| /* |
| * Copyright 2017 ARM Ltd. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/core/SkDistanceFieldGen.h" |
| #include "src/gpu/GrDistanceFieldGenFromVector.h" |
| |
| #include "include/core/SkMatrix.h" |
| #include "include/gpu/GrConfig.h" |
| #include "include/pathops/SkPathOps.h" |
| #include "src/core/SkAutoMalloc.h" |
| #include "src/core/SkGeometry.h" |
| #include "src/core/SkPointPriv.h" |
| #include "src/core/SkRectPriv.h" |
| #include "src/gpu/geometry/GrPathUtils.h" |
| |
| /** |
| * If a scanline (a row of texel) cross from the kRight_SegSide |
| * of a segment to the kLeft_SegSide, the winding score should |
| * add 1. |
| * And winding score should subtract 1 if the scanline cross |
| * from kLeft_SegSide to kRight_SegSide. |
| * Always return kNA_SegSide if the scanline does not cross over |
| * the segment. Winding score should be zero in this case. |
| * You can get the winding number for each texel of the scanline |
| * by adding the winding score from left to right. |
| * Assuming we always start from outside, so the winding number |
| * should always start from zero. |
| * ________ ________ |
| * | | | | |
| * ...R|L......L|R.....L|R......R|L..... <= Scanline & side of segment |
| * |+1 |-1 |-1 |+1 <= Winding score |
| * 0 | 1 ^ 0 ^ -1 |0 <= Winding number |
| * |________| |________| |
| * |
| * .......NA................NA.......... |
| * 0 0 |
| */ |
| enum SegSide { |
| kLeft_SegSide = -1, |
| kOn_SegSide = 0, |
| kRight_SegSide = 1, |
| kNA_SegSide = 2, |
| }; |
| |
| struct DFData { |
| float fDistSq; // distance squared to nearest (so far) edge |
| int fDeltaWindingScore; // +1 or -1 whenever a scanline cross over a segment |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /* |
| * Type definition for double precision DPoint and DAffineMatrix |
| */ |
| |
| // Point with double precision |
| struct DPoint { |
| double fX, fY; |
| |
| static DPoint Make(double x, double y) { |
| DPoint pt; |
| pt.set(x, y); |
| return pt; |
| } |
| |
| double x() const { return fX; } |
| double y() const { return fY; } |
| |
| void set(double x, double y) { fX = x; fY = y; } |
| |
| /** Returns the euclidian distance from (0,0) to (x,y) |
| */ |
| static double Length(double x, double y) { |
| return sqrt(x * x + y * y); |
| } |
| |
| /** Returns the euclidian distance between a and b |
| */ |
| static double Distance(const DPoint& a, const DPoint& b) { |
| return Length(a.fX - b.fX, a.fY - b.fY); |
| } |
| |
| double distanceToSqd(const DPoint& pt) const { |
| double dx = fX - pt.fX; |
| double dy = fY - pt.fY; |
| return dx * dx + dy * dy; |
| } |
| }; |
| |
| // Matrix with double precision for affine transformation. |
| // We don't store row 3 because its always (0, 0, 1). |
| class DAffineMatrix { |
| public: |
| double operator[](int index) const { |
| SkASSERT((unsigned)index < 6); |
| return fMat[index]; |
| } |
| |
| double& operator[](int index) { |
| SkASSERT((unsigned)index < 6); |
| return fMat[index]; |
| } |
| |
| void setAffine(double m11, double m12, double m13, |
| double m21, double m22, double m23) { |
| fMat[0] = m11; |
| fMat[1] = m12; |
| fMat[2] = m13; |
| fMat[3] = m21; |
| fMat[4] = m22; |
| fMat[5] = m23; |
| } |
| |
| /** Set the matrix to identity |
| */ |
| void reset() { |
| fMat[0] = fMat[4] = 1.0; |
| fMat[1] = fMat[3] = |
| fMat[2] = fMat[5] = 0.0; |
| } |
| |
| // alias for reset() |
| void setIdentity() { this->reset(); } |
| |
| DPoint mapPoint(const SkPoint& src) const { |
| DPoint pt = DPoint::Make(src.x(), src.y()); |
| return this->mapPoint(pt); |
| } |
| |
| DPoint mapPoint(const DPoint& src) const { |
| return DPoint::Make(fMat[0] * src.x() + fMat[1] * src.y() + fMat[2], |
| fMat[3] * src.x() + fMat[4] * src.y() + fMat[5]); |
| } |
| private: |
| double fMat[6]; |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static const double kClose = (SK_Scalar1 / 16.0); |
| static const double kCloseSqd = kClose * kClose; |
| static const double kNearlyZero = (SK_Scalar1 / (1 << 18)); |
| static const double kTangentTolerance = (SK_Scalar1 / (1 << 11)); |
| static const float kConicTolerance = 0.25f; |
| |
| static inline bool between_closed_open(double a, double b, double c, |
| double tolerance = 0.0, |
| bool xformToleranceToX = false) { |
| SkASSERT(tolerance >= 0.0); |
| double tolB = tolerance; |
| double tolC = tolerance; |
| |
| if (xformToleranceToX) { |
| // Canonical space is y = x^2 and the derivative of x^2 is 2x. |
| // So the slope of the tangent line at point (x, x^2) is 2x. |
| // |
| // /| |
| // sqrt(2x * 2x + 1 * 1) / | 2x |
| // /__| |
| // 1 |
| tolB = tolerance / sqrt(4.0 * b * b + 1.0); |
| tolC = tolerance / sqrt(4.0 * c * c + 1.0); |
| } |
| return b < c ? (a >= b - tolB && a < c - tolC) : |
| (a >= c - tolC && a < b - tolB); |
| } |
| |
| static inline bool between_closed(double a, double b, double c, |
| double tolerance = 0.0, |
| bool xformToleranceToX = false) { |
| SkASSERT(tolerance >= 0.0); |
| double tolB = tolerance; |
| double tolC = tolerance; |
| |
| if (xformToleranceToX) { |
| tolB = tolerance / sqrt(4.0 * b * b + 1.0); |
| tolC = tolerance / sqrt(4.0 * c * c + 1.0); |
| } |
| return b < c ? (a >= b - tolB && a <= c + tolC) : |
| (a >= c - tolC && a <= b + tolB); |
| } |
| |
| static inline bool nearly_zero(double x, double tolerance = kNearlyZero) { |
| SkASSERT(tolerance >= 0.0); |
| return fabs(x) <= tolerance; |
| } |
| |
| static inline bool nearly_equal(double x, double y, |
| double tolerance = kNearlyZero, |
| bool xformToleranceToX = false) { |
| SkASSERT(tolerance >= 0.0); |
| if (xformToleranceToX) { |
| tolerance = tolerance / sqrt(4.0 * y * y + 1.0); |
| } |
| return fabs(x - y) <= tolerance; |
| } |
| |
| static inline double sign_of(const double &val) { |
| return (val < 0.0) ? -1.0 : 1.0; |
| } |
| |
| static bool is_colinear(const SkPoint pts[3]) { |
| return nearly_zero((pts[1].y() - pts[0].y()) * (pts[1].x() - pts[2].x()) - |
| (pts[1].y() - pts[2].y()) * (pts[1].x() - pts[0].x()), kCloseSqd); |
| } |
| |
| class PathSegment { |
| public: |
| enum { |
| // These enum values are assumed in member functions below. |
| kLine = 0, |
| kQuad = 1, |
| } fType; |
| |
| // line uses 2 pts, quad uses 3 pts |
| SkPoint fPts[3]; |
| |
| DPoint fP0T, fP2T; |
| DAffineMatrix fXformMatrix; |
| double fScalingFactor; |
| double fScalingFactorSqd; |
| double fNearlyZeroScaled; |
| double fTangentTolScaledSqd; |
| SkRect fBoundingBox; |
| |
| void init(); |
| |
| int countPoints() { |
| GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); |
| return fType + 2; |
| } |
| |
| const SkPoint& endPt() const { |
| GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); |
| return fPts[fType + 1]; |
| } |
| }; |
| |
| typedef SkTArray<PathSegment, true> PathSegmentArray; |
| |
| void PathSegment::init() { |
| const DPoint p0 = DPoint::Make(fPts[0].x(), fPts[0].y()); |
| const DPoint p2 = DPoint::Make(this->endPt().x(), this->endPt().y()); |
| const double p0x = p0.x(); |
| const double p0y = p0.y(); |
| const double p2x = p2.x(); |
| const double p2y = p2.y(); |
| |
| fBoundingBox.set(fPts[0], this->endPt()); |
| |
| if (fType == PathSegment::kLine) { |
| fScalingFactorSqd = fScalingFactor = 1.0; |
| double hypotenuse = DPoint::Distance(p0, p2); |
| |
| const double cosTheta = (p2x - p0x) / hypotenuse; |
| const double sinTheta = (p2y - p0y) / hypotenuse; |
| |
| fXformMatrix.setAffine( |
| cosTheta, sinTheta, -(cosTheta * p0x) - (sinTheta * p0y), |
| -sinTheta, cosTheta, (sinTheta * p0x) - (cosTheta * p0y) |
| ); |
| } else { |
| SkASSERT(fType == PathSegment::kQuad); |
| |
| // Calculate bounding box |
| const SkPoint _P1mP0 = fPts[1] - fPts[0]; |
| SkPoint t = _P1mP0 - fPts[2] + fPts[1]; |
| t.fX = _P1mP0.x() / t.x(); |
| t.fY = _P1mP0.y() / t.y(); |
| t.fX = SkScalarClampMax(t.x(), 1.0); |
| t.fY = SkScalarClampMax(t.y(), 1.0); |
| t.fX = _P1mP0.x() * t.x(); |
| t.fY = _P1mP0.y() * t.y(); |
| const SkPoint m = fPts[0] + t; |
| SkRectPriv::GrowToInclude(&fBoundingBox, m); |
| |
| const double p1x = fPts[1].x(); |
| const double p1y = fPts[1].y(); |
| |
| const double p0xSqd = p0x * p0x; |
| const double p0ySqd = p0y * p0y; |
| const double p2xSqd = p2x * p2x; |
| const double p2ySqd = p2y * p2y; |
| const double p1xSqd = p1x * p1x; |
| const double p1ySqd = p1y * p1y; |
| |
| const double p01xProd = p0x * p1x; |
| const double p02xProd = p0x * p2x; |
| const double b12xProd = p1x * p2x; |
| const double p01yProd = p0y * p1y; |
| const double p02yProd = p0y * p2y; |
| const double b12yProd = p1y * p2y; |
| |
| const double sqrtA = p0y - (2.0 * p1y) + p2y; |
| const double a = sqrtA * sqrtA; |
| const double h = -1.0 * (p0y - (2.0 * p1y) + p2y) * (p0x - (2.0 * p1x) + p2x); |
| const double sqrtB = p0x - (2.0 * p1x) + p2x; |
| const double b = sqrtB * sqrtB; |
| const double c = (p0xSqd * p2ySqd) - (4.0 * p01xProd * b12yProd) |
| - (2.0 * p02xProd * p02yProd) + (4.0 * p02xProd * p1ySqd) |
| + (4.0 * p1xSqd * p02yProd) - (4.0 * b12xProd * p01yProd) |
| + (p2xSqd * p0ySqd); |
| const double g = (p0x * p02yProd) - (2.0 * p0x * p1ySqd) |
| + (2.0 * p0x * b12yProd) - (p0x * p2ySqd) |
| + (2.0 * p1x * p01yProd) - (4.0 * p1x * p02yProd) |
| + (2.0 * p1x * b12yProd) - (p2x * p0ySqd) |
| + (2.0 * p2x * p01yProd) + (p2x * p02yProd) |
| - (2.0 * p2x * p1ySqd); |
| const double f = -((p0xSqd * p2y) - (2.0 * p01xProd * p1y) |
| - (2.0 * p01xProd * p2y) - (p02xProd * p0y) |
| + (4.0 * p02xProd * p1y) - (p02xProd * p2y) |
| + (2.0 * p1xSqd * p0y) + (2.0 * p1xSqd * p2y) |
| - (2.0 * b12xProd * p0y) - (2.0 * b12xProd * p1y) |
| + (p2xSqd * p0y)); |
| |
| const double cosTheta = sqrt(a / (a + b)); |
| const double sinTheta = -1.0 * sign_of((a + b) * h) * sqrt(b / (a + b)); |
| |
| const double gDef = cosTheta * g - sinTheta * f; |
| const double fDef = sinTheta * g + cosTheta * f; |
| |
| |
| const double x0 = gDef / (a + b); |
| const double y0 = (1.0 / (2.0 * fDef)) * (c - (gDef * gDef / (a + b))); |
| |
| |
| const double lambda = -1.0 * ((a + b) / (2.0 * fDef)); |
| fScalingFactor = fabs(1.0 / lambda); |
| fScalingFactorSqd = fScalingFactor * fScalingFactor; |
| |
| const double lambda_cosTheta = lambda * cosTheta; |
| const double lambda_sinTheta = lambda * sinTheta; |
| |
| fXformMatrix.setAffine( |
| lambda_cosTheta, -lambda_sinTheta, lambda * x0, |
| lambda_sinTheta, lambda_cosTheta, lambda * y0 |
| ); |
| } |
| |
| fNearlyZeroScaled = kNearlyZero / fScalingFactor; |
| fTangentTolScaledSqd = kTangentTolerance * kTangentTolerance / fScalingFactorSqd; |
| |
| fP0T = fXformMatrix.mapPoint(p0); |
| fP2T = fXformMatrix.mapPoint(p2); |
| } |
| |
| static void init_distances(DFData* data, int size) { |
| DFData* currData = data; |
| |
| for (int i = 0; i < size; ++i) { |
| // init distance to "far away" |
| currData->fDistSq = SK_DistanceFieldMagnitude * SK_DistanceFieldMagnitude; |
| currData->fDeltaWindingScore = 0; |
| ++currData; |
| } |
| } |
| |
| static inline void add_line_to_segment(const SkPoint pts[2], |
| PathSegmentArray* segments) { |
| segments->push_back(); |
| segments->back().fType = PathSegment::kLine; |
| segments->back().fPts[0] = pts[0]; |
| segments->back().fPts[1] = pts[1]; |
| |
| segments->back().init(); |
| } |
| |
| static inline void add_quad_segment(const SkPoint pts[3], |
| PathSegmentArray* segments) { |
| if (SkPointPriv::DistanceToSqd(pts[0], pts[1]) < kCloseSqd || |
| SkPointPriv::DistanceToSqd(pts[1], pts[2]) < kCloseSqd || |
| is_colinear(pts)) { |
| if (pts[0] != pts[2]) { |
| SkPoint line_pts[2]; |
| line_pts[0] = pts[0]; |
| line_pts[1] = pts[2]; |
| add_line_to_segment(line_pts, segments); |
| } |
| } else { |
| segments->push_back(); |
| segments->back().fType = PathSegment::kQuad; |
| segments->back().fPts[0] = pts[0]; |
| segments->back().fPts[1] = pts[1]; |
| segments->back().fPts[2] = pts[2]; |
| |
| segments->back().init(); |
| } |
| } |
| |
| static inline void add_cubic_segments(const SkPoint pts[4], |
| PathSegmentArray* segments) { |
| SkSTArray<15, SkPoint, true> quads; |
| GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, &quads); |
| int count = quads.count(); |
| for (int q = 0; q < count; q += 3) { |
| add_quad_segment(&quads[q], segments); |
| } |
| } |
| |
| static float calculate_nearest_point_for_quad( |
| const PathSegment& segment, |
| const DPoint &xFormPt) { |
| static const float kThird = 0.33333333333f; |
| static const float kTwentySeventh = 0.037037037f; |
| |
| const float a = 0.5f - (float)xFormPt.y(); |
| const float b = -0.5f * (float)xFormPt.x(); |
| |
| const float a3 = a * a * a; |
| const float b2 = b * b; |
| |
| const float c = (b2 * 0.25f) + (a3 * kTwentySeventh); |
| |
| if (c >= 0.f) { |
| const float sqrtC = sqrt(c); |
| const float result = (float)cbrt((-b * 0.5f) + sqrtC) + (float)cbrt((-b * 0.5f) - sqrtC); |
| return result; |
| } else { |
| const float cosPhi = (float)sqrt((b2 * 0.25f) * (-27.f / a3)) * ((b > 0) ? -1.f : 1.f); |
| const float phi = (float)acos(cosPhi); |
| float result; |
| if (xFormPt.x() > 0.f) { |
| result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird); |
| if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) { |
| result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird)); |
| } |
| } else { |
| result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird)); |
| if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) { |
| result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird); |
| } |
| } |
| return result; |
| } |
| } |
| |
| // This structure contains some intermediate values shared by the same row. |
| // It is used to calculate segment side of a quadratic bezier. |
| struct RowData { |
| // The intersection type of a scanline and y = x * x parabola in canonical space. |
| enum IntersectionType { |
| kNoIntersection, |
| kVerticalLine, |
| kTangentLine, |
| kTwoPointsIntersect |
| } fIntersectionType; |
| |
| // The direction of the quadratic segment/scanline in the canonical space. |
| // 1: The quadratic segment/scanline going from negative x-axis to positive x-axis. |
| // 0: The scanline is a vertical line in the canonical space. |
| // -1: The quadratic segment/scanline going from positive x-axis to negative x-axis. |
| int fQuadXDirection; |
| int fScanlineXDirection; |
| |
| // The y-value(equal to x*x) of intersection point for the kVerticalLine intersection type. |
| double fYAtIntersection; |
| |
| // The x-value for two intersection points. |
| double fXAtIntersection1; |
| double fXAtIntersection2; |
| }; |
| |
| void precomputation_for_row( |
| RowData *rowData, |
| const PathSegment& segment, |
| const SkPoint& pointLeft, |
| const SkPoint& pointRight |
| ) { |
| if (segment.fType != PathSegment::kQuad) { |
| return; |
| } |
| |
| const DPoint& xFormPtLeft = segment.fXformMatrix.mapPoint(pointLeft); |
| const DPoint& xFormPtRight = segment.fXformMatrix.mapPoint(pointRight); |
| |
| rowData->fQuadXDirection = (int)sign_of(segment.fP2T.x() - segment.fP0T.x()); |
| rowData->fScanlineXDirection = (int)sign_of(xFormPtRight.x() - xFormPtLeft.x()); |
| |
| const double x1 = xFormPtLeft.x(); |
| const double y1 = xFormPtLeft.y(); |
| const double x2 = xFormPtRight.x(); |
| const double y2 = xFormPtRight.y(); |
| |
| if (nearly_equal(x1, x2, segment.fNearlyZeroScaled, true)) { |
| rowData->fIntersectionType = RowData::kVerticalLine; |
| rowData->fYAtIntersection = x1 * x1; |
| rowData->fScanlineXDirection = 0; |
| return; |
| } |
| |
| // Line y = mx + b |
| const double m = (y2 - y1) / (x2 - x1); |
| const double b = -m * x1 + y1; |
| |
| const double m2 = m * m; |
| const double c = m2 + 4.0 * b; |
| |
| const double tol = 4.0 * segment.fTangentTolScaledSqd / (m2 + 1.0); |
| |
| // Check if the scanline is the tangent line of the curve, |
| // and the curve start or end at the same y-coordinate of the scanline |
| if ((rowData->fScanlineXDirection == 1 && |
| (segment.fPts[0].y() == pointLeft.y() || |
| segment.fPts[2].y() == pointLeft.y())) && |
| nearly_zero(c, tol)) { |
| rowData->fIntersectionType = RowData::kTangentLine; |
| rowData->fXAtIntersection1 = m / 2.0; |
| rowData->fXAtIntersection2 = m / 2.0; |
| } else if (c <= 0.0) { |
| rowData->fIntersectionType = RowData::kNoIntersection; |
| return; |
| } else { |
| rowData->fIntersectionType = RowData::kTwoPointsIntersect; |
| const double d = sqrt(c); |
| rowData->fXAtIntersection1 = (m + d) / 2.0; |
| rowData->fXAtIntersection2 = (m - d) / 2.0; |
| } |
| } |
| |
| SegSide calculate_side_of_quad( |
| const PathSegment& segment, |
| const SkPoint& point, |
| const DPoint& xFormPt, |
| const RowData& rowData) { |
| SegSide side = kNA_SegSide; |
| |
| if (RowData::kVerticalLine == rowData.fIntersectionType) { |
| side = (SegSide)(int)(sign_of(xFormPt.y() - rowData.fYAtIntersection) * rowData.fQuadXDirection); |
| } |
| else if (RowData::kTwoPointsIntersect == rowData.fIntersectionType) { |
| const double p1 = rowData.fXAtIntersection1; |
| const double p2 = rowData.fXAtIntersection2; |
| |
| int signP1 = (int)sign_of(p1 - xFormPt.x()); |
| bool includeP1 = true; |
| bool includeP2 = true; |
| |
| if (rowData.fScanlineXDirection == 1) { |
| if ((rowData.fQuadXDirection == -1 && segment.fPts[0].y() <= point.y() && |
| nearly_equal(segment.fP0T.x(), p1, segment.fNearlyZeroScaled, true)) || |
| (rowData.fQuadXDirection == 1 && segment.fPts[2].y() <= point.y() && |
| nearly_equal(segment.fP2T.x(), p1, segment.fNearlyZeroScaled, true))) { |
| includeP1 = false; |
| } |
| if ((rowData.fQuadXDirection == -1 && segment.fPts[2].y() <= point.y() && |
| nearly_equal(segment.fP2T.x(), p2, segment.fNearlyZeroScaled, true)) || |
| (rowData.fQuadXDirection == 1 && segment.fPts[0].y() <= point.y() && |
| nearly_equal(segment.fP0T.x(), p2, segment.fNearlyZeroScaled, true))) { |
| includeP2 = false; |
| } |
| } |
| |
| if (includeP1 && between_closed(p1, segment.fP0T.x(), segment.fP2T.x(), |
| segment.fNearlyZeroScaled, true)) { |
| side = (SegSide)(signP1 * rowData.fQuadXDirection); |
| } |
| if (includeP2 && between_closed(p2, segment.fP0T.x(), segment.fP2T.x(), |
| segment.fNearlyZeroScaled, true)) { |
| int signP2 = (int)sign_of(p2 - xFormPt.x()); |
| if (side == kNA_SegSide || signP2 == 1) { |
| side = (SegSide)(-signP2 * rowData.fQuadXDirection); |
| } |
| } |
| } else if (RowData::kTangentLine == rowData.fIntersectionType) { |
| // The scanline is the tangent line of current quadratic segment. |
| |
| const double p = rowData.fXAtIntersection1; |
| int signP = (int)sign_of(p - xFormPt.x()); |
| if (rowData.fScanlineXDirection == 1) { |
| // The path start or end at the tangent point. |
| if (segment.fPts[0].y() == point.y()) { |
| side = (SegSide)(signP); |
| } else if (segment.fPts[2].y() == point.y()) { |
| side = (SegSide)(-signP); |
| } |
| } |
| } |
| |
| return side; |
| } |
| |
| static float distance_to_segment(const SkPoint& point, |
| const PathSegment& segment, |
| const RowData& rowData, |
| SegSide* side) { |
| SkASSERT(side); |
| |
| const DPoint xformPt = segment.fXformMatrix.mapPoint(point); |
| |
| if (segment.fType == PathSegment::kLine) { |
| float result = SK_DistanceFieldPad * SK_DistanceFieldPad; |
| |
| if (between_closed(xformPt.x(), segment.fP0T.x(), segment.fP2T.x())) { |
| result = (float)(xformPt.y() * xformPt.y()); |
| } else if (xformPt.x() < segment.fP0T.x()) { |
| result = (float)(xformPt.x() * xformPt.x() + xformPt.y() * xformPt.y()); |
| } else { |
| result = (float)((xformPt.x() - segment.fP2T.x()) * (xformPt.x() - segment.fP2T.x()) |
| + xformPt.y() * xformPt.y()); |
| } |
| |
| if (between_closed_open(point.y(), segment.fBoundingBox.top(), |
| segment.fBoundingBox.bottom())) { |
| *side = (SegSide)(int)sign_of(xformPt.y()); |
| } else { |
| *side = kNA_SegSide; |
| } |
| return result; |
| } else { |
| SkASSERT(segment.fType == PathSegment::kQuad); |
| |
| const float nearestPoint = calculate_nearest_point_for_quad(segment, xformPt); |
| |
| float dist; |
| |
| if (between_closed(nearestPoint, segment.fP0T.x(), segment.fP2T.x())) { |
| DPoint x = DPoint::Make(nearestPoint, nearestPoint * nearestPoint); |
| dist = (float)xformPt.distanceToSqd(x); |
| } else { |
| const float distToB0T = (float)xformPt.distanceToSqd(segment.fP0T); |
| const float distToB2T = (float)xformPt.distanceToSqd(segment.fP2T); |
| |
| if (distToB0T < distToB2T) { |
| dist = distToB0T; |
| } else { |
| dist = distToB2T; |
| } |
| } |
| |
| if (between_closed_open(point.y(), segment.fBoundingBox.top(), |
| segment.fBoundingBox.bottom())) { |
| *side = calculate_side_of_quad(segment, point, xformPt, rowData); |
| } else { |
| *side = kNA_SegSide; |
| } |
| |
| return (float)(dist * segment.fScalingFactorSqd); |
| } |
| } |
| |
| static void calculate_distance_field_data(PathSegmentArray* segments, |
| DFData* dataPtr, |
| int width, int height) { |
| int count = segments->count(); |
| for (int a = 0; a < count; ++a) { |
| PathSegment& segment = (*segments)[a]; |
| const SkRect& segBB = segment.fBoundingBox.makeOutset( |
| SK_DistanceFieldPad, SK_DistanceFieldPad); |
| int startColumn = (int)segBB.left(); |
| int endColumn = SkScalarCeilToInt(segBB.right()); |
| |
| int startRow = (int)segBB.top(); |
| int endRow = SkScalarCeilToInt(segBB.bottom()); |
| |
| SkASSERT((startColumn >= 0) && "StartColumn < 0!"); |
| SkASSERT((endColumn <= width) && "endColumn > width!"); |
| SkASSERT((startRow >= 0) && "StartRow < 0!"); |
| SkASSERT((endRow <= height) && "EndRow > height!"); |
| |
| // Clip inside the distance field to avoid overflow |
| startColumn = SkTMax(startColumn, 0); |
| endColumn = SkTMin(endColumn, width); |
| startRow = SkTMax(startRow, 0); |
| endRow = SkTMin(endRow, height); |
| |
| for (int row = startRow; row < endRow; ++row) { |
| SegSide prevSide = kNA_SegSide; |
| const float pY = row + 0.5f; |
| RowData rowData; |
| |
| const SkPoint pointLeft = SkPoint::Make((SkScalar)startColumn, pY); |
| const SkPoint pointRight = SkPoint::Make((SkScalar)endColumn, pY); |
| |
| if (between_closed_open(pY, segment.fBoundingBox.top(), |
| segment.fBoundingBox.bottom())) { |
| precomputation_for_row(&rowData, segment, pointLeft, pointRight); |
| } |
| |
| for (int col = startColumn; col < endColumn; ++col) { |
| int idx = (row * width) + col; |
| |
| const float pX = col + 0.5f; |
| const SkPoint point = SkPoint::Make(pX, pY); |
| |
| const float distSq = dataPtr[idx].fDistSq; |
| int dilation = distSq < 1.5 * 1.5 ? 1 : |
| distSq < 2.5 * 2.5 ? 2 : |
| distSq < 3.5 * 3.5 ? 3 : SK_DistanceFieldPad; |
| if (dilation > SK_DistanceFieldPad) { |
| dilation = SK_DistanceFieldPad; |
| } |
| |
| // Optimisation for not calculating some points. |
| if (dilation != SK_DistanceFieldPad && !segment.fBoundingBox.roundOut() |
| .makeOutset(dilation, dilation).contains(col, row)) { |
| continue; |
| } |
| |
| SegSide side = kNA_SegSide; |
| int deltaWindingScore = 0; |
| float currDistSq = distance_to_segment(point, segment, rowData, &side); |
| if (prevSide == kLeft_SegSide && side == kRight_SegSide) { |
| deltaWindingScore = -1; |
| } else if (prevSide == kRight_SegSide && side == kLeft_SegSide) { |
| deltaWindingScore = 1; |
| } |
| |
| prevSide = side; |
| |
| if (currDistSq < distSq) { |
| dataPtr[idx].fDistSq = currDistSq; |
| } |
| |
| dataPtr[idx].fDeltaWindingScore += deltaWindingScore; |
| } |
| } |
| } |
| } |
| |
| template <int distanceMagnitude> |
| static unsigned char pack_distance_field_val(float dist) { |
| // The distance field is constructed as unsigned char values, so that the zero value is at 128, |
| // Beside 128, we have 128 values in range [0, 128), but only 127 values in range (128, 255]. |
| // So we multiply distanceMagnitude by 127/128 at the latter range to avoid overflow. |
| dist = SkScalarPin(-dist, -distanceMagnitude, distanceMagnitude * 127.0f / 128.0f); |
| |
| // Scale into the positive range for unsigned distance. |
| dist += distanceMagnitude; |
| |
| // Scale into unsigned char range. |
| // Round to place negative and positive values as equally as possible around 128 |
| // (which represents zero). |
| return (unsigned char)SkScalarRoundToInt(dist / (2 * distanceMagnitude) * 256.0f); |
| } |
| |
| bool GrGenerateDistanceFieldFromPath(unsigned char* distanceField, |
| const SkPath& path, const SkMatrix& drawMatrix, |
| int width, int height, size_t rowBytes) { |
| SkASSERT(distanceField); |
| |
| #ifdef SK_DEBUG |
| SkPath xformPath; |
| path.transform(drawMatrix, &xformPath); |
| SkIRect pathBounds = xformPath.getBounds().roundOut(); |
| SkIRect expectPathBounds = |
| SkIRect::MakeWH(width - 2 * SK_DistanceFieldPad, height - 2 * SK_DistanceFieldPad); |
| #endif |
| |
| SkASSERT(expectPathBounds.isEmpty() || |
| expectPathBounds.contains(pathBounds.x(), pathBounds.y())); |
| SkASSERT(expectPathBounds.isEmpty() || pathBounds.isEmpty() || |
| expectPathBounds.contains(pathBounds)); |
| |
| SkPath simplifiedPath; |
| SkPath workingPath; |
| if (Simplify(path, &simplifiedPath)) { |
| workingPath = simplifiedPath; |
| } else { |
| workingPath = path; |
| } |
| |
| if (!IsDistanceFieldSupportedFillType(workingPath.getFillType())) { |
| return false; |
| } |
| |
| workingPath.transform(drawMatrix); |
| |
| SkDEBUGCODE(pathBounds = workingPath.getBounds().roundOut()); |
| SkASSERT(expectPathBounds.isEmpty() || |
| expectPathBounds.contains(pathBounds.x(), pathBounds.y())); |
| SkASSERT(expectPathBounds.isEmpty() || pathBounds.isEmpty() || |
| expectPathBounds.contains(pathBounds)); |
| |
| // translate path to offset (SK_DistanceFieldPad, SK_DistanceFieldPad) |
| SkMatrix dfMatrix; |
| dfMatrix.setTranslate(SK_DistanceFieldPad, SK_DistanceFieldPad); |
| workingPath.transform(dfMatrix); |
| |
| // create temp data |
| size_t dataSize = width * height * sizeof(DFData); |
| SkAutoSMalloc<1024> dfStorage(dataSize); |
| DFData* dataPtr = (DFData*) dfStorage.get(); |
| |
| // create initial distance data |
| init_distances(dataPtr, width * height); |
| |
| SkPath::Iter iter(workingPath, true); |
| SkSTArray<15, PathSegment, true> segments; |
| |
| for (;;) { |
| SkPoint pts[4]; |
| SkPath::Verb verb = iter.next(pts); |
| switch (verb) { |
| case SkPath::kMove_Verb: |
| break; |
| case SkPath::kLine_Verb: { |
| add_line_to_segment(pts, &segments); |
| break; |
| } |
| case SkPath::kQuad_Verb: |
| add_quad_segment(pts, &segments); |
| break; |
| case SkPath::kConic_Verb: { |
| SkScalar weight = iter.conicWeight(); |
| SkAutoConicToQuads converter; |
| const SkPoint* quadPts = converter.computeQuads(pts, weight, kConicTolerance); |
| for (int i = 0; i < converter.countQuads(); ++i) { |
| add_quad_segment(quadPts + 2*i, &segments); |
| } |
| break; |
| } |
| case SkPath::kCubic_Verb: { |
| add_cubic_segments(pts, &segments); |
| break; |
| } |
| default: |
| break; |
| } |
| if (verb == SkPath::kDone_Verb) { |
| break; |
| } |
| } |
| |
| calculate_distance_field_data(&segments, dataPtr, width, height); |
| |
| for (int row = 0; row < height; ++row) { |
| int windingNumber = 0; // Winding number start from zero for each scanline |
| for (int col = 0; col < width; ++col) { |
| int idx = (row * width) + col; |
| windingNumber += dataPtr[idx].fDeltaWindingScore; |
| |
| enum DFSign { |
| kInside = -1, |
| kOutside = 1 |
| } dfSign; |
| |
| if (workingPath.getFillType() == SkPath::kWinding_FillType) { |
| dfSign = windingNumber ? kInside : kOutside; |
| } else if (workingPath.getFillType() == SkPath::kInverseWinding_FillType) { |
| dfSign = windingNumber ? kOutside : kInside; |
| } else if (workingPath.getFillType() == SkPath::kEvenOdd_FillType) { |
| dfSign = (windingNumber % 2) ? kInside : kOutside; |
| } else { |
| SkASSERT(workingPath.getFillType() == SkPath::kInverseEvenOdd_FillType); |
| dfSign = (windingNumber % 2) ? kOutside : kInside; |
| } |
| |
| // The winding number at the end of a scanline should be zero. |
| SkASSERT(((col != width - 1) || (windingNumber == 0)) && |
| "Winding number should be zero at the end of a scan line."); |
| // Fallback to use SkPath::contains to determine the sign of pixel in release build. |
| if (col == width - 1 && windingNumber != 0) { |
| for (int col = 0; col < width; ++col) { |
| int idx = (row * width) + col; |
| dfSign = workingPath.contains(col + 0.5, row + 0.5) ? kInside : kOutside; |
| const float miniDist = sqrt(dataPtr[idx].fDistSq); |
| const float dist = dfSign * miniDist; |
| |
| unsigned char pixelVal = pack_distance_field_val<SK_DistanceFieldMagnitude>(dist); |
| |
| distanceField[(row * rowBytes) + col] = pixelVal; |
| } |
| continue; |
| } |
| |
| const float miniDist = sqrt(dataPtr[idx].fDistSq); |
| const float dist = dfSign * miniDist; |
| |
| unsigned char pixelVal = pack_distance_field_val<SK_DistanceFieldMagnitude>(dist); |
| |
| distanceField[(row * rowBytes) + col] = pixelVal; |
| } |
| } |
| return true; |
| } |