| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "GrContext.h" |
| #include "GrRenderTargetContext.h" |
| #include "GrYUVProvider.h" |
| #include "effects/GrGammaEffect.h" |
| #include "effects/GrYUVEffect.h" |
| |
| #include "SkAutoMalloc.h" |
| #include "SkCachedData.h" |
| #include "SkRefCnt.h" |
| #include "SkResourceCache.h" |
| #include "SkYUVPlanesCache.h" |
| |
| namespace { |
| /** |
| * Helper class to manage the resources used for storing the YUV planar data. Depending on the |
| * useCache option, we may find (and lock) the data in our ResourceCache, or we may have allocated |
| * it in scratch storage. |
| */ |
| class YUVScoper { |
| public: |
| bool init(GrYUVProvider*, SkYUVPlanesCache::Info*, void* planes[3], bool useCache); |
| |
| private: |
| // we only use one or the other of these |
| sk_sp<SkCachedData> fCachedData; |
| SkAutoMalloc fStorage; |
| }; |
| } |
| |
| bool YUVScoper::init(GrYUVProvider* provider, SkYUVPlanesCache::Info* yuvInfo, void* planes[3], |
| bool useCache) { |
| if (useCache) { |
| fCachedData.reset(SkYUVPlanesCache::FindAndRef(provider->onGetID(), yuvInfo)); |
| } |
| |
| if (fCachedData.get()) { |
| planes[0] = (void*)fCachedData->data(); |
| planes[1] = (uint8_t*)planes[0] + (yuvInfo->fSizeInfo.fWidthBytes[SkYUVSizeInfo::kY] * |
| yuvInfo->fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight); |
| planes[2] = (uint8_t*)planes[1] + (yuvInfo->fSizeInfo.fWidthBytes[SkYUVSizeInfo::kU] * |
| yuvInfo->fSizeInfo.fSizes[SkYUVSizeInfo::kU].fHeight); |
| } else { |
| // Fetch yuv plane sizes for memory allocation. |
| if (!provider->onQueryYUV8(&yuvInfo->fSizeInfo, &yuvInfo->fColorSpace)) { |
| return false; |
| } |
| |
| // Allocate the memory for YUV |
| size_t totalSize(0); |
| for (int i = 0; i < 3; i++) { |
| totalSize += yuvInfo->fSizeInfo.fWidthBytes[i] * yuvInfo->fSizeInfo.fSizes[i].fHeight; |
| } |
| if (useCache) { |
| fCachedData.reset(SkResourceCache::NewCachedData(totalSize)); |
| planes[0] = fCachedData->writable_data(); |
| } else { |
| fStorage.reset(totalSize); |
| planes[0] = fStorage.get(); |
| } |
| planes[1] = (uint8_t*)planes[0] + (yuvInfo->fSizeInfo.fWidthBytes[SkYUVSizeInfo::kY] * |
| yuvInfo->fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight); |
| planes[2] = (uint8_t*)planes[1] + (yuvInfo->fSizeInfo.fWidthBytes[SkYUVSizeInfo::kU] * |
| yuvInfo->fSizeInfo.fSizes[SkYUVSizeInfo::kU].fHeight); |
| |
| // Get the YUV planes. |
| if (!provider->onGetYUV8Planes(yuvInfo->fSizeInfo, planes)) { |
| return false; |
| } |
| |
| if (useCache) { |
| // Decoding is done, cache the resulting YUV planes |
| SkYUVPlanesCache::Add(provider->onGetID(), fCachedData.get(), yuvInfo); |
| } |
| } |
| return true; |
| } |
| |
| sk_sp<GrTexture> GrYUVProvider::refAsTexture(GrContext* ctx, |
| const GrSurfaceDesc& desc, |
| bool useCache) { |
| SkYUVPlanesCache::Info yuvInfo; |
| void* planes[3]; |
| YUVScoper scoper; |
| if (!scoper.init(this, &yuvInfo, planes, useCache)) { |
| return nullptr; |
| } |
| |
| GrSurfaceDesc yuvDesc; |
| yuvDesc.fConfig = kAlpha_8_GrPixelConfig; |
| sk_sp<GrTexture> yuvTextures[3]; |
| for (int i = 0; i < 3; i++) { |
| yuvDesc.fWidth = yuvInfo.fSizeInfo.fSizes[i].fWidth; |
| yuvDesc.fHeight = yuvInfo.fSizeInfo.fSizes[i].fHeight; |
| // TODO: why do we need this check? |
| bool needsExactTexture = |
| (yuvDesc.fWidth != yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fWidth) || |
| (yuvDesc.fHeight != yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight); |
| if (needsExactTexture) { |
| yuvTextures[i].reset(ctx->textureProvider()->createTexture(yuvDesc, SkBudgeted::kYes)); |
| } else { |
| yuvTextures[i].reset(ctx->textureProvider()->createApproxTexture(yuvDesc)); |
| } |
| if (!yuvTextures[i] || |
| !yuvTextures[i]->writePixels(0, 0, yuvDesc.fWidth, yuvDesc.fHeight, yuvDesc.fConfig, |
| planes[i], yuvInfo.fSizeInfo.fWidthBytes[i])) { |
| return nullptr; |
| } |
| } |
| |
| // We never want to perform color-space conversion during the decode |
| sk_sp<GrRenderTargetContext> renderTargetContext(ctx->makeRenderTargetContext( |
| SkBackingFit::kExact, |
| desc.fWidth, desc.fHeight, |
| desc.fConfig, nullptr, |
| desc.fSampleCnt)); |
| if (!renderTargetContext) { |
| return nullptr; |
| } |
| |
| GrPaint paint; |
| sk_sp<GrFragmentProcessor> yuvToRgbProcessor( |
| GrYUVEffect::MakeYUVToRGB(yuvTextures[0].get(), yuvTextures[1].get(), yuvTextures[2].get(), |
| yuvInfo.fSizeInfo.fSizes, yuvInfo.fColorSpace, false)); |
| paint.addColorFragmentProcessor(std::move(yuvToRgbProcessor)); |
| |
| // If we're decoding an sRGB image, the result of our linear math on the YUV planes is already |
| // in sRGB. (The encoding is just math on bytes, with no concept of color spaces.) So, we need |
| // to output the results of that math directly to the buffer that we will then consider sRGB. |
| // If we have sRGB write control, we can just tell the HW not to do the Linear -> sRGB step. |
| // Otherwise, we do our shader math to go from YUV -> sRGB, manually convert sRGB -> Linear, |
| // then let the HW convert Linear -> sRGB. |
| if (GrPixelConfigIsSRGB(desc.fConfig)) { |
| if (ctx->caps()->srgbWriteControl()) { |
| paint.setDisableOutputConversionToSRGB(true); |
| } else { |
| paint.addColorFragmentProcessor(GrGammaEffect::Make(2.2f)); |
| } |
| } |
| |
| paint.setPorterDuffXPFactory(SkBlendMode::kSrc); |
| const SkRect r = SkRect::MakeIWH(yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fWidth, |
| yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight); |
| |
| renderTargetContext->drawRect(GrNoClip(), std::move(paint), GrAA::kNo, SkMatrix::I(), r); |
| |
| return renderTargetContext->asTexture(); |
| } |