blob: 37e7f475d20fd66034d1407eb41e769c7d9269d1 [file] [log] [blame]
/*
* Copyright 2020 Google LLC.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/tessellate/GrStrokeTessellateShader.h"
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
#include "src/gpu/glsl/GrGLSLGeometryProcessor.h"
#include "src/gpu/glsl/GrGLSLVarying.h"
#include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h"
#include "src/gpu/tessellate/GrWangsFormula.h"
class GrStrokeTessellateShader::TessellationImpl : public GrGLSLGeometryProcessor {
public:
const char* getTessArgs1UniformName(const GrGLSLUniformHandler& uniformHandler) const {
return uniformHandler.getUniformCStr(fTessArgs1Uniform);
}
const char* getTessArgs2UniformName(const GrGLSLUniformHandler& uniformHandler) const {
return uniformHandler.getUniformCStr(fTessArgs2Uniform);
}
const char* getTranslateUniformName(const GrGLSLUniformHandler& uniformHandler) const {
return uniformHandler.getUniformCStr(fTranslateUniform);
}
const char* getAffineMatrixUniformName(const GrGLSLUniformHandler& uniformHandler) const {
return uniformHandler.getUniformCStr(fAffineMatrixUniform);
}
private:
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
const auto& shader = args.fGP.cast<GrStrokeTessellateShader>();
auto* uniHandler = args.fUniformHandler;
auto* v = args.fVertBuilder;
args.fVaryingHandler->emitAttributes(shader);
// uNumSegmentsInJoin, uParametricIntolerance, uNumRadialSegmentsPerRadian,
// uMiterLimitInvPow2.
fTessArgs1Uniform = uniHandler->addUniform(nullptr, kTessControl_GrShaderFlag,
kFloat4_GrSLType, "tessArgs1", nullptr);
// uJoinTolerancePow2, uStrokeRadius.
fTessArgs2Uniform = uniHandler->addUniform(nullptr, kTessControl_GrShaderFlag |
kTessEvaluation_GrShaderFlag,
kFloat2_GrSLType,
"tessArgs2", nullptr);
if (!shader.viewMatrix().isIdentity()) {
fTranslateUniform = uniHandler->addUniform(nullptr, kTessEvaluation_GrShaderFlag,
kFloat2_GrSLType, "translate", nullptr);
const char* affineMatrixName;
// Hairlines apply the affine matrix in their vertex shader, prior to tessellation.
// Otherwise the entire view matrix gets applied at the end of the tess eval shader.
auto affineMatrixVisibility = (shader.fStroke.isHairlineStyle()) ?
kVertex_GrShaderFlag : kTessEvaluation_GrShaderFlag;
fAffineMatrixUniform = uniHandler->addUniform(nullptr, affineMatrixVisibility,
kFloat4_GrSLType, "affineMatrix",
&affineMatrixName);
if (affineMatrixVisibility & kVertex_GrShaderFlag) {
v->codeAppendf("float2x2 uAffineMatrix = float2x2(%s);\n", affineMatrixName);
}
}
const char* colorUniformName;
fColorUniform = uniHandler->addUniform(nullptr, kFragment_GrShaderFlag, kHalf4_GrSLType,
"color", &colorUniformName);
// The vertex shader chops the curve into 3 sections in order to meet our tessellation
// requirements. The stroke tessellator does not allow curve sections to inflect or to
// rotate more than 180 degrees.
//
// We start by chopping at inflections (if the curve has any), or else at midtangent. If we
// still don't have 3 sections after that then we just subdivide uniformly in parametric
// space.
using TypeModifier = GrShaderVar::TypeModifier;
v->defineConstantf("float", "kParametricEpsilon", "1.0 / (%i * 128)",
args.fShaderCaps->maxTessellationSegments()); // 1/128 of a segment.
v->declareGlobal(GrShaderVar("vsPts01", kFloat4_GrSLType, TypeModifier::Out));
v->declareGlobal(GrShaderVar("vsPts23", kFloat4_GrSLType, TypeModifier::Out));
v->declareGlobal(GrShaderVar("vsPts45", kFloat4_GrSLType, TypeModifier::Out));
v->declareGlobal(GrShaderVar("vsPts67", kFloat4_GrSLType, TypeModifier::Out));
v->declareGlobal(GrShaderVar("vsPts89", kFloat4_GrSLType, TypeModifier::Out));
v->declareGlobal(GrShaderVar("vsTans01", kFloat4_GrSLType, TypeModifier::Out));
v->declareGlobal(GrShaderVar("vsTans23", kFloat4_GrSLType, TypeModifier::Out));
v->declareGlobal(GrShaderVar("vsPrevJoinTangent", kFloat2_GrSLType, TypeModifier::Out));
// Unlike mix(), this does not return b when t==1. But it otherwise seems to get better
// precision than "a*(1 - t) + b*t" for things like chopping cubics on exact cusp points.
// The responsibility falls on the caller to ensure t != 1 before calling.
v->insertFunction(R"(
float4 unchecked_mix(float4 a, float4 b, float4 t) {
return fma(b - a, t, a);
})");
v->codeAppendf(R"(
// Unpack the control points.
float4x2 P = float4x2(inputPts01, inputPts23);
float2 prevControlPoint = inputPrevCtrlPt;)");
if (shader.fStroke.isHairlineStyle() && !shader.viewMatrix().isIdentity()) {
// Hairline case. Transform the points before tessellation. We can still hold off on the
// translate until the end; we just need to perform the scale and skew right now.
if (shader.fHasConics) {
v->codeAppend(R"(
P[0] = uAffineMatrix * P[0];
P[1] = uAffineMatrix * P[1];
P[2] = uAffineMatrix * P[2];
P[3] = isinf(P[3].y) ? P[3] : uAffineMatrix * P[3];)");
} else {
v->codeAppend(R"(
P = uAffineMatrix * P;)");
}
v->codeAppend(R"(
prevControlPoint = uAffineMatrix * prevControlPoint;)");
}
v->codeAppendf(R"(
float2 prevJoinTangent = P[0] - prevControlPoint;
// Find the beginning and ending tangents. It's imperative that we compute these tangents
// form the original input points or else the seams might crack.
float2 tan0 = (P[1] == P[0]) ? P[2] - P[0] : P[1] - P[0];
float2 tan1 = (P[3] == P[2] || isinf(P[3].y)) ? P[2] - P[1] : P[3] - P[2];
if (tan1 == float2(0)) {
// [p0, p3, p3, p3] is a reserved pattern that means this patch is a join only.
P[1] = P[2] = P[3] = P[0]; // Colocate all the curve's points.
// This will disable the (co-located) curve sections by making their tangents equal.
tan1 = tan0;
}
if (tan0 == float2(0)) {
// [p0, p0, p0, p3] is a reserved pattern that means this patch is a cusp point.
P[3] = P[0]; // Colocate all the points on the cusp.
// This will disable the join section by making its tangents equal.
tan0 = prevJoinTangent;
}
// Start by finding the cubic's power basis coefficients. These define the bezier curve as:
//
// |T^3|
// Cubic(T) = x,y = |A 3B 3C| * |T^2| + P0
// |. . .| |T |
//
// And the tangent direction (scaled by a uniform 1/3) will be:
//
// |T^2|
// Tangent_Direction(T) = dx,dy = |A 2B C| * |T |
// |. . .| |1 |
//
float2 C = P[1] - P[0];
float2 D = P[2] - P[1];
float2 E = P[3] - P[0];
float2 B = D - C;
float2 A = fma(float2(-3), D, E);
// Now find the cubic's inflection function. There are inflections where F' x F'' == 0.
// We formulate this as a quadratic equation: F' x F'' == aT^2 + bT + c == 0.
// See: https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
// NOTE: We only need the roots, so a uniform scale factor does not affect the solution.
float a = cross(A, B);
float b = cross(A, C);
float c = cross(B, C);
float b_over_2 = b*.5;
float discr_over_4 = b_over_2*b_over_2 - a*c;
float2x2 innerTangents = float2x2(0);
if (discr_over_4 <= 0) {
// The curve does not inflect. This means it might rotate more than 180 degrees instead.
// Craft a quadratic whose roots are the points were rotation == 180 deg and 0. (These
// are the points where the tangent is parallel to tan0.)
//
// Tangent_Direction(T) x tan0 == 0
// (AT^2 x tan0) + (2BT x tan0) + (C x tan0) == 0
// (A x C)T^2 + (2B x C)T + (C x C) == 0 [[because tan0 == P1 - P0 == C]]
// bT^2 + 2cT + 0 == 0 [[because A x C == b, B x C == c]]
//
// NOTE: When P0 == P1 then C != tan0, C == 0 and these roots will be undefined. But
// that's ok because when P0 == P1 the curve cannot rotate more than 180 degrees anyway.
a = b;
b_over_2 = c;
c = 0;
discr_over_4 = b_over_2*b_over_2;
innerTangents[0] = -C;
}
// Solve our quadratic equation for the chop points. This is inspired by the quadratic
// formula from Numerical Recipes in C.
float q = sqrt(discr_over_4);
if (b_over_2 > 0) {
q = -q;
}
q -= b_over_2;
float2 chopT = float2((a != 0) ? q/a : 0,
(q != 0) ? c/q : 0);
// Reposition any chop points that fall outside ~0..1 and clear their innerTangent.
int numOutside = 0;
if (chopT[0] <= kParametricEpsilon || chopT[0] >= 1 - kParametricEpsilon) {
innerTangents[0] = float2(0);
++numOutside;
}
if (chopT[1] <= kParametricEpsilon || chopT[1] >= 1 - kParametricEpsilon) {
// Swap places with chopT[0]. This ensures chopT[0] is outside when numOutside > 0.
chopT = chopT.ts;
innerTangents = float2x2(0,0, innerTangents[0]);
++numOutside;
}
if (numOutside == 2) {
chopT[1] = 2/3.0;
}
if (numOutside >= 1) {
chopT[0] = (chopT[1] <= .5) ? chopT[1] * .5 : fma(chopT[1], .5, .5);
}
// Sort the chop points.
if (chopT[0] > chopT[1]) {
chopT = chopT.ts;
innerTangents = float2x2(innerTangents[1], innerTangents[0]);
}
// If the curve is a straight line, point, or conic, don't chop it into sections after all.
if ((P[0] == P[1] && P[2] == P[3]) || isinf(P[3].y)) {
chopT = float2(0);
innerTangents = float2x2(tan0, tan0);
}
// Chop the curve at chopT[0] and chopT[1].
float4 ab = unchecked_mix(P[0].xyxy, P[1].xyxy, chopT.sstt);
float4 bc = unchecked_mix(P[1].xyxy, P[2].xyxy, chopT.sstt);
float4 cd = isinf(P[3].y) ? P[2].xyxy : unchecked_mix(P[2].xyxy, P[3].xyxy, chopT.sstt);
float4 abc = unchecked_mix(ab, bc, chopT.sstt);
float4 bcd = unchecked_mix(bc, cd, chopT.sstt);
float4 abcd = unchecked_mix(abc, bcd, chopT.sstt);
float4 middle = unchecked_mix(abc, bcd, chopT.ttss);
// Find tangents at the chop points if an inner tangent wasn't specified.
if (innerTangents[0] == float2(0)) {
innerTangents[0] = bcd.xy - abc.xy;
}
if (innerTangents[1] == float2(0)) {
innerTangents[1] = bcd.zw - abc.zw;
}
// Package arguments for the tessellation control stage.
vsPts01 = float4(P[0], ab.xy);
vsPts23 = float4(abc.xy, abcd.xy);
vsPts45 = middle;
vsPts67 = float4(abcd.zw, bcd.zw);
vsPts89 = float4(cd.zw, P[3]);
vsTans01 = float4(tan0, innerTangents[0]);
vsTans23 = float4(innerTangents[1], tan1);
vsPrevJoinTangent = (prevJoinTangent == float2(0)) ? tan0 : prevJoinTangent;
)");
// The fragment shader just outputs a uniform color.
args.fFragBuilder->codeAppendf("%s = %s;", args.fOutputColor, colorUniformName);
args.fFragBuilder->codeAppendf("%s = half4(1);", args.fOutputCoverage);
}
void setData(const GrGLSLProgramDataManager& pdman,
const GrPrimitiveProcessor& primProc) override {
const auto& shader = primProc.cast<GrStrokeTessellateShader>();
const auto& stroke = shader.fStroke;
float numSegmentsInJoin;
switch (stroke.getJoin()) {
case SkPaint::kBevel_Join:
numSegmentsInJoin = 1;
break;
case SkPaint::kMiter_Join:
numSegmentsInJoin = (stroke.getMiter() > 0) ? 2 : 1;
break;
case SkPaint::kRound_Join:
numSegmentsInJoin = 0; // Use the rotation to calculate the number of segments.
break;
}
Tolerances tolerances;
if (!stroke.isHairlineStyle()) {
tolerances.set(shader.viewMatrix().getMaxScale(), stroke.getWidth());
} else {
// In the hairline case we transform prior to tessellation. Set up tolerances for an
// identity viewMatrix and a strokeWidth of 1.
tolerances.set(1, 1);
}
float miterLimit = shader.fStroke.getMiter();
pdman.set4f(fTessArgs1Uniform,
numSegmentsInJoin, // uNumSegmentsInJoin
tolerances.fParametricIntolerance, // uParametricIntolerance
tolerances.fNumRadialSegmentsPerRadian, // uNumRadialSegmentsPerRadian
1 / (miterLimit * miterLimit)); // uMiterLimitInvPow2
float strokeRadius = (stroke.isHairlineStyle()) ? .5f : stroke.getWidth() * .5;
float joinTolerance = 1 / (strokeRadius * tolerances.fParametricIntolerance);
pdman.set2f(fTessArgs2Uniform,
joinTolerance * joinTolerance, // uJoinTolerancePow2
strokeRadius); // uStrokeRadius
const SkMatrix& m = shader.viewMatrix();
if (!m.isIdentity()) {
pdman.set2f(fTranslateUniform, m.getTranslateX(), m.getTranslateY());
pdman.set4f(fAffineMatrixUniform, m.getScaleX(), m.getSkewY(), m.getSkewX(),
m.getScaleY());
}
pdman.set4fv(fColorUniform, 1, shader.fColor.vec());
}
GrGLSLUniformHandler::UniformHandle fTessArgs1Uniform;
GrGLSLUniformHandler::UniformHandle fTessArgs2Uniform;
GrGLSLUniformHandler::UniformHandle fTranslateUniform;
GrGLSLUniformHandler::UniformHandle fAffineMatrixUniform;
GrGLSLUniformHandler::UniformHandle fColorUniform;
};
// The built-in atan() is undefined when x==0. This method relieves that restriction, but also can
// return values larger than 2*PI. This shouldn't matter for our purposes.
static const char* kAtan2Fn = R"(
float atan2(float2 v) {
float bias = 0.0;
if (abs(v.y) > abs(v.x)) {
v = float2(v.y, -v.x);
bias = PI/2.0;
}
return atan(v.y, v.x) + bias;
})";
static const char* kLengthPow2Fn = R"(
float length_pow2(float2 v) {
return dot(v, v);
})";
// Calculates the number of evenly spaced (in the parametric sense) segments to chop a cubic into.
// (See GrWangsFormula::cubic() for more documentation on this formula.) The final tessellated strip
// will be a composition of these parametric segments as well as radial segments.
static void append_wangs_formula_fn(SkString* code, bool hasConics) {
code->appendf(R"(
float wangs_formula(in float4x2 P, in float w, in float parametricIntolerance) {
const float CUBIC_TERM_POW2 = %f;
float l0 = length_pow2(fma(float2(-2), P[1], P[2]) + P[0]);
float l1 = length_pow2(fma(float2(-2), P[2], P[3]) + P[1]);
float m = CUBIC_TERM_POW2 * max(l0, l1);)", GrWangsFormula::length_term_pow2<3>(1));
if (hasConics) {
code->appendf(R"(
const float QUAD_TERM_POW2 = %f;
m = (w > 0) ? QUAD_TERM_POW2 * l0 : m;)", GrWangsFormula::length_term_pow2<2>(1));
}
code->append(R"(
return max(ceil(sqrt(parametricIntolerance * sqrt(m))), 1.0);
})");
}
// Extends the middle radius to either the miter point, or the bevel edge if we surpassed the miter
// limit and need to revert to a bevel join.
static const char* kMiterExtentFn = R"(
float miter_extent(float cosTheta, float miterLimitInvPow2) {
float x = fma(cosTheta, .5, .5);
return (x >= miterLimitInvPow2) ? inversesqrt(x) : sqrt(x);
})";
SkString GrStrokeTessellateShader::getTessControlShaderGLSL(
const GrGLSLPrimitiveProcessor* glslPrimProc, const char* versionAndExtensionDecls,
const GrGLSLUniformHandler& uniformHandler, const GrShaderCaps& shaderCaps) const {
SkASSERT(fMode == Mode::kTessellation);
auto impl = static_cast<const GrStrokeTessellateShader::TessellationImpl*>(glslPrimProc);
SkString code(versionAndExtensionDecls);
// Run 4 invocations: 1 for the previous join plus 1 for each section that the vertex shader
// chopped the curve into.
code.append("layout(vertices = 4) out;\n");
code.appendf("precision highp float;\n");
code.appendf("#define float2 vec2\n");
code.appendf("#define float3 vec3\n");
code.appendf("#define float4 vec4\n");
code.appendf("#define float2x2 mat2\n");
code.appendf("#define float4x2 mat4x2\n");
code.appendf("#define PI 3.141592653589793238\n");
code.appendf("#define MAX_TESSELLATION_SEGMENTS %i.0\n",
shaderCaps.maxTessellationSegments());
const char* tessArgs1Name = impl->getTessArgs1UniformName(uniformHandler);
code.appendf("uniform vec4 %s;\n", tessArgs1Name);
code.appendf("#define uNumSegmentsInJoin %s.x\n", tessArgs1Name);
code.appendf("#define uParametricIntolerance %s.y\n", tessArgs1Name);
code.appendf("#define uNumRadialSegmentsPerRadian %s.z\n", tessArgs1Name);
code.appendf("#define uMiterLimitInvPow2 %s.w\n", tessArgs1Name);
const char* tessArgs2Name = impl->getTessArgs2UniformName(uniformHandler);
code.appendf("uniform vec2 %s;\n", tessArgs2Name);
code.appendf("#define uJoinTolerancePow2 %s.x\n", tessArgs2Name);
code.appendf("#define cross cross2d\n"); // GLSL already has a function named "cross".
code.append(R"(
in vec4 vsPts01[];
in vec4 vsPts23[];
in vec4 vsPts45[];
in vec4 vsPts67[];
in vec4 vsPts89[];
in vec4 vsTans01[];
in vec4 vsTans23[];
in vec2 vsPrevJoinTangent[];
out vec4 tcsPts01[];
out vec4 tcsPt2Tan0[];
out vec4 tcsTessArgs[];
patch out vec4 tcsEndPtEndTan;
patch out vec3 tcsJoinArgs;
float cross2d(vec2 a, vec2 b) {
return determinant(mat2(a,b));
})");
code.append(kAtan2Fn);
code.append(kLengthPow2Fn);
append_wangs_formula_fn(&code, fHasConics);
code.append(kMiterExtentFn);
code.append(R"(
void main() {
// Unpack the input arguments from the vertex shader.
mat4x2 P;
mat2 tangents;
if (gl_InvocationID == 0) {
// This is the join section of the patch.
P = mat4x2(vsPts01[0].xyxy, vsPts01[0].xyxy);
tangents = mat2(vsPrevJoinTangent[0], vsTans01[0].xy);
} else if (gl_InvocationID == 1) {
// This is the first curve section of the patch.
P = mat4x2(vsPts01[0], vsPts23[0]);
tangents = mat2(vsTans01[0]);
} else if (gl_InvocationID == 2) {
// This is the second curve section of the patch.
P = mat4x2(vsPts23[0].zw, vsPts45[0], vsPts67[0].xy);
tangents = mat2(vsTans01[0].zw, vsTans23[0].xy);
} else {
// This is the third curve section of the patch.
P = mat4x2(vsPts67[0], vsPts89[0]);
tangents = mat2(vsTans23[0]);
}
// Calculate the number of parametric segments. The final tessellated strip will be a
// composition of these parametric segments as well as radial segments.
float w = isinf(P[3].y) ? P[3].x : -1.0; // w<0 means the curve is an integral cubic.
float numParametricSegments = wangs_formula(P, w, uParametricIntolerance);
if (P[0] == P[1] && P[2] == P[3]) {
// This is how the patch builder articulates lineTos but Wang's formula returns
// >>1 segment in this scenario. Assign 1 parametric segment.
numParametricSegments = 1.0;
}
// Determine the curve's start angle.
float angle0 = atan2(tangents[0]);
// Determine the curve's total rotation. The vertex shader ensures our curve does not rotate
// more than 180 degrees or inflect, so the inverse cosine has enough range.
vec2 tan0norm = normalize(tangents[0]);
vec2 tan1norm = normalize(tangents[1]);
float cosTheta = clamp(dot(tan1norm, tan0norm), -1.0, +1.0);
float rotation = acos(cosTheta);
// Adjust sign of rotation to match the direction the curve turns.
// NOTE: Since the curve is not allowed to inflect, we can just check F'(.5) x F''(.5).
// NOTE: F'(.5) x F''(.5) has the same sign as (P2 - P0) x (P3 - P1)
float turn = isinf(P[3].y) ? cross2d(P[1] - P[0], P[2] - P[1])
: cross2d(P[2] - P[0], P[3] - P[1]);
if (turn == 0.0) { // This is the case for joins and cusps where points are co-located.
turn = determinant(tangents);
}
if (turn < 0.0) {
rotation = -rotation;
}
// Calculate the number of evenly spaced radial segments to chop this section of the curve
// into. Radial segments divide the curve's rotation into even steps. The final tessellated
// strip will be a composition of both parametric and radial segments.
float numRadialSegments = abs(rotation) * uNumRadialSegmentsPerRadian;
numRadialSegments = max(ceil(numRadialSegments), 1.0);
if (gl_InvocationID == 0) {
// Set up joins.
numParametricSegments = 1.0; // Joins don't have parametric segments.
numRadialSegments = (uNumSegmentsInJoin == 0.0) ? numRadialSegments
: uNumSegmentsInJoin;
float innerStrokeRadiusMultiplier = 1.0;
if (uNumSegmentsInJoin == 2.0) {
innerStrokeRadiusMultiplier = miter_extent(cosTheta, uMiterLimitInvPow2);
}
vec2 strokeOutsetClamp = vec2(-1, 1);
if (length_pow2(tan1norm - tan0norm) > uJoinTolerancePow2) {
// Clamp the join to the exterior side of its junction. We only do this if the join
// angle is large enough to guarantee there won't be cracks on the interior side of
// the junction.
strokeOutsetClamp = (rotation > 0.0) ? vec2(-1,0) : vec2(0,1);
}
tcsJoinArgs = vec3(innerStrokeRadiusMultiplier, strokeOutsetClamp);
}
// The first and last edges are shared by both the parametric and radial sets of edges, so
// the total number of edges is:
//
// numCombinedEdges = numParametricEdges + numRadialEdges - 2
//
// It's also important to differentiate between the number of edges and segments in a strip:
//
// numCombinedSegments = numCombinedEdges - 1
//
// So the total number of segments in the combined strip is:
//
// numCombinedSegments = numParametricEdges + numRadialEdges - 2 - 1
// = numParametricSegments + 1 + numRadialSegments + 1 - 2 - 1
// = numParametricSegments + numRadialSegments - 1
//
float numCombinedSegments = numParametricSegments + numRadialSegments - 1.0;
if (P[0] == P[3] && tangents[0] == tangents[1]) {
// The vertex shader intentionally disabled our section. Set numCombinedSegments to 0.
numCombinedSegments = 0.0;
}
// Pack the arguments for the evaluation stage.
tcsPts01[gl_InvocationID] = vec4(P[0], P[1]);
tcsPt2Tan0[gl_InvocationID] = vec4(P[2], tangents[0]);
tcsTessArgs[gl_InvocationID] = vec4(numCombinedSegments, numParametricSegments, angle0,
rotation / numRadialSegments);
if (gl_InvocationID == 3) {
tcsEndPtEndTan = vec4(P[3], tangents[1]);
}
barrier();
if (gl_InvocationID == 0) {
// Tessellate a quad strip with enough segments for the join plus all 3 curve sections
// combined.
float numTotalCombinedSegments = tcsTessArgs[0].x + tcsTessArgs[1].x +
tcsTessArgs[2].x + tcsTessArgs[3].x;
if (tcsTessArgs[0].x != 0.0 && tcsTessArgs[0].x != numTotalCombinedSegments) {
// We are tessellating a quad strip with both a single-sided join and a double-sided
// stroke. Add one more edge to the join. This new edge will fall parallel with the
// first edge of the stroke, eliminating artifacts on the transition from single
// sided to double.
++tcsTessArgs[gl_InvocationID].x;
++numTotalCombinedSegments;
}
numTotalCombinedSegments = min(numTotalCombinedSegments, MAX_TESSELLATION_SEGMENTS);
gl_TessLevelInner[0] = numTotalCombinedSegments;
gl_TessLevelInner[1] = 2.0;
gl_TessLevelOuter[0] = 2.0;
gl_TessLevelOuter[1] = numTotalCombinedSegments;
gl_TessLevelOuter[2] = 2.0;
gl_TessLevelOuter[3] = numTotalCombinedSegments;
}
}
)");
return code;
}
// Unlike mix(), this does not return b when t==1. But it otherwise seems to get better
// precision than "a*(1 - t) + b*t" for things like chopping cubics on exact cusp points.
// We override this result anyway when t==1 so it shouldn't be a problem.
static const char* kUncheckedMixFn = R"(
float unchecked_mix(float a, float b, float T) {
return fma(b - a, T, a);
}
float2 unchecked_mix(float2 a, float2 b, float T) {
return fma(b - a, float2(T), a);
})";
// Computes the location and tangent direction of the stroke edge with the integral id
// "combinedEdgeID", where combinedEdgeID is the sorted-order index of parametric and radial edges.
static void append_eval_stroke_edge_fn(SkString* code, bool hasConics) {
code->append(R"(
void eval_stroke_edge(in float4x2 P, in float w, in float numParametricSegments,
in float combinedEdgeID, in float2 tan0, in float radsPerSegment,
in float angle0, out float2 tangent, out float2 position) {
// Start by finding the tangent function's power basis coefficients. These define a tangent
// direction (scaled by some uniform value) as:
// |T^2|
// Tangent_Direction(T) = dx,dy = |A 2B C| * |T |
// |. . .| |1 |
float2 A, B, C = P[1] - P[0];
float2 D = P[3] - P[0];)");
if (hasConics) {
code->append(R"(
if (w >= 0.0) {
// P0..P2 represent a conic and P3==P2. The derivative of a conic has a cumbersome
// order-4 denominator. However, this isn't necessary if we are only interested in a
// vector in the same *direction* as a given tangent line. Since the denominator scales
// dx and dy uniformly, we can throw it out completely after evaluating the derivative
// with the standard quotient rule. This leaves us with a simpler quadratic function
// that we use to find a tangent.
C *= w;
B = .5*D - C;
A = (w - 1) * D;
P[1] *= w;
} else {)");
} else {
code->append(R"(
{)");
}
code->append(R"(
float2 E = P[2] - P[1];
B = E - C;
A = fma(float2(-3), E, D);
}
// Now find the coefficients that give a tangent direction from a parametric edge ID:
//
// |parametricEdgeID^2|
// Tangent_Direction(parametricEdgeID) = dx,dy = |A B_ C_| * |parametricEdgeID |
// |. . .| |1 |
//
float2 B_ = B * (numParametricSegments * 2.0);
float2 C_ = C * (numParametricSegments * numParametricSegments);
// Run a binary search to determine the highest parametric edge that is located on or before
// the combinedEdgeID. A combined ID is determined by the sum of complete parametric and
// radial segments behind it. i.e., find the highest parametric edge where:
//
// parametricEdgeID + floor(numRadialSegmentsAtParametricT) <= combinedEdgeID
//
float lastParametricEdgeID = 0.0;
float maxParametricEdgeID = min(numParametricSegments - 1.0, combinedEdgeID);
float2 tan0norm = normalize(tan0);
float negAbsRadsPerSegment = -abs(radsPerSegment);
float maxRotation0 = (1.0 + combinedEdgeID) * abs(radsPerSegment);
for (int exp = MAX_PARAMETRIC_SEGMENTS_LOG2 - 1; exp >= 0; --exp) {
// Test the parametric edge at lastParametricEdgeID + 2^exp.
float testParametricID = lastParametricEdgeID + float(1 << exp);
if (testParametricID <= maxParametricEdgeID) {
float2 testTan = fma(float2(testParametricID), A, B_);
testTan = fma(float2(testParametricID), testTan, C_);
float cosRotation = dot(normalize(testTan), tan0norm);
float maxRotation = fma(testParametricID, negAbsRadsPerSegment, maxRotation0);
maxRotation = min(maxRotation, PI);
// Is rotation <= maxRotation? (i.e., is the number of complete radial segments
// behind testT, + testParametricID <= combinedEdgeID?)
if (cosRotation >= cos(maxRotation)) {
// testParametricID is on or before the combinedEdgeID. Keep it!
lastParametricEdgeID = testParametricID;
}
}
}
// Find the T value of the parametric edge at lastParametricEdgeID.
float parametricT = lastParametricEdgeID / numParametricSegments;
// Now that we've identified the highest parametric edge on or before the combinedEdgeID,
// the highest radial edge is easy:
float lastRadialEdgeID = combinedEdgeID - lastParametricEdgeID;
// Find the tangent vector on the edge at lastRadialEdgeID.
float radialAngle = fma(lastRadialEdgeID, radsPerSegment, angle0);
tangent = float2(cos(radialAngle), sin(radialAngle));
float2 norm = float2(-tangent.y, tangent.x);
// Find the T value where the cubic's tangent is orthogonal to norm. This is a quadratic:
//
// dot(norm, Tangent_Direction(T)) == 0
//
// |T^2|
// norm * |A 2B C| * |T | == 0
// |. . .| |1 |
//
float3 coeffs = norm * float3x2(A,B,C);
float a=coeffs.x, b_over_2=coeffs.y, c=coeffs.z;
float discr_over_4 = max(b_over_2*b_over_2 - a*c, 0.0);
float q = sqrt(discr_over_4);
if (b_over_2 > 0.0) {
q = -q;
}
q -= b_over_2;
// Roots are q/a and c/q. Since each curve section does not inflect or rotate more than 180
// degrees, there can only be one tangent orthogonal to "norm" inside 0..1. Pick the root
// nearest .5.
float _5qa = -.5*q*a;
float2 root = (abs(fma(q,q,_5qa)) < abs(fma(a,c,_5qa))) ? float2(q,a) : float2(c,q);
float radialT = (root.t != 0.0) ? root.s / root.t : 0.0;
radialT = clamp(radialT, 0.0, 1.0);
if (lastRadialEdgeID == 0.0) {
// The root finder above can become unstable when lastRadialEdgeID == 0 (e.g., if there
// are roots at exatly 0 and 1 both). radialT should always == 0 in this case.
radialT = 0.0;
}
// Now that we've identified the T values of the last parametric and radial edges, our final
// T value for combinedEdgeID is whichever is larger.
float T = max(parametricT, radialT);
// Evaluate the cubic at T. Use De Casteljau's for its accuracy and stability.
float2 ab = unchecked_mix(P[0], P[1], T);
float2 bc = unchecked_mix(P[1], P[2], T);
float2 cd = unchecked_mix(P[2], P[3], T);
float2 abc = unchecked_mix(ab, bc, T);
float2 bcd = unchecked_mix(bc, cd, T);
float2 abcd = unchecked_mix(abc, bcd, T);)");
if (hasConics) {
code->append(R"(
// Evaluate the conic weights at T.
float u = unchecked_mix(1.0, w, T);
float v = unchecked_mix(w, 1.0, T);
float uv = unchecked_mix(u, v, T);)");
}
code->appendf(R"(
position =%s abcd;)", (hasConics) ? " (w >= 0.0) ? abc/uv :" : "");
code->appendf(R"(
// If we went with T=parametricT, then update the tangent. Otherwise leave it at the radial
// tangent found previously. (In the event that parametricT == radialT, we keep the radial
// tangent.)
if (T != radialT) {)");
code->appendf(R"(
tangent =%s bcd - abc;)", (hasConics) ? " (w >= 0.0) ? bc*u - ab*v :" : "");
code->appendf(R"(
}
})");
}
SkString GrStrokeTessellateShader::getTessEvaluationShaderGLSL(
const GrGLSLPrimitiveProcessor* glslPrimProc, const char* versionAndExtensionDecls,
const GrGLSLUniformHandler& uniformHandler, const GrShaderCaps& shaderCaps) const {
SkASSERT(fMode == Mode::kTessellation);
auto impl = static_cast<const GrStrokeTessellateShader::TessellationImpl*>(glslPrimProc);
SkString code(versionAndExtensionDecls);
code.append("layout(quads, equal_spacing, ccw) in;\n");
code.appendf("precision highp float;\n");
code.appendf("#define float2 vec2\n");
code.appendf("#define float3 vec3\n");
code.appendf("#define float4 vec4\n");
code.appendf("#define float2x2 mat2\n");
code.appendf("#define float3x2 mat3x2\n");
code.appendf("#define float4x2 mat4x2\n");
// Use a #define to make extra sure we don't prevent the loop from unrolling.
code.appendf("#define MAX_PARAMETRIC_SEGMENTS_LOG2 %i\n",
SkNextLog2(shaderCaps.maxTessellationSegments()));
code.appendf("#define PI 3.141592653589793238\n");
const char* tessArgs2Name = impl->getTessArgs2UniformName(uniformHandler);
code.appendf("uniform vec2 %s;\n", tessArgs2Name);
code.appendf("#define uStrokeRadius %s.y\n", tessArgs2Name);
if (!this->viewMatrix().isIdentity()) {
const char* translateName = impl->getTranslateUniformName(uniformHandler);
code.appendf("uniform vec2 %s;\n", translateName);
code.appendf("#define uTranslate %s\n", translateName);
if (!fStroke.isHairlineStyle()) {
// In the normal case we need the affine matrix too. (In the hairline case we already
// applied the affine matrix in the vertex shader.)
const char* affineMatrixName = impl->getAffineMatrixUniformName(uniformHandler);
code.appendf("uniform vec4 %s;\n", affineMatrixName);
code.appendf("#define uAffineMatrix mat2(%s)\n", affineMatrixName);
}
}
code.append(R"(
in vec4 tcsPts01[];
in vec4 tcsPt2Tan0[];
in vec4 tcsTessArgs[];
patch in vec4 tcsEndPtEndTan;
patch in vec3 tcsJoinArgs;
uniform vec4 sk_RTAdjust;)");
code.append(kUncheckedMixFn);
append_eval_stroke_edge_fn(&code, fHasConics);
code.append(R"(
void main() {
// Our patch is composed of exactly "numTotalCombinedSegments + 1" stroke-width edges that
// run orthogonal to the curve and make a strip of "numTotalCombinedSegments" quads.
// Determine which discrete edge belongs to this invocation. An edge can either come from a
// parametric segment or a radial one.
float numTotalCombinedSegments = tcsTessArgs[0].x + tcsTessArgs[1].x + tcsTessArgs[2].x +
tcsTessArgs[3].x;
float totalEdgeID = round(gl_TessCoord.x * numTotalCombinedSegments);
// Furthermore, the vertex shader may have chopped the curve into 3 different sections.
// Determine which section we belong to, and where we fall relative to its first edge.
float localEdgeID = totalEdgeID;
mat4x2 P;
vec2 tan0;
vec3 tessellationArgs;
float strokeRadius = uStrokeRadius;
vec2 strokeOutsetClamp = vec2(-1, 1);
if (localEdgeID < tcsTessArgs[0].x || tcsTessArgs[0].x == numTotalCombinedSegments) {
// Our edge belongs to the join preceding the curve.
P = mat4x2(tcsPts01[0], tcsPt2Tan0[0].xy, tcsPts01[1].xy);
tan0 = tcsPt2Tan0[0].zw;
tessellationArgs = tcsTessArgs[0].yzw;
strokeRadius *= (localEdgeID == 1.0) ? tcsJoinArgs.x : 1.0;
strokeOutsetClamp = tcsJoinArgs.yz;
} else if ((localEdgeID -= tcsTessArgs[0].x) < tcsTessArgs[1].x) {
// Our edge belongs to the first curve section.
P = mat4x2(tcsPts01[1], tcsPt2Tan0[1].xy, tcsPts01[2].xy);
tan0 = tcsPt2Tan0[1].zw;
tessellationArgs = tcsTessArgs[1].yzw;
} else if ((localEdgeID -= tcsTessArgs[1].x) < tcsTessArgs[2].x) {
// Our edge belongs to the second curve section.
P = mat4x2(tcsPts01[2], tcsPt2Tan0[2].xy, tcsPts01[3].xy);
tan0 = tcsPt2Tan0[2].zw;
tessellationArgs = tcsTessArgs[2].yzw;
} else {
// Our edge belongs to the third curve section.
localEdgeID -= tcsTessArgs[2].x;
P = mat4x2(tcsPts01[3], tcsPt2Tan0[3].xy, tcsEndPtEndTan.xy);
tan0 = tcsPt2Tan0[3].zw;
tessellationArgs = tcsTessArgs[3].yzw;
}
float numParametricSegments = tessellationArgs.x;
float angle0 = tessellationArgs.y;
float radsPerSegment = tessellationArgs.z;
float w = -1.0; // w<0 means the curve is an integral cubic.)");
if (fHasConics) {
code.append(R"(
if (isinf(P[3].y)) {
w = P[3].x; // The curve is actually a conic.
P[3] = P[2]; // Setting p3 equal to p2 works for the remaining rotational logic.
})");
}
code.append(R"(
float2 tangent, position;
eval_stroke_edge(P, w, numParametricSegments, localEdgeID, tan0, radsPerSegment, angle0,
tangent, position);
if (localEdgeID == 0.0) {
// The first local edge of each section uses the provided tan0. This ensures continuous
// rotation across chops made by the vertex shader as well as crack-free seaming between
// patches. (NOTE: position is always equal to P[0] here when localEdgeID==0.)
tangent = tan0;
}
if (gl_TessCoord.x == 1.0) {
// The final edge of the quad strip always uses the provided endPt and endTan. This
// ensures crack-free seaming between patches.
tangent = tcsEndPtEndTan.zw;
position = P[3];
}
// Determine how far to outset our vertex orthogonally from the curve.
float outset = gl_TessCoord.y * 2.0 - 1.0;
outset = clamp(outset, strokeOutsetClamp.x, strokeOutsetClamp.y);
outset *= strokeRadius;
vec2 vertexPos = position + normalize(vec2(-tangent.y, tangent.x)) * outset;
)");
if (!this->viewMatrix().isIdentity()) {
if (!fStroke.isHairlineStyle()) {
// Normal case. Do the transform after tessellation.
code.append("vertexPos = uAffineMatrix * vertexPos + uTranslate;");
} else {
// Hairline case. The scale and skew already happened before tessellation.
code.append("vertexPos = vertexPos + uTranslate;");
}
}
code.append(R"(
gl_Position = vec4(vertexPos * sk_RTAdjust.xz + sk_RTAdjust.yw, 0.0, 1.0);
}
)");
return code;
}
class GrStrokeTessellateShader::IndirectImpl : public GrGLSLGeometryProcessor {
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
const auto& shader = args.fGP.cast<GrStrokeTessellateShader>();
SkPaint::Join joinType = shader.fStroke.getJoin();
args.fVaryingHandler->emitAttributes(shader);
// Constants.
args.fVertBuilder->defineConstant("MAX_PARAMETRIC_SEGMENTS_LOG2",
GrTessellationPathRenderer::kMaxResolveLevel);
args.fVertBuilder->defineConstant("float", "PI", "3.141592653589793238");
// Helper functions.
args.fVertBuilder->insertFunction(kAtan2Fn);
args.fVertBuilder->insertFunction(kLengthPow2Fn);
args.fVertBuilder->insertFunction(kMiterExtentFn);
args.fVertBuilder->insertFunction(kUncheckedMixFn);
append_wangs_formula_fn(&args.fVertBuilder->functions(), shader.fHasConics);
append_eval_stroke_edge_fn(&args.fVertBuilder->functions(), shader.fHasConics);
args.fVertBuilder->insertFunction(R"(
float cosine_between_vectors(float2 a, float2 b) {
float ab_cosTheta = dot(a,b);
float ab_pow2 = dot(a,a) * dot(b,b);
return (ab_pow2 == 0) ? 1 : clamp(ab_cosTheta * inversesqrt(ab_pow2), -1, 1);
})");
// Tessellation control uniforms.
const char* tessArgsName;
fTessControlArgsUniform = args.fUniformHandler->addUniform(
nullptr, kVertex_GrShaderFlag, kFloat4_GrSLType, "tessControlArgs", &tessArgsName);
args.fVertBuilder->codeAppendf("float uParametricIntolerance = %s.x;\n", tessArgsName);
args.fVertBuilder->codeAppendf("float uNumRadialSegmentsPerRadian = %s.y;\n", tessArgsName);
args.fVertBuilder->codeAppendf("float uMiterLimitInvPow2 = %s.z;\n", tessArgsName);
args.fVertBuilder->codeAppendf("float uStrokeRadius = %s.w;\n", tessArgsName);
// View matrix uniforms.
if (!shader.viewMatrix().isIdentity()) {
const char* translateName, *affineMatrixName;
fAffineMatrixUniform = args.fUniformHandler->addUniform(
nullptr, kVertex_GrShaderFlag, kFloat4_GrSLType, "affineMatrix",
&affineMatrixName);
fTranslateUniform = args.fUniformHandler->addUniform(
nullptr, kVertex_GrShaderFlag, kFloat2_GrSLType, "translate", &translateName);
args.fVertBuilder->codeAppendf("float2x2 uAffineMatrix = float2x2(%s);\n",
affineMatrixName);
args.fVertBuilder->codeAppendf("float2 uTranslate = %s;\n", translateName);
}
// Tessellation code.
args.fVertBuilder->codeAppend(R"(
float4x2 P = float4x2(pts01, pts23);
float2 lastControlPoint = args.xy;
float w = -1; // w<0 means the curve is an integral cubic.)");
if (shader.fHasConics) {
args.fVertBuilder->codeAppend(R"(
if (isinf(P[3].y)) {
w = P[3].x; // The curve is actually a conic.
P[3] = P[2]; // Setting p3 equal to p2 works for the remaining rotational logic.
})");
}
if (shader.fStroke.isHairlineStyle() && !shader.viewMatrix().isIdentity()) {
// Hairline case. Transform the points before tessellation. We can still hold off on the
// translate until the end; we just need to perform the scale and skew right now.
args.fVertBuilder->codeAppend(R"(
P = uAffineMatrix * P;
lastControlPoint = uAffineMatrix * lastControlPoint;)");
}
args.fVertBuilder->codeAppend(R"(
float numTotalEdges = abs(args.z);
// Find how many parametric segments this stroke requires.
float numParametricSegments = min(wangs_formula(P, w, uParametricIntolerance),
float(1 << MAX_PARAMETRIC_SEGMENTS_LOG2));
if (P[0] == P[1] && P[2] == P[3]) {
// This is how we describe lines, but Wang's formula does not return 1 in this case.
numParametricSegments = 1;
}
// Find the starting and ending tangents.
float2 tan0 = ((P[0] == P[1]) ? (P[1] == P[2]) ? P[3] : P[2] : P[1]) - P[0];
float2 tan1 = P[3] - ((P[3] == P[2]) ? (P[2] == P[1]) ? P[0] : P[1] : P[2]);
if (tan0 == float2(0)) {
// The stroke is a point. This special case tells us to draw a stroke-width circle as a
// 180 degree point stroke instead.
tan0 = float2(1,0);
tan1 = float2(-1,0);
})");
if (shader.fStroke.getJoin() == SkPaint::kRound_Join) {
args.fVertBuilder->codeAppend(R"(
// Determine how many edges to give to the round join. We emit the first and final edges
// of the join twice: once full width and once restricted to half width. This guarantees
// perfect seaming by matching the vertices from the join as well as from the strokes on
// either side.
float joinRads = acos(cosine_between_vectors(P[0] - lastControlPoint, tan0));
float numRadialSegmentsInJoin = max(ceil(joinRads * uNumRadialSegmentsPerRadian), 1);
// +2 because we emit the beginning and ending edges twice (see above comment).
float numEdgesInJoin = numRadialSegmentsInJoin + 2;
// The stroke section needs at least two edges. Don't assign more to the join than
// "numTotalEdges - 2".
numEdgesInJoin = min(numEdgesInJoin, numTotalEdges - 2);
// Lines give all their extra edges to the join.
if (numParametricSegments == 1) {
numEdgesInJoin = numTotalEdges - 2;
}
// Negative args.z means the join is a chop, and chop joins get exactly one segment.
if (args.z < 0) {
// +2 because we emit the beginning and ending edges twice (see above comment).
numEdgesInJoin = 1 + 2;
})");
} else {
args.fVertBuilder->codeAppendf(R"(
float numEdgesInJoin = %i;)", NumExtraEdgesInIndirectJoin(joinType));
}
args.fVertBuilder->codeAppend(R"(
// Find which direction the curve turns.
// NOTE: Since the curve is not allowed to inflect, we can just check F'(.5) x F''(.5).
// NOTE: F'(.5) x F''(.5) has the same sign as (P2 - P0) x (P3 - P1)
float turn = cross(P[2] - P[0], P[3] - P[1]);
float numCombinedSegments;
float outset = ((sk_VertexID & 1) == 0) ? +1 : -1;
float combinedEdgeID = float(sk_VertexID >> 1) - numEdgesInJoin;
if (combinedEdgeID < 0) {
// We belong to the preceding join. The first and final edges get duplicated, so we only
// have "numEdgesInJoin - 2" segments.
numCombinedSegments = numEdgesInJoin - 2;
numParametricSegments = 1; // Joins don't have parametric segments.
P = float4x2(P[0], P[0], P[0], P[0]); // Colocate all points on the junction point.
tan1 = tan0;
// Don't let tan0 become zero. The code as-is isn't built to handle that case. tan0=0
// means the join is disabled, and to disable it with the existing code we can leave
// tan0 equal to tan1.
if (lastControlPoint != P[0]) {
tan0 = P[0] - lastControlPoint;
}
turn = cross(tan0, tan1);
// Shift combinedEdgeID to the range [-1, numCombinedSegments]. This duplicates the
// first edge and lands one edge at the very end of the join. (The duplicated final edge
// will actually come from the section of our strip that belongs to the stroke.)
combinedEdgeID += numCombinedSegments + 1;
// We normally restrict the join on one side of the junction, but if the tangents are
// nearly equivalent this could theoretically result in bad seaming and/or cracks on the
// side we don't put it on. If the tangents are nearly equivalent then we leave the join
// double-sided.
float sinEpsilon = 1e-2; // ~= sin(180deg / 3000)
bool tangentsNearlyParallel =
(abs(turn) * inversesqrt(dot(tan0, tan0) * dot(tan1, tan1))) < sinEpsilon;
if (!tangentsNearlyParallel || dot(tan0, tan1) < 0) {
// There are two edges colocated at the beginning. Leave the first one double sided
// for seaming with the previous stroke. (The double sided edge at the end will
// actually come from the section of our strip that belongs to the stroke.)
if (combinedEdgeID >= 0) {
outset = (turn < 0) ? min(outset, 0) : max(outset, 0);
}
}
combinedEdgeID = max(combinedEdgeID, 0);
} else {
// We belong to the stroke.
numCombinedSegments = numTotalEdges - numEdgesInJoin - 1;
}
// Don't take more parametric segments than there are total segments.
numParametricSegments = min(numParametricSegments, numCombinedSegments);
// Any leftover edges go to radial segments.
float numRadialSegments = numCombinedSegments + 1 - numParametricSegments;
// Calculate the curve's starting angle and rotation.
float angle0 = atan2(tan0);
float cosTheta = cosine_between_vectors(tan0, tan1);
float rotation = acos(cosTheta);
if (turn < 0) {
// Adjust sign of rotation to match the direction the curve turns.
rotation = -rotation;
}
float radsPerSegment = rotation / numRadialSegments;)");
if (joinType == SkPaint::kMiter_Join) {
args.fVertBuilder->codeAppend(R"(
// Vertices #4 and #5 belong to the edge of the join that extends to the miter point.
if ((sk_VertexID | 1) == (4 | 5)) {
outset *= miter_extent(cosTheta, uMiterLimitInvPow2);
})");
}
args.fVertBuilder->codeAppendf(R"(
float2 tangent, strokeCoord;
eval_stroke_edge(P, w, numParametricSegments, combinedEdgeID, tan0, radsPerSegment, angle0,
tangent, strokeCoord);)");
args.fVertBuilder->codeAppend(R"(
if (combinedEdgeID == 0) {
// Edges at the beginning of their section use P[0] and tan0. This ensures crack-free
// seaming between instances.
strokeCoord = P[0];
tangent = tan0;
}
if (combinedEdgeID == numCombinedSegments) {
// Edges at the end of their section use P[1] and tan1. This ensures crack-free seaming
// between instances.
strokeCoord = P[3];
tangent = tan1;
}
float2 ortho = normalize(float2(tangent.y, -tangent.x));
strokeCoord += ortho * (uStrokeRadius * outset);)");
if (shader.viewMatrix().isIdentity()) {
// No transform matrix.
gpArgs->fPositionVar.set(kFloat2_GrSLType, "strokeCoord");
gpArgs->fLocalCoordVar.set(kFloat2_GrSLType, "strokeCoord");
} else if (!shader.fStroke.isHairlineStyle()) {
// Normal case. Do the transform after tessellation.
args.fVertBuilder->codeAppend(R"(
float2 devCoord = uAffineMatrix * strokeCoord + uTranslate;)");
gpArgs->fPositionVar.set(kFloat2_GrSLType, "devCoord");
gpArgs->fLocalCoordVar.set(kFloat2_GrSLType, "strokeCoord");
} else {
// Hairline case. The scale and skew already happened before tessellation.
args.fVertBuilder->codeAppend(R"(
float2 devCoord = strokeCoord + uTranslate;
float2 localCoord = inverse(uAffineMatrix) * strokeCoord;)");
gpArgs->fPositionVar.set(kFloat2_GrSLType, "devCoord");
gpArgs->fLocalCoordVar.set(kFloat2_GrSLType, "localCoord");
}
// The fragment shader just outputs a uniform color.
const char* colorUniformName;
fColorUniform = args.fUniformHandler->addUniform(
nullptr, kFragment_GrShaderFlag, kHalf4_GrSLType, "color", &colorUniformName);
args.fFragBuilder->codeAppendf("%s = %s;", args.fOutputColor, colorUniformName);
args.fFragBuilder->codeAppendf("%s = half4(1);", args.fOutputCoverage);
}
void setData(const GrGLSLProgramDataManager& pdman,
const GrPrimitiveProcessor& primProc) override {
const auto& shader = primProc.cast<GrStrokeTessellateShader>();
const auto& stroke = shader.fStroke;
// Set up the tessellation control uniforms.
Tolerances tolerances;
if (!stroke.isHairlineStyle()) {
tolerances.set(shader.viewMatrix().getMaxScale(), stroke.getWidth());
} else {
// In the hairline case we transform prior to tessellation. Set up tolerances for an
// identity viewMatrix and a strokeWidth of 1.
tolerances.set(1, 1);
}
float miterLimit = stroke.getMiter();
pdman.set4f(fTessControlArgsUniform,
tolerances.fParametricIntolerance, // uParametricIntolerance
tolerances.fNumRadialSegmentsPerRadian, // uNumRadialSegmentsPerRadian
1 / (miterLimit * miterLimit), // uMiterLimitInvPow2
(stroke.isHairlineStyle()) ? .5f : stroke.getWidth() * .5); // uStrokeRadius
// Set up the view matrix, if any.
const SkMatrix& m = shader.viewMatrix();
if (!m.isIdentity()) {
pdman.set2f(fTranslateUniform, m.getTranslateX(), m.getTranslateY());
pdman.set4f(fAffineMatrixUniform, m.getScaleX(), m.getSkewY(), m.getSkewX(),
m.getScaleY());
}
pdman.set4fv(fColorUniform, 1, shader.fColor.vec());
}
GrGLSLUniformHandler::UniformHandle fTessControlArgsUniform;
GrGLSLUniformHandler::UniformHandle fTranslateUniform;
GrGLSLUniformHandler::UniformHandle fAffineMatrixUniform;
GrGLSLUniformHandler::UniformHandle fColorUniform;
};
void GrStrokeTessellateShader::getGLSLProcessorKey(const GrShaderCaps&,
GrProcessorKeyBuilder* b) const {
uint32_t key = this->viewMatrix().isIdentity();
if (fMode == Mode::kIndirect) {
SkASSERT(fStroke.getJoin() >> 2 == 0);
key = (key << 2) | fStroke.getJoin();
}
key = (key << 1) | (uint32_t)fStroke.isHairlineStyle();
key = (key << 1) | (uint32_t)fHasConics;
key = (key << 1) | (uint32_t)fMode; // Must be last.
b->add32(key);
}
GrGLSLPrimitiveProcessor* GrStrokeTessellateShader::createGLSLInstance(
const GrShaderCaps&) const {
return (fMode == Mode::kTessellation) ?
(GrGLSLPrimitiveProcessor*)new TessellationImpl : new IndirectImpl;
}