blob: 8006cee03791fe75459c123a1acc49640a952097 [file] [log] [blame]
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001.. _advanced:
2
3Advanced topics
4###############
5
Wenzel Jakob93296692015-10-13 23:21:54 +02006For brevity, the rest of this chapter assumes that the following two lines are
7present:
8
9.. code-block:: cpp
10
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020011 #include <pybind11/pybind11.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020012
Wenzel Jakob10e62e12015-10-15 22:46:07 +020013 namespace py = pybind11;
Wenzel Jakob93296692015-10-13 23:21:54 +020014
Wenzel Jakobde3ad072016-02-02 11:38:21 +010015Exporting constants and mutable objects
16=======================================
17
18To expose a C++ constant, use the ``attr`` function to register it in a module
19as shown below. The ``int_`` class is one of many small wrapper objects defined
20in ``pybind11/pytypes.h``. General objects (including integers) can also be
21converted using the function ``cast``.
22
23.. code-block:: cpp
24
25 PYBIND11_PLUGIN(example) {
26 py::module m("example", "pybind11 example plugin");
27 m.attr("MY_CONSTANT") = py::int_(123);
28 m.attr("MY_CONSTANT_2") = py::cast(new MyObject());
29 }
30
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020031Operator overloading
32====================
33
Wenzel Jakob93296692015-10-13 23:21:54 +020034Suppose that we're given the following ``Vector2`` class with a vector addition
35and scalar multiplication operation, all implemented using overloaded operators
36in C++.
37
38.. code-block:: cpp
39
40 class Vector2 {
41 public:
42 Vector2(float x, float y) : x(x), y(y) { }
43
44 std::string toString() const { return "[" + std::to_string(x) + ", " + std::to_string(y) + "]"; }
45
46 Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
47 Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
48 Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
49 Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
50
51 friend Vector2 operator*(float f, const Vector2 &v) { return Vector2(f * v.x, f * v.y); }
52
53 private:
54 float x, y;
55 };
56
57The following snippet shows how the above operators can be conveniently exposed
58to Python.
59
60.. code-block:: cpp
61
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020062 #include <pybind11/operators.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020063
Wenzel Jakobb1b71402015-10-18 16:48:30 +020064 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020065 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +020066
67 py::class_<Vector2>(m, "Vector2")
68 .def(py::init<float, float>())
69 .def(py::self + py::self)
70 .def(py::self += py::self)
71 .def(py::self *= float())
72 .def(float() * py::self)
73 .def("__repr__", &Vector2::toString);
74
75 return m.ptr();
76 }
77
78Note that a line like
79
80.. code-block:: cpp
81
82 .def(py::self * float())
83
84is really just short hand notation for
85
86.. code-block:: cpp
87
88 .def("__mul__", [](const Vector2 &a, float b) {
89 return a * b;
90 })
91
92This can be useful for exposing additional operators that don't exist on the
93C++ side, or to perform other types of customization.
94
95.. note::
96
97 To use the more convenient ``py::self`` notation, the additional
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020098 header file :file:`pybind11/operators.h` must be included.
Wenzel Jakob93296692015-10-13 23:21:54 +020099
100.. seealso::
101
102 The file :file:`example/example3.cpp` contains a complete example that
103 demonstrates how to work with overloaded operators in more detail.
104
105Callbacks and passing anonymous functions
106=========================================
107
108The C++11 standard brought lambda functions and the generic polymorphic
109function wrapper ``std::function<>`` to the C++ programming language, which
110enable powerful new ways of working with functions. Lambda functions come in
111two flavors: stateless lambda function resemble classic function pointers that
112link to an anonymous piece of code, while stateful lambda functions
113additionally depend on captured variables that are stored in an anonymous
114*lambda closure object*.
115
116Here is a simple example of a C++ function that takes an arbitrary function
117(stateful or stateless) with signature ``int -> int`` as an argument and runs
118it with the value 10.
119
120.. code-block:: cpp
121
122 int func_arg(const std::function<int(int)> &f) {
123 return f(10);
124 }
125
126The example below is more involved: it takes a function of signature ``int -> int``
127and returns another function of the same kind. The return value is a stateful
128lambda function, which stores the value ``f`` in the capture object and adds 1 to
129its return value upon execution.
130
131.. code-block:: cpp
132
133 std::function<int(int)> func_ret(const std::function<int(int)> &f) {
134 return [f](int i) {
135 return f(i) + 1;
136 };
137 }
138
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200139After including the extra header file :file:`pybind11/functional.h`, it is almost
Wenzel Jakob93296692015-10-13 23:21:54 +0200140trivial to generate binding code for both of these functions.
141
142.. code-block:: cpp
143
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200144 #include <pybind11/functional.h>
Wenzel Jakob93296692015-10-13 23:21:54 +0200145
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200146 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200147 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200148
149 m.def("func_arg", &func_arg);
150 m.def("func_ret", &func_ret);
151
152 return m.ptr();
153 }
154
155The following interactive session shows how to call them from Python.
156
157.. code-block:: python
158
159 $ python
160 >>> import example
161 >>> def square(i):
162 ... return i * i
163 ...
164 >>> example.func_arg(square)
165 100L
166 >>> square_plus_1 = example.func_ret(square)
167 >>> square_plus_1(4)
168 17L
169 >>>
170
171.. note::
172
173 This functionality is very useful when generating bindings for callbacks in
174 C++ libraries (e.g. a graphical user interface library).
175
176 The file :file:`example/example5.cpp` contains a complete example that
177 demonstrates how to work with callbacks and anonymous functions in more detail.
178
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100179.. warning::
180
181 Keep in mind that passing a function from C++ to Python (or vice versa)
182 will instantiate a piece of wrapper code that translates function
183 invocations between the two languages. Copying the same function back and
184 forth between Python and C++ many times in a row will cause these wrappers
185 to accumulate, which can decrease performance.
186
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200187Overriding virtual functions in Python
188======================================
189
Wenzel Jakob93296692015-10-13 23:21:54 +0200190Suppose that a C++ class or interface has a virtual function that we'd like to
191to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
192given as a specific example of how one would do this with traditional C++
193code).
194
195.. code-block:: cpp
196
197 class Animal {
198 public:
199 virtual ~Animal() { }
200 virtual std::string go(int n_times) = 0;
201 };
202
203 class Dog : public Animal {
204 public:
205 std::string go(int n_times) {
206 std::string result;
207 for (int i=0; i<n_times; ++i)
208 result += "woof! ";
209 return result;
210 }
211 };
212
213Let's also suppose that we are given a plain function which calls the
214function ``go()`` on an arbitrary ``Animal`` instance.
215
216.. code-block:: cpp
217
218 std::string call_go(Animal *animal) {
219 return animal->go(3);
220 }
221
222Normally, the binding code for these classes would look as follows:
223
224.. code-block:: cpp
225
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200226 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200227 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200228
229 py::class_<Animal> animal(m, "Animal");
230 animal
231 .def("go", &Animal::go);
232
233 py::class_<Dog>(m, "Dog", animal)
234 .def(py::init<>());
235
236 m.def("call_go", &call_go);
237
238 return m.ptr();
239 }
240
241However, these bindings are impossible to extend: ``Animal`` is not
242constructible, and we clearly require some kind of "trampoline" that
243redirects virtual calls back to Python.
244
245Defining a new type of ``Animal`` from within Python is possible but requires a
246helper class that is defined as follows:
247
248.. code-block:: cpp
249
250 class PyAnimal : public Animal {
251 public:
252 /* Inherit the constructors */
253 using Animal::Animal;
254
255 /* Trampoline (need one for each virtual function) */
256 std::string go(int n_times) {
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200257 PYBIND11_OVERLOAD_PURE(
Wenzel Jakob93296692015-10-13 23:21:54 +0200258 std::string, /* Return type */
259 Animal, /* Parent class */
260 go, /* Name of function */
261 n_times /* Argument(s) */
262 );
263 }
264 };
265
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200266The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
267functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have
Wenzel Jakob93296692015-10-13 23:21:54 +0200268a default implementation. The binding code also needs a few minor adaptations
269(highlighted):
270
271.. code-block:: cpp
272 :emphasize-lines: 4,6,7
273
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200274 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200275 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200276
277 py::class_<PyAnimal> animal(m, "Animal");
278 animal
279 .alias<Animal>()
280 .def(py::init<>())
281 .def("go", &Animal::go);
282
283 py::class_<Dog>(m, "Dog", animal)
284 .def(py::init<>());
285
286 m.def("call_go", &call_go);
287
288 return m.ptr();
289 }
290
291Importantly, the trampoline helper class is used as the template argument to
292:class:`class_`, and a call to :func:`class_::alias` informs the binding
293generator that this is merely an alias for the underlying type ``Animal``.
294Following this, we are able to define a constructor as usual.
295
296The Python session below shows how to override ``Animal::go`` and invoke it via
297a virtual method call.
298
Wenzel Jakobde3ad072016-02-02 11:38:21 +0100299.. code-block:: python
Wenzel Jakob93296692015-10-13 23:21:54 +0200300
301 >>> from example import *
302 >>> d = Dog()
303 >>> call_go(d)
304 u'woof! woof! woof! '
305 >>> class Cat(Animal):
306 ... def go(self, n_times):
307 ... return "meow! " * n_times
308 ...
309 >>> c = Cat()
310 >>> call_go(c)
311 u'meow! meow! meow! '
312
313.. seealso::
314
315 The file :file:`example/example12.cpp` contains a complete example that
316 demonstrates how to override virtual functions using pybind11 in more
317 detail.
318
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100319
320Global Interpreter Lock (GIL)
321=============================
322
323The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
324used to acquire and release the global interpreter lock in the body of a C++
325function call. In this way, long-running C++ code can be parallelized using
326multiple Python threads. Taking the previous section as an example, this could
327be realized as follows (important changes highlighted):
328
329.. code-block:: cpp
330 :emphasize-lines: 8,9,33,34
331
332 class PyAnimal : public Animal {
333 public:
334 /* Inherit the constructors */
335 using Animal::Animal;
336
337 /* Trampoline (need one for each virtual function) */
338 std::string go(int n_times) {
339 /* Acquire GIL before calling Python code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100340 py::gil_scoped_acquire acquire;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100341
342 PYBIND11_OVERLOAD_PURE(
343 std::string, /* Return type */
344 Animal, /* Parent class */
345 go, /* Name of function */
346 n_times /* Argument(s) */
347 );
348 }
349 };
350
351 PYBIND11_PLUGIN(example) {
352 py::module m("example", "pybind11 example plugin");
353
354 py::class_<PyAnimal> animal(m, "Animal");
355 animal
356 .alias<Animal>()
357 .def(py::init<>())
358 .def("go", &Animal::go);
359
360 py::class_<Dog>(m, "Dog", animal)
361 .def(py::init<>());
362
363 m.def("call_go", [](Animal *animal) -> std::string {
364 /* Release GIL before calling into (potentially long-running) C++ code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100365 py::gil_scoped_release release;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100366 return call_go(animal);
367 });
368
369 return m.ptr();
370 }
371
Wenzel Jakob93296692015-10-13 23:21:54 +0200372Passing STL data structures
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200373===========================
374
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200375When including the additional header file :file:`pybind11/stl.h`, conversions
Wenzel Jakob978e3762016-04-07 18:00:41 +0200376between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>``
377and the Python ``list``, ``set`` and ``dict`` data structures are automatically
378enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported
379out of the box with just the core :file:`pybind11/pybind11.h` header.
Wenzel Jakob93296692015-10-13 23:21:54 +0200380
381.. note::
382
Wenzel Jakob44db04f2015-12-14 12:40:45 +0100383 Arbitrary nesting of any of these types is supported.
Wenzel Jakob93296692015-10-13 23:21:54 +0200384
385.. seealso::
386
387 The file :file:`example/example2.cpp` contains a complete example that
388 demonstrates how to pass STL data types in more detail.
389
Wenzel Jakobb2825952016-04-13 23:33:00 +0200390Binding sequence data types, iterators, the slicing protocol, etc.
391==================================================================
Wenzel Jakob93296692015-10-13 23:21:54 +0200392
393Please refer to the supplemental example for details.
394
395.. seealso::
396
397 The file :file:`example/example6.cpp` contains a complete example that
398 shows how to bind a sequence data type, including length queries
399 (``__len__``), iterators (``__iter__``), the slicing protocol and other
400 kinds of useful operations.
401
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200402Return value policies
403=====================
404
Wenzel Jakob93296692015-10-13 23:21:54 +0200405Python and C++ use wildly different ways of managing the memory and lifetime of
406objects managed by them. This can lead to issues when creating bindings for
407functions that return a non-trivial type. Just by looking at the type
408information, it is not clear whether Python should take charge of the returned
409value and eventually free its resources, or if this is handled on the C++ side.
410For this reason, pybind11 provides a several `return value policy` annotations
411that can be passed to the :func:`module::def` and :func:`class_::def`
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100412functions. The default policy is :enum:`return_value_policy::automatic`.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200413
Wenzel Jakob93296692015-10-13 23:21:54 +0200414
415+--------------------------------------------------+---------------------------------------------------------------------------+
416| Return value policy | Description |
417+==================================================+===========================================================================+
418| :enum:`return_value_policy::automatic` | Automatic: copy objects returned as values and take ownership of |
419| | objects returned as pointers |
420+--------------------------------------------------+---------------------------------------------------------------------------+
Wenzel Jakob8bd31c72016-04-14 14:26:13 +0200421| :enum:`return_value_policy::automatic_reference` | Automatic variant 2 : copy objects returned as values and reference |
422| | objects returned as pointers |
423+--------------------------------------------------+---------------------------------------------------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200424| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python |
425+--------------------------------------------------+---------------------------------------------------------------------------+
426| :enum:`return_value_policy::take_ownership` | Reference the existing object and take ownership. Python will call |
427| | the destructor and delete operator when the reference count reaches zero |
428+--------------------------------------------------+---------------------------------------------------------------------------+
429| :enum:`return_value_policy::reference` | Reference the object, but do not take ownership and defer responsibility |
430| | for deleting it to C++ (dangerous when C++ code at some point decides to |
431| | delete it while Python still has a nonzero reference count) |
432+--------------------------------------------------+---------------------------------------------------------------------------+
433| :enum:`return_value_policy::reference_internal` | Reference the object, but do not take ownership. The object is considered |
434| | be owned by the C++ instance whose method or property returned it. The |
435| | Python object will increase the reference count of this 'parent' by 1 |
436| | to ensure that it won't be deallocated while Python is using the 'child' |
437+--------------------------------------------------+---------------------------------------------------------------------------+
438
439.. warning::
440
441 Code with invalid call policies might access unitialized memory and free
442 data structures multiple times, which can lead to hard-to-debug
443 non-determinism and segmentation faults, hence it is worth spending the
444 time to understand all the different options above.
445
446See below for an example that uses the
447:enum:`return_value_policy::reference_internal` policy.
448
449.. code-block:: cpp
450
451 class Example {
452 public:
453 Internal &get_internal() { return internal; }
454 private:
455 Internal internal;
456 };
457
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200458 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200459 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200460
461 py::class_<Example>(m, "Example")
462 .def(py::init<>())
Wenzel Jakob978e3762016-04-07 18:00:41 +0200463 .def("get_internal", &Example::get_internal, "Return the internal data", py::return_value_policy::reference_internal);
Wenzel Jakob93296692015-10-13 23:21:54 +0200464
465 return m.ptr();
466 }
467
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100468
469Additional call policies
470========================
471
472In addition to the above return value policies, further `call policies` can be
473specified to indicate dependencies between parameters. There is currently just
474one policy named ``keep_alive<Nurse, Patient>``, which indicates that the
475argument with index ``Patient`` should be kept alive at least until the
476argument with index ``Nurse`` is freed by the garbage collector; argument
477indices start at one, while zero refers to the return value. Arbitrarily many
478call policies can be specified.
479
480For instance, binding code for a a list append operation that ties the lifetime
481of the newly added element to the underlying container might be declared as
482follows:
483
484.. code-block:: cpp
485
486 py::class_<List>(m, "List")
487 .def("append", &List::append, py::keep_alive<1, 2>());
488
489.. note::
490
491 ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
492 Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
493 0) policies from Boost.Python.
494
Wenzel Jakob61587162016-01-18 22:38:52 +0100495.. seealso::
496
497 The file :file:`example/example13.cpp` contains a complete example that
498 demonstrates using :class:`keep_alive` in more detail.
499
Wenzel Jakob93296692015-10-13 23:21:54 +0200500Implicit type conversions
501=========================
502
503Suppose that instances of two types ``A`` and ``B`` are used in a project, and
504that an ``A`` can easily be converted into a an instance of type ``B`` (examples of this
505could be a fixed and an arbitrary precision number type).
506
507.. code-block:: cpp
508
509 py::class_<A>(m, "A")
510 /// ... members ...
511
512 py::class_<B>(m, "B")
513 .def(py::init<A>())
514 /// ... members ...
515
516 m.def("func",
517 [](const B &) { /* .... */ }
518 );
519
520To invoke the function ``func`` using a variable ``a`` containing an ``A``
521instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
522will automatically apply an implicit type conversion, which makes it possible
523to directly write ``func(a)``.
524
525In this situation (i.e. where ``B`` has a constructor that converts from
526``A``), the following statement enables similar implicit conversions on the
527Python side:
528
529.. code-block:: cpp
530
531 py::implicitly_convertible<A, B>();
532
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200533Unique pointers
534===============
535
536Given a class ``Example`` with Python bindings, it's possible to return
537instances wrapped in C++11 unique pointers, like so
538
539.. code-block:: cpp
540
541 std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); }
542
543.. code-block:: cpp
544
545 m.def("create_example", &create_example);
546
547In other words, there is nothing special that needs to be done. While returning
548unique pointers in this way is allowed, it is *illegal* to use them as function
549arguments. For instance, the following function signature cannot be processed
550by pybind11.
551
552.. code-block:: cpp
553
554 void do_something_with_example(std::unique_ptr<Example> ex) { ... }
555
556The above signature would imply that Python needs to give up ownership of an
557object that is passed to this function, which is generally not possible (for
558instance, the object might be referenced elsewhere).
559
Wenzel Jakob93296692015-10-13 23:21:54 +0200560Smart pointers
561==============
562
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200563This section explains how to pass values that are wrapped in "smart" pointer
564types with internal reference counting. For simpler C++11 unique pointers,
565please refer to the previous section.
566
Wenzel Jakob93296692015-10-13 23:21:54 +0200567The binding generator for classes (:class:`class_`) takes an optional second
568template type, which denotes a special *holder* type that is used to manage
569references to the object. When wrapping a type named ``Type``, the default
570value of this template parameter is ``std::unique_ptr<Type>``, which means that
571the object is deallocated when Python's reference count goes to zero.
572
Wenzel Jakob1853b652015-10-18 15:38:50 +0200573It is possible to switch to other types of reference counting wrappers or smart
574pointers, which is useful in codebases that rely on them. For instance, the
575following snippet causes ``std::shared_ptr`` to be used instead.
Wenzel Jakob93296692015-10-13 23:21:54 +0200576
577.. code-block:: cpp
578
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100579 py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100580
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100581Note that any particular class can only be associated with a single holder type.
Wenzel Jakob93296692015-10-13 23:21:54 +0200582
Wenzel Jakob1853b652015-10-18 15:38:50 +0200583To enable transparent conversions for functions that take shared pointers as an
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100584argument or that return them, a macro invocation similar to the following must
Wenzel Jakob1853b652015-10-18 15:38:50 +0200585be declared at the top level before any binding code:
586
587.. code-block:: cpp
588
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200589 PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
Wenzel Jakob1853b652015-10-18 15:38:50 +0200590
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100591.. note::
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100592
593 The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a
594 placeholder name that is used as a template parameter of the second
595 argument. Thus, feel free to use any identifier, but use it consistently on
596 both sides; also, don't use the name of a type that already exists in your
597 codebase.
598
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100599One potential stumbling block when using holder types is that they need to be
600applied consistently. Can you guess what's broken about the following binding
601code?
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100602
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100603.. code-block:: cpp
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100604
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100605 class Child { };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100606
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100607 class Parent {
608 public:
609 Parent() : child(std::make_shared<Child>()) { }
610 Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
611 private:
612 std::shared_ptr<Child> child;
613 };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100614
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100615 PYBIND11_PLUGIN(example) {
616 py::module m("example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100617
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100618 py::class_<Child, std::shared_ptr<Child>>(m, "Child");
619
620 py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
621 .def(py::init<>())
622 .def("get_child", &Parent::get_child);
623
624 return m.ptr();
625 }
626
627The following Python code will cause undefined behavior (and likely a
628segmentation fault).
629
630.. code-block:: python
631
632 from example import Parent
633 print(Parent().get_child())
634
635The problem is that ``Parent::get_child()`` returns a pointer to an instance of
636``Child``, but the fact that this instance is already managed by
637``std::shared_ptr<...>`` is lost when passing raw pointers. In this case,
638pybind11 will create a second independent ``std::shared_ptr<...>`` that also
639claims ownership of the pointer. In the end, the object will be freed **twice**
640since these shared pointers have no way of knowing about each other.
641
642There are two ways to resolve this issue:
643
6441. For types that are managed by a smart pointer class, never use raw pointers
645 in function arguments or return values. In other words: always consistently
646 wrap pointers into their designated holder types (such as
647 ``std::shared_ptr<...>``). In this case, the signature of ``get_child()``
648 should be modified as follows:
649
650.. code-block:: cpp
651
652 std::shared_ptr<Child> get_child() { return child; }
653
6542. Adjust the definition of ``Child`` by specifying
655 ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a
656 base class. This adds a small bit of information to ``Child`` that allows
657 pybind11 to realize that there is already an existing
658 ``std::shared_ptr<...>`` and communicate with it. In this case, the
659 declaration of ``Child`` should look as follows:
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100660
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100661.. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this
662
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100663.. code-block:: cpp
664
665 class Child : public std::enable_shared_from_this<Child> { };
666
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100667.. seealso::
668
669 The file :file:`example/example8.cpp` contains a complete example that
670 demonstrates how to work with custom reference-counting holder types in
671 more detail.
672
Wenzel Jakob93296692015-10-13 23:21:54 +0200673.. _custom_constructors:
674
675Custom constructors
676===================
677
678The syntax for binding constructors was previously introduced, but it only
679works when a constructor with the given parameters actually exists on the C++
680side. To extend this to more general cases, let's take a look at what actually
681happens under the hood: the following statement
682
683.. code-block:: cpp
684
685 py::class_<Example>(m, "Example")
686 .def(py::init<int>());
687
688is short hand notation for
689
690.. code-block:: cpp
691
692 py::class_<Example>(m, "Example")
693 .def("__init__",
694 [](Example &instance, int arg) {
695 new (&instance) Example(arg);
696 }
697 );
698
699In other words, :func:`init` creates an anonymous function that invokes an
700in-place constructor. Memory allocation etc. is already take care of beforehand
701within pybind11.
702
703Catching and throwing exceptions
704================================
705
706When C++ code invoked from Python throws an ``std::exception``, it is
707automatically converted into a Python ``Exception``. pybind11 defines multiple
708special exception classes that will map to different types of Python
709exceptions:
710
Wenzel Jakob978e3762016-04-07 18:00:41 +0200711+--------------------------------------+------------------------------+
712| C++ exception type | Python exception type |
713+======================================+==============================+
714| :class:`std::exception` | ``RuntimeError`` |
715+--------------------------------------+------------------------------+
716| :class:`std::bad_alloc` | ``MemoryError`` |
717+--------------------------------------+------------------------------+
718| :class:`std::domain_error` | ``ValueError`` |
719+--------------------------------------+------------------------------+
720| :class:`std::invalid_argument` | ``ValueError`` |
721+--------------------------------------+------------------------------+
722| :class:`std::length_error` | ``ValueError`` |
723+--------------------------------------+------------------------------+
724| :class:`std::out_of_range` | ``ValueError`` |
725+--------------------------------------+------------------------------+
726| :class:`std::range_error` | ``ValueError`` |
727+--------------------------------------+------------------------------+
728| :class:`pybind11::stop_iteration` | ``StopIteration`` (used to |
729| | implement custom iterators) |
730+--------------------------------------+------------------------------+
731| :class:`pybind11::index_error` | ``IndexError`` (used to |
732| | indicate out of bounds |
733| | accesses in ``__getitem__``, |
734| | ``__setitem__``, etc.) |
735+--------------------------------------+------------------------------+
736| :class:`pybind11::error_already_set` | Indicates that the Python |
737| | exception flag has already |
738| | been initialized |
739+--------------------------------------+------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200740
741When a Python function invoked from C++ throws an exception, it is converted
742into a C++ exception of type :class:`error_already_set` whose string payload
743contains a textual summary.
744
745There is also a special exception :class:`cast_error` that is thrown by
746:func:`handle::call` when the input arguments cannot be converted to Python
747objects.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200748
749Buffer protocol
750===============
751
752Python supports an extremely general and convenient approach for exchanging
Wenzel Jakob978e3762016-04-07 18:00:41 +0200753data between plugin libraries. Types can expose a buffer view [#f1]_,
754which provides fast direct access to the raw internal representation. Suppose
755we want to bind the following simplistic Matrix class:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200756
757.. code-block:: cpp
758
759 class Matrix {
760 public:
761 Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
762 m_data = new float[rows*cols];
763 }
764 float *data() { return m_data; }
765 size_t rows() const { return m_rows; }
766 size_t cols() const { return m_cols; }
767 private:
768 size_t m_rows, m_cols;
769 float *m_data;
770 };
771
772The following binding code exposes the ``Matrix`` contents as a buffer object,
773making it possible to cast Matrixes into NumPy arrays. It is even possible to
774completely avoid copy operations with Python expressions like
775``np.array(matrix_instance, copy = False)``.
776
777.. code-block:: cpp
778
779 py::class_<Matrix>(m, "Matrix")
780 .def_buffer([](Matrix &m) -> py::buffer_info {
781 return py::buffer_info(
782 m.data(), /* Pointer to buffer */
783 sizeof(float), /* Size of one scalar */
784 py::format_descriptor<float>::value(), /* Python struct-style format descriptor */
785 2, /* Number of dimensions */
786 { m.rows(), m.cols() }, /* Buffer dimensions */
787 { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */
788 sizeof(float) }
789 );
790 });
791
792The snippet above binds a lambda function, which can create ``py::buffer_info``
793description records on demand describing a given matrix. The contents of
794``py::buffer_info`` mirror the Python buffer protocol specification.
795
796.. code-block:: cpp
797
798 struct buffer_info {
799 void *ptr;
800 size_t itemsize;
801 std::string format;
802 int ndim;
803 std::vector<size_t> shape;
804 std::vector<size_t> strides;
805 };
806
807To create a C++ function that can take a Python buffer object as an argument,
808simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
809in a great variety of configurations, hence some safety checks are usually
810necessary in the function body. Below, you can see an basic example on how to
811define a custom constructor for the Eigen double precision matrix
812(``Eigen::MatrixXd``) type, which supports initialization from compatible
813buffer
814objects (e.g. a NumPy matrix).
815
816.. code-block:: cpp
817
818 py::class_<Eigen::MatrixXd>(m, "MatrixXd")
819 .def("__init__", [](Eigen::MatrixXd &m, py::buffer b) {
820 /* Request a buffer descriptor from Python */
821 py::buffer_info info = b.request();
822
823 /* Some sanity checks ... */
824 if (info.format != py::format_descriptor<double>::value())
825 throw std::runtime_error("Incompatible format: expected a double array!");
826
827 if (info.ndim != 2)
828 throw std::runtime_error("Incompatible buffer dimension!");
829
830 if (info.strides[0] == sizeof(double)) {
831 /* Buffer has the right layout -- directly copy. */
832 new (&m) Eigen::MatrixXd(info.shape[0], info.shape[1]);
833 memcpy(m.data(), info.ptr, sizeof(double) * m.size());
834 } else {
835 /* Oops -- the buffer is transposed */
836 new (&m) Eigen::MatrixXd(info.shape[1], info.shape[0]);
837 memcpy(m.data(), info.ptr, sizeof(double) * m.size());
838 m.transposeInPlace();
839 }
840 });
841
Wenzel Jakob93296692015-10-13 23:21:54 +0200842.. seealso::
843
844 The file :file:`example/example7.cpp` contains a complete example that
845 demonstrates using the buffer protocol with pybind11 in more detail.
846
Wenzel Jakob1c329aa2016-04-13 02:37:36 +0200847.. [#f1] http://docs.python.org/3/c-api/buffer.html
Wenzel Jakob978e3762016-04-07 18:00:41 +0200848
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200849NumPy support
850=============
851
852By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
853restrict the function so that it only accepts NumPy arrays (rather than any
Wenzel Jakob978e3762016-04-07 18:00:41 +0200854type of Python object satisfying the buffer protocol).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200855
856In many situations, we want to define a function which only accepts a NumPy
Wenzel Jakob93296692015-10-13 23:21:54 +0200857array of a certain data type. This is possible via the ``py::array_t<T>``
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200858template. For instance, the following function requires the argument to be a
859dense array of doubles in C-style ordering.
860
861.. code-block:: cpp
862
Wenzel Jakob93296692015-10-13 23:21:54 +0200863 void f(py::array_t<double> array);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200864
865When it is invoked with a different type (e.g. an integer), the binding code
Wenzel Jakob978e3762016-04-07 18:00:41 +0200866will attempt to cast the input into a NumPy array of the requested type. Note
867that this feature requires the :file:``pybind11/numpy.h`` header to be
868included.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200869
870Vectorizing functions
871=====================
872
873Suppose we want to bind a function with the following signature to Python so
874that it can process arbitrary NumPy array arguments (vectors, matrices, general
875N-D arrays) in addition to its normal arguments:
876
877.. code-block:: cpp
878
879 double my_func(int x, float y, double z);
880
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200881After including the ``pybind11/numpy.h`` header, this is extremely simple:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200882
883.. code-block:: cpp
884
885 m.def("vectorized_func", py::vectorize(my_func));
886
887Invoking the function like below causes 4 calls to be made to ``my_func`` with
Wenzel Jakob978e3762016-04-07 18:00:41 +0200888each of the the array elements. The significant advantage of this compared to
889solutions like ``numpy.vectorize()`` is that the loop over the elements runs
890entirely on the C++ side and can be crunched down into a tight, optimized loop
891by the compiler. The result is returned as a NumPy array of type
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200892``numpy.dtype.float64``.
893
894.. code-block:: python
895
896 >>> x = np.array([[1, 3],[5, 7]])
897 >>> y = np.array([[2, 4],[6, 8]])
898 >>> z = 3
899 >>> result = vectorized_func(x, y, z)
900
901The scalar argument ``z`` is transparently replicated 4 times. The input
902arrays ``x`` and ``y`` are automatically converted into the right types (they
903are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
904``numpy.dtype.float32``, respectively)
905
906Sometimes we might want to explitly exclude an argument from the vectorization
907because it makes little sense to wrap it in a NumPy array. For instance,
908suppose the function signature was
909
910.. code-block:: cpp
911
912 double my_func(int x, float y, my_custom_type *z);
913
914This can be done with a stateful Lambda closure:
915
916.. code-block:: cpp
917
918 // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
919 m.def("vectorized_func",
Wenzel Jakob93296692015-10-13 23:21:54 +0200920 [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200921 auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
922 return py::vectorize(stateful_closure)(x, y);
923 }
924 );
925
Wenzel Jakob61587162016-01-18 22:38:52 +0100926In cases where the computation is too complicated to be reduced to
927``vectorize``, it will be necessary to create and access the buffer contents
928manually. The following snippet contains a complete example that shows how this
929works (the code is somewhat contrived, since it could have been done more
930simply using ``vectorize``).
931
932.. code-block:: cpp
933
934 #include <pybind11/pybind11.h>
935 #include <pybind11/numpy.h>
936
937 namespace py = pybind11;
938
939 py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
940 auto buf1 = input1.request(), buf2 = input2.request();
941
942 if (buf1.ndim != 1 || buf2.ndim != 1)
943 throw std::runtime_error("Number of dimensions must be one");
944
945 if (buf1.shape[0] != buf2.shape[0])
946 throw std::runtime_error("Input shapes must match");
947
948 auto result = py::array(py::buffer_info(
949 nullptr, /* Pointer to data (nullptr -> ask NumPy to allocate!) */
950 sizeof(double), /* Size of one item */
951 py::format_descriptor<double>::value(), /* Buffer format */
952 buf1.ndim, /* How many dimensions? */
953 { buf1.shape[0] }, /* Number of elements for each dimension */
954 { sizeof(double) } /* Strides for each dimension */
955 ));
956
957 auto buf3 = result.request();
958
959 double *ptr1 = (double *) buf1.ptr,
960 *ptr2 = (double *) buf2.ptr,
961 *ptr3 = (double *) buf3.ptr;
962
963 for (size_t idx = 0; idx < buf1.shape[0]; idx++)
964 ptr3[idx] = ptr1[idx] + ptr2[idx];
965
966 return result;
967 }
968
969 PYBIND11_PLUGIN(test) {
970 py::module m("test");
971 m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
972 return m.ptr();
973 }
974
Wenzel Jakob93296692015-10-13 23:21:54 +0200975.. seealso::
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200976
Wenzel Jakob93296692015-10-13 23:21:54 +0200977 The file :file:`example/example10.cpp` contains a complete example that
978 demonstrates using :func:`vectorize` in more detail.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200979
Wenzel Jakob93296692015-10-13 23:21:54 +0200980Functions taking Python objects as arguments
981============================================
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200982
Wenzel Jakob93296692015-10-13 23:21:54 +0200983pybind11 exposes all major Python types using thin C++ wrapper classes. These
984wrapper classes can also be used as parameters of functions in bindings, which
985makes it possible to directly work with native Python types on the C++ side.
986For instance, the following statement iterates over a Python ``dict``:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200987
Wenzel Jakob93296692015-10-13 23:21:54 +0200988.. code-block:: cpp
989
990 void print_dict(py::dict dict) {
991 /* Easily interact with Python types */
992 for (auto item : dict)
993 std::cout << "key=" << item.first << ", "
994 << "value=" << item.second << std::endl;
995 }
996
997Available types include :class:`handle`, :class:`object`, :class:`bool_`,
Wenzel Jakob27e8e102016-01-17 22:36:37 +0100998:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
999:class:`list`, :class:`dict`, :class:`slice`, :class:`capsule`,
1000:class:`function`, :class:`buffer`, :class:`array`, and :class:`array_t`.
Wenzel Jakob93296692015-10-13 23:21:54 +02001001
Wenzel Jakob436b7312015-10-20 01:04:30 +02001002In this kind of mixed code, it is often necessary to convert arbitrary C++
1003types to Python, which can be done using :func:`cast`:
1004
1005.. code-block:: cpp
1006
1007 MyClass *cls = ..;
1008 py::object obj = py::cast(cls);
1009
1010The reverse direction uses the following syntax:
1011
1012.. code-block:: cpp
1013
1014 py::object obj = ...;
1015 MyClass *cls = obj.cast<MyClass *>();
1016
1017When conversion fails, both directions throw the exception :class:`cast_error`.
1018
Wenzel Jakob93296692015-10-13 23:21:54 +02001019.. seealso::
1020
1021 The file :file:`example/example2.cpp` contains a complete example that
1022 demonstrates passing native Python types in more detail.
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001023
1024Default arguments revisited
1025===========================
1026
1027The section on :ref:`default_args` previously discussed basic usage of default
1028arguments using pybind11. One noteworthy aspect of their implementation is that
1029default arguments are converted to Python objects right at declaration time.
1030Consider the following example:
1031
1032.. code-block:: cpp
1033
1034 py::class_<MyClass>("MyClass")
1035 .def("myFunction", py::arg("arg") = SomeType(123));
1036
1037In this case, pybind11 must already be set up to deal with values of the type
1038``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
1039exception will be thrown.
1040
1041Another aspect worth highlighting is that the "preview" of the default argument
1042in the function signature is generated using the object's ``__repr__`` method.
1043If not available, the signature may not be very helpful, e.g.:
1044
1045.. code-block:: python
1046
1047 FUNCTIONS
1048 ...
1049 | myFunction(...)
Wenzel Jakob48548ea2016-01-17 22:36:44 +01001050 | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001051 ...
1052
1053The first way of addressing this is by defining ``SomeType.__repr__``.
1054Alternatively, it is possible to specify the human-readable preview of the
1055default argument manually using the ``arg_t`` notation:
1056
1057.. code-block:: cpp
1058
1059 py::class_<MyClass>("MyClass")
1060 .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)"));
1061
Wenzel Jakobc769fce2016-03-03 12:03:30 +01001062Sometimes it may be necessary to pass a null pointer value as a default
1063argument. In this case, remember to cast it to the underlying type in question,
1064like so:
1065
1066.. code-block:: cpp
1067
1068 py::class_<MyClass>("MyClass")
1069 .def("myFunction", py::arg("arg") = (SomeType *) nullptr);
1070
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001071Partitioning code over multiple extension modules
1072=================================================
1073
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001074It's straightforward to split binding code over multiple extension modules,
1075while referencing types that are declared elsewhere. Everything "just" works
1076without any special precautions. One exception to this rule occurs when
1077extending a type declared in another extension module. Recall the basic example
1078from Section :ref:`inheritance`.
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001079
1080.. code-block:: cpp
1081
1082 py::class_<Pet> pet(m, "Pet");
1083 pet.def(py::init<const std::string &>())
1084 .def_readwrite("name", &Pet::name);
1085
1086 py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
1087 .def(py::init<const std::string &>())
1088 .def("bark", &Dog::bark);
1089
1090Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
1091whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
1092course that the variable ``pet`` is not available anymore though it is needed
1093to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
1094However, it can be acquired as follows:
1095
1096.. code-block:: cpp
1097
1098 py::object pet = (py::object) py::module::import("basic").attr("Pet");
1099
1100 py::class_<Dog>(m, "Dog", pet)
1101 .def(py::init<const std::string &>())
1102 .def("bark", &Dog::bark);
1103
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001104Alternatively, we can rely on the ``base`` tag, which performs an automated
1105lookup of the corresponding Python type. However, this also requires invoking
1106the ``import`` function once to ensure that the pybind11 binding code of the
1107module ``basic`` has been executed.
1108
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001109.. code-block:: cpp
1110
1111 py::module::import("basic");
1112
1113 py::class_<Dog>(m, "Dog", py::base<Pet>())
1114 .def(py::init<const std::string &>())
1115 .def("bark", &Dog::bark);
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001116
Wenzel Jakob978e3762016-04-07 18:00:41 +02001117Naturally, both methods will fail when there are cyclic dependencies.
1118
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001119Note that compiling code which has its default symbol visibility set to
1120*hidden* (e.g. via the command line flag ``-fvisibility=hidden`` on GCC/Clang) can interfere with the
1121ability to access types defined in another extension module. Workarounds
1122include changing the global symbol visibility (not recommended, because it will
1123lead unnecessarily large binaries) or manually exporting types that are
1124accessed by multiple extension modules:
1125
1126.. code-block:: cpp
1127
1128 #ifdef _WIN32
1129 # define EXPORT_TYPE __declspec(dllexport)
1130 #else
1131 # define EXPORT_TYPE __attribute__ ((visibility("default")))
1132 #endif
1133
1134 class EXPORT_TYPE Dog : public Animal {
1135 ...
1136 };
1137
1138
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001139Treating STL data structures as opaque objects
1140==============================================
1141
1142pybind11 heavily relies on a template matching mechanism to convert parameters
1143and return values that are constructed from STL data types such as vectors,
1144linked lists, hash tables, etc. This even works in a recursive manner, for
1145instance to deal with lists of hash maps of pairs of elementary and custom
1146types, etc.
1147
Wenzel Jakob08712282016-04-22 16:52:15 +02001148However, a fundamental limitation of this approach is that internal conversions
1149between Python and C++ types involve a copy operation that prevents
Wenzel Jakob978e3762016-04-07 18:00:41 +02001150pass-by-reference semantics. What does this mean?
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001151
1152Suppose we bind the following function
1153
1154.. code-block:: cpp
1155
1156 void append_1(std::vector<int> &v) {
1157 v.push_back(1);
1158 }
1159
1160and call it as follows from Python:
1161
1162.. code-block:: python
1163
1164 >>> v = [5, 6]
1165 >>> append_1(v)
1166 >>> print(v)
1167 [5, 6]
1168
1169As you can see, when passing STL data structures by reference, modifications
Wenzel Jakob08712282016-04-22 16:52:15 +02001170are not propagated back the Python side. A similar situation arises when
1171exposing STL data structures using the ``def_readwrite`` or ``def_readonly``
1172functions:
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001173
Wenzel Jakob08712282016-04-22 16:52:15 +02001174.. code-block:: cpp
1175
1176 /* ... definition ... */
1177
1178 class MyClass {
1179 std::vector<int> contents;
1180 };
1181
1182 /* ... binding code ... */
1183
1184 py::class_<MyClass>(m, "MyClass")
1185 .def(py::init<>)
1186 .def_readwrite("contents", &MyClass::contents);
1187
1188In this case, properties can be read and written in their entirety. However, an
1189``append`` operaton involving such a list type has no effect:
1190
1191.. code-block:: python
1192
1193 >>> m = MyClass()
1194 >>> m.contents = [5, 6]
1195 >>> print(m.contents)
1196 [5, 6]
1197 >>> m.contents.append(7)
1198 >>> print(m.contents)
1199 [5, 6]
1200
1201To deal with both of the above situations, pybind11 contains a simple template
1202wrapper class named ``opaque<T>``.
1203
1204``opaque<T>`` disables pybind11's template-based conversion machinery for
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001205``T`` and can be used to treat STL types as opaque objects, whose contents are
1206never inspected or extracted (thus, they can be passed by reference).
1207The downside of this approach is that it the binding code becomes a bit more
1208wordy. The above function can be bound using the following wrapper code:
1209
1210.. code-block:: cpp
1211
1212 m.def("append_1", [](py::opaque<std::vector<int>> &v) { append_1(v); });
1213
1214Opaque types must also have a dedicated ``class_`` declaration to define a
1215set of admissible operations.
1216
1217.. seealso::
1218
1219 The file :file:`example/example14.cpp` contains a complete example that
Wenzel Jakob08712282016-04-22 16:52:15 +02001220 demonstrates how to create and expose opaque types using pybind11 in more
1221 detail.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001222
1223Pickling support
1224================
1225
1226Python's ``pickle`` module provides a powerful facility to serialize and
1227de-serialize a Python object graph into a binary data stream. To pickle and
Wenzel Jakob3d0e6ff2016-04-13 11:48:10 +02001228unpickle C++ classes using pybind11, two additional functions must be provided.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001229Suppose the class in question has the following signature:
1230
1231.. code-block:: cpp
1232
1233 class Pickleable {
1234 public:
1235 Pickleable(const std::string &value) : m_value(value) { }
1236 const std::string &value() const { return m_value; }
1237
1238 void setExtra(int extra) { m_extra = extra; }
1239 int extra() const { return m_extra; }
1240 private:
1241 std::string m_value;
1242 int m_extra = 0;
1243 };
1244
1245The binding code including the requisite ``__setstate__`` and ``__getstate__`` methods [#f2]_
1246looks as follows:
1247
1248.. code-block:: cpp
1249
1250 py::class_<Pickleable>(m, "Pickleable")
1251 .def(py::init<std::string>())
1252 .def("value", &Pickleable::value)
1253 .def("extra", &Pickleable::extra)
1254 .def("setExtra", &Pickleable::setExtra)
1255 .def("__getstate__", [](const Pickleable &p) {
1256 /* Return a tuple that fully encodes the state of the object */
1257 return py::make_tuple(p.value(), p.extra());
1258 })
1259 .def("__setstate__", [](Pickleable &p, py::tuple t) {
1260 if (t.size() != 2)
1261 throw std::runtime_error("Invalid state!");
1262
Wenzel Jakobd40885a2016-04-13 13:30:05 +02001263 /* Invoke the in-place constructor. Note that this is needed even
1264 when the object just has a trivial default constructor */
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001265 new (&p) Pickleable(t[0].cast<std::string>());
1266
1267 /* Assign any additional state */
1268 p.setExtra(t[1].cast<int>());
1269 });
1270
1271An instance can now be pickled as follows:
1272
1273.. code-block:: python
1274
1275 try:
1276 import cPickle as pickle # Use cPickle on Python 2.7
1277 except ImportError:
1278 import pickle
1279
1280 p = Pickleable("test_value")
1281 p.setExtra(15)
Wenzel Jakob3d0e6ff2016-04-13 11:48:10 +02001282 data = pickle.dumps(p, -1)
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001283
1284Note that only the cPickle module is supported on Python 2.7. It is also
1285important to request usage of the highest protocol version using the ``-1``
Wenzel Jakobd40885a2016-04-13 13:30:05 +02001286argument to ``dumps``. Failure to follow these two steps will lead to important
1287pybind11 memory allocation routines to be skipped during unpickling, which will
1288likely cause memory corruption and/or segmentation faults.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001289
1290.. seealso::
1291
1292 The file :file:`example/example15.cpp` contains a complete example that
1293 demonstrates how to pickle and unpickle types using pybind11 in more detail.
1294
1295.. [#f2] http://docs.python.org/3/library/pickle.html#pickling-class-instances
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001296
1297Generating documentation using Sphinx
1298=====================================
1299
1300Sphinx [#f3]_ has the ability to inspect the signatures and documentation
1301strings in pybind11-based extension modules to automatically generate beautiful
1302documentation in a variety formats. The pbtest repository [#f4]_ contains a
1303simple example repository which uses this approach.
1304
1305There are two potential gotchas when using this approach: first, make sure that
1306the resulting strings do not contain any :kbd:`TAB` characters, which break the
1307docstring parsing routines. You may want to use C++11 raw string literals,
1308which are convenient for multi-line comments. Conveniently, any excess
1309indentation will be automatically be removed by Sphinx. However, for this to
1310work, it is important that all lines are indented consistently, i.e.:
1311
1312.. code-block:: cpp
1313
1314 // ok
1315 m.def("foo", &foo, R"mydelimiter(
1316 The foo function
1317
1318 Parameters
1319 ----------
1320 )mydelimiter");
1321
1322 // *not ok*
1323 m.def("foo", &foo, R"mydelimiter(The foo function
1324
1325 Parameters
1326 ----------
1327 )mydelimiter");
1328
1329.. [#f3] http://www.sphinx-doc.org
1330.. [#f4] http://github.com/pybind/pbtest
1331