blob: 534a0f2e4c9252fd758a93e970745158e6c91faa [file] [log] [blame]
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001.. _advanced:
2
3Advanced topics
4###############
5
Wenzel Jakob93296692015-10-13 23:21:54 +02006For brevity, the rest of this chapter assumes that the following two lines are
7present:
8
9.. code-block:: cpp
10
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020011 #include <pybind11/pybind11.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020012
Wenzel Jakob10e62e12015-10-15 22:46:07 +020013 namespace py = pybind11;
Wenzel Jakob93296692015-10-13 23:21:54 +020014
Wenzel Jakobde3ad072016-02-02 11:38:21 +010015Exporting constants and mutable objects
16=======================================
17
18To expose a C++ constant, use the ``attr`` function to register it in a module
19as shown below. The ``int_`` class is one of many small wrapper objects defined
20in ``pybind11/pytypes.h``. General objects (including integers) can also be
21converted using the function ``cast``.
22
23.. code-block:: cpp
24
25 PYBIND11_PLUGIN(example) {
26 py::module m("example", "pybind11 example plugin");
27 m.attr("MY_CONSTANT") = py::int_(123);
28 m.attr("MY_CONSTANT_2") = py::cast(new MyObject());
29 }
30
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020031Operator overloading
32====================
33
Wenzel Jakob93296692015-10-13 23:21:54 +020034Suppose that we're given the following ``Vector2`` class with a vector addition
35and scalar multiplication operation, all implemented using overloaded operators
36in C++.
37
38.. code-block:: cpp
39
40 class Vector2 {
41 public:
42 Vector2(float x, float y) : x(x), y(y) { }
43
44 std::string toString() const { return "[" + std::to_string(x) + ", " + std::to_string(y) + "]"; }
45
46 Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
47 Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
48 Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
49 Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
50
51 friend Vector2 operator*(float f, const Vector2 &v) { return Vector2(f * v.x, f * v.y); }
52
53 private:
54 float x, y;
55 };
56
57The following snippet shows how the above operators can be conveniently exposed
58to Python.
59
60.. code-block:: cpp
61
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020062 #include <pybind11/operators.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020063
Wenzel Jakobb1b71402015-10-18 16:48:30 +020064 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020065 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +020066
67 py::class_<Vector2>(m, "Vector2")
68 .def(py::init<float, float>())
69 .def(py::self + py::self)
70 .def(py::self += py::self)
71 .def(py::self *= float())
72 .def(float() * py::self)
73 .def("__repr__", &Vector2::toString);
74
75 return m.ptr();
76 }
77
78Note that a line like
79
80.. code-block:: cpp
81
82 .def(py::self * float())
83
84is really just short hand notation for
85
86.. code-block:: cpp
87
88 .def("__mul__", [](const Vector2 &a, float b) {
89 return a * b;
90 })
91
92This can be useful for exposing additional operators that don't exist on the
93C++ side, or to perform other types of customization.
94
95.. note::
96
97 To use the more convenient ``py::self`` notation, the additional
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020098 header file :file:`pybind11/operators.h` must be included.
Wenzel Jakob93296692015-10-13 23:21:54 +020099
100.. seealso::
101
102 The file :file:`example/example3.cpp` contains a complete example that
103 demonstrates how to work with overloaded operators in more detail.
104
105Callbacks and passing anonymous functions
106=========================================
107
108The C++11 standard brought lambda functions and the generic polymorphic
109function wrapper ``std::function<>`` to the C++ programming language, which
110enable powerful new ways of working with functions. Lambda functions come in
111two flavors: stateless lambda function resemble classic function pointers that
112link to an anonymous piece of code, while stateful lambda functions
113additionally depend on captured variables that are stored in an anonymous
114*lambda closure object*.
115
116Here is a simple example of a C++ function that takes an arbitrary function
117(stateful or stateless) with signature ``int -> int`` as an argument and runs
118it with the value 10.
119
120.. code-block:: cpp
121
122 int func_arg(const std::function<int(int)> &f) {
123 return f(10);
124 }
125
126The example below is more involved: it takes a function of signature ``int -> int``
127and returns another function of the same kind. The return value is a stateful
128lambda function, which stores the value ``f`` in the capture object and adds 1 to
129its return value upon execution.
130
131.. code-block:: cpp
132
133 std::function<int(int)> func_ret(const std::function<int(int)> &f) {
134 return [f](int i) {
135 return f(i) + 1;
136 };
137 }
138
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200139After including the extra header file :file:`pybind11/functional.h`, it is almost
Wenzel Jakob93296692015-10-13 23:21:54 +0200140trivial to generate binding code for both of these functions.
141
142.. code-block:: cpp
143
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200144 #include <pybind11/functional.h>
Wenzel Jakob93296692015-10-13 23:21:54 +0200145
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200146 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200147 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200148
149 m.def("func_arg", &func_arg);
150 m.def("func_ret", &func_ret);
151
152 return m.ptr();
153 }
154
155The following interactive session shows how to call them from Python.
156
157.. code-block:: python
158
159 $ python
160 >>> import example
161 >>> def square(i):
162 ... return i * i
163 ...
164 >>> example.func_arg(square)
165 100L
166 >>> square_plus_1 = example.func_ret(square)
167 >>> square_plus_1(4)
168 17L
169 >>>
170
171.. note::
172
173 This functionality is very useful when generating bindings for callbacks in
174 C++ libraries (e.g. a graphical user interface library).
175
176 The file :file:`example/example5.cpp` contains a complete example that
177 demonstrates how to work with callbacks and anonymous functions in more detail.
178
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100179.. warning::
180
181 Keep in mind that passing a function from C++ to Python (or vice versa)
182 will instantiate a piece of wrapper code that translates function
183 invocations between the two languages. Copying the same function back and
184 forth between Python and C++ many times in a row will cause these wrappers
185 to accumulate, which can decrease performance.
186
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200187Overriding virtual functions in Python
188======================================
189
Wenzel Jakob93296692015-10-13 23:21:54 +0200190Suppose that a C++ class or interface has a virtual function that we'd like to
191to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
192given as a specific example of how one would do this with traditional C++
193code).
194
195.. code-block:: cpp
196
197 class Animal {
198 public:
199 virtual ~Animal() { }
200 virtual std::string go(int n_times) = 0;
201 };
202
203 class Dog : public Animal {
204 public:
205 std::string go(int n_times) {
206 std::string result;
207 for (int i=0; i<n_times; ++i)
208 result += "woof! ";
209 return result;
210 }
211 };
212
213Let's also suppose that we are given a plain function which calls the
214function ``go()`` on an arbitrary ``Animal`` instance.
215
216.. code-block:: cpp
217
218 std::string call_go(Animal *animal) {
219 return animal->go(3);
220 }
221
222Normally, the binding code for these classes would look as follows:
223
224.. code-block:: cpp
225
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200226 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200227 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200228
229 py::class_<Animal> animal(m, "Animal");
230 animal
231 .def("go", &Animal::go);
232
233 py::class_<Dog>(m, "Dog", animal)
234 .def(py::init<>());
235
236 m.def("call_go", &call_go);
237
238 return m.ptr();
239 }
240
241However, these bindings are impossible to extend: ``Animal`` is not
242constructible, and we clearly require some kind of "trampoline" that
243redirects virtual calls back to Python.
244
245Defining a new type of ``Animal`` from within Python is possible but requires a
246helper class that is defined as follows:
247
248.. code-block:: cpp
249
250 class PyAnimal : public Animal {
251 public:
252 /* Inherit the constructors */
253 using Animal::Animal;
254
255 /* Trampoline (need one for each virtual function) */
256 std::string go(int n_times) {
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200257 PYBIND11_OVERLOAD_PURE(
Wenzel Jakob93296692015-10-13 23:21:54 +0200258 std::string, /* Return type */
259 Animal, /* Parent class */
260 go, /* Name of function */
261 n_times /* Argument(s) */
262 );
263 }
264 };
265
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200266The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
267functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have
Wenzel Jakob93296692015-10-13 23:21:54 +0200268a default implementation. The binding code also needs a few minor adaptations
269(highlighted):
270
271.. code-block:: cpp
272 :emphasize-lines: 4,6,7
273
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200274 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200275 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200276
277 py::class_<PyAnimal> animal(m, "Animal");
278 animal
279 .alias<Animal>()
280 .def(py::init<>())
281 .def("go", &Animal::go);
282
283 py::class_<Dog>(m, "Dog", animal)
284 .def(py::init<>());
285
286 m.def("call_go", &call_go);
287
288 return m.ptr();
289 }
290
291Importantly, the trampoline helper class is used as the template argument to
292:class:`class_`, and a call to :func:`class_::alias` informs the binding
293generator that this is merely an alias for the underlying type ``Animal``.
294Following this, we are able to define a constructor as usual.
295
296The Python session below shows how to override ``Animal::go`` and invoke it via
297a virtual method call.
298
Wenzel Jakobde3ad072016-02-02 11:38:21 +0100299.. code-block:: python
Wenzel Jakob93296692015-10-13 23:21:54 +0200300
301 >>> from example import *
302 >>> d = Dog()
303 >>> call_go(d)
304 u'woof! woof! woof! '
305 >>> class Cat(Animal):
306 ... def go(self, n_times):
307 ... return "meow! " * n_times
308 ...
309 >>> c = Cat()
310 >>> call_go(c)
311 u'meow! meow! meow! '
312
313.. seealso::
314
315 The file :file:`example/example12.cpp` contains a complete example that
316 demonstrates how to override virtual functions using pybind11 in more
317 detail.
318
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100319
320Global Interpreter Lock (GIL)
321=============================
322
323The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
324used to acquire and release the global interpreter lock in the body of a C++
325function call. In this way, long-running C++ code can be parallelized using
326multiple Python threads. Taking the previous section as an example, this could
327be realized as follows (important changes highlighted):
328
329.. code-block:: cpp
330 :emphasize-lines: 8,9,33,34
331
332 class PyAnimal : public Animal {
333 public:
334 /* Inherit the constructors */
335 using Animal::Animal;
336
337 /* Trampoline (need one for each virtual function) */
338 std::string go(int n_times) {
339 /* Acquire GIL before calling Python code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100340 py::gil_scoped_acquire acquire;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100341
342 PYBIND11_OVERLOAD_PURE(
343 std::string, /* Return type */
344 Animal, /* Parent class */
345 go, /* Name of function */
346 n_times /* Argument(s) */
347 );
348 }
349 };
350
351 PYBIND11_PLUGIN(example) {
352 py::module m("example", "pybind11 example plugin");
353
354 py::class_<PyAnimal> animal(m, "Animal");
355 animal
356 .alias<Animal>()
357 .def(py::init<>())
358 .def("go", &Animal::go);
359
360 py::class_<Dog>(m, "Dog", animal)
361 .def(py::init<>());
362
363 m.def("call_go", [](Animal *animal) -> std::string {
364 /* Release GIL before calling into (potentially long-running) C++ code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100365 py::gil_scoped_release release;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100366 return call_go(animal);
367 });
368
369 return m.ptr();
370 }
371
Wenzel Jakob93296692015-10-13 23:21:54 +0200372Passing STL data structures
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200373===========================
374
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200375When including the additional header file :file:`pybind11/stl.h`, conversions
Wenzel Jakob978e3762016-04-07 18:00:41 +0200376between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>``
377and the Python ``list``, ``set`` and ``dict`` data structures are automatically
378enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported
379out of the box with just the core :file:`pybind11/pybind11.h` header.
Wenzel Jakob93296692015-10-13 23:21:54 +0200380
381.. note::
382
Wenzel Jakob44db04f2015-12-14 12:40:45 +0100383 Arbitrary nesting of any of these types is supported.
Wenzel Jakob93296692015-10-13 23:21:54 +0200384
385.. seealso::
386
387 The file :file:`example/example2.cpp` contains a complete example that
388 demonstrates how to pass STL data types in more detail.
389
Wenzel Jakobb2825952016-04-13 23:33:00 +0200390Binding sequence data types, iterators, the slicing protocol, etc.
391==================================================================
Wenzel Jakob93296692015-10-13 23:21:54 +0200392
393Please refer to the supplemental example for details.
394
395.. seealso::
396
397 The file :file:`example/example6.cpp` contains a complete example that
398 shows how to bind a sequence data type, including length queries
399 (``__len__``), iterators (``__iter__``), the slicing protocol and other
400 kinds of useful operations.
401
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200402Return value policies
403=====================
404
Wenzel Jakob93296692015-10-13 23:21:54 +0200405Python and C++ use wildly different ways of managing the memory and lifetime of
406objects managed by them. This can lead to issues when creating bindings for
407functions that return a non-trivial type. Just by looking at the type
408information, it is not clear whether Python should take charge of the returned
409value and eventually free its resources, or if this is handled on the C++ side.
410For this reason, pybind11 provides a several `return value policy` annotations
411that can be passed to the :func:`module::def` and :func:`class_::def`
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100412functions. The default policy is :enum:`return_value_policy::automatic`.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200413
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200414+--------------------------------------------------+----------------------------------------------------------------------------+
415| Return value policy | Description |
416+==================================================+============================================================================+
417| :enum:`return_value_policy::automatic` | This is the default return value policy, which falls back to the policy |
418| | :enum:`return_value_policy::take_ownership` when the return value is a |
419| | pointer. Otherwise, it uses :enum::`return_value::move` or |
420| | :enum::`return_value::copy` for rvalue and lvalue references, respectively.|
421| | See below for a description of what all of these different policies do. |
422+--------------------------------------------------+----------------------------------------------------------------------------+
423| :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the |
424| | return value is a pointer. |
425+--------------------------------------------------+----------------------------------------------------------------------------+
426| :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take |
427| | ownership. Python will call the destructor and delete operator when the |
428| | object's reference count reaches zero. Undefined behavior ensues when the |
429| | C++ side does the same.. |
430+--------------------------------------------------+----------------------------------------------------------------------------+
431| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. |
432| | This policy is comparably safe because the lifetimes of the two instances |
433| | are decoupled. |
434+--------------------------------------------------+----------------------------------------------------------------------------+
435| :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance |
436| | that will be owned by Python. This policy is comparably safe because the |
437| | lifetimes of the two instances (move source and destination) are decoupled.|
438+--------------------------------------------------+----------------------------------------------------------------------------+
439| :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is |
440| | responsible for managing the object's lifetime and deallocating it when |
441| | it is no longer used. Warning: undefined behavior will ensue when the C++ |
442| | side deletes an object that is still referenced by Python. |
443+--------------------------------------------------+----------------------------------------------------------------------------+
444| :enum:`return_value_policy::reference_internal` | Reference the object, but do not take ownership. The object is considered |
445| | be owned by the C++ instance whose method or property returned it. The |
446| | Python object will increase the reference count of this 'parent' by 1 |
447| | to ensure that it won't be deallocated while Python is using the 'child' |
448+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200449
450.. warning::
451
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200452 Code with invalid call policies might access unitialized memory or free
Wenzel Jakob93296692015-10-13 23:21:54 +0200453 data structures multiple times, which can lead to hard-to-debug
454 non-determinism and segmentation faults, hence it is worth spending the
455 time to understand all the different options above.
456
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200457.. note::
458
459 The next section on :ref:`call_policies` discusses *call policies* that can be
460 specified *in addition* to a return value policy from the list above. Call
461 policies indicate reference relationships that can involve both return values
462 and parameters of functions.
463
464.. note::
465
466 As an alternative to elaborate call policies and lifetime management logic,
467 consider using smart pointers (see :ref:`smart_pointers` for details) that
468 can be used to share reference count information between C++ and Python.
469
470
Wenzel Jakob93296692015-10-13 23:21:54 +0200471See below for an example that uses the
472:enum:`return_value_policy::reference_internal` policy.
473
474.. code-block:: cpp
475
476 class Example {
477 public:
478 Internal &get_internal() { return internal; }
479 private:
480 Internal internal;
481 };
482
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200483 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200484 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200485
486 py::class_<Example>(m, "Example")
487 .def(py::init<>())
Wenzel Jakob978e3762016-04-07 18:00:41 +0200488 .def("get_internal", &Example::get_internal, "Return the internal data", py::return_value_policy::reference_internal);
Wenzel Jakob93296692015-10-13 23:21:54 +0200489
490 return m.ptr();
491 }
492
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100493
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200494.. _call_policies:
495
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100496Additional call policies
497========================
498
499In addition to the above return value policies, further `call policies` can be
500specified to indicate dependencies between parameters. There is currently just
501one policy named ``keep_alive<Nurse, Patient>``, which indicates that the
502argument with index ``Patient`` should be kept alive at least until the
503argument with index ``Nurse`` is freed by the garbage collector; argument
504indices start at one, while zero refers to the return value. Arbitrarily many
505call policies can be specified.
506
507For instance, binding code for a a list append operation that ties the lifetime
508of the newly added element to the underlying container might be declared as
509follows:
510
511.. code-block:: cpp
512
513 py::class_<List>(m, "List")
514 .def("append", &List::append, py::keep_alive<1, 2>());
515
516.. note::
517
518 ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
519 Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
520 0) policies from Boost.Python.
521
Wenzel Jakob61587162016-01-18 22:38:52 +0100522.. seealso::
523
524 The file :file:`example/example13.cpp` contains a complete example that
525 demonstrates using :class:`keep_alive` in more detail.
526
Wenzel Jakob93296692015-10-13 23:21:54 +0200527Implicit type conversions
528=========================
529
530Suppose that instances of two types ``A`` and ``B`` are used in a project, and
531that an ``A`` can easily be converted into a an instance of type ``B`` (examples of this
532could be a fixed and an arbitrary precision number type).
533
534.. code-block:: cpp
535
536 py::class_<A>(m, "A")
537 /// ... members ...
538
539 py::class_<B>(m, "B")
540 .def(py::init<A>())
541 /// ... members ...
542
543 m.def("func",
544 [](const B &) { /* .... */ }
545 );
546
547To invoke the function ``func`` using a variable ``a`` containing an ``A``
548instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
549will automatically apply an implicit type conversion, which makes it possible
550to directly write ``func(a)``.
551
552In this situation (i.e. where ``B`` has a constructor that converts from
553``A``), the following statement enables similar implicit conversions on the
554Python side:
555
556.. code-block:: cpp
557
558 py::implicitly_convertible<A, B>();
559
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200560Unique pointers
561===============
562
563Given a class ``Example`` with Python bindings, it's possible to return
564instances wrapped in C++11 unique pointers, like so
565
566.. code-block:: cpp
567
568 std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); }
569
570.. code-block:: cpp
571
572 m.def("create_example", &create_example);
573
574In other words, there is nothing special that needs to be done. While returning
575unique pointers in this way is allowed, it is *illegal* to use them as function
576arguments. For instance, the following function signature cannot be processed
577by pybind11.
578
579.. code-block:: cpp
580
581 void do_something_with_example(std::unique_ptr<Example> ex) { ... }
582
583The above signature would imply that Python needs to give up ownership of an
584object that is passed to this function, which is generally not possible (for
585instance, the object might be referenced elsewhere).
586
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200587.. _smart_pointers:
588
Wenzel Jakob93296692015-10-13 23:21:54 +0200589Smart pointers
590==============
591
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200592This section explains how to pass values that are wrapped in "smart" pointer
593types with internal reference counting. For simpler C++11 unique pointers,
594please refer to the previous section.
595
Wenzel Jakob93296692015-10-13 23:21:54 +0200596The binding generator for classes (:class:`class_`) takes an optional second
597template type, which denotes a special *holder* type that is used to manage
598references to the object. When wrapping a type named ``Type``, the default
599value of this template parameter is ``std::unique_ptr<Type>``, which means that
600the object is deallocated when Python's reference count goes to zero.
601
Wenzel Jakob1853b652015-10-18 15:38:50 +0200602It is possible to switch to other types of reference counting wrappers or smart
603pointers, which is useful in codebases that rely on them. For instance, the
604following snippet causes ``std::shared_ptr`` to be used instead.
Wenzel Jakob93296692015-10-13 23:21:54 +0200605
606.. code-block:: cpp
607
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100608 py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100609
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100610Note that any particular class can only be associated with a single holder type.
Wenzel Jakob93296692015-10-13 23:21:54 +0200611
Wenzel Jakob1853b652015-10-18 15:38:50 +0200612To enable transparent conversions for functions that take shared pointers as an
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100613argument or that return them, a macro invocation similar to the following must
Wenzel Jakob1853b652015-10-18 15:38:50 +0200614be declared at the top level before any binding code:
615
616.. code-block:: cpp
617
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200618 PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
Wenzel Jakob1853b652015-10-18 15:38:50 +0200619
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100620.. note::
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100621
622 The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a
623 placeholder name that is used as a template parameter of the second
624 argument. Thus, feel free to use any identifier, but use it consistently on
625 both sides; also, don't use the name of a type that already exists in your
626 codebase.
627
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100628One potential stumbling block when using holder types is that they need to be
629applied consistently. Can you guess what's broken about the following binding
630code?
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100631
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100632.. code-block:: cpp
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100633
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100634 class Child { };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100635
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100636 class Parent {
637 public:
638 Parent() : child(std::make_shared<Child>()) { }
639 Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
640 private:
641 std::shared_ptr<Child> child;
642 };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100643
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100644 PYBIND11_PLUGIN(example) {
645 py::module m("example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100646
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100647 py::class_<Child, std::shared_ptr<Child>>(m, "Child");
648
649 py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
650 .def(py::init<>())
651 .def("get_child", &Parent::get_child);
652
653 return m.ptr();
654 }
655
656The following Python code will cause undefined behavior (and likely a
657segmentation fault).
658
659.. code-block:: python
660
661 from example import Parent
662 print(Parent().get_child())
663
664The problem is that ``Parent::get_child()`` returns a pointer to an instance of
665``Child``, but the fact that this instance is already managed by
666``std::shared_ptr<...>`` is lost when passing raw pointers. In this case,
667pybind11 will create a second independent ``std::shared_ptr<...>`` that also
668claims ownership of the pointer. In the end, the object will be freed **twice**
669since these shared pointers have no way of knowing about each other.
670
671There are two ways to resolve this issue:
672
6731. For types that are managed by a smart pointer class, never use raw pointers
674 in function arguments or return values. In other words: always consistently
675 wrap pointers into their designated holder types (such as
676 ``std::shared_ptr<...>``). In this case, the signature of ``get_child()``
677 should be modified as follows:
678
679.. code-block:: cpp
680
681 std::shared_ptr<Child> get_child() { return child; }
682
6832. Adjust the definition of ``Child`` by specifying
684 ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a
685 base class. This adds a small bit of information to ``Child`` that allows
686 pybind11 to realize that there is already an existing
687 ``std::shared_ptr<...>`` and communicate with it. In this case, the
688 declaration of ``Child`` should look as follows:
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100689
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100690.. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this
691
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100692.. code-block:: cpp
693
694 class Child : public std::enable_shared_from_this<Child> { };
695
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100696.. seealso::
697
698 The file :file:`example/example8.cpp` contains a complete example that
699 demonstrates how to work with custom reference-counting holder types in
700 more detail.
701
Wenzel Jakob93296692015-10-13 23:21:54 +0200702.. _custom_constructors:
703
704Custom constructors
705===================
706
707The syntax for binding constructors was previously introduced, but it only
708works when a constructor with the given parameters actually exists on the C++
709side. To extend this to more general cases, let's take a look at what actually
710happens under the hood: the following statement
711
712.. code-block:: cpp
713
714 py::class_<Example>(m, "Example")
715 .def(py::init<int>());
716
717is short hand notation for
718
719.. code-block:: cpp
720
721 py::class_<Example>(m, "Example")
722 .def("__init__",
723 [](Example &instance, int arg) {
724 new (&instance) Example(arg);
725 }
726 );
727
728In other words, :func:`init` creates an anonymous function that invokes an
729in-place constructor. Memory allocation etc. is already take care of beforehand
730within pybind11.
731
732Catching and throwing exceptions
733================================
734
735When C++ code invoked from Python throws an ``std::exception``, it is
736automatically converted into a Python ``Exception``. pybind11 defines multiple
737special exception classes that will map to different types of Python
738exceptions:
739
Wenzel Jakob978e3762016-04-07 18:00:41 +0200740+--------------------------------------+------------------------------+
741| C++ exception type | Python exception type |
742+======================================+==============================+
743| :class:`std::exception` | ``RuntimeError`` |
744+--------------------------------------+------------------------------+
745| :class:`std::bad_alloc` | ``MemoryError`` |
746+--------------------------------------+------------------------------+
747| :class:`std::domain_error` | ``ValueError`` |
748+--------------------------------------+------------------------------+
749| :class:`std::invalid_argument` | ``ValueError`` |
750+--------------------------------------+------------------------------+
751| :class:`std::length_error` | ``ValueError`` |
752+--------------------------------------+------------------------------+
753| :class:`std::out_of_range` | ``ValueError`` |
754+--------------------------------------+------------------------------+
755| :class:`std::range_error` | ``ValueError`` |
756+--------------------------------------+------------------------------+
757| :class:`pybind11::stop_iteration` | ``StopIteration`` (used to |
758| | implement custom iterators) |
759+--------------------------------------+------------------------------+
760| :class:`pybind11::index_error` | ``IndexError`` (used to |
761| | indicate out of bounds |
762| | accesses in ``__getitem__``, |
763| | ``__setitem__``, etc.) |
764+--------------------------------------+------------------------------+
765| :class:`pybind11::error_already_set` | Indicates that the Python |
766| | exception flag has already |
767| | been initialized |
768+--------------------------------------+------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200769
770When a Python function invoked from C++ throws an exception, it is converted
771into a C++ exception of type :class:`error_already_set` whose string payload
772contains a textual summary.
773
774There is also a special exception :class:`cast_error` that is thrown by
775:func:`handle::call` when the input arguments cannot be converted to Python
776objects.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200777
778Buffer protocol
779===============
780
781Python supports an extremely general and convenient approach for exchanging
Wenzel Jakob978e3762016-04-07 18:00:41 +0200782data between plugin libraries. Types can expose a buffer view [#f1]_,
783which provides fast direct access to the raw internal representation. Suppose
784we want to bind the following simplistic Matrix class:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200785
786.. code-block:: cpp
787
788 class Matrix {
789 public:
790 Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
791 m_data = new float[rows*cols];
792 }
793 float *data() { return m_data; }
794 size_t rows() const { return m_rows; }
795 size_t cols() const { return m_cols; }
796 private:
797 size_t m_rows, m_cols;
798 float *m_data;
799 };
800
801The following binding code exposes the ``Matrix`` contents as a buffer object,
802making it possible to cast Matrixes into NumPy arrays. It is even possible to
803completely avoid copy operations with Python expressions like
804``np.array(matrix_instance, copy = False)``.
805
806.. code-block:: cpp
807
808 py::class_<Matrix>(m, "Matrix")
809 .def_buffer([](Matrix &m) -> py::buffer_info {
810 return py::buffer_info(
811 m.data(), /* Pointer to buffer */
812 sizeof(float), /* Size of one scalar */
813 py::format_descriptor<float>::value(), /* Python struct-style format descriptor */
814 2, /* Number of dimensions */
815 { m.rows(), m.cols() }, /* Buffer dimensions */
816 { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */
817 sizeof(float) }
818 );
819 });
820
821The snippet above binds a lambda function, which can create ``py::buffer_info``
822description records on demand describing a given matrix. The contents of
823``py::buffer_info`` mirror the Python buffer protocol specification.
824
825.. code-block:: cpp
826
827 struct buffer_info {
828 void *ptr;
829 size_t itemsize;
830 std::string format;
831 int ndim;
832 std::vector<size_t> shape;
833 std::vector<size_t> strides;
834 };
835
836To create a C++ function that can take a Python buffer object as an argument,
837simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
838in a great variety of configurations, hence some safety checks are usually
839necessary in the function body. Below, you can see an basic example on how to
840define a custom constructor for the Eigen double precision matrix
841(``Eigen::MatrixXd``) type, which supports initialization from compatible
842buffer
843objects (e.g. a NumPy matrix).
844
845.. code-block:: cpp
846
847 py::class_<Eigen::MatrixXd>(m, "MatrixXd")
848 .def("__init__", [](Eigen::MatrixXd &m, py::buffer b) {
849 /* Request a buffer descriptor from Python */
850 py::buffer_info info = b.request();
851
852 /* Some sanity checks ... */
853 if (info.format != py::format_descriptor<double>::value())
854 throw std::runtime_error("Incompatible format: expected a double array!");
855
856 if (info.ndim != 2)
857 throw std::runtime_error("Incompatible buffer dimension!");
858
859 if (info.strides[0] == sizeof(double)) {
860 /* Buffer has the right layout -- directly copy. */
861 new (&m) Eigen::MatrixXd(info.shape[0], info.shape[1]);
862 memcpy(m.data(), info.ptr, sizeof(double) * m.size());
863 } else {
864 /* Oops -- the buffer is transposed */
865 new (&m) Eigen::MatrixXd(info.shape[1], info.shape[0]);
866 memcpy(m.data(), info.ptr, sizeof(double) * m.size());
867 m.transposeInPlace();
868 }
869 });
870
Wenzel Jakob93296692015-10-13 23:21:54 +0200871.. seealso::
872
873 The file :file:`example/example7.cpp` contains a complete example that
874 demonstrates using the buffer protocol with pybind11 in more detail.
875
Wenzel Jakob1c329aa2016-04-13 02:37:36 +0200876.. [#f1] http://docs.python.org/3/c-api/buffer.html
Wenzel Jakob978e3762016-04-07 18:00:41 +0200877
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200878NumPy support
879=============
880
881By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
882restrict the function so that it only accepts NumPy arrays (rather than any
Wenzel Jakob978e3762016-04-07 18:00:41 +0200883type of Python object satisfying the buffer protocol).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200884
885In many situations, we want to define a function which only accepts a NumPy
Wenzel Jakob93296692015-10-13 23:21:54 +0200886array of a certain data type. This is possible via the ``py::array_t<T>``
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200887template. For instance, the following function requires the argument to be a
888dense array of doubles in C-style ordering.
889
890.. code-block:: cpp
891
Wenzel Jakob93296692015-10-13 23:21:54 +0200892 void f(py::array_t<double> array);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200893
894When it is invoked with a different type (e.g. an integer), the binding code
Wenzel Jakob978e3762016-04-07 18:00:41 +0200895will attempt to cast the input into a NumPy array of the requested type. Note
896that this feature requires the :file:``pybind11/numpy.h`` header to be
897included.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200898
899Vectorizing functions
900=====================
901
902Suppose we want to bind a function with the following signature to Python so
903that it can process arbitrary NumPy array arguments (vectors, matrices, general
904N-D arrays) in addition to its normal arguments:
905
906.. code-block:: cpp
907
908 double my_func(int x, float y, double z);
909
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200910After including the ``pybind11/numpy.h`` header, this is extremely simple:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200911
912.. code-block:: cpp
913
914 m.def("vectorized_func", py::vectorize(my_func));
915
916Invoking the function like below causes 4 calls to be made to ``my_func`` with
Wenzel Jakob978e3762016-04-07 18:00:41 +0200917each of the the array elements. The significant advantage of this compared to
918solutions like ``numpy.vectorize()`` is that the loop over the elements runs
919entirely on the C++ side and can be crunched down into a tight, optimized loop
920by the compiler. The result is returned as a NumPy array of type
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200921``numpy.dtype.float64``.
922
923.. code-block:: python
924
925 >>> x = np.array([[1, 3],[5, 7]])
926 >>> y = np.array([[2, 4],[6, 8]])
927 >>> z = 3
928 >>> result = vectorized_func(x, y, z)
929
930The scalar argument ``z`` is transparently replicated 4 times. The input
931arrays ``x`` and ``y`` are automatically converted into the right types (they
932are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
933``numpy.dtype.float32``, respectively)
934
935Sometimes we might want to explitly exclude an argument from the vectorization
936because it makes little sense to wrap it in a NumPy array. For instance,
937suppose the function signature was
938
939.. code-block:: cpp
940
941 double my_func(int x, float y, my_custom_type *z);
942
943This can be done with a stateful Lambda closure:
944
945.. code-block:: cpp
946
947 // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
948 m.def("vectorized_func",
Wenzel Jakob93296692015-10-13 23:21:54 +0200949 [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200950 auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
951 return py::vectorize(stateful_closure)(x, y);
952 }
953 );
954
Wenzel Jakob61587162016-01-18 22:38:52 +0100955In cases where the computation is too complicated to be reduced to
956``vectorize``, it will be necessary to create and access the buffer contents
957manually. The following snippet contains a complete example that shows how this
958works (the code is somewhat contrived, since it could have been done more
959simply using ``vectorize``).
960
961.. code-block:: cpp
962
963 #include <pybind11/pybind11.h>
964 #include <pybind11/numpy.h>
965
966 namespace py = pybind11;
967
968 py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
969 auto buf1 = input1.request(), buf2 = input2.request();
970
971 if (buf1.ndim != 1 || buf2.ndim != 1)
972 throw std::runtime_error("Number of dimensions must be one");
973
974 if (buf1.shape[0] != buf2.shape[0])
975 throw std::runtime_error("Input shapes must match");
976
977 auto result = py::array(py::buffer_info(
978 nullptr, /* Pointer to data (nullptr -> ask NumPy to allocate!) */
979 sizeof(double), /* Size of one item */
980 py::format_descriptor<double>::value(), /* Buffer format */
981 buf1.ndim, /* How many dimensions? */
982 { buf1.shape[0] }, /* Number of elements for each dimension */
983 { sizeof(double) } /* Strides for each dimension */
984 ));
985
986 auto buf3 = result.request();
987
988 double *ptr1 = (double *) buf1.ptr,
989 *ptr2 = (double *) buf2.ptr,
990 *ptr3 = (double *) buf3.ptr;
991
992 for (size_t idx = 0; idx < buf1.shape[0]; idx++)
993 ptr3[idx] = ptr1[idx] + ptr2[idx];
994
995 return result;
996 }
997
998 PYBIND11_PLUGIN(test) {
999 py::module m("test");
1000 m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
1001 return m.ptr();
1002 }
1003
Wenzel Jakob93296692015-10-13 23:21:54 +02001004.. seealso::
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001005
Wenzel Jakob93296692015-10-13 23:21:54 +02001006 The file :file:`example/example10.cpp` contains a complete example that
1007 demonstrates using :func:`vectorize` in more detail.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001008
Wenzel Jakob93296692015-10-13 23:21:54 +02001009Functions taking Python objects as arguments
1010============================================
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001011
Wenzel Jakob93296692015-10-13 23:21:54 +02001012pybind11 exposes all major Python types using thin C++ wrapper classes. These
1013wrapper classes can also be used as parameters of functions in bindings, which
1014makes it possible to directly work with native Python types on the C++ side.
1015For instance, the following statement iterates over a Python ``dict``:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001016
Wenzel Jakob93296692015-10-13 23:21:54 +02001017.. code-block:: cpp
1018
1019 void print_dict(py::dict dict) {
1020 /* Easily interact with Python types */
1021 for (auto item : dict)
1022 std::cout << "key=" << item.first << ", "
1023 << "value=" << item.second << std::endl;
1024 }
1025
1026Available types include :class:`handle`, :class:`object`, :class:`bool_`,
Wenzel Jakob27e8e102016-01-17 22:36:37 +01001027:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
1028:class:`list`, :class:`dict`, :class:`slice`, :class:`capsule`,
1029:class:`function`, :class:`buffer`, :class:`array`, and :class:`array_t`.
Wenzel Jakob93296692015-10-13 23:21:54 +02001030
Wenzel Jakob436b7312015-10-20 01:04:30 +02001031In this kind of mixed code, it is often necessary to convert arbitrary C++
1032types to Python, which can be done using :func:`cast`:
1033
1034.. code-block:: cpp
1035
1036 MyClass *cls = ..;
1037 py::object obj = py::cast(cls);
1038
1039The reverse direction uses the following syntax:
1040
1041.. code-block:: cpp
1042
1043 py::object obj = ...;
1044 MyClass *cls = obj.cast<MyClass *>();
1045
1046When conversion fails, both directions throw the exception :class:`cast_error`.
1047
Wenzel Jakob93296692015-10-13 23:21:54 +02001048.. seealso::
1049
1050 The file :file:`example/example2.cpp` contains a complete example that
1051 demonstrates passing native Python types in more detail.
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001052
1053Default arguments revisited
1054===========================
1055
1056The section on :ref:`default_args` previously discussed basic usage of default
1057arguments using pybind11. One noteworthy aspect of their implementation is that
1058default arguments are converted to Python objects right at declaration time.
1059Consider the following example:
1060
1061.. code-block:: cpp
1062
1063 py::class_<MyClass>("MyClass")
1064 .def("myFunction", py::arg("arg") = SomeType(123));
1065
1066In this case, pybind11 must already be set up to deal with values of the type
1067``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
1068exception will be thrown.
1069
1070Another aspect worth highlighting is that the "preview" of the default argument
1071in the function signature is generated using the object's ``__repr__`` method.
1072If not available, the signature may not be very helpful, e.g.:
1073
1074.. code-block:: python
1075
1076 FUNCTIONS
1077 ...
1078 | myFunction(...)
Wenzel Jakob48548ea2016-01-17 22:36:44 +01001079 | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001080 ...
1081
1082The first way of addressing this is by defining ``SomeType.__repr__``.
1083Alternatively, it is possible to specify the human-readable preview of the
1084default argument manually using the ``arg_t`` notation:
1085
1086.. code-block:: cpp
1087
1088 py::class_<MyClass>("MyClass")
1089 .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)"));
1090
Wenzel Jakobc769fce2016-03-03 12:03:30 +01001091Sometimes it may be necessary to pass a null pointer value as a default
1092argument. In this case, remember to cast it to the underlying type in question,
1093like so:
1094
1095.. code-block:: cpp
1096
1097 py::class_<MyClass>("MyClass")
1098 .def("myFunction", py::arg("arg") = (SomeType *) nullptr);
1099
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001100Partitioning code over multiple extension modules
1101=================================================
1102
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001103It's straightforward to split binding code over multiple extension modules,
1104while referencing types that are declared elsewhere. Everything "just" works
1105without any special precautions. One exception to this rule occurs when
1106extending a type declared in another extension module. Recall the basic example
1107from Section :ref:`inheritance`.
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001108
1109.. code-block:: cpp
1110
1111 py::class_<Pet> pet(m, "Pet");
1112 pet.def(py::init<const std::string &>())
1113 .def_readwrite("name", &Pet::name);
1114
1115 py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
1116 .def(py::init<const std::string &>())
1117 .def("bark", &Dog::bark);
1118
1119Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
1120whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
1121course that the variable ``pet`` is not available anymore though it is needed
1122to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
1123However, it can be acquired as follows:
1124
1125.. code-block:: cpp
1126
1127 py::object pet = (py::object) py::module::import("basic").attr("Pet");
1128
1129 py::class_<Dog>(m, "Dog", pet)
1130 .def(py::init<const std::string &>())
1131 .def("bark", &Dog::bark);
1132
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001133Alternatively, we can rely on the ``base`` tag, which performs an automated
1134lookup of the corresponding Python type. However, this also requires invoking
1135the ``import`` function once to ensure that the pybind11 binding code of the
1136module ``basic`` has been executed.
1137
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001138.. code-block:: cpp
1139
1140 py::module::import("basic");
1141
1142 py::class_<Dog>(m, "Dog", py::base<Pet>())
1143 .def(py::init<const std::string &>())
1144 .def("bark", &Dog::bark);
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001145
Wenzel Jakob978e3762016-04-07 18:00:41 +02001146Naturally, both methods will fail when there are cyclic dependencies.
1147
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001148Note that compiling code which has its default symbol visibility set to
1149*hidden* (e.g. via the command line flag ``-fvisibility=hidden`` on GCC/Clang) can interfere with the
1150ability to access types defined in another extension module. Workarounds
1151include changing the global symbol visibility (not recommended, because it will
1152lead unnecessarily large binaries) or manually exporting types that are
1153accessed by multiple extension modules:
1154
1155.. code-block:: cpp
1156
1157 #ifdef _WIN32
1158 # define EXPORT_TYPE __declspec(dllexport)
1159 #else
1160 # define EXPORT_TYPE __attribute__ ((visibility("default")))
1161 #endif
1162
1163 class EXPORT_TYPE Dog : public Animal {
1164 ...
1165 };
1166
1167
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001168Treating STL data structures as opaque objects
1169==============================================
1170
1171pybind11 heavily relies on a template matching mechanism to convert parameters
1172and return values that are constructed from STL data types such as vectors,
1173linked lists, hash tables, etc. This even works in a recursive manner, for
1174instance to deal with lists of hash maps of pairs of elementary and custom
1175types, etc.
1176
Wenzel Jakob08712282016-04-22 16:52:15 +02001177However, a fundamental limitation of this approach is that internal conversions
1178between Python and C++ types involve a copy operation that prevents
Wenzel Jakob978e3762016-04-07 18:00:41 +02001179pass-by-reference semantics. What does this mean?
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001180
1181Suppose we bind the following function
1182
1183.. code-block:: cpp
1184
1185 void append_1(std::vector<int> &v) {
1186 v.push_back(1);
1187 }
1188
1189and call it as follows from Python:
1190
1191.. code-block:: python
1192
1193 >>> v = [5, 6]
1194 >>> append_1(v)
1195 >>> print(v)
1196 [5, 6]
1197
1198As you can see, when passing STL data structures by reference, modifications
Wenzel Jakob08712282016-04-22 16:52:15 +02001199are not propagated back the Python side. A similar situation arises when
1200exposing STL data structures using the ``def_readwrite`` or ``def_readonly``
1201functions:
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001202
Wenzel Jakob08712282016-04-22 16:52:15 +02001203.. code-block:: cpp
1204
1205 /* ... definition ... */
1206
1207 class MyClass {
1208 std::vector<int> contents;
1209 };
1210
1211 /* ... binding code ... */
1212
1213 py::class_<MyClass>(m, "MyClass")
1214 .def(py::init<>)
1215 .def_readwrite("contents", &MyClass::contents);
1216
1217In this case, properties can be read and written in their entirety. However, an
1218``append`` operaton involving such a list type has no effect:
1219
1220.. code-block:: python
1221
1222 >>> m = MyClass()
1223 >>> m.contents = [5, 6]
1224 >>> print(m.contents)
1225 [5, 6]
1226 >>> m.contents.append(7)
1227 >>> print(m.contents)
1228 [5, 6]
1229
1230To deal with both of the above situations, pybind11 contains a simple template
1231wrapper class named ``opaque<T>``.
1232
1233``opaque<T>`` disables pybind11's template-based conversion machinery for
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001234``T`` and can be used to treat STL types as opaque objects, whose contents are
1235never inspected or extracted (thus, they can be passed by reference).
1236The downside of this approach is that it the binding code becomes a bit more
1237wordy. The above function can be bound using the following wrapper code:
1238
1239.. code-block:: cpp
1240
1241 m.def("append_1", [](py::opaque<std::vector<int>> &v) { append_1(v); });
1242
1243Opaque types must also have a dedicated ``class_`` declaration to define a
1244set of admissible operations.
1245
1246.. seealso::
1247
1248 The file :file:`example/example14.cpp` contains a complete example that
Wenzel Jakob08712282016-04-22 16:52:15 +02001249 demonstrates how to create and expose opaque types using pybind11 in more
1250 detail.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001251
1252Pickling support
1253================
1254
1255Python's ``pickle`` module provides a powerful facility to serialize and
1256de-serialize a Python object graph into a binary data stream. To pickle and
Wenzel Jakob3d0e6ff2016-04-13 11:48:10 +02001257unpickle C++ classes using pybind11, two additional functions must be provided.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001258Suppose the class in question has the following signature:
1259
1260.. code-block:: cpp
1261
1262 class Pickleable {
1263 public:
1264 Pickleable(const std::string &value) : m_value(value) { }
1265 const std::string &value() const { return m_value; }
1266
1267 void setExtra(int extra) { m_extra = extra; }
1268 int extra() const { return m_extra; }
1269 private:
1270 std::string m_value;
1271 int m_extra = 0;
1272 };
1273
1274The binding code including the requisite ``__setstate__`` and ``__getstate__`` methods [#f2]_
1275looks as follows:
1276
1277.. code-block:: cpp
1278
1279 py::class_<Pickleable>(m, "Pickleable")
1280 .def(py::init<std::string>())
1281 .def("value", &Pickleable::value)
1282 .def("extra", &Pickleable::extra)
1283 .def("setExtra", &Pickleable::setExtra)
1284 .def("__getstate__", [](const Pickleable &p) {
1285 /* Return a tuple that fully encodes the state of the object */
1286 return py::make_tuple(p.value(), p.extra());
1287 })
1288 .def("__setstate__", [](Pickleable &p, py::tuple t) {
1289 if (t.size() != 2)
1290 throw std::runtime_error("Invalid state!");
1291
Wenzel Jakobd40885a2016-04-13 13:30:05 +02001292 /* Invoke the in-place constructor. Note that this is needed even
1293 when the object just has a trivial default constructor */
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001294 new (&p) Pickleable(t[0].cast<std::string>());
1295
1296 /* Assign any additional state */
1297 p.setExtra(t[1].cast<int>());
1298 });
1299
1300An instance can now be pickled as follows:
1301
1302.. code-block:: python
1303
1304 try:
1305 import cPickle as pickle # Use cPickle on Python 2.7
1306 except ImportError:
1307 import pickle
1308
1309 p = Pickleable("test_value")
1310 p.setExtra(15)
Wenzel Jakob3d0e6ff2016-04-13 11:48:10 +02001311 data = pickle.dumps(p, -1)
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001312
1313Note that only the cPickle module is supported on Python 2.7. It is also
1314important to request usage of the highest protocol version using the ``-1``
Wenzel Jakobd40885a2016-04-13 13:30:05 +02001315argument to ``dumps``. Failure to follow these two steps will lead to important
1316pybind11 memory allocation routines to be skipped during unpickling, which will
1317likely cause memory corruption and/or segmentation faults.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001318
1319.. seealso::
1320
1321 The file :file:`example/example15.cpp` contains a complete example that
1322 demonstrates how to pickle and unpickle types using pybind11 in more detail.
1323
1324.. [#f2] http://docs.python.org/3/library/pickle.html#pickling-class-instances
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001325
1326Generating documentation using Sphinx
1327=====================================
1328
1329Sphinx [#f3]_ has the ability to inspect the signatures and documentation
1330strings in pybind11-based extension modules to automatically generate beautiful
1331documentation in a variety formats. The pbtest repository [#f4]_ contains a
1332simple example repository which uses this approach.
1333
1334There are two potential gotchas when using this approach: first, make sure that
1335the resulting strings do not contain any :kbd:`TAB` characters, which break the
1336docstring parsing routines. You may want to use C++11 raw string literals,
1337which are convenient for multi-line comments. Conveniently, any excess
1338indentation will be automatically be removed by Sphinx. However, for this to
1339work, it is important that all lines are indented consistently, i.e.:
1340
1341.. code-block:: cpp
1342
1343 // ok
1344 m.def("foo", &foo, R"mydelimiter(
1345 The foo function
1346
1347 Parameters
1348 ----------
1349 )mydelimiter");
1350
1351 // *not ok*
1352 m.def("foo", &foo, R"mydelimiter(The foo function
1353
1354 Parameters
1355 ----------
1356 )mydelimiter");
1357
1358.. [#f3] http://www.sphinx-doc.org
1359.. [#f4] http://github.com/pybind/pbtest
1360