blob: f23ac53fc74e458edccaa652f24e45bd1120841f [file] [log] [blame]
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001.. _advanced:
2
3Advanced topics
4###############
5
Wenzel Jakob93296692015-10-13 23:21:54 +02006For brevity, the rest of this chapter assumes that the following two lines are
7present:
8
9.. code-block:: cpp
10
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020011 #include <pybind11/pybind11.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020012
Wenzel Jakob10e62e12015-10-15 22:46:07 +020013 namespace py = pybind11;
Wenzel Jakob93296692015-10-13 23:21:54 +020014
Wenzel Jakobde3ad072016-02-02 11:38:21 +010015Exporting constants and mutable objects
16=======================================
17
18To expose a C++ constant, use the ``attr`` function to register it in a module
19as shown below. The ``int_`` class is one of many small wrapper objects defined
20in ``pybind11/pytypes.h``. General objects (including integers) can also be
21converted using the function ``cast``.
22
23.. code-block:: cpp
24
25 PYBIND11_PLUGIN(example) {
26 py::module m("example", "pybind11 example plugin");
27 m.attr("MY_CONSTANT") = py::int_(123);
28 m.attr("MY_CONSTANT_2") = py::cast(new MyObject());
29 }
30
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020031Operator overloading
32====================
33
Wenzel Jakob93296692015-10-13 23:21:54 +020034Suppose that we're given the following ``Vector2`` class with a vector addition
35and scalar multiplication operation, all implemented using overloaded operators
36in C++.
37
38.. code-block:: cpp
39
40 class Vector2 {
41 public:
42 Vector2(float x, float y) : x(x), y(y) { }
43
44 std::string toString() const { return "[" + std::to_string(x) + ", " + std::to_string(y) + "]"; }
45
46 Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
47 Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
48 Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
49 Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
50
51 friend Vector2 operator*(float f, const Vector2 &v) { return Vector2(f * v.x, f * v.y); }
52
53 private:
54 float x, y;
55 };
56
57The following snippet shows how the above operators can be conveniently exposed
58to Python.
59
60.. code-block:: cpp
61
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020062 #include <pybind11/operators.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020063
Wenzel Jakobb1b71402015-10-18 16:48:30 +020064 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020065 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +020066
67 py::class_<Vector2>(m, "Vector2")
68 .def(py::init<float, float>())
69 .def(py::self + py::self)
70 .def(py::self += py::self)
71 .def(py::self *= float())
72 .def(float() * py::self)
73 .def("__repr__", &Vector2::toString);
74
75 return m.ptr();
76 }
77
78Note that a line like
79
80.. code-block:: cpp
81
82 .def(py::self * float())
83
84is really just short hand notation for
85
86.. code-block:: cpp
87
88 .def("__mul__", [](const Vector2 &a, float b) {
89 return a * b;
90 })
91
92This can be useful for exposing additional operators that don't exist on the
93C++ side, or to perform other types of customization.
94
95.. note::
96
97 To use the more convenient ``py::self`` notation, the additional
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020098 header file :file:`pybind11/operators.h` must be included.
Wenzel Jakob93296692015-10-13 23:21:54 +020099
100.. seealso::
101
102 The file :file:`example/example3.cpp` contains a complete example that
103 demonstrates how to work with overloaded operators in more detail.
104
105Callbacks and passing anonymous functions
106=========================================
107
108The C++11 standard brought lambda functions and the generic polymorphic
109function wrapper ``std::function<>`` to the C++ programming language, which
110enable powerful new ways of working with functions. Lambda functions come in
111two flavors: stateless lambda function resemble classic function pointers that
112link to an anonymous piece of code, while stateful lambda functions
113additionally depend on captured variables that are stored in an anonymous
114*lambda closure object*.
115
116Here is a simple example of a C++ function that takes an arbitrary function
117(stateful or stateless) with signature ``int -> int`` as an argument and runs
118it with the value 10.
119
120.. code-block:: cpp
121
122 int func_arg(const std::function<int(int)> &f) {
123 return f(10);
124 }
125
126The example below is more involved: it takes a function of signature ``int -> int``
127and returns another function of the same kind. The return value is a stateful
128lambda function, which stores the value ``f`` in the capture object and adds 1 to
129its return value upon execution.
130
131.. code-block:: cpp
132
133 std::function<int(int)> func_ret(const std::function<int(int)> &f) {
134 return [f](int i) {
135 return f(i) + 1;
136 };
137 }
138
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200139After including the extra header file :file:`pybind11/functional.h`, it is almost
Wenzel Jakob93296692015-10-13 23:21:54 +0200140trivial to generate binding code for both of these functions.
141
142.. code-block:: cpp
143
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200144 #include <pybind11/functional.h>
Wenzel Jakob93296692015-10-13 23:21:54 +0200145
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200146 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200147 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200148
149 m.def("func_arg", &func_arg);
150 m.def("func_ret", &func_ret);
151
152 return m.ptr();
153 }
154
155The following interactive session shows how to call them from Python.
156
157.. code-block:: python
158
159 $ python
160 >>> import example
161 >>> def square(i):
162 ... return i * i
163 ...
164 >>> example.func_arg(square)
165 100L
166 >>> square_plus_1 = example.func_ret(square)
167 >>> square_plus_1(4)
168 17L
169 >>>
170
171.. note::
172
173 This functionality is very useful when generating bindings for callbacks in
174 C++ libraries (e.g. a graphical user interface library).
175
176 The file :file:`example/example5.cpp` contains a complete example that
177 demonstrates how to work with callbacks and anonymous functions in more detail.
178
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100179.. warning::
180
181 Keep in mind that passing a function from C++ to Python (or vice versa)
182 will instantiate a piece of wrapper code that translates function
183 invocations between the two languages. Copying the same function back and
184 forth between Python and C++ many times in a row will cause these wrappers
185 to accumulate, which can decrease performance.
186
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200187Overriding virtual functions in Python
188======================================
189
Wenzel Jakob93296692015-10-13 23:21:54 +0200190Suppose that a C++ class or interface has a virtual function that we'd like to
191to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
192given as a specific example of how one would do this with traditional C++
193code).
194
195.. code-block:: cpp
196
197 class Animal {
198 public:
199 virtual ~Animal() { }
200 virtual std::string go(int n_times) = 0;
201 };
202
203 class Dog : public Animal {
204 public:
205 std::string go(int n_times) {
206 std::string result;
207 for (int i=0; i<n_times; ++i)
208 result += "woof! ";
209 return result;
210 }
211 };
212
213Let's also suppose that we are given a plain function which calls the
214function ``go()`` on an arbitrary ``Animal`` instance.
215
216.. code-block:: cpp
217
218 std::string call_go(Animal *animal) {
219 return animal->go(3);
220 }
221
222Normally, the binding code for these classes would look as follows:
223
224.. code-block:: cpp
225
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200226 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200227 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200228
229 py::class_<Animal> animal(m, "Animal");
230 animal
231 .def("go", &Animal::go);
232
233 py::class_<Dog>(m, "Dog", animal)
234 .def(py::init<>());
235
236 m.def("call_go", &call_go);
237
238 return m.ptr();
239 }
240
241However, these bindings are impossible to extend: ``Animal`` is not
242constructible, and we clearly require some kind of "trampoline" that
243redirects virtual calls back to Python.
244
245Defining a new type of ``Animal`` from within Python is possible but requires a
246helper class that is defined as follows:
247
248.. code-block:: cpp
249
250 class PyAnimal : public Animal {
251 public:
252 /* Inherit the constructors */
253 using Animal::Animal;
254
255 /* Trampoline (need one for each virtual function) */
256 std::string go(int n_times) {
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200257 PYBIND11_OVERLOAD_PURE(
Wenzel Jakob93296692015-10-13 23:21:54 +0200258 std::string, /* Return type */
259 Animal, /* Parent class */
260 go, /* Name of function */
261 n_times /* Argument(s) */
262 );
263 }
264 };
265
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200266The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
267functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have
Wenzel Jakob93296692015-10-13 23:21:54 +0200268a default implementation. The binding code also needs a few minor adaptations
269(highlighted):
270
271.. code-block:: cpp
272 :emphasize-lines: 4,6,7
273
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200274 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200275 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200276
277 py::class_<PyAnimal> animal(m, "Animal");
278 animal
279 .alias<Animal>()
280 .def(py::init<>())
281 .def("go", &Animal::go);
282
283 py::class_<Dog>(m, "Dog", animal)
284 .def(py::init<>());
285
286 m.def("call_go", &call_go);
287
288 return m.ptr();
289 }
290
291Importantly, the trampoline helper class is used as the template argument to
292:class:`class_`, and a call to :func:`class_::alias` informs the binding
293generator that this is merely an alias for the underlying type ``Animal``.
294Following this, we are able to define a constructor as usual.
295
296The Python session below shows how to override ``Animal::go`` and invoke it via
297a virtual method call.
298
Wenzel Jakobde3ad072016-02-02 11:38:21 +0100299.. code-block:: python
Wenzel Jakob93296692015-10-13 23:21:54 +0200300
301 >>> from example import *
302 >>> d = Dog()
303 >>> call_go(d)
304 u'woof! woof! woof! '
305 >>> class Cat(Animal):
306 ... def go(self, n_times):
307 ... return "meow! " * n_times
308 ...
309 >>> c = Cat()
310 >>> call_go(c)
311 u'meow! meow! meow! '
312
313.. seealso::
314
315 The file :file:`example/example12.cpp` contains a complete example that
316 demonstrates how to override virtual functions using pybind11 in more
317 detail.
318
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100319
320Global Interpreter Lock (GIL)
321=============================
322
323The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
324used to acquire and release the global interpreter lock in the body of a C++
325function call. In this way, long-running C++ code can be parallelized using
326multiple Python threads. Taking the previous section as an example, this could
327be realized as follows (important changes highlighted):
328
329.. code-block:: cpp
330 :emphasize-lines: 8,9,33,34
331
332 class PyAnimal : public Animal {
333 public:
334 /* Inherit the constructors */
335 using Animal::Animal;
336
337 /* Trampoline (need one for each virtual function) */
338 std::string go(int n_times) {
339 /* Acquire GIL before calling Python code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100340 py::gil_scoped_acquire acquire;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100341
342 PYBIND11_OVERLOAD_PURE(
343 std::string, /* Return type */
344 Animal, /* Parent class */
345 go, /* Name of function */
346 n_times /* Argument(s) */
347 );
348 }
349 };
350
351 PYBIND11_PLUGIN(example) {
352 py::module m("example", "pybind11 example plugin");
353
354 py::class_<PyAnimal> animal(m, "Animal");
355 animal
356 .alias<Animal>()
357 .def(py::init<>())
358 .def("go", &Animal::go);
359
360 py::class_<Dog>(m, "Dog", animal)
361 .def(py::init<>());
362
363 m.def("call_go", [](Animal *animal) -> std::string {
364 /* Release GIL before calling into (potentially long-running) C++ code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100365 py::gil_scoped_release release;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100366 return call_go(animal);
367 });
368
369 return m.ptr();
370 }
371
Wenzel Jakob93296692015-10-13 23:21:54 +0200372Passing STL data structures
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200373===========================
374
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200375When including the additional header file :file:`pybind11/stl.h`, conversions
Jared Casper6be9e2f2015-12-15 15:56:14 -0800376between ``std::vector<>``, ``std::set<>``, and ``std::map<>`` and the Python
Wenzel Jakob44db04f2015-12-14 12:40:45 +0100377``list``, ``set`` and ``dict`` data structures are automatically enabled. The
378types ``std::pair<>`` and ``std::tuple<>`` are already supported out of the box
379with just the core :file:`pybind11/pybind11.h` header.
Wenzel Jakob93296692015-10-13 23:21:54 +0200380
381.. note::
382
Wenzel Jakob44db04f2015-12-14 12:40:45 +0100383 Arbitrary nesting of any of these types is supported.
Wenzel Jakob93296692015-10-13 23:21:54 +0200384
385.. seealso::
386
387 The file :file:`example/example2.cpp` contains a complete example that
388 demonstrates how to pass STL data types in more detail.
389
390Binding sequence data types, the slicing protocol, etc.
391=======================================================
392
393Please refer to the supplemental example for details.
394
395.. seealso::
396
397 The file :file:`example/example6.cpp` contains a complete example that
398 shows how to bind a sequence data type, including length queries
399 (``__len__``), iterators (``__iter__``), the slicing protocol and other
400 kinds of useful operations.
401
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200402Return value policies
403=====================
404
Wenzel Jakob93296692015-10-13 23:21:54 +0200405Python and C++ use wildly different ways of managing the memory and lifetime of
406objects managed by them. This can lead to issues when creating bindings for
407functions that return a non-trivial type. Just by looking at the type
408information, it is not clear whether Python should take charge of the returned
409value and eventually free its resources, or if this is handled on the C++ side.
410For this reason, pybind11 provides a several `return value policy` annotations
411that can be passed to the :func:`module::def` and :func:`class_::def`
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100412functions. The default policy is :enum:`return_value_policy::automatic`.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200413
Wenzel Jakob93296692015-10-13 23:21:54 +0200414
415+--------------------------------------------------+---------------------------------------------------------------------------+
416| Return value policy | Description |
417+==================================================+===========================================================================+
418| :enum:`return_value_policy::automatic` | Automatic: copy objects returned as values and take ownership of |
419| | objects returned as pointers |
420+--------------------------------------------------+---------------------------------------------------------------------------+
421| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python |
422+--------------------------------------------------+---------------------------------------------------------------------------+
423| :enum:`return_value_policy::take_ownership` | Reference the existing object and take ownership. Python will call |
424| | the destructor and delete operator when the reference count reaches zero |
425+--------------------------------------------------+---------------------------------------------------------------------------+
426| :enum:`return_value_policy::reference` | Reference the object, but do not take ownership and defer responsibility |
427| | for deleting it to C++ (dangerous when C++ code at some point decides to |
428| | delete it while Python still has a nonzero reference count) |
429+--------------------------------------------------+---------------------------------------------------------------------------+
430| :enum:`return_value_policy::reference_internal` | Reference the object, but do not take ownership. The object is considered |
431| | be owned by the C++ instance whose method or property returned it. The |
432| | Python object will increase the reference count of this 'parent' by 1 |
433| | to ensure that it won't be deallocated while Python is using the 'child' |
434+--------------------------------------------------+---------------------------------------------------------------------------+
435
436.. warning::
437
438 Code with invalid call policies might access unitialized memory and free
439 data structures multiple times, which can lead to hard-to-debug
440 non-determinism and segmentation faults, hence it is worth spending the
441 time to understand all the different options above.
442
443See below for an example that uses the
444:enum:`return_value_policy::reference_internal` policy.
445
446.. code-block:: cpp
447
448 class Example {
449 public:
450 Internal &get_internal() { return internal; }
451 private:
452 Internal internal;
453 };
454
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200455 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200456 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200457
458 py::class_<Example>(m, "Example")
459 .def(py::init<>())
460 .def("get_internal", &Example::get_internal, "Return the internal data", py::return_value_policy::reference_internal)
461
462 return m.ptr();
463 }
464
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100465
466Additional call policies
467========================
468
469In addition to the above return value policies, further `call policies` can be
470specified to indicate dependencies between parameters. There is currently just
471one policy named ``keep_alive<Nurse, Patient>``, which indicates that the
472argument with index ``Patient`` should be kept alive at least until the
473argument with index ``Nurse`` is freed by the garbage collector; argument
474indices start at one, while zero refers to the return value. Arbitrarily many
475call policies can be specified.
476
477For instance, binding code for a a list append operation that ties the lifetime
478of the newly added element to the underlying container might be declared as
479follows:
480
481.. code-block:: cpp
482
483 py::class_<List>(m, "List")
484 .def("append", &List::append, py::keep_alive<1, 2>());
485
486.. note::
487
488 ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
489 Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
490 0) policies from Boost.Python.
491
Wenzel Jakob61587162016-01-18 22:38:52 +0100492.. seealso::
493
494 The file :file:`example/example13.cpp` contains a complete example that
495 demonstrates using :class:`keep_alive` in more detail.
496
Wenzel Jakob93296692015-10-13 23:21:54 +0200497Implicit type conversions
498=========================
499
500Suppose that instances of two types ``A`` and ``B`` are used in a project, and
501that an ``A`` can easily be converted into a an instance of type ``B`` (examples of this
502could be a fixed and an arbitrary precision number type).
503
504.. code-block:: cpp
505
506 py::class_<A>(m, "A")
507 /// ... members ...
508
509 py::class_<B>(m, "B")
510 .def(py::init<A>())
511 /// ... members ...
512
513 m.def("func",
514 [](const B &) { /* .... */ }
515 );
516
517To invoke the function ``func`` using a variable ``a`` containing an ``A``
518instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
519will automatically apply an implicit type conversion, which makes it possible
520to directly write ``func(a)``.
521
522In this situation (i.e. where ``B`` has a constructor that converts from
523``A``), the following statement enables similar implicit conversions on the
524Python side:
525
526.. code-block:: cpp
527
528 py::implicitly_convertible<A, B>();
529
530Smart pointers
531==============
532
533The binding generator for classes (:class:`class_`) takes an optional second
534template type, which denotes a special *holder* type that is used to manage
535references to the object. When wrapping a type named ``Type``, the default
536value of this template parameter is ``std::unique_ptr<Type>``, which means that
537the object is deallocated when Python's reference count goes to zero.
538
Wenzel Jakob1853b652015-10-18 15:38:50 +0200539It is possible to switch to other types of reference counting wrappers or smart
540pointers, which is useful in codebases that rely on them. For instance, the
541following snippet causes ``std::shared_ptr`` to be used instead.
Wenzel Jakob93296692015-10-13 23:21:54 +0200542
543.. code-block:: cpp
544
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100545 py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100546
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100547Note that any particular class can only be associated with a single holder type.
Wenzel Jakob93296692015-10-13 23:21:54 +0200548
Wenzel Jakob1853b652015-10-18 15:38:50 +0200549To enable transparent conversions for functions that take shared pointers as an
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100550argument or that return them, a macro invocation similar to the following must
Wenzel Jakob1853b652015-10-18 15:38:50 +0200551be declared at the top level before any binding code:
552
553.. code-block:: cpp
554
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200555 PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
Wenzel Jakob1853b652015-10-18 15:38:50 +0200556
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100557.. note::
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100558
559 The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a
560 placeholder name that is used as a template parameter of the second
561 argument. Thus, feel free to use any identifier, but use it consistently on
562 both sides; also, don't use the name of a type that already exists in your
563 codebase.
564
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100565One potential stumbling block when using holder types is that they need to be
566applied consistently. Can you guess what's broken about the following binding
567code?
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100568
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100569.. code-block:: cpp
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100570
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100571 class Child { };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100572
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100573 class Parent {
574 public:
575 Parent() : child(std::make_shared<Child>()) { }
576 Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
577 private:
578 std::shared_ptr<Child> child;
579 };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100580
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100581 PYBIND11_PLUGIN(example) {
582 py::module m("example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100583
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100584 py::class_<Child, std::shared_ptr<Child>>(m, "Child");
585
586 py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
587 .def(py::init<>())
588 .def("get_child", &Parent::get_child);
589
590 return m.ptr();
591 }
592
593The following Python code will cause undefined behavior (and likely a
594segmentation fault).
595
596.. code-block:: python
597
598 from example import Parent
599 print(Parent().get_child())
600
601The problem is that ``Parent::get_child()`` returns a pointer to an instance of
602``Child``, but the fact that this instance is already managed by
603``std::shared_ptr<...>`` is lost when passing raw pointers. In this case,
604pybind11 will create a second independent ``std::shared_ptr<...>`` that also
605claims ownership of the pointer. In the end, the object will be freed **twice**
606since these shared pointers have no way of knowing about each other.
607
608There are two ways to resolve this issue:
609
6101. For types that are managed by a smart pointer class, never use raw pointers
611 in function arguments or return values. In other words: always consistently
612 wrap pointers into their designated holder types (such as
613 ``std::shared_ptr<...>``). In this case, the signature of ``get_child()``
614 should be modified as follows:
615
616.. code-block:: cpp
617
618 std::shared_ptr<Child> get_child() { return child; }
619
6202. Adjust the definition of ``Child`` by specifying
621 ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a
622 base class. This adds a small bit of information to ``Child`` that allows
623 pybind11 to realize that there is already an existing
624 ``std::shared_ptr<...>`` and communicate with it. In this case, the
625 declaration of ``Child`` should look as follows:
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100626
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100627.. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this
628
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100629.. code-block:: cpp
630
631 class Child : public std::enable_shared_from_this<Child> { };
632
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100633.. seealso::
634
635 The file :file:`example/example8.cpp` contains a complete example that
636 demonstrates how to work with custom reference-counting holder types in
637 more detail.
638
Wenzel Jakob93296692015-10-13 23:21:54 +0200639.. _custom_constructors:
640
641Custom constructors
642===================
643
644The syntax for binding constructors was previously introduced, but it only
645works when a constructor with the given parameters actually exists on the C++
646side. To extend this to more general cases, let's take a look at what actually
647happens under the hood: the following statement
648
649.. code-block:: cpp
650
651 py::class_<Example>(m, "Example")
652 .def(py::init<int>());
653
654is short hand notation for
655
656.. code-block:: cpp
657
658 py::class_<Example>(m, "Example")
659 .def("__init__",
660 [](Example &instance, int arg) {
661 new (&instance) Example(arg);
662 }
663 );
664
665In other words, :func:`init` creates an anonymous function that invokes an
666in-place constructor. Memory allocation etc. is already take care of beforehand
667within pybind11.
668
669Catching and throwing exceptions
670================================
671
672When C++ code invoked from Python throws an ``std::exception``, it is
673automatically converted into a Python ``Exception``. pybind11 defines multiple
674special exception classes that will map to different types of Python
675exceptions:
676
677+----------------------------+------------------------------+
678| C++ exception type | Python exception type |
679+============================+==============================+
680| :class:`std::exception` | ``Exception`` |
681+----------------------------+------------------------------+
682| :class:`stop_iteration` | ``StopIteration`` (used to |
683| | implement custom iterators) |
684+----------------------------+------------------------------+
685| :class:`index_error` | ``IndexError`` (used to |
686| | indicate out of bounds |
687| | accesses in ``__getitem__``, |
688| | ``__setitem__``, etc.) |
689+----------------------------+------------------------------+
690| :class:`error_already_set` | Indicates that the Python |
691| | exception flag has already |
692| | been initialized. |
693+----------------------------+------------------------------+
694
695When a Python function invoked from C++ throws an exception, it is converted
696into a C++ exception of type :class:`error_already_set` whose string payload
697contains a textual summary.
698
699There is also a special exception :class:`cast_error` that is thrown by
700:func:`handle::call` when the input arguments cannot be converted to Python
701objects.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200702
703Buffer protocol
704===============
705
706Python supports an extremely general and convenient approach for exchanging
707data between plugin libraries. Types can expose a buffer view which provides
708fast direct access to the raw internal representation. Suppose we want to bind
709the following simplistic Matrix class:
710
711.. code-block:: cpp
712
713 class Matrix {
714 public:
715 Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
716 m_data = new float[rows*cols];
717 }
718 float *data() { return m_data; }
719 size_t rows() const { return m_rows; }
720 size_t cols() const { return m_cols; }
721 private:
722 size_t m_rows, m_cols;
723 float *m_data;
724 };
725
726The following binding code exposes the ``Matrix`` contents as a buffer object,
727making it possible to cast Matrixes into NumPy arrays. It is even possible to
728completely avoid copy operations with Python expressions like
729``np.array(matrix_instance, copy = False)``.
730
731.. code-block:: cpp
732
733 py::class_<Matrix>(m, "Matrix")
734 .def_buffer([](Matrix &m) -> py::buffer_info {
735 return py::buffer_info(
736 m.data(), /* Pointer to buffer */
737 sizeof(float), /* Size of one scalar */
738 py::format_descriptor<float>::value(), /* Python struct-style format descriptor */
739 2, /* Number of dimensions */
740 { m.rows(), m.cols() }, /* Buffer dimensions */
741 { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */
742 sizeof(float) }
743 );
744 });
745
746The snippet above binds a lambda function, which can create ``py::buffer_info``
747description records on demand describing a given matrix. The contents of
748``py::buffer_info`` mirror the Python buffer protocol specification.
749
750.. code-block:: cpp
751
752 struct buffer_info {
753 void *ptr;
754 size_t itemsize;
755 std::string format;
756 int ndim;
757 std::vector<size_t> shape;
758 std::vector<size_t> strides;
759 };
760
761To create a C++ function that can take a Python buffer object as an argument,
762simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
763in a great variety of configurations, hence some safety checks are usually
764necessary in the function body. Below, you can see an basic example on how to
765define a custom constructor for the Eigen double precision matrix
766(``Eigen::MatrixXd``) type, which supports initialization from compatible
767buffer
768objects (e.g. a NumPy matrix).
769
770.. code-block:: cpp
771
772 py::class_<Eigen::MatrixXd>(m, "MatrixXd")
773 .def("__init__", [](Eigen::MatrixXd &m, py::buffer b) {
774 /* Request a buffer descriptor from Python */
775 py::buffer_info info = b.request();
776
777 /* Some sanity checks ... */
778 if (info.format != py::format_descriptor<double>::value())
779 throw std::runtime_error("Incompatible format: expected a double array!");
780
781 if (info.ndim != 2)
782 throw std::runtime_error("Incompatible buffer dimension!");
783
784 if (info.strides[0] == sizeof(double)) {
785 /* Buffer has the right layout -- directly copy. */
786 new (&m) Eigen::MatrixXd(info.shape[0], info.shape[1]);
787 memcpy(m.data(), info.ptr, sizeof(double) * m.size());
788 } else {
789 /* Oops -- the buffer is transposed */
790 new (&m) Eigen::MatrixXd(info.shape[1], info.shape[0]);
791 memcpy(m.data(), info.ptr, sizeof(double) * m.size());
792 m.transposeInPlace();
793 }
794 });
795
Wenzel Jakob93296692015-10-13 23:21:54 +0200796.. seealso::
797
798 The file :file:`example/example7.cpp` contains a complete example that
799 demonstrates using the buffer protocol with pybind11 in more detail.
800
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200801NumPy support
802=============
803
804By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
805restrict the function so that it only accepts NumPy arrays (rather than any
806type of Python object satisfying the buffer object protocol).
807
808In many situations, we want to define a function which only accepts a NumPy
Wenzel Jakob93296692015-10-13 23:21:54 +0200809array of a certain data type. This is possible via the ``py::array_t<T>``
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200810template. For instance, the following function requires the argument to be a
811dense array of doubles in C-style ordering.
812
813.. code-block:: cpp
814
Wenzel Jakob93296692015-10-13 23:21:54 +0200815 void f(py::array_t<double> array);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200816
817When it is invoked with a different type (e.g. an integer), the binding code
818will attempt to cast the input into a NumPy array of the requested type.
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200819Note that this feature requires the ``pybind11/numpy.h`` header to be included.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200820
821Vectorizing functions
822=====================
823
824Suppose we want to bind a function with the following signature to Python so
825that it can process arbitrary NumPy array arguments (vectors, matrices, general
826N-D arrays) in addition to its normal arguments:
827
828.. code-block:: cpp
829
830 double my_func(int x, float y, double z);
831
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200832After including the ``pybind11/numpy.h`` header, this is extremely simple:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200833
834.. code-block:: cpp
835
836 m.def("vectorized_func", py::vectorize(my_func));
837
838Invoking the function like below causes 4 calls to be made to ``my_func`` with
839each of the the array elements. The result is returned as a NumPy array of type
840``numpy.dtype.float64``.
841
842.. code-block:: python
843
844 >>> x = np.array([[1, 3],[5, 7]])
845 >>> y = np.array([[2, 4],[6, 8]])
846 >>> z = 3
847 >>> result = vectorized_func(x, y, z)
848
849The scalar argument ``z`` is transparently replicated 4 times. The input
850arrays ``x`` and ``y`` are automatically converted into the right types (they
851are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
852``numpy.dtype.float32``, respectively)
853
854Sometimes we might want to explitly exclude an argument from the vectorization
855because it makes little sense to wrap it in a NumPy array. For instance,
856suppose the function signature was
857
858.. code-block:: cpp
859
860 double my_func(int x, float y, my_custom_type *z);
861
862This can be done with a stateful Lambda closure:
863
864.. code-block:: cpp
865
866 // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
867 m.def("vectorized_func",
Wenzel Jakob93296692015-10-13 23:21:54 +0200868 [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200869 auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
870 return py::vectorize(stateful_closure)(x, y);
871 }
872 );
873
Wenzel Jakob61587162016-01-18 22:38:52 +0100874In cases where the computation is too complicated to be reduced to
875``vectorize``, it will be necessary to create and access the buffer contents
876manually. The following snippet contains a complete example that shows how this
877works (the code is somewhat contrived, since it could have been done more
878simply using ``vectorize``).
879
880.. code-block:: cpp
881
882 #include <pybind11/pybind11.h>
883 #include <pybind11/numpy.h>
884
885 namespace py = pybind11;
886
887 py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
888 auto buf1 = input1.request(), buf2 = input2.request();
889
890 if (buf1.ndim != 1 || buf2.ndim != 1)
891 throw std::runtime_error("Number of dimensions must be one");
892
893 if (buf1.shape[0] != buf2.shape[0])
894 throw std::runtime_error("Input shapes must match");
895
896 auto result = py::array(py::buffer_info(
897 nullptr, /* Pointer to data (nullptr -> ask NumPy to allocate!) */
898 sizeof(double), /* Size of one item */
899 py::format_descriptor<double>::value(), /* Buffer format */
900 buf1.ndim, /* How many dimensions? */
901 { buf1.shape[0] }, /* Number of elements for each dimension */
902 { sizeof(double) } /* Strides for each dimension */
903 ));
904
905 auto buf3 = result.request();
906
907 double *ptr1 = (double *) buf1.ptr,
908 *ptr2 = (double *) buf2.ptr,
909 *ptr3 = (double *) buf3.ptr;
910
911 for (size_t idx = 0; idx < buf1.shape[0]; idx++)
912 ptr3[idx] = ptr1[idx] + ptr2[idx];
913
914 return result;
915 }
916
917 PYBIND11_PLUGIN(test) {
918 py::module m("test");
919 m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
920 return m.ptr();
921 }
922
Wenzel Jakob93296692015-10-13 23:21:54 +0200923.. seealso::
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200924
Wenzel Jakob93296692015-10-13 23:21:54 +0200925 The file :file:`example/example10.cpp` contains a complete example that
926 demonstrates using :func:`vectorize` in more detail.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200927
Wenzel Jakob93296692015-10-13 23:21:54 +0200928Functions taking Python objects as arguments
929============================================
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200930
Wenzel Jakob93296692015-10-13 23:21:54 +0200931pybind11 exposes all major Python types using thin C++ wrapper classes. These
932wrapper classes can also be used as parameters of functions in bindings, which
933makes it possible to directly work with native Python types on the C++ side.
934For instance, the following statement iterates over a Python ``dict``:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200935
Wenzel Jakob93296692015-10-13 23:21:54 +0200936.. code-block:: cpp
937
938 void print_dict(py::dict dict) {
939 /* Easily interact with Python types */
940 for (auto item : dict)
941 std::cout << "key=" << item.first << ", "
942 << "value=" << item.second << std::endl;
943 }
944
945Available types include :class:`handle`, :class:`object`, :class:`bool_`,
Wenzel Jakob27e8e102016-01-17 22:36:37 +0100946:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
947:class:`list`, :class:`dict`, :class:`slice`, :class:`capsule`,
948:class:`function`, :class:`buffer`, :class:`array`, and :class:`array_t`.
Wenzel Jakob93296692015-10-13 23:21:54 +0200949
Wenzel Jakob436b7312015-10-20 01:04:30 +0200950In this kind of mixed code, it is often necessary to convert arbitrary C++
951types to Python, which can be done using :func:`cast`:
952
953.. code-block:: cpp
954
955 MyClass *cls = ..;
956 py::object obj = py::cast(cls);
957
958The reverse direction uses the following syntax:
959
960.. code-block:: cpp
961
962 py::object obj = ...;
963 MyClass *cls = obj.cast<MyClass *>();
964
965When conversion fails, both directions throw the exception :class:`cast_error`.
966
Wenzel Jakob93296692015-10-13 23:21:54 +0200967.. seealso::
968
969 The file :file:`example/example2.cpp` contains a complete example that
970 demonstrates passing native Python types in more detail.
Wenzel Jakob2ac50442016-01-17 22:36:35 +0100971
972Default arguments revisited
973===========================
974
975The section on :ref:`default_args` previously discussed basic usage of default
976arguments using pybind11. One noteworthy aspect of their implementation is that
977default arguments are converted to Python objects right at declaration time.
978Consider the following example:
979
980.. code-block:: cpp
981
982 py::class_<MyClass>("MyClass")
983 .def("myFunction", py::arg("arg") = SomeType(123));
984
985In this case, pybind11 must already be set up to deal with values of the type
986``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
987exception will be thrown.
988
989Another aspect worth highlighting is that the "preview" of the default argument
990in the function signature is generated using the object's ``__repr__`` method.
991If not available, the signature may not be very helpful, e.g.:
992
993.. code-block:: python
994
995 FUNCTIONS
996 ...
997 | myFunction(...)
Wenzel Jakob48548ea2016-01-17 22:36:44 +0100998 | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
Wenzel Jakob2ac50442016-01-17 22:36:35 +0100999 ...
1000
1001The first way of addressing this is by defining ``SomeType.__repr__``.
1002Alternatively, it is possible to specify the human-readable preview of the
1003default argument manually using the ``arg_t`` notation:
1004
1005.. code-block:: cpp
1006
1007 py::class_<MyClass>("MyClass")
1008 .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)"));
1009
Wenzel Jakobc769fce2016-03-03 12:03:30 +01001010Sometimes it may be necessary to pass a null pointer value as a default
1011argument. In this case, remember to cast it to the underlying type in question,
1012like so:
1013
1014.. code-block:: cpp
1015
1016 py::class_<MyClass>("MyClass")
1017 .def("myFunction", py::arg("arg") = (SomeType *) nullptr);
1018
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001019Partitioning code over multiple extension modules
1020=================================================
1021
1022It's straightforward to split binding code over multiple extension modules and
1023reference types declared elsewhere. Everything "just" works without any special
1024precautions. One exception to this rule occurs when wanting to extend a type declared
1025in another extension module. Recall the basic example from Section
1026:ref:`inheritance`.
1027
1028.. code-block:: cpp
1029
1030 py::class_<Pet> pet(m, "Pet");
1031 pet.def(py::init<const std::string &>())
1032 .def_readwrite("name", &Pet::name);
1033
1034 py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
1035 .def(py::init<const std::string &>())
1036 .def("bark", &Dog::bark);
1037
1038Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
1039whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
1040course that the variable ``pet`` is not available anymore though it is needed
1041to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
1042However, it can be acquired as follows:
1043
1044.. code-block:: cpp
1045
1046 py::object pet = (py::object) py::module::import("basic").attr("Pet");
1047
1048 py::class_<Dog>(m, "Dog", pet)
1049 .def(py::init<const std::string &>())
1050 .def("bark", &Dog::bark);
1051