulatively, the number
461 # of events during sub functions) that are seen. If this were
462 # done, then the arithmetic could be done after the fact (i.e., at
463 # display time). Currintly, we track only call/return events.
464 # These values can be deduced by examining the callees and callers
465 # vectors for each functions. Hence we *can* almost correct the
466 # internal time figure at print time (note that we currently don't
467 # track exception event processing counts). Unfortunately, there
468 # is currently no similar information for cumulative sub-function
469 # time. It would not be hard to "get all this info" at profiler
470 # time. Specifically, we would have to extend the tuples to keep
471 # counts of this in each frame, and then extend the defs of timing
472 # tuples to include the significant two figures. I'm a bit fearful
473 # that this additional feature will slow the heavily optimized
474 # event/time ratio (i.e., the profiler would run slower, fur a very
475 # low "value added" feature.)
476 #
477 # Plugging in the calibration constant doesn't slow down the
478 # profiler very much, and the accuracy goes way up.
479 #**************************************************************
480
481 def calibrate(self, m):
482 n = m
483 s = self.timer()
484 while n:
485 self.simple()
486 n = n - 1
487 f = self.timer()
488 my_simple = f[0]+f[1]-s[0]-s[1]
489 #print "Simple =", my_simple,
490
491 n = m
492 s = self.timer()
493 while n:
494 self.instrumented()
495 n = n - 1
496 f = self.timer()
497 my_inst = f[0]+f[1]-s[0]-s[1]
498 # print "Instrumented =", my_inst
499 avg_cost = (my_inst - my_simple)/m
500 #print "Delta/call =", avg_cost, "(profiler fixup constant)"
501 return avg_cost
502
503 # simulate a program with no profiler activity
504 def simple(self):
505 a = 1
506 pass
507
508 # simulate a program with call/return event processing
509 def instrumented(self):
510 a = 1
511 self.profiler_simulation(a, a, a)
512
513 # simulate an event processing activity (from user's perspective)
514 def profiler_simulation(self, x, y, z):
515 t = self.timer()
516 t = t[0] + t[1]
517 self.ut = t
518
519
520
521#****************************************************************************
522# OldProfile class documentation
523#****************************************************************************
524#
525# The following derived profiler simulates the old style profile, providing
526# errant results on recursive functions. The reason for the usefulnes of this
527# profiler is that it runs faster (i.e., less overhead). It still creates
528# all the caller stats, and is quite useful when there is *no* recursion
529# in the user's code.
530#
531# This code also shows how easy it is to create a modified profiler.
532#****************************************************************************
533class OldProfile(Profile):
534 def trace_dispatch_exception(self, frame, t):
535 rt, rtt, rct, rfn, rframe, rcur = self.cur
536 if rcur and not rframe is frame:
537 return self.trace_dispatch_return(rframe, t)
538 return 0
539
540 def trace_dispatch_call(self, frame, t):
541 fn = `frame.f_code`
542
543 self.cur = (t, 0, 0, fn, frame, self.cur)
544 if self.timings.has_key(fn):
545 tt, ct, callers = self.timings[fn]
546 self.timings[fn] = tt, ct, callers
547 else:
548 self.timings[fn] = 0, 0, {}
549 return 1
550
551 def trace_dispatch_return(self, frame, t):
552 rt, rtt, rct, rfn, frame, rcur = self.cur
553 rtt = rtt + t
554 sft = rtt + rct
555
556 pt, ptt, pct, pfn, pframe, pcur = rcur
557 self.cur = pt, ptt+rt, pct+sft, pfn, pframe, pcur
558
559 tt, ct, callers = self.timings[rfn]
560 if callers.has_key(pfn):
561 callers[pfn] = callers[pfn] + 1
562 else:
563 callers[pfn] = 1
564 self.timings[rfn] = tt+rtt, ct + sft, callers
565
566 return 1
567
568
569 def snapshot_stats(self):
570 self.stats = {}
571 for func in self.timings.keys():
572 tt, ct, callers = self.timings[func]
573 nor_func = self.func_normalize(func)
574 nor_callers = {}
575 nc = 0
576 for func_caller in callers.keys():
577 nor_callers[self.func_normalize(func_caller)]=\
578 callers[func_caller]
579 nc = nc + callers[func_caller]
580 self.stats[nor_func] = nc, nc, tt, ct, nor_callers
581
582
583
584#****************************************************************************
585# HotProfile class documentation
586#****************************************************************************
587#
588# This profiler is the fastest derived profile example. It does not
589# calculate caller-callee relationships, and does not calculate cumulative
590# time under a function. It only calculates time spent in a function, so
591# it runs very quickly (re: very low overhead)
592#****************************************************************************
593class HotProfile(Profile):
594 def trace_dispatch_exception(self, frame, t):
595 rt, rtt, rfn, rframe, rcur = self.cur
596 if rcur and not rframe is frame:
597 return self.trace_dispatch_return(rframe, t)
598 return 0
599
600 def trace_dispatch_call(self, frame, t):
601 self.cur = (t, 0, frame, self.cur)
602 return 1
603
604 def trace_dispatch_return(self, frame, t):
605 rt, rtt, frame, rcur = self.cur
606
607 rfn = `frame.f_code`
608
609 pt, ptt, pframe, pcur = rcur
610 self.cur = pt, ptt+rt, pframe, pcur
611
612 if self.timings.has_key(rfn):
613 nc, tt = self.timings[rfn]
614 self.timings[rfn] = nc + 1, rt + rtt + tt
615 else:
616 self.timings[rfn] = 1, rt + rtt
617
618 return 1
619
620
621 def snapshot_stats(self):
622 self.stats = {}
623 for func in self.timings.keys():
624 nc, tt = self.timings[func]
625 nor_func = self.func_normalize(func)
626 self.stats[nor_func] = nc, nc, tt, 0, {}
627
628
629
630#****************************************************************************
631def Stats(*args):
632 print 'Report generating functions are in the "pstats" module\a'
Guido van Rossumcc778eb1996-10-01 02:55:54 +0000633
634
635# When invoked as main program, invoke the profiler on a script
636if __name__ == '__main__':
637 import sys
638 import os
639 if not sys.argv[1:]:
640 print "usage: profile.py scriptfile [arg] ..."
641 sys.exit(2)
642
643 filename = sys.argv[1] # Get script filename
644
645 del sys.argv[0] # Hide "profile.py" from argument list
646
647 # Insert script directory in front of module search path
648 sys.path.insert(0, os.path.dirname(filename))
649
650 run('execfile(' + `filename` + ')')