blob: 971600c35b89a20110bd42b9d638f4252f2f6961 [file] [log] [blame]
Christian Heimes3feef612008-02-11 06:19:17 +00001:mod:`decimal` --- Decimal fixed point and floating point arithmetic
2====================================================================
Georg Brandl116aa622007-08-15 14:28:22 +00003
4.. module:: decimal
5 :synopsis: Implementation of the General Decimal Arithmetic Specification.
6
Georg Brandl116aa622007-08-15 14:28:22 +00007.. moduleauthor:: Eric Price <eprice at tjhsst.edu>
8.. moduleauthor:: Facundo Batista <facundo at taniquetil.com.ar>
9.. moduleauthor:: Raymond Hettinger <python at rcn.com>
10.. moduleauthor:: Aahz <aahz at pobox.com>
11.. moduleauthor:: Tim Peters <tim.one at comcast.net>
Stefan Krah1919b7e2012-03-21 18:25:23 +010012.. moduleauthor:: Stefan Krah <skrah at bytereef.org>
Georg Brandl116aa622007-08-15 14:28:22 +000013.. sectionauthor:: Raymond D. Hettinger <python at rcn.com>
14
Andrew Kuchling2e3743c2014-03-19 16:23:01 -040015**Source code:** :source:`Lib/decimal.py`
16
Christian Heimesfe337bf2008-03-23 21:54:12 +000017.. import modules for testing inline doctests with the Sphinx doctest builder
18.. testsetup:: *
19
20 import decimal
21 import math
22 from decimal import *
23 # make sure each group gets a fresh context
24 setcontext(Context())
Georg Brandl116aa622007-08-15 14:28:22 +000025
Terry Jan Reedyfa089b92016-06-11 15:02:54 -040026--------------
27
Stefan Krah1919b7e2012-03-21 18:25:23 +010028The :mod:`decimal` module provides support for fast correctly-rounded
29decimal floating point arithmetic. It offers several advantages over the
30:class:`float` datatype:
Georg Brandl116aa622007-08-15 14:28:22 +000031
Christian Heimes3feef612008-02-11 06:19:17 +000032* Decimal "is based on a floating-point model which was designed with people
33 in mind, and necessarily has a paramount guiding principle -- computers must
34 provide an arithmetic that works in the same way as the arithmetic that
35 people learn at school." -- excerpt from the decimal arithmetic specification.
36
Georg Brandl116aa622007-08-15 14:28:22 +000037* Decimal numbers can be represented exactly. In contrast, numbers like
Terry Jan Reedya9314632012-01-13 23:43:13 -050038 :const:`1.1` and :const:`2.2` do not have exact representations in binary
Raymond Hettingerd258d1e2009-04-23 22:06:12 +000039 floating point. End users typically would not expect ``1.1 + 2.2`` to display
40 as :const:`3.3000000000000003` as it does with binary floating point.
Georg Brandl116aa622007-08-15 14:28:22 +000041
42* The exactness carries over into arithmetic. In decimal floating point, ``0.1
Thomas Wouters1b7f8912007-09-19 03:06:30 +000043 + 0.1 + 0.1 - 0.3`` is exactly equal to zero. In binary floating point, the result
Georg Brandl116aa622007-08-15 14:28:22 +000044 is :const:`5.5511151231257827e-017`. While near to zero, the differences
45 prevent reliable equality testing and differences can accumulate. For this
Christian Heimes3feef612008-02-11 06:19:17 +000046 reason, decimal is preferred in accounting applications which have strict
Georg Brandl116aa622007-08-15 14:28:22 +000047 equality invariants.
48
49* The decimal module incorporates a notion of significant places so that ``1.30
50 + 1.20`` is :const:`2.50`. The trailing zero is kept to indicate significance.
51 This is the customary presentation for monetary applications. For
52 multiplication, the "schoolbook" approach uses all the figures in the
53 multiplicands. For instance, ``1.3 * 1.2`` gives :const:`1.56` while ``1.30 *
54 1.20`` gives :const:`1.5600`.
55
56* Unlike hardware based binary floating point, the decimal module has a user
Thomas Wouters1b7f8912007-09-19 03:06:30 +000057 alterable precision (defaulting to 28 places) which can be as large as needed for
Christian Heimesfe337bf2008-03-23 21:54:12 +000058 a given problem:
Georg Brandl116aa622007-08-15 14:28:22 +000059
Mark Dickinson43ef32a2010-11-07 11:24:44 +000060 >>> from decimal import *
Georg Brandl116aa622007-08-15 14:28:22 +000061 >>> getcontext().prec = 6
62 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +000063 Decimal('0.142857')
Georg Brandl116aa622007-08-15 14:28:22 +000064 >>> getcontext().prec = 28
65 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +000066 Decimal('0.1428571428571428571428571429')
Georg Brandl116aa622007-08-15 14:28:22 +000067
68* Both binary and decimal floating point are implemented in terms of published
69 standards. While the built-in float type exposes only a modest portion of its
70 capabilities, the decimal module exposes all required parts of the standard.
71 When needed, the programmer has full control over rounding and signal handling.
Christian Heimes3feef612008-02-11 06:19:17 +000072 This includes an option to enforce exact arithmetic by using exceptions
73 to block any inexact operations.
74
75* The decimal module was designed to support "without prejudice, both exact
76 unrounded decimal arithmetic (sometimes called fixed-point arithmetic)
77 and rounded floating-point arithmetic." -- excerpt from the decimal
78 arithmetic specification.
Georg Brandl116aa622007-08-15 14:28:22 +000079
80The module design is centered around three concepts: the decimal number, the
81context for arithmetic, and signals.
82
83A decimal number is immutable. It has a sign, coefficient digits, and an
84exponent. To preserve significance, the coefficient digits do not truncate
Thomas Wouters1b7f8912007-09-19 03:06:30 +000085trailing zeros. Decimals also include special values such as
Georg Brandl116aa622007-08-15 14:28:22 +000086:const:`Infinity`, :const:`-Infinity`, and :const:`NaN`. The standard also
87differentiates :const:`-0` from :const:`+0`.
88
89The context for arithmetic is an environment specifying precision, rounding
90rules, limits on exponents, flags indicating the results of operations, and trap
91enablers which determine whether signals are treated as exceptions. Rounding
92options include :const:`ROUND_CEILING`, :const:`ROUND_DOWN`,
93:const:`ROUND_FLOOR`, :const:`ROUND_HALF_DOWN`, :const:`ROUND_HALF_EVEN`,
Thomas Wouters1b7f8912007-09-19 03:06:30 +000094:const:`ROUND_HALF_UP`, :const:`ROUND_UP`, and :const:`ROUND_05UP`.
Georg Brandl116aa622007-08-15 14:28:22 +000095
96Signals are groups of exceptional conditions arising during the course of
97computation. Depending on the needs of the application, signals may be ignored,
98considered as informational, or treated as exceptions. The signals in the
99decimal module are: :const:`Clamped`, :const:`InvalidOperation`,
100:const:`DivisionByZero`, :const:`Inexact`, :const:`Rounded`, :const:`Subnormal`,
Stefan Krah1919b7e2012-03-21 18:25:23 +0100101:const:`Overflow`, :const:`Underflow` and :const:`FloatOperation`.
Georg Brandl116aa622007-08-15 14:28:22 +0000102
103For each signal there is a flag and a trap enabler. When a signal is
Raymond Hettinger86173da2008-02-01 20:38:12 +0000104encountered, its flag is set to one, then, if the trap enabler is
Georg Brandl116aa622007-08-15 14:28:22 +0000105set to one, an exception is raised. Flags are sticky, so the user needs to
106reset them before monitoring a calculation.
107
108
109.. seealso::
110
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000111 * IBM's General Decimal Arithmetic Specification, `The General Decimal Arithmetic
Raymond Hettinger960dc362009-04-21 03:43:15 +0000112 Specification <http://speleotrove.com/decimal/decarith.html>`_.
Georg Brandl116aa622007-08-15 14:28:22 +0000113
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000114.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000115
116
117.. _decimal-tutorial:
118
119Quick-start Tutorial
120--------------------
121
122The usual start to using decimals is importing the module, viewing the current
123context with :func:`getcontext` and, if necessary, setting new values for
124precision, rounding, or enabled traps::
125
126 >>> from decimal import *
127 >>> getcontext()
Stefan Krah1919b7e2012-03-21 18:25:23 +0100128 Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000129 capitals=1, clamp=0, flags=[], traps=[Overflow, DivisionByZero,
Christian Heimesfe337bf2008-03-23 21:54:12 +0000130 InvalidOperation])
Georg Brandl116aa622007-08-15 14:28:22 +0000131
132 >>> getcontext().prec = 7 # Set a new precision
133
Mark Dickinsone534a072010-04-04 22:13:14 +0000134Decimal instances can be constructed from integers, strings, floats, or tuples.
135Construction from an integer or a float performs an exact conversion of the
136value of that integer or float. Decimal numbers include special values such as
Georg Brandl116aa622007-08-15 14:28:22 +0000137:const:`NaN` which stands for "Not a number", positive and negative
Stefan Krah1919b7e2012-03-21 18:25:23 +0100138:const:`Infinity`, and :const:`-0`::
Georg Brandl116aa622007-08-15 14:28:22 +0000139
Facundo Batista789bdf02008-06-21 17:29:41 +0000140 >>> getcontext().prec = 28
Georg Brandl116aa622007-08-15 14:28:22 +0000141 >>> Decimal(10)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000142 Decimal('10')
143 >>> Decimal('3.14')
144 Decimal('3.14')
Mark Dickinsone534a072010-04-04 22:13:14 +0000145 >>> Decimal(3.14)
146 Decimal('3.140000000000000124344978758017532527446746826171875')
Georg Brandl116aa622007-08-15 14:28:22 +0000147 >>> Decimal((0, (3, 1, 4), -2))
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000148 Decimal('3.14')
Georg Brandl116aa622007-08-15 14:28:22 +0000149 >>> Decimal(str(2.0 ** 0.5))
Alexander Belopolsky287d1fd2011-01-12 16:37:14 +0000150 Decimal('1.4142135623730951')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000151 >>> Decimal(2) ** Decimal('0.5')
152 Decimal('1.414213562373095048801688724')
153 >>> Decimal('NaN')
154 Decimal('NaN')
155 >>> Decimal('-Infinity')
156 Decimal('-Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000157
Stefan Krah1919b7e2012-03-21 18:25:23 +0100158If the :exc:`FloatOperation` signal is trapped, accidental mixing of
159decimals and floats in constructors or ordering comparisons raises
160an exception::
161
162 >>> c = getcontext()
163 >>> c.traps[FloatOperation] = True
164 >>> Decimal(3.14)
165 Traceback (most recent call last):
Martin Panter1050d2d2016-07-26 11:18:21 +0200166 File "<stdin>", line 1, in <module>
Stefan Krah1919b7e2012-03-21 18:25:23 +0100167 decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
168 >>> Decimal('3.5') < 3.7
169 Traceback (most recent call last):
170 File "<stdin>", line 1, in <module>
171 decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
172 >>> Decimal('3.5') == 3.5
173 True
174
175.. versionadded:: 3.3
176
Georg Brandl116aa622007-08-15 14:28:22 +0000177The significance of a new Decimal is determined solely by the number of digits
178input. Context precision and rounding only come into play during arithmetic
Christian Heimesfe337bf2008-03-23 21:54:12 +0000179operations.
180
181.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +0000182
183 >>> getcontext().prec = 6
184 >>> Decimal('3.0')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000185 Decimal('3.0')
Georg Brandl116aa622007-08-15 14:28:22 +0000186 >>> Decimal('3.1415926535')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000187 Decimal('3.1415926535')
Georg Brandl116aa622007-08-15 14:28:22 +0000188 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000189 Decimal('5.85987')
Georg Brandl116aa622007-08-15 14:28:22 +0000190 >>> getcontext().rounding = ROUND_UP
191 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000192 Decimal('5.85988')
Georg Brandl116aa622007-08-15 14:28:22 +0000193
Stefan Krah1919b7e2012-03-21 18:25:23 +0100194If the internal limits of the C version are exceeded, constructing
195a decimal raises :class:`InvalidOperation`::
196
197 >>> Decimal("1e9999999999999999999")
198 Traceback (most recent call last):
199 File "<stdin>", line 1, in <module>
200 decimal.InvalidOperation: [<class 'decimal.InvalidOperation'>]
201
202.. versionchanged:: 3.3
203
Georg Brandl116aa622007-08-15 14:28:22 +0000204Decimals interact well with much of the rest of Python. Here is a small decimal
Christian Heimesfe337bf2008-03-23 21:54:12 +0000205floating point flying circus:
206
207.. doctest::
208 :options: +NORMALIZE_WHITESPACE
Georg Brandl116aa622007-08-15 14:28:22 +0000209
Facundo Batista789bdf02008-06-21 17:29:41 +0000210 >>> data = list(map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split()))
Georg Brandl116aa622007-08-15 14:28:22 +0000211 >>> max(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000212 Decimal('9.25')
Georg Brandl116aa622007-08-15 14:28:22 +0000213 >>> min(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000214 Decimal('0.03')
Georg Brandl116aa622007-08-15 14:28:22 +0000215 >>> sorted(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000216 [Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
217 Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
Georg Brandl116aa622007-08-15 14:28:22 +0000218 >>> sum(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000219 Decimal('19.29')
Georg Brandl116aa622007-08-15 14:28:22 +0000220 >>> a,b,c = data[:3]
221 >>> str(a)
222 '1.34'
223 >>> float(a)
Mark Dickinson8dad7df2009-06-28 20:36:54 +0000224 1.34
225 >>> round(a, 1)
226 Decimal('1.3')
Georg Brandl116aa622007-08-15 14:28:22 +0000227 >>> int(a)
228 1
229 >>> a * 5
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000230 Decimal('6.70')
Georg Brandl116aa622007-08-15 14:28:22 +0000231 >>> a * b
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000232 Decimal('2.5058')
Georg Brandl116aa622007-08-15 14:28:22 +0000233 >>> c % a
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000234 Decimal('0.77')
Georg Brandl116aa622007-08-15 14:28:22 +0000235
Christian Heimesfe337bf2008-03-23 21:54:12 +0000236And some mathematical functions are also available to Decimal:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000237
Facundo Batista789bdf02008-06-21 17:29:41 +0000238 >>> getcontext().prec = 28
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000239 >>> Decimal(2).sqrt()
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000240 Decimal('1.414213562373095048801688724')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000241 >>> Decimal(1).exp()
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000242 Decimal('2.718281828459045235360287471')
243 >>> Decimal('10').ln()
244 Decimal('2.302585092994045684017991455')
245 >>> Decimal('10').log10()
246 Decimal('1')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000247
Georg Brandl116aa622007-08-15 14:28:22 +0000248The :meth:`quantize` method rounds a number to a fixed exponent. This method is
249useful for monetary applications that often round results to a fixed number of
Christian Heimesfe337bf2008-03-23 21:54:12 +0000250places:
Georg Brandl116aa622007-08-15 14:28:22 +0000251
252 >>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000253 Decimal('7.32')
Georg Brandl116aa622007-08-15 14:28:22 +0000254 >>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000255 Decimal('8')
Georg Brandl116aa622007-08-15 14:28:22 +0000256
257As shown above, the :func:`getcontext` function accesses the current context and
258allows the settings to be changed. This approach meets the needs of most
259applications.
260
261For more advanced work, it may be useful to create alternate contexts using the
262Context() constructor. To make an alternate active, use the :func:`setcontext`
263function.
264
Serhiy Storchakab19542d2015-03-14 21:32:57 +0200265In accordance with the standard, the :mod:`decimal` module provides two ready to
Georg Brandl116aa622007-08-15 14:28:22 +0000266use standard contexts, :const:`BasicContext` and :const:`ExtendedContext`. The
267former is especially useful for debugging because many of the traps are
Christian Heimesfe337bf2008-03-23 21:54:12 +0000268enabled:
269
270.. doctest:: newcontext
271 :options: +NORMALIZE_WHITESPACE
Georg Brandl116aa622007-08-15 14:28:22 +0000272
273 >>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
274 >>> setcontext(myothercontext)
275 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000276 Decimal('0.142857142857142857142857142857142857142857142857142857142857')
Georg Brandl116aa622007-08-15 14:28:22 +0000277
278 >>> ExtendedContext
Stefan Krah1919b7e2012-03-21 18:25:23 +0100279 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000280 capitals=1, clamp=0, flags=[], traps=[])
Georg Brandl116aa622007-08-15 14:28:22 +0000281 >>> setcontext(ExtendedContext)
282 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000283 Decimal('0.142857143')
Georg Brandl116aa622007-08-15 14:28:22 +0000284 >>> Decimal(42) / Decimal(0)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000285 Decimal('Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000286
287 >>> setcontext(BasicContext)
288 >>> Decimal(42) / Decimal(0)
289 Traceback (most recent call last):
290 File "<pyshell#143>", line 1, in -toplevel-
291 Decimal(42) / Decimal(0)
292 DivisionByZero: x / 0
293
294Contexts also have signal flags for monitoring exceptional conditions
295encountered during computations. The flags remain set until explicitly cleared,
296so it is best to clear the flags before each set of monitored computations by
297using the :meth:`clear_flags` method. ::
298
299 >>> setcontext(ExtendedContext)
300 >>> getcontext().clear_flags()
301 >>> Decimal(355) / Decimal(113)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000302 Decimal('3.14159292')
Georg Brandl116aa622007-08-15 14:28:22 +0000303 >>> getcontext()
Stefan Krah1919b7e2012-03-21 18:25:23 +0100304 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000305 capitals=1, clamp=0, flags=[Inexact, Rounded], traps=[])
Georg Brandl116aa622007-08-15 14:28:22 +0000306
307The *flags* entry shows that the rational approximation to :const:`Pi` was
308rounded (digits beyond the context precision were thrown away) and that the
309result is inexact (some of the discarded digits were non-zero).
310
311Individual traps are set using the dictionary in the :attr:`traps` field of a
Christian Heimesfe337bf2008-03-23 21:54:12 +0000312context:
Georg Brandl116aa622007-08-15 14:28:22 +0000313
Christian Heimesfe337bf2008-03-23 21:54:12 +0000314.. doctest:: newcontext
315
316 >>> setcontext(ExtendedContext)
Georg Brandl116aa622007-08-15 14:28:22 +0000317 >>> Decimal(1) / Decimal(0)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000318 Decimal('Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000319 >>> getcontext().traps[DivisionByZero] = 1
320 >>> Decimal(1) / Decimal(0)
321 Traceback (most recent call last):
322 File "<pyshell#112>", line 1, in -toplevel-
323 Decimal(1) / Decimal(0)
324 DivisionByZero: x / 0
325
326Most programs adjust the current context only once, at the beginning of the
327program. And, in many applications, data is converted to :class:`Decimal` with
328a single cast inside a loop. With context set and decimals created, the bulk of
329the program manipulates the data no differently than with other Python numeric
330types.
331
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000332.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000333
334
335.. _decimal-decimal:
336
337Decimal objects
338---------------
339
340
Georg Brandlc2a4f4f2009-04-10 09:03:43 +0000341.. class:: Decimal(value="0", context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000342
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000343 Construct a new :class:`Decimal` object based from *value*.
Georg Brandl116aa622007-08-15 14:28:22 +0000344
Raymond Hettinger96798592010-04-02 16:58:27 +0000345 *value* can be an integer, string, tuple, :class:`float`, or another :class:`Decimal`
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000346 object. If no *value* is given, returns ``Decimal('0')``. If *value* is a
Christian Heimesa62da1d2008-01-12 19:39:10 +0000347 string, it should conform to the decimal numeric string syntax after leading
348 and trailing whitespace characters are removed::
Georg Brandl116aa622007-08-15 14:28:22 +0000349
350 sign ::= '+' | '-'
351 digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
352 indicator ::= 'e' | 'E'
353 digits ::= digit [digit]...
354 decimal-part ::= digits '.' [digits] | ['.'] digits
355 exponent-part ::= indicator [sign] digits
356 infinity ::= 'Infinity' | 'Inf'
357 nan ::= 'NaN' [digits] | 'sNaN' [digits]
358 numeric-value ::= decimal-part [exponent-part] | infinity
Georg Brandl48310cd2009-01-03 21:18:54 +0000359 numeric-string ::= [sign] numeric-value | [sign] nan
Georg Brandl116aa622007-08-15 14:28:22 +0000360
Mark Dickinson345adc42009-08-02 10:14:23 +0000361 Other Unicode decimal digits are also permitted where ``digit``
362 appears above. These include decimal digits from various other
363 alphabets (for example, Arabic-Indic and Devanāgarī digits) along
364 with the fullwidth digits ``'\uff10'`` through ``'\uff19'``.
365
Georg Brandl116aa622007-08-15 14:28:22 +0000366 If *value* is a :class:`tuple`, it should have three components, a sign
367 (:const:`0` for positive or :const:`1` for negative), a :class:`tuple` of
368 digits, and an integer exponent. For example, ``Decimal((0, (1, 4, 1, 4), -3))``
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000369 returns ``Decimal('1.414')``.
Georg Brandl116aa622007-08-15 14:28:22 +0000370
Raymond Hettinger96798592010-04-02 16:58:27 +0000371 If *value* is a :class:`float`, the binary floating point value is losslessly
372 converted to its exact decimal equivalent. This conversion can often require
Mark Dickinsone534a072010-04-04 22:13:14 +0000373 53 or more digits of precision. For example, ``Decimal(float('1.1'))``
374 converts to
375 ``Decimal('1.100000000000000088817841970012523233890533447265625')``.
Raymond Hettinger96798592010-04-02 16:58:27 +0000376
Georg Brandl116aa622007-08-15 14:28:22 +0000377 The *context* precision does not affect how many digits are stored. That is
378 determined exclusively by the number of digits in *value*. For example,
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000379 ``Decimal('3.00000')`` records all five zeros even if the context precision is
Georg Brandl116aa622007-08-15 14:28:22 +0000380 only three.
381
382 The purpose of the *context* argument is determining what to do if *value* is a
383 malformed string. If the context traps :const:`InvalidOperation`, an exception
384 is raised; otherwise, the constructor returns a new Decimal with the value of
385 :const:`NaN`.
386
387 Once constructed, :class:`Decimal` objects are immutable.
388
Mark Dickinsone534a072010-04-04 22:13:14 +0000389 .. versionchanged:: 3.2
Georg Brandl67b21b72010-08-17 15:07:14 +0000390 The argument to the constructor is now permitted to be a :class:`float`
391 instance.
Mark Dickinsone534a072010-04-04 22:13:14 +0000392
Stefan Krah1919b7e2012-03-21 18:25:23 +0100393 .. versionchanged:: 3.3
394 :class:`float` arguments raise an exception if the :exc:`FloatOperation`
395 trap is set. By default the trap is off.
396
Benjamin Petersone41251e2008-04-25 01:59:09 +0000397 Decimal floating point objects share many properties with the other built-in
398 numeric types such as :class:`float` and :class:`int`. All of the usual math
399 operations and special methods apply. Likewise, decimal objects can be
400 copied, pickled, printed, used as dictionary keys, used as set elements,
401 compared, sorted, and coerced to another type (such as :class:`float` or
Mark Dickinson5d233fd2010-02-18 14:54:37 +0000402 :class:`int`).
Christian Heimesa62da1d2008-01-12 19:39:10 +0000403
Mark Dickinsona3f37402012-11-18 10:22:05 +0000404 There are some small differences between arithmetic on Decimal objects and
405 arithmetic on integers and floats. When the remainder operator ``%`` is
406 applied to Decimal objects, the sign of the result is the sign of the
407 *dividend* rather than the sign of the divisor::
408
409 >>> (-7) % 4
410 1
411 >>> Decimal(-7) % Decimal(4)
412 Decimal('-3')
413
414 The integer division operator ``//`` behaves analogously, returning the
415 integer part of the true quotient (truncating towards zero) rather than its
Mark Dickinsonec967242012-11-18 10:42:07 +0000416 floor, so as to preserve the usual identity ``x == (x // y) * y + x % y``::
Mark Dickinsona3f37402012-11-18 10:22:05 +0000417
418 >>> -7 // 4
419 -2
420 >>> Decimal(-7) // Decimal(4)
421 Decimal('-1')
422
423 The ``%`` and ``//`` operators implement the ``remainder`` and
424 ``divide-integer`` operations (respectively) as described in the
425 specification.
426
Mark Dickinson08ade6f2010-06-11 10:44:52 +0000427 Decimal objects cannot generally be combined with floats or
428 instances of :class:`fractions.Fraction` in arithmetic operations:
429 an attempt to add a :class:`Decimal` to a :class:`float`, for
430 example, will raise a :exc:`TypeError`. However, it is possible to
431 use Python's comparison operators to compare a :class:`Decimal`
432 instance ``x`` with another number ``y``. This avoids confusing results
433 when doing equality comparisons between numbers of different types.
Mark Dickinsonac256ab2010-04-03 11:08:14 +0000434
Ezio Melotti993a5ee2010-04-04 06:30:08 +0000435 .. versionchanged:: 3.2
Georg Brandl67b21b72010-08-17 15:07:14 +0000436 Mixed-type comparisons between :class:`Decimal` instances and other
437 numeric types are now fully supported.
Mark Dickinsonac256ab2010-04-03 11:08:14 +0000438
Benjamin Petersone41251e2008-04-25 01:59:09 +0000439 In addition to the standard numeric properties, decimal floating point
440 objects also have a number of specialized methods:
Georg Brandl116aa622007-08-15 14:28:22 +0000441
Georg Brandl116aa622007-08-15 14:28:22 +0000442
Benjamin Petersone41251e2008-04-25 01:59:09 +0000443 .. method:: adjusted()
Georg Brandl116aa622007-08-15 14:28:22 +0000444
Benjamin Petersone41251e2008-04-25 01:59:09 +0000445 Return the adjusted exponent after shifting out the coefficient's
446 rightmost digits until only the lead digit remains:
447 ``Decimal('321e+5').adjusted()`` returns seven. Used for determining the
448 position of the most significant digit with respect to the decimal point.
Georg Brandl116aa622007-08-15 14:28:22 +0000449
Georg Brandl116aa622007-08-15 14:28:22 +0000450
Benjamin Petersone41251e2008-04-25 01:59:09 +0000451 .. method:: as_tuple()
Georg Brandl116aa622007-08-15 14:28:22 +0000452
Benjamin Petersone41251e2008-04-25 01:59:09 +0000453 Return a :term:`named tuple` representation of the number:
454 ``DecimalTuple(sign, digits, exponent)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000455
Christian Heimes25bb7832008-01-11 16:17:00 +0000456
Benjamin Petersone41251e2008-04-25 01:59:09 +0000457 .. method:: canonical()
Georg Brandl116aa622007-08-15 14:28:22 +0000458
Benjamin Petersone41251e2008-04-25 01:59:09 +0000459 Return the canonical encoding of the argument. Currently, the encoding of
460 a :class:`Decimal` instance is always canonical, so this operation returns
461 its argument unchanged.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000462
Stefan Krah040e3112012-12-15 22:33:33 +0100463 .. method:: compare(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000464
Georg Brandl05f5ab72008-09-24 09:11:47 +0000465 Compare the values of two Decimal instances. :meth:`compare` returns a
466 Decimal instance, and if either operand is a NaN then the result is a
467 NaN::
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000468
Georg Brandl05f5ab72008-09-24 09:11:47 +0000469 a or b is a NaN ==> Decimal('NaN')
470 a < b ==> Decimal('-1')
471 a == b ==> Decimal('0')
472 a > b ==> Decimal('1')
Georg Brandl116aa622007-08-15 14:28:22 +0000473
Stefan Krah040e3112012-12-15 22:33:33 +0100474 .. method:: compare_signal(other, context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000475
Benjamin Petersone41251e2008-04-25 01:59:09 +0000476 This operation is identical to the :meth:`compare` method, except that all
477 NaNs signal. That is, if neither operand is a signaling NaN then any
478 quiet NaN operand is treated as though it were a signaling NaN.
Georg Brandl116aa622007-08-15 14:28:22 +0000479
Stefan Krah040e3112012-12-15 22:33:33 +0100480 .. method:: compare_total(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000481
Benjamin Petersone41251e2008-04-25 01:59:09 +0000482 Compare two operands using their abstract representation rather than their
483 numerical value. Similar to the :meth:`compare` method, but the result
484 gives a total ordering on :class:`Decimal` instances. Two
485 :class:`Decimal` instances with the same numeric value but different
486 representations compare unequal in this ordering:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000487
Benjamin Petersone41251e2008-04-25 01:59:09 +0000488 >>> Decimal('12.0').compare_total(Decimal('12'))
489 Decimal('-1')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000490
Benjamin Petersone41251e2008-04-25 01:59:09 +0000491 Quiet and signaling NaNs are also included in the total ordering. The
492 result of this function is ``Decimal('0')`` if both operands have the same
493 representation, ``Decimal('-1')`` if the first operand is lower in the
494 total order than the second, and ``Decimal('1')`` if the first operand is
495 higher in the total order than the second operand. See the specification
496 for details of the total order.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000497
Stefan Krah040e3112012-12-15 22:33:33 +0100498 This operation is unaffected by context and is quiet: no flags are changed
499 and no rounding is performed. As an exception, the C version may raise
500 InvalidOperation if the second operand cannot be converted exactly.
501
502 .. method:: compare_total_mag(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000503
Benjamin Petersone41251e2008-04-25 01:59:09 +0000504 Compare two operands using their abstract representation rather than their
505 value as in :meth:`compare_total`, but ignoring the sign of each operand.
506 ``x.compare_total_mag(y)`` is equivalent to
507 ``x.copy_abs().compare_total(y.copy_abs())``.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000508
Stefan Krah040e3112012-12-15 22:33:33 +0100509 This operation is unaffected by context and is quiet: no flags are changed
510 and no rounding is performed. As an exception, the C version may raise
511 InvalidOperation if the second operand cannot be converted exactly.
512
Facundo Batista789bdf02008-06-21 17:29:41 +0000513 .. method:: conjugate()
514
Benjamin Petersondcf97b92008-07-02 17:30:14 +0000515 Just returns self, this method is only to comply with the Decimal
Facundo Batista789bdf02008-06-21 17:29:41 +0000516 Specification.
517
Benjamin Petersone41251e2008-04-25 01:59:09 +0000518 .. method:: copy_abs()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000519
Benjamin Petersone41251e2008-04-25 01:59:09 +0000520 Return the absolute value of the argument. This operation is unaffected
521 by the context and is quiet: no flags are changed and no rounding is
522 performed.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000523
Benjamin Petersone41251e2008-04-25 01:59:09 +0000524 .. method:: copy_negate()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000525
Benjamin Petersone41251e2008-04-25 01:59:09 +0000526 Return the negation of the argument. This operation is unaffected by the
527 context and is quiet: no flags are changed and no rounding is performed.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000528
Stefan Krah040e3112012-12-15 22:33:33 +0100529 .. method:: copy_sign(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000530
Benjamin Petersone41251e2008-04-25 01:59:09 +0000531 Return a copy of the first operand with the sign set to be the same as the
532 sign of the second operand. For example:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000533
Benjamin Petersone41251e2008-04-25 01:59:09 +0000534 >>> Decimal('2.3').copy_sign(Decimal('-1.5'))
535 Decimal('-2.3')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000536
Stefan Krah040e3112012-12-15 22:33:33 +0100537 This operation is unaffected by context and is quiet: no flags are changed
538 and no rounding is performed. As an exception, the C version may raise
539 InvalidOperation if the second operand cannot be converted exactly.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000540
Stefan Krah040e3112012-12-15 22:33:33 +0100541 .. method:: exp(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000542
Benjamin Petersone41251e2008-04-25 01:59:09 +0000543 Return the value of the (natural) exponential function ``e**x`` at the
544 given number. The result is correctly rounded using the
545 :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000546
Benjamin Petersone41251e2008-04-25 01:59:09 +0000547 >>> Decimal(1).exp()
548 Decimal('2.718281828459045235360287471')
549 >>> Decimal(321).exp()
550 Decimal('2.561702493119680037517373933E+139')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000551
Raymond Hettinger771ed762009-01-03 19:20:32 +0000552 .. method:: from_float(f)
553
554 Classmethod that converts a float to a decimal number, exactly.
555
556 Note `Decimal.from_float(0.1)` is not the same as `Decimal('0.1')`.
557 Since 0.1 is not exactly representable in binary floating point, the
558 value is stored as the nearest representable value which is
559 `0x1.999999999999ap-4`. That equivalent value in decimal is
560 `0.1000000000000000055511151231257827021181583404541015625`.
561
Mark Dickinsone534a072010-04-04 22:13:14 +0000562 .. note:: From Python 3.2 onwards, a :class:`Decimal` instance
563 can also be constructed directly from a :class:`float`.
564
Raymond Hettinger771ed762009-01-03 19:20:32 +0000565 .. doctest::
566
567 >>> Decimal.from_float(0.1)
568 Decimal('0.1000000000000000055511151231257827021181583404541015625')
569 >>> Decimal.from_float(float('nan'))
570 Decimal('NaN')
571 >>> Decimal.from_float(float('inf'))
572 Decimal('Infinity')
573 >>> Decimal.from_float(float('-inf'))
574 Decimal('-Infinity')
575
Georg Brandl45f53372009-01-03 21:15:20 +0000576 .. versionadded:: 3.1
Raymond Hettinger771ed762009-01-03 19:20:32 +0000577
Stefan Krah040e3112012-12-15 22:33:33 +0100578 .. method:: fma(other, third, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000579
Benjamin Petersone41251e2008-04-25 01:59:09 +0000580 Fused multiply-add. Return self*other+third with no rounding of the
581 intermediate product self*other.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000582
Benjamin Petersone41251e2008-04-25 01:59:09 +0000583 >>> Decimal(2).fma(3, 5)
584 Decimal('11')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000585
Benjamin Petersone41251e2008-04-25 01:59:09 +0000586 .. method:: is_canonical()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000587
Benjamin Petersone41251e2008-04-25 01:59:09 +0000588 Return :const:`True` if the argument is canonical and :const:`False`
589 otherwise. Currently, a :class:`Decimal` instance is always canonical, so
590 this operation always returns :const:`True`.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000591
Benjamin Petersone41251e2008-04-25 01:59:09 +0000592 .. method:: is_finite()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000593
Benjamin Petersone41251e2008-04-25 01:59:09 +0000594 Return :const:`True` if the argument is a finite number, and
595 :const:`False` if the argument is an infinity or a NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000596
Benjamin Petersone41251e2008-04-25 01:59:09 +0000597 .. method:: is_infinite()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000598
Benjamin Petersone41251e2008-04-25 01:59:09 +0000599 Return :const:`True` if the argument is either positive or negative
600 infinity and :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000601
Benjamin Petersone41251e2008-04-25 01:59:09 +0000602 .. method:: is_nan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000603
Benjamin Petersone41251e2008-04-25 01:59:09 +0000604 Return :const:`True` if the argument is a (quiet or signaling) NaN and
605 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000606
Stefan Krah040e3112012-12-15 22:33:33 +0100607 .. method:: is_normal(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000608
Benjamin Petersone41251e2008-04-25 01:59:09 +0000609 Return :const:`True` if the argument is a *normal* finite number. Return
610 :const:`False` if the argument is zero, subnormal, infinite or a NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000611
Benjamin Petersone41251e2008-04-25 01:59:09 +0000612 .. method:: is_qnan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000613
Benjamin Petersone41251e2008-04-25 01:59:09 +0000614 Return :const:`True` if the argument is a quiet NaN, and
615 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000616
Benjamin Petersone41251e2008-04-25 01:59:09 +0000617 .. method:: is_signed()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000618
Benjamin Petersone41251e2008-04-25 01:59:09 +0000619 Return :const:`True` if the argument has a negative sign and
620 :const:`False` otherwise. Note that zeros and NaNs can both carry signs.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000621
Benjamin Petersone41251e2008-04-25 01:59:09 +0000622 .. method:: is_snan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000623
Benjamin Petersone41251e2008-04-25 01:59:09 +0000624 Return :const:`True` if the argument is a signaling NaN and :const:`False`
625 otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000626
Stefan Krah040e3112012-12-15 22:33:33 +0100627 .. method:: is_subnormal(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000628
Benjamin Petersone41251e2008-04-25 01:59:09 +0000629 Return :const:`True` if the argument is subnormal, and :const:`False`
630 otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000631
Benjamin Petersone41251e2008-04-25 01:59:09 +0000632 .. method:: is_zero()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000633
Benjamin Petersone41251e2008-04-25 01:59:09 +0000634 Return :const:`True` if the argument is a (positive or negative) zero and
635 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000636
Stefan Krah040e3112012-12-15 22:33:33 +0100637 .. method:: ln(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000638
Benjamin Petersone41251e2008-04-25 01:59:09 +0000639 Return the natural (base e) logarithm of the operand. The result is
640 correctly rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000641
Stefan Krah040e3112012-12-15 22:33:33 +0100642 .. method:: log10(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000643
Benjamin Petersone41251e2008-04-25 01:59:09 +0000644 Return the base ten logarithm of the operand. The result is correctly
645 rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000646
Stefan Krah040e3112012-12-15 22:33:33 +0100647 .. method:: logb(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000648
Benjamin Petersone41251e2008-04-25 01:59:09 +0000649 For a nonzero number, return the adjusted exponent of its operand as a
650 :class:`Decimal` instance. If the operand is a zero then
651 ``Decimal('-Infinity')`` is returned and the :const:`DivisionByZero` flag
652 is raised. If the operand is an infinity then ``Decimal('Infinity')`` is
653 returned.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000654
Stefan Krah040e3112012-12-15 22:33:33 +0100655 .. method:: logical_and(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000656
Benjamin Petersone41251e2008-04-25 01:59:09 +0000657 :meth:`logical_and` is a logical operation which takes two *logical
658 operands* (see :ref:`logical_operands_label`). The result is the
659 digit-wise ``and`` of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000660
Stefan Krah040e3112012-12-15 22:33:33 +0100661 .. method:: logical_invert(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000662
Alexandre Vassalotti260484d2009-07-17 11:43:26 +0000663 :meth:`logical_invert` is a logical operation. The
Benjamin Petersone41251e2008-04-25 01:59:09 +0000664 result is the digit-wise inversion of the operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000665
Stefan Krah040e3112012-12-15 22:33:33 +0100666 .. method:: logical_or(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000667
Benjamin Petersone41251e2008-04-25 01:59:09 +0000668 :meth:`logical_or` is a logical operation which takes two *logical
669 operands* (see :ref:`logical_operands_label`). The result is the
670 digit-wise ``or`` of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000671
Stefan Krah040e3112012-12-15 22:33:33 +0100672 .. method:: logical_xor(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000673
Benjamin Petersone41251e2008-04-25 01:59:09 +0000674 :meth:`logical_xor` is a logical operation which takes two *logical
675 operands* (see :ref:`logical_operands_label`). The result is the
676 digit-wise exclusive or of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000677
Stefan Krah040e3112012-12-15 22:33:33 +0100678 .. method:: max(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000679
Benjamin Petersone41251e2008-04-25 01:59:09 +0000680 Like ``max(self, other)`` except that the context rounding rule is applied
681 before returning and that :const:`NaN` values are either signaled or
682 ignored (depending on the context and whether they are signaling or
683 quiet).
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000684
Stefan Krah040e3112012-12-15 22:33:33 +0100685 .. method:: max_mag(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000686
Georg Brandl502d9a52009-07-26 15:02:41 +0000687 Similar to the :meth:`.max` method, but the comparison is done using the
Benjamin Petersone41251e2008-04-25 01:59:09 +0000688 absolute values of the operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000689
Stefan Krah040e3112012-12-15 22:33:33 +0100690 .. method:: min(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000691
Benjamin Petersone41251e2008-04-25 01:59:09 +0000692 Like ``min(self, other)`` except that the context rounding rule is applied
693 before returning and that :const:`NaN` values are either signaled or
694 ignored (depending on the context and whether they are signaling or
695 quiet).
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000696
Stefan Krah040e3112012-12-15 22:33:33 +0100697 .. method:: min_mag(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000698
Georg Brandl502d9a52009-07-26 15:02:41 +0000699 Similar to the :meth:`.min` method, but the comparison is done using the
Benjamin Petersone41251e2008-04-25 01:59:09 +0000700 absolute values of the operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000701
Stefan Krah040e3112012-12-15 22:33:33 +0100702 .. method:: next_minus(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000703
Benjamin Petersone41251e2008-04-25 01:59:09 +0000704 Return the largest number representable in the given context (or in the
705 current thread's context if no context is given) that is smaller than the
706 given operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000707
Stefan Krah040e3112012-12-15 22:33:33 +0100708 .. method:: next_plus(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000709
Benjamin Petersone41251e2008-04-25 01:59:09 +0000710 Return the smallest number representable in the given context (or in the
711 current thread's context if no context is given) that is larger than the
712 given operand.
Georg Brandl116aa622007-08-15 14:28:22 +0000713
Stefan Krah040e3112012-12-15 22:33:33 +0100714 .. method:: next_toward(other, context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000715
Benjamin Petersone41251e2008-04-25 01:59:09 +0000716 If the two operands are unequal, return the number closest to the first
717 operand in the direction of the second operand. If both operands are
718 numerically equal, return a copy of the first operand with the sign set to
719 be the same as the sign of the second operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000720
Stefan Krah040e3112012-12-15 22:33:33 +0100721 .. method:: normalize(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000722
Benjamin Petersone41251e2008-04-25 01:59:09 +0000723 Normalize the number by stripping the rightmost trailing zeros and
724 converting any result equal to :const:`Decimal('0')` to
Senthil Kumarana6bac952011-07-04 11:28:30 -0700725 :const:`Decimal('0e0')`. Used for producing canonical values for attributes
Benjamin Petersone41251e2008-04-25 01:59:09 +0000726 of an equivalence class. For example, ``Decimal('32.100')`` and
727 ``Decimal('0.321000e+2')`` both normalize to the equivalent value
728 ``Decimal('32.1')``.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000729
Stefan Krah040e3112012-12-15 22:33:33 +0100730 .. method:: number_class(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000731
Benjamin Petersone41251e2008-04-25 01:59:09 +0000732 Return a string describing the *class* of the operand. The returned value
733 is one of the following ten strings.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000734
Benjamin Petersone41251e2008-04-25 01:59:09 +0000735 * ``"-Infinity"``, indicating that the operand is negative infinity.
736 * ``"-Normal"``, indicating that the operand is a negative normal number.
737 * ``"-Subnormal"``, indicating that the operand is negative and subnormal.
738 * ``"-Zero"``, indicating that the operand is a negative zero.
739 * ``"+Zero"``, indicating that the operand is a positive zero.
740 * ``"+Subnormal"``, indicating that the operand is positive and subnormal.
741 * ``"+Normal"``, indicating that the operand is a positive normal number.
742 * ``"+Infinity"``, indicating that the operand is positive infinity.
743 * ``"NaN"``, indicating that the operand is a quiet NaN (Not a Number).
744 * ``"sNaN"``, indicating that the operand is a signaling NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000745
Stefan Krahb151f8f2014-04-30 19:15:38 +0200746 .. method:: quantize(exp, rounding=None, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000747
Benjamin Petersone41251e2008-04-25 01:59:09 +0000748 Return a value equal to the first operand after rounding and having the
749 exponent of the second operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000750
Benjamin Petersone41251e2008-04-25 01:59:09 +0000751 >>> Decimal('1.41421356').quantize(Decimal('1.000'))
752 Decimal('1.414')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000753
Benjamin Petersone41251e2008-04-25 01:59:09 +0000754 Unlike other operations, if the length of the coefficient after the
755 quantize operation would be greater than precision, then an
756 :const:`InvalidOperation` is signaled. This guarantees that, unless there
757 is an error condition, the quantized exponent is always equal to that of
758 the right-hand operand.
Georg Brandl116aa622007-08-15 14:28:22 +0000759
Benjamin Petersone41251e2008-04-25 01:59:09 +0000760 Also unlike other operations, quantize never signals Underflow, even if
761 the result is subnormal and inexact.
Georg Brandl116aa622007-08-15 14:28:22 +0000762
Benjamin Petersone41251e2008-04-25 01:59:09 +0000763 If the exponent of the second operand is larger than that of the first
764 then rounding may be necessary. In this case, the rounding mode is
765 determined by the ``rounding`` argument if given, else by the given
766 ``context`` argument; if neither argument is given the rounding mode of
767 the current thread's context is used.
Georg Brandl116aa622007-08-15 14:28:22 +0000768
Stefan Krahb151f8f2014-04-30 19:15:38 +0200769 An error is returned whenever the resulting exponent is greater than
770 :attr:`Emax` or less than :attr:`Etiny`.
Stefan Krahaf3f3a72012-08-30 12:33:55 +0200771
Benjamin Petersone41251e2008-04-25 01:59:09 +0000772 .. method:: radix()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000773
Benjamin Petersone41251e2008-04-25 01:59:09 +0000774 Return ``Decimal(10)``, the radix (base) in which the :class:`Decimal`
775 class does all its arithmetic. Included for compatibility with the
776 specification.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000777
Stefan Krah040e3112012-12-15 22:33:33 +0100778 .. method:: remainder_near(other, context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000779
Mark Dickinson6ae568b2012-10-31 19:44:36 +0000780 Return the remainder from dividing *self* by *other*. This differs from
781 ``self % other`` in that the sign of the remainder is chosen so as to
782 minimize its absolute value. More precisely, the return value is
783 ``self - n * other`` where ``n`` is the integer nearest to the exact
784 value of ``self / other``, and if two integers are equally near then the
785 even one is chosen.
Georg Brandl116aa622007-08-15 14:28:22 +0000786
Mark Dickinson6ae568b2012-10-31 19:44:36 +0000787 If the result is zero then its sign will be the sign of *self*.
788
789 >>> Decimal(18).remainder_near(Decimal(10))
790 Decimal('-2')
791 >>> Decimal(25).remainder_near(Decimal(10))
792 Decimal('5')
793 >>> Decimal(35).remainder_near(Decimal(10))
794 Decimal('-5')
Georg Brandl116aa622007-08-15 14:28:22 +0000795
Stefan Krah040e3112012-12-15 22:33:33 +0100796 .. method:: rotate(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000797
Benjamin Petersone41251e2008-04-25 01:59:09 +0000798 Return the result of rotating the digits of the first operand by an amount
799 specified by the second operand. The second operand must be an integer in
800 the range -precision through precision. The absolute value of the second
801 operand gives the number of places to rotate. If the second operand is
802 positive then rotation is to the left; otherwise rotation is to the right.
803 The coefficient of the first operand is padded on the left with zeros to
804 length precision if necessary. The sign and exponent of the first operand
805 are unchanged.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000806
Stefan Krah040e3112012-12-15 22:33:33 +0100807 .. method:: same_quantum(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000808
Benjamin Petersone41251e2008-04-25 01:59:09 +0000809 Test whether self and other have the same exponent or whether both are
810 :const:`NaN`.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000811
Stefan Krah040e3112012-12-15 22:33:33 +0100812 This operation is unaffected by context and is quiet: no flags are changed
813 and no rounding is performed. As an exception, the C version may raise
814 InvalidOperation if the second operand cannot be converted exactly.
815
816 .. method:: scaleb(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000817
Benjamin Petersone41251e2008-04-25 01:59:09 +0000818 Return the first operand with exponent adjusted by the second.
819 Equivalently, return the first operand multiplied by ``10**other``. The
820 second operand must be an integer.
Georg Brandl116aa622007-08-15 14:28:22 +0000821
Stefan Krah040e3112012-12-15 22:33:33 +0100822 .. method:: shift(other, context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000823
Benjamin Petersone41251e2008-04-25 01:59:09 +0000824 Return the result of shifting the digits of the first operand by an amount
825 specified by the second operand. The second operand must be an integer in
826 the range -precision through precision. The absolute value of the second
827 operand gives the number of places to shift. If the second operand is
828 positive then the shift is to the left; otherwise the shift is to the
829 right. Digits shifted into the coefficient are zeros. The sign and
830 exponent of the first operand are unchanged.
Georg Brandl116aa622007-08-15 14:28:22 +0000831
Stefan Krah040e3112012-12-15 22:33:33 +0100832 .. method:: sqrt(context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000833
Benjamin Petersone41251e2008-04-25 01:59:09 +0000834 Return the square root of the argument to full precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000835
Georg Brandl116aa622007-08-15 14:28:22 +0000836
Stefan Krah040e3112012-12-15 22:33:33 +0100837 .. method:: to_eng_string(context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000838
Benjamin Petersone41251e2008-04-25 01:59:09 +0000839 Convert to an engineering-type string.
Georg Brandl116aa622007-08-15 14:28:22 +0000840
Benjamin Petersone41251e2008-04-25 01:59:09 +0000841 Engineering notation has an exponent which is a multiple of 3, so there
842 are up to 3 digits left of the decimal place. For example, converts
Martin Panterd21e0b52015-10-10 10:36:22 +0000843 ``Decimal('123E+1')`` to ``Decimal('1.23E+3')``.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000844
Stefan Krah040e3112012-12-15 22:33:33 +0100845 .. method:: to_integral(rounding=None, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000846
Benjamin Petersone41251e2008-04-25 01:59:09 +0000847 Identical to the :meth:`to_integral_value` method. The ``to_integral``
848 name has been kept for compatibility with older versions.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000849
Stefan Krah040e3112012-12-15 22:33:33 +0100850 .. method:: to_integral_exact(rounding=None, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000851
Benjamin Petersone41251e2008-04-25 01:59:09 +0000852 Round to the nearest integer, signaling :const:`Inexact` or
853 :const:`Rounded` as appropriate if rounding occurs. The rounding mode is
854 determined by the ``rounding`` parameter if given, else by the given
855 ``context``. If neither parameter is given then the rounding mode of the
856 current context is used.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000857
Stefan Krah040e3112012-12-15 22:33:33 +0100858 .. method:: to_integral_value(rounding=None, context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000859
Benjamin Petersone41251e2008-04-25 01:59:09 +0000860 Round to the nearest integer without signaling :const:`Inexact` or
861 :const:`Rounded`. If given, applies *rounding*; otherwise, uses the
862 rounding method in either the supplied *context* or the current context.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000863
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000864
865.. _logical_operands_label:
866
867Logical operands
868^^^^^^^^^^^^^^^^
869
870The :meth:`logical_and`, :meth:`logical_invert`, :meth:`logical_or`,
871and :meth:`logical_xor` methods expect their arguments to be *logical
872operands*. A *logical operand* is a :class:`Decimal` instance whose
873exponent and sign are both zero, and whose digits are all either
874:const:`0` or :const:`1`.
875
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000876.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000877
878
879.. _decimal-context:
880
881Context objects
882---------------
883
884Contexts are environments for arithmetic operations. They govern precision, set
885rules for rounding, determine which signals are treated as exceptions, and limit
886the range for exponents.
887
888Each thread has its own current context which is accessed or changed using the
889:func:`getcontext` and :func:`setcontext` functions:
890
891
892.. function:: getcontext()
893
894 Return the current context for the active thread.
895
896
897.. function:: setcontext(c)
898
899 Set the current context for the active thread to *c*.
900
Georg Brandle6bcc912008-05-12 18:05:20 +0000901You can also use the :keyword:`with` statement and the :func:`localcontext`
902function to temporarily change the active context.
Georg Brandl116aa622007-08-15 14:28:22 +0000903
Stefan Krah040e3112012-12-15 22:33:33 +0100904.. function:: localcontext(ctx=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000905
906 Return a context manager that will set the current context for the active thread
Stefan Krah040e3112012-12-15 22:33:33 +0100907 to a copy of *ctx* on entry to the with-statement and restore the previous context
Georg Brandl116aa622007-08-15 14:28:22 +0000908 when exiting the with-statement. If no context is specified, a copy of the
909 current context is used.
910
Georg Brandl116aa622007-08-15 14:28:22 +0000911 For example, the following code sets the current decimal precision to 42 places,
912 performs a calculation, and then automatically restores the previous context::
913
Georg Brandl116aa622007-08-15 14:28:22 +0000914 from decimal import localcontext
915
916 with localcontext() as ctx:
917 ctx.prec = 42 # Perform a high precision calculation
918 s = calculate_something()
919 s = +s # Round the final result back to the default precision
920
921New contexts can also be created using the :class:`Context` constructor
922described below. In addition, the module provides three pre-made contexts:
923
924
925.. class:: BasicContext
926
927 This is a standard context defined by the General Decimal Arithmetic
928 Specification. Precision is set to nine. Rounding is set to
929 :const:`ROUND_HALF_UP`. All flags are cleared. All traps are enabled (treated
930 as exceptions) except :const:`Inexact`, :const:`Rounded`, and
931 :const:`Subnormal`.
932
933 Because many of the traps are enabled, this context is useful for debugging.
934
935
936.. class:: ExtendedContext
937
938 This is a standard context defined by the General Decimal Arithmetic
939 Specification. Precision is set to nine. Rounding is set to
940 :const:`ROUND_HALF_EVEN`. All flags are cleared. No traps are enabled (so that
941 exceptions are not raised during computations).
942
Christian Heimes3feef612008-02-11 06:19:17 +0000943 Because the traps are disabled, this context is useful for applications that
Georg Brandl116aa622007-08-15 14:28:22 +0000944 prefer to have result value of :const:`NaN` or :const:`Infinity` instead of
945 raising exceptions. This allows an application to complete a run in the
946 presence of conditions that would otherwise halt the program.
947
948
949.. class:: DefaultContext
950
951 This context is used by the :class:`Context` constructor as a prototype for new
952 contexts. Changing a field (such a precision) has the effect of changing the
Stefan Kraha1193932010-05-29 12:59:18 +0000953 default for new contexts created by the :class:`Context` constructor.
Georg Brandl116aa622007-08-15 14:28:22 +0000954
955 This context is most useful in multi-threaded environments. Changing one of the
956 fields before threads are started has the effect of setting system-wide
957 defaults. Changing the fields after threads have started is not recommended as
958 it would require thread synchronization to prevent race conditions.
959
960 In single threaded environments, it is preferable to not use this context at
961 all. Instead, simply create contexts explicitly as described below.
962
Stefan Krah1919b7e2012-03-21 18:25:23 +0100963 The default values are :attr:`prec`\ =\ :const:`28`,
964 :attr:`rounding`\ =\ :const:`ROUND_HALF_EVEN`,
965 and enabled traps for :class:`Overflow`, :class:`InvalidOperation`, and
966 :class:`DivisionByZero`.
Georg Brandl116aa622007-08-15 14:28:22 +0000967
968In addition to the three supplied contexts, new contexts can be created with the
969:class:`Context` constructor.
970
971
Stefan Krah1919b7e2012-03-21 18:25:23 +0100972.. class:: Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000973
974 Creates a new context. If a field is not specified or is :const:`None`, the
975 default values are copied from the :const:`DefaultContext`. If the *flags*
976 field is not specified or is :const:`None`, all flags are cleared.
977
Stefan Krah1919b7e2012-03-21 18:25:23 +0100978 *prec* is an integer in the range [:const:`1`, :const:`MAX_PREC`] that sets
979 the precision for arithmetic operations in the context.
Georg Brandl116aa622007-08-15 14:28:22 +0000980
Stefan Krah1919b7e2012-03-21 18:25:23 +0100981 The *rounding* option is one of the constants listed in the section
982 `Rounding Modes`_.
Georg Brandl116aa622007-08-15 14:28:22 +0000983
984 The *traps* and *flags* fields list any signals to be set. Generally, new
985 contexts should only set traps and leave the flags clear.
986
987 The *Emin* and *Emax* fields are integers specifying the outer limits allowable
Stefan Krah1919b7e2012-03-21 18:25:23 +0100988 for exponents. *Emin* must be in the range [:const:`MIN_EMIN`, :const:`0`],
989 *Emax* in the range [:const:`0`, :const:`MAX_EMAX`].
Georg Brandl116aa622007-08-15 14:28:22 +0000990
991 The *capitals* field is either :const:`0` or :const:`1` (the default). If set to
992 :const:`1`, exponents are printed with a capital :const:`E`; otherwise, a
993 lowercase :const:`e` is used: :const:`Decimal('6.02e+23')`.
994
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000995 The *clamp* field is either :const:`0` (the default) or :const:`1`.
996 If set to :const:`1`, the exponent ``e`` of a :class:`Decimal`
997 instance representable in this context is strictly limited to the
998 range ``Emin - prec + 1 <= e <= Emax - prec + 1``. If *clamp* is
999 :const:`0` then a weaker condition holds: the adjusted exponent of
1000 the :class:`Decimal` instance is at most ``Emax``. When *clamp* is
1001 :const:`1`, a large normal number will, where possible, have its
1002 exponent reduced and a corresponding number of zeros added to its
1003 coefficient, in order to fit the exponent constraints; this
1004 preserves the value of the number but loses information about
1005 significant trailing zeros. For example::
1006
1007 >>> Context(prec=6, Emax=999, clamp=1).create_decimal('1.23e999')
1008 Decimal('1.23000E+999')
1009
1010 A *clamp* value of :const:`1` allows compatibility with the
1011 fixed-width decimal interchange formats specified in IEEE 754.
Georg Brandl116aa622007-08-15 14:28:22 +00001012
Benjamin Petersone41251e2008-04-25 01:59:09 +00001013 The :class:`Context` class defines several general purpose methods as well as
1014 a large number of methods for doing arithmetic directly in a given context.
1015 In addition, for each of the :class:`Decimal` methods described above (with
1016 the exception of the :meth:`adjusted` and :meth:`as_tuple` methods) there is
Mark Dickinson84230a12010-02-18 14:49:50 +00001017 a corresponding :class:`Context` method. For example, for a :class:`Context`
1018 instance ``C`` and :class:`Decimal` instance ``x``, ``C.exp(x)`` is
1019 equivalent to ``x.exp(context=C)``. Each :class:`Context` method accepts a
Mark Dickinson5d233fd2010-02-18 14:54:37 +00001020 Python integer (an instance of :class:`int`) anywhere that a
Mark Dickinson84230a12010-02-18 14:49:50 +00001021 Decimal instance is accepted.
Georg Brandl116aa622007-08-15 14:28:22 +00001022
1023
Benjamin Petersone41251e2008-04-25 01:59:09 +00001024 .. method:: clear_flags()
Georg Brandl116aa622007-08-15 14:28:22 +00001025
Benjamin Petersone41251e2008-04-25 01:59:09 +00001026 Resets all of the flags to :const:`0`.
Georg Brandl116aa622007-08-15 14:28:22 +00001027
Stefan Krah1919b7e2012-03-21 18:25:23 +01001028 .. method:: clear_traps()
1029
1030 Resets all of the traps to :const:`0`.
1031
1032 .. versionadded:: 3.3
1033
Benjamin Petersone41251e2008-04-25 01:59:09 +00001034 .. method:: copy()
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001035
Benjamin Petersone41251e2008-04-25 01:59:09 +00001036 Return a duplicate of the context.
Georg Brandl116aa622007-08-15 14:28:22 +00001037
Benjamin Petersone41251e2008-04-25 01:59:09 +00001038 .. method:: copy_decimal(num)
Georg Brandl116aa622007-08-15 14:28:22 +00001039
Benjamin Petersone41251e2008-04-25 01:59:09 +00001040 Return a copy of the Decimal instance num.
Georg Brandl116aa622007-08-15 14:28:22 +00001041
Benjamin Petersone41251e2008-04-25 01:59:09 +00001042 .. method:: create_decimal(num)
Christian Heimesfe337bf2008-03-23 21:54:12 +00001043
Benjamin Petersone41251e2008-04-25 01:59:09 +00001044 Creates a new Decimal instance from *num* but using *self* as
1045 context. Unlike the :class:`Decimal` constructor, the context precision,
1046 rounding method, flags, and traps are applied to the conversion.
Georg Brandl116aa622007-08-15 14:28:22 +00001047
Benjamin Petersone41251e2008-04-25 01:59:09 +00001048 This is useful because constants are often given to a greater precision
1049 than is needed by the application. Another benefit is that rounding
1050 immediately eliminates unintended effects from digits beyond the current
1051 precision. In the following example, using unrounded inputs means that
1052 adding zero to a sum can change the result:
Georg Brandl116aa622007-08-15 14:28:22 +00001053
Benjamin Petersone41251e2008-04-25 01:59:09 +00001054 .. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001055
Benjamin Petersone41251e2008-04-25 01:59:09 +00001056 >>> getcontext().prec = 3
1057 >>> Decimal('3.4445') + Decimal('1.0023')
1058 Decimal('4.45')
1059 >>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
1060 Decimal('4.44')
Georg Brandl116aa622007-08-15 14:28:22 +00001061
Benjamin Petersone41251e2008-04-25 01:59:09 +00001062 This method implements the to-number operation of the IBM specification.
1063 If the argument is a string, no leading or trailing whitespace is
1064 permitted.
1065
Georg Brandl45f53372009-01-03 21:15:20 +00001066 .. method:: create_decimal_from_float(f)
Raymond Hettinger771ed762009-01-03 19:20:32 +00001067
1068 Creates a new Decimal instance from a float *f* but rounding using *self*
Georg Brandl45f53372009-01-03 21:15:20 +00001069 as the context. Unlike the :meth:`Decimal.from_float` class method,
Raymond Hettinger771ed762009-01-03 19:20:32 +00001070 the context precision, rounding method, flags, and traps are applied to
1071 the conversion.
1072
1073 .. doctest::
1074
Georg Brandl45f53372009-01-03 21:15:20 +00001075 >>> context = Context(prec=5, rounding=ROUND_DOWN)
1076 >>> context.create_decimal_from_float(math.pi)
1077 Decimal('3.1415')
1078 >>> context = Context(prec=5, traps=[Inexact])
1079 >>> context.create_decimal_from_float(math.pi)
1080 Traceback (most recent call last):
1081 ...
1082 decimal.Inexact: None
Raymond Hettinger771ed762009-01-03 19:20:32 +00001083
Georg Brandl45f53372009-01-03 21:15:20 +00001084 .. versionadded:: 3.1
Raymond Hettinger771ed762009-01-03 19:20:32 +00001085
Benjamin Petersone41251e2008-04-25 01:59:09 +00001086 .. method:: Etiny()
1087
1088 Returns a value equal to ``Emin - prec + 1`` which is the minimum exponent
1089 value for subnormal results. When underflow occurs, the exponent is set
1090 to :const:`Etiny`.
Georg Brandl116aa622007-08-15 14:28:22 +00001091
Benjamin Petersone41251e2008-04-25 01:59:09 +00001092 .. method:: Etop()
Georg Brandl116aa622007-08-15 14:28:22 +00001093
Benjamin Petersone41251e2008-04-25 01:59:09 +00001094 Returns a value equal to ``Emax - prec + 1``.
Georg Brandl116aa622007-08-15 14:28:22 +00001095
Benjamin Petersone41251e2008-04-25 01:59:09 +00001096 The usual approach to working with decimals is to create :class:`Decimal`
1097 instances and then apply arithmetic operations which take place within the
1098 current context for the active thread. An alternative approach is to use
1099 context methods for calculating within a specific context. The methods are
1100 similar to those for the :class:`Decimal` class and are only briefly
1101 recounted here.
Georg Brandl116aa622007-08-15 14:28:22 +00001102
1103
Benjamin Petersone41251e2008-04-25 01:59:09 +00001104 .. method:: abs(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001105
Benjamin Petersone41251e2008-04-25 01:59:09 +00001106 Returns the absolute value of *x*.
Georg Brandl116aa622007-08-15 14:28:22 +00001107
1108
Benjamin Petersone41251e2008-04-25 01:59:09 +00001109 .. method:: add(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001110
Benjamin Petersone41251e2008-04-25 01:59:09 +00001111 Return the sum of *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001112
1113
Facundo Batista789bdf02008-06-21 17:29:41 +00001114 .. method:: canonical(x)
1115
1116 Returns the same Decimal object *x*.
1117
1118
1119 .. method:: compare(x, y)
1120
1121 Compares *x* and *y* numerically.
1122
1123
1124 .. method:: compare_signal(x, y)
1125
1126 Compares the values of the two operands numerically.
1127
1128
1129 .. method:: compare_total(x, y)
1130
1131 Compares two operands using their abstract representation.
1132
1133
1134 .. method:: compare_total_mag(x, y)
1135
1136 Compares two operands using their abstract representation, ignoring sign.
1137
1138
1139 .. method:: copy_abs(x)
1140
1141 Returns a copy of *x* with the sign set to 0.
1142
1143
1144 .. method:: copy_negate(x)
1145
1146 Returns a copy of *x* with the sign inverted.
1147
1148
1149 .. method:: copy_sign(x, y)
1150
1151 Copies the sign from *y* to *x*.
1152
1153
Benjamin Petersone41251e2008-04-25 01:59:09 +00001154 .. method:: divide(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001155
Benjamin Petersone41251e2008-04-25 01:59:09 +00001156 Return *x* divided by *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001157
1158
Benjamin Petersone41251e2008-04-25 01:59:09 +00001159 .. method:: divide_int(x, y)
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001160
Benjamin Petersone41251e2008-04-25 01:59:09 +00001161 Return *x* divided by *y*, truncated to an integer.
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001162
1163
Benjamin Petersone41251e2008-04-25 01:59:09 +00001164 .. method:: divmod(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001165
Benjamin Petersone41251e2008-04-25 01:59:09 +00001166 Divides two numbers and returns the integer part of the result.
Georg Brandl116aa622007-08-15 14:28:22 +00001167
1168
Facundo Batista789bdf02008-06-21 17:29:41 +00001169 .. method:: exp(x)
1170
1171 Returns `e ** x`.
1172
1173
1174 .. method:: fma(x, y, z)
1175
1176 Returns *x* multiplied by *y*, plus *z*.
1177
1178
1179 .. method:: is_canonical(x)
1180
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001181 Returns ``True`` if *x* is canonical; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001182
1183
1184 .. method:: is_finite(x)
1185
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001186 Returns ``True`` if *x* is finite; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001187
1188
1189 .. method:: is_infinite(x)
1190
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001191 Returns ``True`` if *x* is infinite; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001192
1193
1194 .. method:: is_nan(x)
1195
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001196 Returns ``True`` if *x* is a qNaN or sNaN; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001197
1198
1199 .. method:: is_normal(x)
1200
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001201 Returns ``True`` if *x* is a normal number; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001202
1203
1204 .. method:: is_qnan(x)
1205
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001206 Returns ``True`` if *x* is a quiet NaN; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001207
1208
1209 .. method:: is_signed(x)
1210
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001211 Returns ``True`` if *x* is negative; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001212
1213
1214 .. method:: is_snan(x)
1215
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001216 Returns ``True`` if *x* is a signaling NaN; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001217
1218
1219 .. method:: is_subnormal(x)
1220
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001221 Returns ``True`` if *x* is subnormal; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001222
1223
1224 .. method:: is_zero(x)
1225
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001226 Returns ``True`` if *x* is a zero; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001227
1228
1229 .. method:: ln(x)
1230
1231 Returns the natural (base e) logarithm of *x*.
1232
1233
1234 .. method:: log10(x)
1235
1236 Returns the base 10 logarithm of *x*.
1237
1238
1239 .. method:: logb(x)
1240
1241 Returns the exponent of the magnitude of the operand's MSD.
1242
1243
1244 .. method:: logical_and(x, y)
1245
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001246 Applies the logical operation *and* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001247
1248
1249 .. method:: logical_invert(x)
1250
1251 Invert all the digits in *x*.
1252
1253
1254 .. method:: logical_or(x, y)
1255
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001256 Applies the logical operation *or* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001257
1258
1259 .. method:: logical_xor(x, y)
1260
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001261 Applies the logical operation *xor* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001262
1263
1264 .. method:: max(x, y)
1265
1266 Compares two values numerically and returns the maximum.
1267
1268
1269 .. method:: max_mag(x, y)
1270
1271 Compares the values numerically with their sign ignored.
1272
1273
1274 .. method:: min(x, y)
1275
1276 Compares two values numerically and returns the minimum.
1277
1278
1279 .. method:: min_mag(x, y)
1280
1281 Compares the values numerically with their sign ignored.
1282
1283
Benjamin Petersone41251e2008-04-25 01:59:09 +00001284 .. method:: minus(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001285
Benjamin Petersone41251e2008-04-25 01:59:09 +00001286 Minus corresponds to the unary prefix minus operator in Python.
Georg Brandl116aa622007-08-15 14:28:22 +00001287
1288
Benjamin Petersone41251e2008-04-25 01:59:09 +00001289 .. method:: multiply(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001290
Benjamin Petersone41251e2008-04-25 01:59:09 +00001291 Return the product of *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001292
1293
Facundo Batista789bdf02008-06-21 17:29:41 +00001294 .. method:: next_minus(x)
1295
1296 Returns the largest representable number smaller than *x*.
1297
1298
1299 .. method:: next_plus(x)
1300
1301 Returns the smallest representable number larger than *x*.
1302
1303
1304 .. method:: next_toward(x, y)
1305
1306 Returns the number closest to *x*, in direction towards *y*.
1307
1308
1309 .. method:: normalize(x)
1310
1311 Reduces *x* to its simplest form.
1312
1313
1314 .. method:: number_class(x)
1315
1316 Returns an indication of the class of *x*.
1317
1318
Benjamin Petersone41251e2008-04-25 01:59:09 +00001319 .. method:: plus(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001320
Benjamin Petersone41251e2008-04-25 01:59:09 +00001321 Plus corresponds to the unary prefix plus operator in Python. This
1322 operation applies the context precision and rounding, so it is *not* an
1323 identity operation.
Georg Brandl116aa622007-08-15 14:28:22 +00001324
1325
Stefan Krah040e3112012-12-15 22:33:33 +01001326 .. method:: power(x, y, modulo=None)
Georg Brandl116aa622007-08-15 14:28:22 +00001327
Benjamin Petersone41251e2008-04-25 01:59:09 +00001328 Return ``x`` to the power of ``y``, reduced modulo ``modulo`` if given.
Georg Brandl116aa622007-08-15 14:28:22 +00001329
Benjamin Petersone41251e2008-04-25 01:59:09 +00001330 With two arguments, compute ``x**y``. If ``x`` is negative then ``y``
1331 must be integral. The result will be inexact unless ``y`` is integral and
1332 the result is finite and can be expressed exactly in 'precision' digits.
Stefan Krah1919b7e2012-03-21 18:25:23 +01001333 The rounding mode of the context is used. Results are always correctly-rounded
1334 in the Python version.
1335
1336 .. versionchanged:: 3.3
1337 The C module computes :meth:`power` in terms of the correctly-rounded
1338 :meth:`exp` and :meth:`ln` functions. The result is well-defined but
1339 only "almost always correctly-rounded".
Georg Brandl116aa622007-08-15 14:28:22 +00001340
Benjamin Petersone41251e2008-04-25 01:59:09 +00001341 With three arguments, compute ``(x**y) % modulo``. For the three argument
1342 form, the following restrictions on the arguments hold:
Georg Brandl116aa622007-08-15 14:28:22 +00001343
Benjamin Petersone41251e2008-04-25 01:59:09 +00001344 - all three arguments must be integral
1345 - ``y`` must be nonnegative
1346 - at least one of ``x`` or ``y`` must be nonzero
1347 - ``modulo`` must be nonzero and have at most 'precision' digits
Georg Brandl116aa622007-08-15 14:28:22 +00001348
Mark Dickinson5961b0e2010-02-22 15:41:48 +00001349 The value resulting from ``Context.power(x, y, modulo)`` is
1350 equal to the value that would be obtained by computing ``(x**y)
1351 % modulo`` with unbounded precision, but is computed more
1352 efficiently. The exponent of the result is zero, regardless of
1353 the exponents of ``x``, ``y`` and ``modulo``. The result is
1354 always exact.
Georg Brandl116aa622007-08-15 14:28:22 +00001355
Facundo Batista789bdf02008-06-21 17:29:41 +00001356
1357 .. method:: quantize(x, y)
1358
1359 Returns a value equal to *x* (rounded), having the exponent of *y*.
1360
1361
1362 .. method:: radix()
1363
1364 Just returns 10, as this is Decimal, :)
1365
1366
Benjamin Petersone41251e2008-04-25 01:59:09 +00001367 .. method:: remainder(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001368
Benjamin Petersone41251e2008-04-25 01:59:09 +00001369 Returns the remainder from integer division.
Georg Brandl116aa622007-08-15 14:28:22 +00001370
Benjamin Petersone41251e2008-04-25 01:59:09 +00001371 The sign of the result, if non-zero, is the same as that of the original
1372 dividend.
Georg Brandl116aa622007-08-15 14:28:22 +00001373
Benjamin Petersondcf97b92008-07-02 17:30:14 +00001374
Facundo Batista789bdf02008-06-21 17:29:41 +00001375 .. method:: remainder_near(x, y)
1376
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001377 Returns ``x - y * n``, where *n* is the integer nearest the exact value
1378 of ``x / y`` (if the result is 0 then its sign will be the sign of *x*).
Facundo Batista789bdf02008-06-21 17:29:41 +00001379
1380
1381 .. method:: rotate(x, y)
1382
1383 Returns a rotated copy of *x*, *y* times.
1384
1385
1386 .. method:: same_quantum(x, y)
1387
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001388 Returns ``True`` if the two operands have the same exponent.
Facundo Batista789bdf02008-06-21 17:29:41 +00001389
1390
1391 .. method:: scaleb (x, y)
1392
1393 Returns the first operand after adding the second value its exp.
1394
1395
1396 .. method:: shift(x, y)
1397
1398 Returns a shifted copy of *x*, *y* times.
1399
1400
1401 .. method:: sqrt(x)
1402
1403 Square root of a non-negative number to context precision.
1404
1405
Benjamin Petersone41251e2008-04-25 01:59:09 +00001406 .. method:: subtract(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001407
Benjamin Petersone41251e2008-04-25 01:59:09 +00001408 Return the difference between *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001409
Facundo Batista789bdf02008-06-21 17:29:41 +00001410
1411 .. method:: to_eng_string(x)
1412
1413 Converts a number to a string, using scientific notation.
1414
1415
1416 .. method:: to_integral_exact(x)
1417
1418 Rounds to an integer.
1419
1420
Benjamin Petersone41251e2008-04-25 01:59:09 +00001421 .. method:: to_sci_string(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001422
Benjamin Petersone41251e2008-04-25 01:59:09 +00001423 Converts a number to a string using scientific notation.
Georg Brandl116aa622007-08-15 14:28:22 +00001424
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001425.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001426
Stefan Krah1919b7e2012-03-21 18:25:23 +01001427.. _decimal-rounding-modes:
1428
1429Constants
1430---------
1431
1432The constants in this section are only relevant for the C module. They
1433are also included in the pure Python version for compatibility.
1434
Stefan Krah851a07e2012-03-21 18:47:20 +01001435+---------------------+---------------------+-------------------------------+
1436| | 32-bit | 64-bit |
1437+=====================+=====================+===============================+
1438| .. data:: MAX_PREC | :const:`425000000` | :const:`999999999999999999` |
1439+---------------------+---------------------+-------------------------------+
1440| .. data:: MAX_EMAX | :const:`425000000` | :const:`999999999999999999` |
1441+---------------------+---------------------+-------------------------------+
1442| .. data:: MIN_EMIN | :const:`-425000000` | :const:`-999999999999999999` |
1443+---------------------+---------------------+-------------------------------+
1444| .. data:: MIN_ETINY | :const:`-849999999` | :const:`-1999999999999999997` |
1445+---------------------+---------------------+-------------------------------+
1446
Stefan Krah1919b7e2012-03-21 18:25:23 +01001447
1448.. data:: HAVE_THREADS
1449
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001450 The default value is ``True``. If Python is compiled without threads, the
Stefan Krah1919b7e2012-03-21 18:25:23 +01001451 C version automatically disables the expensive thread local context
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001452 machinery. In this case, the value is ``False``.
Stefan Krah1919b7e2012-03-21 18:25:23 +01001453
1454Rounding modes
1455--------------
1456
1457.. data:: ROUND_CEILING
1458
1459 Round towards :const:`Infinity`.
1460
1461.. data:: ROUND_DOWN
1462
1463 Round towards zero.
1464
1465.. data:: ROUND_FLOOR
1466
1467 Round towards :const:`-Infinity`.
1468
1469.. data:: ROUND_HALF_DOWN
1470
1471 Round to nearest with ties going towards zero.
1472
1473.. data:: ROUND_HALF_EVEN
1474
1475 Round to nearest with ties going to nearest even integer.
1476
1477.. data:: ROUND_HALF_UP
1478
1479 Round to nearest with ties going away from zero.
1480
1481.. data:: ROUND_UP
1482
1483 Round away from zero.
1484
1485.. data:: ROUND_05UP
1486
1487 Round away from zero if last digit after rounding towards zero would have
1488 been 0 or 5; otherwise round towards zero.
1489
Georg Brandl116aa622007-08-15 14:28:22 +00001490
1491.. _decimal-signals:
1492
1493Signals
1494-------
1495
1496Signals represent conditions that arise during computation. Each corresponds to
1497one context flag and one context trap enabler.
1498
Raymond Hettinger86173da2008-02-01 20:38:12 +00001499The context flag is set whenever the condition is encountered. After the
Georg Brandl116aa622007-08-15 14:28:22 +00001500computation, flags may be checked for informational purposes (for instance, to
1501determine whether a computation was exact). After checking the flags, be sure to
1502clear all flags before starting the next computation.
1503
1504If the context's trap enabler is set for the signal, then the condition causes a
1505Python exception to be raised. For example, if the :class:`DivisionByZero` trap
1506is set, then a :exc:`DivisionByZero` exception is raised upon encountering the
1507condition.
1508
1509
1510.. class:: Clamped
1511
1512 Altered an exponent to fit representation constraints.
1513
1514 Typically, clamping occurs when an exponent falls outside the context's
1515 :attr:`Emin` and :attr:`Emax` limits. If possible, the exponent is reduced to
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001516 fit by adding zeros to the coefficient.
Georg Brandl116aa622007-08-15 14:28:22 +00001517
1518
1519.. class:: DecimalException
1520
1521 Base class for other signals and a subclass of :exc:`ArithmeticError`.
1522
1523
1524.. class:: DivisionByZero
1525
1526 Signals the division of a non-infinite number by zero.
1527
1528 Can occur with division, modulo division, or when raising a number to a negative
1529 power. If this signal is not trapped, returns :const:`Infinity` or
1530 :const:`-Infinity` with the sign determined by the inputs to the calculation.
1531
1532
1533.. class:: Inexact
1534
1535 Indicates that rounding occurred and the result is not exact.
1536
1537 Signals when non-zero digits were discarded during rounding. The rounded result
1538 is returned. The signal flag or trap is used to detect when results are
1539 inexact.
1540
1541
1542.. class:: InvalidOperation
1543
1544 An invalid operation was performed.
1545
1546 Indicates that an operation was requested that does not make sense. If not
1547 trapped, returns :const:`NaN`. Possible causes include::
1548
1549 Infinity - Infinity
1550 0 * Infinity
1551 Infinity / Infinity
1552 x % 0
1553 Infinity % x
Georg Brandl116aa622007-08-15 14:28:22 +00001554 sqrt(-x) and x > 0
1555 0 ** 0
1556 x ** (non-integer)
Georg Brandl48310cd2009-01-03 21:18:54 +00001557 x ** Infinity
Georg Brandl116aa622007-08-15 14:28:22 +00001558
1559
1560.. class:: Overflow
1561
1562 Numerical overflow.
1563
Benjamin Petersone41251e2008-04-25 01:59:09 +00001564 Indicates the exponent is larger than :attr:`Emax` after rounding has
1565 occurred. If not trapped, the result depends on the rounding mode, either
1566 pulling inward to the largest representable finite number or rounding outward
1567 to :const:`Infinity`. In either case, :class:`Inexact` and :class:`Rounded`
1568 are also signaled.
Georg Brandl116aa622007-08-15 14:28:22 +00001569
1570
1571.. class:: Rounded
1572
1573 Rounding occurred though possibly no information was lost.
1574
Benjamin Petersone41251e2008-04-25 01:59:09 +00001575 Signaled whenever rounding discards digits; even if those digits are zero
1576 (such as rounding :const:`5.00` to :const:`5.0`). If not trapped, returns
1577 the result unchanged. This signal is used to detect loss of significant
1578 digits.
Georg Brandl116aa622007-08-15 14:28:22 +00001579
1580
1581.. class:: Subnormal
1582
1583 Exponent was lower than :attr:`Emin` prior to rounding.
1584
Benjamin Petersone41251e2008-04-25 01:59:09 +00001585 Occurs when an operation result is subnormal (the exponent is too small). If
1586 not trapped, returns the result unchanged.
Georg Brandl116aa622007-08-15 14:28:22 +00001587
1588
1589.. class:: Underflow
1590
1591 Numerical underflow with result rounded to zero.
1592
1593 Occurs when a subnormal result is pushed to zero by rounding. :class:`Inexact`
1594 and :class:`Subnormal` are also signaled.
1595
Stefan Krah1919b7e2012-03-21 18:25:23 +01001596
1597.. class:: FloatOperation
1598
1599 Enable stricter semantics for mixing floats and Decimals.
1600
1601 If the signal is not trapped (default), mixing floats and Decimals is
1602 permitted in the :class:`~decimal.Decimal` constructor,
1603 :meth:`~decimal.Context.create_decimal` and all comparison operators.
1604 Both conversion and comparisons are exact. Any occurrence of a mixed
1605 operation is silently recorded by setting :exc:`FloatOperation` in the
1606 context flags. Explicit conversions with :meth:`~decimal.Decimal.from_float`
1607 or :meth:`~decimal.Context.create_decimal_from_float` do not set the flag.
1608
1609 Otherwise (the signal is trapped), only equality comparisons and explicit
1610 conversions are silent. All other mixed operations raise :exc:`FloatOperation`.
1611
1612
Georg Brandl116aa622007-08-15 14:28:22 +00001613The following table summarizes the hierarchy of signals::
1614
1615 exceptions.ArithmeticError(exceptions.Exception)
1616 DecimalException
1617 Clamped
1618 DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
1619 Inexact
1620 Overflow(Inexact, Rounded)
1621 Underflow(Inexact, Rounded, Subnormal)
1622 InvalidOperation
1623 Rounded
1624 Subnormal
Stefan Krahb6405ef2012-03-23 14:46:48 +01001625 FloatOperation(DecimalException, exceptions.TypeError)
Georg Brandl116aa622007-08-15 14:28:22 +00001626
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001627.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001628
1629
Stefan Krah1919b7e2012-03-21 18:25:23 +01001630
Georg Brandl116aa622007-08-15 14:28:22 +00001631.. _decimal-notes:
1632
1633Floating Point Notes
1634--------------------
1635
1636
1637Mitigating round-off error with increased precision
1638^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1639
1640The use of decimal floating point eliminates decimal representation error
1641(making it possible to represent :const:`0.1` exactly); however, some operations
1642can still incur round-off error when non-zero digits exceed the fixed precision.
1643
1644The effects of round-off error can be amplified by the addition or subtraction
1645of nearly offsetting quantities resulting in loss of significance. Knuth
1646provides two instructive examples where rounded floating point arithmetic with
1647insufficient precision causes the breakdown of the associative and distributive
Christian Heimesfe337bf2008-03-23 21:54:12 +00001648properties of addition:
1649
1650.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001651
1652 # Examples from Seminumerical Algorithms, Section 4.2.2.
1653 >>> from decimal import Decimal, getcontext
1654 >>> getcontext().prec = 8
1655
1656 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1657 >>> (u + v) + w
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001658 Decimal('9.5111111')
Georg Brandl116aa622007-08-15 14:28:22 +00001659 >>> u + (v + w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001660 Decimal('10')
Georg Brandl116aa622007-08-15 14:28:22 +00001661
1662 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1663 >>> (u*v) + (u*w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001664 Decimal('0.01')
Georg Brandl116aa622007-08-15 14:28:22 +00001665 >>> u * (v+w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001666 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001667
1668The :mod:`decimal` module makes it possible to restore the identities by
Christian Heimesfe337bf2008-03-23 21:54:12 +00001669expanding the precision sufficiently to avoid loss of significance:
1670
1671.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001672
1673 >>> getcontext().prec = 20
1674 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1675 >>> (u + v) + w
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001676 Decimal('9.51111111')
Georg Brandl116aa622007-08-15 14:28:22 +00001677 >>> u + (v + w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001678 Decimal('9.51111111')
Georg Brandl48310cd2009-01-03 21:18:54 +00001679 >>>
Georg Brandl116aa622007-08-15 14:28:22 +00001680 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1681 >>> (u*v) + (u*w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001682 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001683 >>> u * (v+w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001684 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001685
1686
1687Special values
1688^^^^^^^^^^^^^^
1689
1690The number system for the :mod:`decimal` module provides special values
1691including :const:`NaN`, :const:`sNaN`, :const:`-Infinity`, :const:`Infinity`,
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001692and two zeros, :const:`+0` and :const:`-0`.
Georg Brandl116aa622007-08-15 14:28:22 +00001693
1694Infinities can be constructed directly with: ``Decimal('Infinity')``. Also,
1695they can arise from dividing by zero when the :exc:`DivisionByZero` signal is
1696not trapped. Likewise, when the :exc:`Overflow` signal is not trapped, infinity
1697can result from rounding beyond the limits of the largest representable number.
1698
1699The infinities are signed (affine) and can be used in arithmetic operations
1700where they get treated as very large, indeterminate numbers. For instance,
1701adding a constant to infinity gives another infinite result.
1702
1703Some operations are indeterminate and return :const:`NaN`, or if the
1704:exc:`InvalidOperation` signal is trapped, raise an exception. For example,
1705``0/0`` returns :const:`NaN` which means "not a number". This variety of
1706:const:`NaN` is quiet and, once created, will flow through other computations
1707always resulting in another :const:`NaN`. This behavior can be useful for a
1708series of computations that occasionally have missing inputs --- it allows the
1709calculation to proceed while flagging specific results as invalid.
1710
1711A variant is :const:`sNaN` which signals rather than remaining quiet after every
1712operation. This is a useful return value when an invalid result needs to
1713interrupt a calculation for special handling.
1714
Christian Heimes77c02eb2008-02-09 02:18:51 +00001715The behavior of Python's comparison operators can be a little surprising where a
1716:const:`NaN` is involved. A test for equality where one of the operands is a
1717quiet or signaling :const:`NaN` always returns :const:`False` (even when doing
1718``Decimal('NaN')==Decimal('NaN')``), while a test for inequality always returns
1719:const:`True`. An attempt to compare two Decimals using any of the ``<``,
1720``<=``, ``>`` or ``>=`` operators will raise the :exc:`InvalidOperation` signal
1721if either operand is a :const:`NaN`, and return :const:`False` if this signal is
Christian Heimes3feef612008-02-11 06:19:17 +00001722not trapped. Note that the General Decimal Arithmetic specification does not
Christian Heimes77c02eb2008-02-09 02:18:51 +00001723specify the behavior of direct comparisons; these rules for comparisons
1724involving a :const:`NaN` were taken from the IEEE 854 standard (see Table 3 in
1725section 5.7). To ensure strict standards-compliance, use the :meth:`compare`
1726and :meth:`compare-signal` methods instead.
1727
Georg Brandl116aa622007-08-15 14:28:22 +00001728The signed zeros can result from calculations that underflow. They keep the sign
1729that would have resulted if the calculation had been carried out to greater
1730precision. Since their magnitude is zero, both positive and negative zeros are
1731treated as equal and their sign is informational.
1732
1733In addition to the two signed zeros which are distinct yet equal, there are
1734various representations of zero with differing precisions yet equivalent in
1735value. This takes a bit of getting used to. For an eye accustomed to
1736normalized floating point representations, it is not immediately obvious that
Christian Heimesfe337bf2008-03-23 21:54:12 +00001737the following calculation returns a value equal to zero:
Georg Brandl116aa622007-08-15 14:28:22 +00001738
1739 >>> 1 / Decimal('Infinity')
Stefan Krah1919b7e2012-03-21 18:25:23 +01001740 Decimal('0E-1000026')
Georg Brandl116aa622007-08-15 14:28:22 +00001741
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001742.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001743
1744
1745.. _decimal-threads:
1746
1747Working with threads
1748--------------------
1749
1750The :func:`getcontext` function accesses a different :class:`Context` object for
1751each thread. Having separate thread contexts means that threads may make
Stefan Krah1919b7e2012-03-21 18:25:23 +01001752changes (such as ``getcontext().prec=10``) without interfering with other threads.
Georg Brandl116aa622007-08-15 14:28:22 +00001753
1754Likewise, the :func:`setcontext` function automatically assigns its target to
1755the current thread.
1756
1757If :func:`setcontext` has not been called before :func:`getcontext`, then
1758:func:`getcontext` will automatically create a new context for use in the
1759current thread.
1760
1761The new context is copied from a prototype context called *DefaultContext*. To
1762control the defaults so that each thread will use the same values throughout the
1763application, directly modify the *DefaultContext* object. This should be done
1764*before* any threads are started so that there won't be a race condition between
1765threads calling :func:`getcontext`. For example::
1766
1767 # Set applicationwide defaults for all threads about to be launched
1768 DefaultContext.prec = 12
1769 DefaultContext.rounding = ROUND_DOWN
1770 DefaultContext.traps = ExtendedContext.traps.copy()
1771 DefaultContext.traps[InvalidOperation] = 1
1772 setcontext(DefaultContext)
1773
1774 # Afterwards, the threads can be started
1775 t1.start()
1776 t2.start()
1777 t3.start()
1778 . . .
1779
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001780.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001781
1782
1783.. _decimal-recipes:
1784
1785Recipes
1786-------
1787
1788Here are a few recipes that serve as utility functions and that demonstrate ways
1789to work with the :class:`Decimal` class::
1790
1791 def moneyfmt(value, places=2, curr='', sep=',', dp='.',
1792 pos='', neg='-', trailneg=''):
1793 """Convert Decimal to a money formatted string.
1794
1795 places: required number of places after the decimal point
1796 curr: optional currency symbol before the sign (may be blank)
1797 sep: optional grouping separator (comma, period, space, or blank)
1798 dp: decimal point indicator (comma or period)
1799 only specify as blank when places is zero
1800 pos: optional sign for positive numbers: '+', space or blank
1801 neg: optional sign for negative numbers: '-', '(', space or blank
1802 trailneg:optional trailing minus indicator: '-', ')', space or blank
1803
1804 >>> d = Decimal('-1234567.8901')
1805 >>> moneyfmt(d, curr='$')
1806 '-$1,234,567.89'
1807 >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
1808 '1.234.568-'
1809 >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
1810 '($1,234,567.89)'
1811 >>> moneyfmt(Decimal(123456789), sep=' ')
1812 '123 456 789.00'
1813 >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
Christian Heimesdae2a892008-04-19 00:55:37 +00001814 '<0.02>'
Georg Brandl116aa622007-08-15 14:28:22 +00001815
1816 """
Christian Heimesa156e092008-02-16 07:38:31 +00001817 q = Decimal(10) ** -places # 2 places --> '0.01'
Georg Brandl48310cd2009-01-03 21:18:54 +00001818 sign, digits, exp = value.quantize(q).as_tuple()
Georg Brandl116aa622007-08-15 14:28:22 +00001819 result = []
Facundo Batista789bdf02008-06-21 17:29:41 +00001820 digits = list(map(str, digits))
Georg Brandl116aa622007-08-15 14:28:22 +00001821 build, next = result.append, digits.pop
1822 if sign:
1823 build(trailneg)
1824 for i in range(places):
Christian Heimesa156e092008-02-16 07:38:31 +00001825 build(next() if digits else '0')
Raymond Hettinger0ab10e42011-01-08 09:03:11 +00001826 if places:
1827 build(dp)
Christian Heimesdae2a892008-04-19 00:55:37 +00001828 if not digits:
1829 build('0')
Georg Brandl116aa622007-08-15 14:28:22 +00001830 i = 0
1831 while digits:
1832 build(next())
1833 i += 1
1834 if i == 3 and digits:
1835 i = 0
1836 build(sep)
1837 build(curr)
Christian Heimesa156e092008-02-16 07:38:31 +00001838 build(neg if sign else pos)
1839 return ''.join(reversed(result))
Georg Brandl116aa622007-08-15 14:28:22 +00001840
1841 def pi():
1842 """Compute Pi to the current precision.
1843
Georg Brandl6911e3c2007-09-04 07:15:32 +00001844 >>> print(pi())
Georg Brandl116aa622007-08-15 14:28:22 +00001845 3.141592653589793238462643383
1846
1847 """
1848 getcontext().prec += 2 # extra digits for intermediate steps
1849 three = Decimal(3) # substitute "three=3.0" for regular floats
1850 lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
1851 while s != lasts:
1852 lasts = s
1853 n, na = n+na, na+8
1854 d, da = d+da, da+32
1855 t = (t * n) / d
1856 s += t
1857 getcontext().prec -= 2
1858 return +s # unary plus applies the new precision
1859
1860 def exp(x):
1861 """Return e raised to the power of x. Result type matches input type.
1862
Georg Brandl6911e3c2007-09-04 07:15:32 +00001863 >>> print(exp(Decimal(1)))
Georg Brandl116aa622007-08-15 14:28:22 +00001864 2.718281828459045235360287471
Georg Brandl6911e3c2007-09-04 07:15:32 +00001865 >>> print(exp(Decimal(2)))
Georg Brandl116aa622007-08-15 14:28:22 +00001866 7.389056098930650227230427461
Georg Brandl6911e3c2007-09-04 07:15:32 +00001867 >>> print(exp(2.0))
Georg Brandl116aa622007-08-15 14:28:22 +00001868 7.38905609893
Georg Brandl6911e3c2007-09-04 07:15:32 +00001869 >>> print(exp(2+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001870 (7.38905609893+0j)
1871
1872 """
1873 getcontext().prec += 2
1874 i, lasts, s, fact, num = 0, 0, 1, 1, 1
1875 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001876 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001877 i += 1
1878 fact *= i
Georg Brandl48310cd2009-01-03 21:18:54 +00001879 num *= x
1880 s += num / fact
1881 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001882 return +s
1883
1884 def cos(x):
1885 """Return the cosine of x as measured in radians.
1886
Mark Dickinsonb2b23822010-11-21 07:37:49 +00001887 The Taylor series approximation works best for a small value of x.
Raymond Hettinger2a1e3e22010-11-21 02:47:22 +00001888 For larger values, first compute x = x % (2 * pi).
1889
Georg Brandl6911e3c2007-09-04 07:15:32 +00001890 >>> print(cos(Decimal('0.5')))
Georg Brandl116aa622007-08-15 14:28:22 +00001891 0.8775825618903727161162815826
Georg Brandl6911e3c2007-09-04 07:15:32 +00001892 >>> print(cos(0.5))
Georg Brandl116aa622007-08-15 14:28:22 +00001893 0.87758256189
Georg Brandl6911e3c2007-09-04 07:15:32 +00001894 >>> print(cos(0.5+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001895 (0.87758256189+0j)
1896
1897 """
1898 getcontext().prec += 2
1899 i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
1900 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001901 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001902 i += 2
1903 fact *= i * (i-1)
1904 num *= x * x
1905 sign *= -1
Georg Brandl48310cd2009-01-03 21:18:54 +00001906 s += num / fact * sign
1907 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001908 return +s
1909
1910 def sin(x):
1911 """Return the sine of x as measured in radians.
1912
Mark Dickinsonb2b23822010-11-21 07:37:49 +00001913 The Taylor series approximation works best for a small value of x.
Raymond Hettinger2a1e3e22010-11-21 02:47:22 +00001914 For larger values, first compute x = x % (2 * pi).
1915
Georg Brandl6911e3c2007-09-04 07:15:32 +00001916 >>> print(sin(Decimal('0.5')))
Georg Brandl116aa622007-08-15 14:28:22 +00001917 0.4794255386042030002732879352
Georg Brandl6911e3c2007-09-04 07:15:32 +00001918 >>> print(sin(0.5))
Georg Brandl116aa622007-08-15 14:28:22 +00001919 0.479425538604
Georg Brandl6911e3c2007-09-04 07:15:32 +00001920 >>> print(sin(0.5+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001921 (0.479425538604+0j)
1922
1923 """
1924 getcontext().prec += 2
1925 i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
1926 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001927 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001928 i += 2
1929 fact *= i * (i-1)
1930 num *= x * x
1931 sign *= -1
Georg Brandl48310cd2009-01-03 21:18:54 +00001932 s += num / fact * sign
1933 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001934 return +s
1935
1936
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001937.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001938
1939
1940.. _decimal-faq:
1941
1942Decimal FAQ
1943-----------
1944
1945Q. It is cumbersome to type ``decimal.Decimal('1234.5')``. Is there a way to
1946minimize typing when using the interactive interpreter?
1947
Christian Heimesfe337bf2008-03-23 21:54:12 +00001948A. Some users abbreviate the constructor to just a single letter:
Georg Brandl116aa622007-08-15 14:28:22 +00001949
1950 >>> D = decimal.Decimal
1951 >>> D('1.23') + D('3.45')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001952 Decimal('4.68')
Georg Brandl116aa622007-08-15 14:28:22 +00001953
1954Q. In a fixed-point application with two decimal places, some inputs have many
1955places and need to be rounded. Others are not supposed to have excess digits
1956and need to be validated. What methods should be used?
1957
1958A. The :meth:`quantize` method rounds to a fixed number of decimal places. If
Christian Heimesfe337bf2008-03-23 21:54:12 +00001959the :const:`Inexact` trap is set, it is also useful for validation:
Georg Brandl116aa622007-08-15 14:28:22 +00001960
1961 >>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
1962
1963 >>> # Round to two places
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001964 >>> Decimal('3.214').quantize(TWOPLACES)
1965 Decimal('3.21')
Georg Brandl116aa622007-08-15 14:28:22 +00001966
Georg Brandl48310cd2009-01-03 21:18:54 +00001967 >>> # Validate that a number does not exceed two places
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001968 >>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
1969 Decimal('3.21')
Georg Brandl116aa622007-08-15 14:28:22 +00001970
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001971 >>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Georg Brandl116aa622007-08-15 14:28:22 +00001972 Traceback (most recent call last):
1973 ...
Benjamin Peterson25c95f12009-05-08 20:42:26 +00001974 Inexact: None
Georg Brandl116aa622007-08-15 14:28:22 +00001975
1976Q. Once I have valid two place inputs, how do I maintain that invariant
1977throughout an application?
1978
Christian Heimesa156e092008-02-16 07:38:31 +00001979A. Some operations like addition, subtraction, and multiplication by an integer
1980will automatically preserve fixed point. Others operations, like division and
1981non-integer multiplication, will change the number of decimal places and need to
Christian Heimesfe337bf2008-03-23 21:54:12 +00001982be followed-up with a :meth:`quantize` step:
Christian Heimesa156e092008-02-16 07:38:31 +00001983
1984 >>> a = Decimal('102.72') # Initial fixed-point values
1985 >>> b = Decimal('3.17')
1986 >>> a + b # Addition preserves fixed-point
1987 Decimal('105.89')
1988 >>> a - b
1989 Decimal('99.55')
1990 >>> a * 42 # So does integer multiplication
1991 Decimal('4314.24')
1992 >>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
1993 Decimal('325.62')
1994 >>> (b / a).quantize(TWOPLACES) # And quantize division
1995 Decimal('0.03')
1996
1997In developing fixed-point applications, it is convenient to define functions
Christian Heimesfe337bf2008-03-23 21:54:12 +00001998to handle the :meth:`quantize` step:
Christian Heimesa156e092008-02-16 07:38:31 +00001999
2000 >>> def mul(x, y, fp=TWOPLACES):
2001 ... return (x * y).quantize(fp)
2002 >>> def div(x, y, fp=TWOPLACES):
2003 ... return (x / y).quantize(fp)
2004
2005 >>> mul(a, b) # Automatically preserve fixed-point
2006 Decimal('325.62')
2007 >>> div(b, a)
2008 Decimal('0.03')
Georg Brandl116aa622007-08-15 14:28:22 +00002009
2010Q. There are many ways to express the same value. The numbers :const:`200`,
2011:const:`200.000`, :const:`2E2`, and :const:`.02E+4` all have the same value at
2012various precisions. Is there a way to transform them to a single recognizable
2013canonical value?
2014
2015A. The :meth:`normalize` method maps all equivalent values to a single
Christian Heimesfe337bf2008-03-23 21:54:12 +00002016representative:
Georg Brandl116aa622007-08-15 14:28:22 +00002017
2018 >>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
2019 >>> [v.normalize() for v in values]
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002020 [Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]
Georg Brandl116aa622007-08-15 14:28:22 +00002021
2022Q. Some decimal values always print with exponential notation. Is there a way
2023to get a non-exponential representation?
2024
2025A. For some values, exponential notation is the only way to express the number
2026of significant places in the coefficient. For example, expressing
2027:const:`5.0E+3` as :const:`5000` keeps the value constant but cannot show the
2028original's two-place significance.
2029
Christian Heimesa156e092008-02-16 07:38:31 +00002030If an application does not care about tracking significance, it is easy to
Christian Heimesc3f30c42008-02-22 16:37:40 +00002031remove the exponent and trailing zeroes, losing significance, but keeping the
Christian Heimesfe337bf2008-03-23 21:54:12 +00002032value unchanged:
Christian Heimesa156e092008-02-16 07:38:31 +00002033
2034 >>> def remove_exponent(d):
2035 ... return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()
2036
2037 >>> remove_exponent(Decimal('5E+3'))
2038 Decimal('5000')
2039
Georg Brandl116aa622007-08-15 14:28:22 +00002040Q. Is there a way to convert a regular float to a :class:`Decimal`?
2041
Mark Dickinsone534a072010-04-04 22:13:14 +00002042A. Yes, any binary floating point number can be exactly expressed as a
Raymond Hettinger96798592010-04-02 16:58:27 +00002043Decimal though an exact conversion may take more precision than intuition would
2044suggest:
Georg Brandl116aa622007-08-15 14:28:22 +00002045
Christian Heimesfe337bf2008-03-23 21:54:12 +00002046.. doctest::
2047
Raymond Hettinger96798592010-04-02 16:58:27 +00002048 >>> Decimal(math.pi)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002049 Decimal('3.141592653589793115997963468544185161590576171875')
Georg Brandl116aa622007-08-15 14:28:22 +00002050
Georg Brandl116aa622007-08-15 14:28:22 +00002051Q. Within a complex calculation, how can I make sure that I haven't gotten a
2052spurious result because of insufficient precision or rounding anomalies.
2053
2054A. The decimal module makes it easy to test results. A best practice is to
2055re-run calculations using greater precision and with various rounding modes.
2056Widely differing results indicate insufficient precision, rounding mode issues,
2057ill-conditioned inputs, or a numerically unstable algorithm.
2058
2059Q. I noticed that context precision is applied to the results of operations but
2060not to the inputs. Is there anything to watch out for when mixing values of
2061different precisions?
2062
2063A. Yes. The principle is that all values are considered to be exact and so is
2064the arithmetic on those values. Only the results are rounded. The advantage
2065for inputs is that "what you type is what you get". A disadvantage is that the
Christian Heimesfe337bf2008-03-23 21:54:12 +00002066results can look odd if you forget that the inputs haven't been rounded:
2067
2068.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00002069
2070 >>> getcontext().prec = 3
Christian Heimesfe337bf2008-03-23 21:54:12 +00002071 >>> Decimal('3.104') + Decimal('2.104')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002072 Decimal('5.21')
Christian Heimesfe337bf2008-03-23 21:54:12 +00002073 >>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002074 Decimal('5.20')
Georg Brandl116aa622007-08-15 14:28:22 +00002075
2076The solution is either to increase precision or to force rounding of inputs
Christian Heimesfe337bf2008-03-23 21:54:12 +00002077using the unary plus operation:
2078
2079.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00002080
2081 >>> getcontext().prec = 3
2082 >>> +Decimal('1.23456789') # unary plus triggers rounding
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002083 Decimal('1.23')
Georg Brandl116aa622007-08-15 14:28:22 +00002084
2085Alternatively, inputs can be rounded upon creation using the
Christian Heimesfe337bf2008-03-23 21:54:12 +00002086:meth:`Context.create_decimal` method:
Georg Brandl116aa622007-08-15 14:28:22 +00002087
2088 >>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002089 Decimal('1.2345')