blob: aa50cbf2541eace8425db378fa98dbd3eb88ecd2 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrAtlasTextBlob.h"
void GrAtlasTextBlob::appendGlyph(int runIndex,
const SkRect& positions,
GrColor color,
GrBatchTextStrike* strike,
GrGlyph* glyph,
GrFontScaler* scaler, const SkGlyph& skGlyph,
SkScalar x, SkScalar y, SkScalar scale, bool applyVM) {
// If the glyph is too large we fall back to paths
if (glyph->fTooLargeForAtlas) {
this->appendLargeGlyph(glyph, scaler, skGlyph, x, y, scale, applyVM);
return;
}
Run& run = fRuns[runIndex];
GrMaskFormat format = glyph->fMaskFormat;
Run::SubRunInfo* subRun = &run.fSubRunInfo.back();
if (run.fInitialized && subRun->maskFormat() != format) {
subRun = &run.push_back();
subRun->setStrike(strike);
} else if (!run.fInitialized) {
subRun->setStrike(strike);
}
run.fInitialized = true;
size_t vertexStride = GetVertexStride(format);
subRun->setMaskFormat(format);
run.fVertexBounds.joinNonEmptyArg(positions);
subRun->setColor(color);
intptr_t vertex = reinterpret_cast<intptr_t>(this->fVertices + subRun->vertexEndIndex());
if (kARGB_GrMaskFormat != glyph->fMaskFormat) {
// V0
SkPoint* position = reinterpret_cast<SkPoint*>(vertex);
position->set(positions.fLeft, positions.fTop);
SkColor* colorPtr = reinterpret_cast<SkColor*>(vertex + sizeof(SkPoint));
*colorPtr = color;
vertex += vertexStride;
// V1
position = reinterpret_cast<SkPoint*>(vertex);
position->set(positions.fLeft, positions.fBottom);
colorPtr = reinterpret_cast<SkColor*>(vertex + sizeof(SkPoint));
*colorPtr = color;
vertex += vertexStride;
// V2
position = reinterpret_cast<SkPoint*>(vertex);
position->set(positions.fRight, positions.fBottom);
colorPtr = reinterpret_cast<SkColor*>(vertex + sizeof(SkPoint));
*colorPtr = color;
vertex += vertexStride;
// V3
position = reinterpret_cast<SkPoint*>(vertex);
position->set(positions.fRight, positions.fTop);
colorPtr = reinterpret_cast<SkColor*>(vertex + sizeof(SkPoint));
*colorPtr = color;
} else {
// V0
SkPoint* position = reinterpret_cast<SkPoint*>(vertex);
position->set(positions.fLeft, positions.fTop);
vertex += vertexStride;
// V1
position = reinterpret_cast<SkPoint*>(vertex);
position->set(positions.fLeft, positions.fBottom);
vertex += vertexStride;
// V2
position = reinterpret_cast<SkPoint*>(vertex);
position->set(positions.fRight, positions.fBottom);
vertex += vertexStride;
// V3
position = reinterpret_cast<SkPoint*>(vertex);
position->set(positions.fRight, positions.fTop);
}
subRun->appendVertices(vertexStride);
fGlyphs[subRun->glyphEndIndex()] = glyph;
subRun->glyphAppended();
}
void GrAtlasTextBlob::appendLargeGlyph(GrGlyph* glyph, GrFontScaler* scaler, const SkGlyph& skGlyph,
SkScalar x, SkScalar y, SkScalar scale, bool applyVM) {
if (nullptr == glyph->fPath) {
const SkPath* glyphPath = scaler->getGlyphPath(skGlyph);
if (!glyphPath) {
return;
}
glyph->fPath = new SkPath(*glyphPath);
}
fBigGlyphs.push_back(GrAtlasTextBlob::BigGlyph(*glyph->fPath, x, y, scale, applyVM));
}
bool GrAtlasTextBlob::mustRegenerate(SkScalar* outTransX, SkScalar* outTransY,
const SkPaint& paint,
GrColor color, const SkMaskFilter::BlurRec& blurRec,
const SkMatrix& viewMatrix, SkScalar x, SkScalar y) {
// If we have LCD text then our canonical color will be set to transparent, in this case we have
// to regenerate the blob on any color change
// We use the grPaint to get any color filter effects
if (fKey.fCanonicalColor == SK_ColorTRANSPARENT &&
fPaintColor != color) {
return true;
}
if (fViewMatrix.hasPerspective() != viewMatrix.hasPerspective()) {
return true;
}
if (fViewMatrix.hasPerspective() && !fViewMatrix.cheapEqualTo(viewMatrix)) {
return true;
}
// We only cache one masked version
if (fKey.fHasBlur &&
(fBlurRec.fSigma != blurRec.fSigma ||
fBlurRec.fStyle != blurRec.fStyle ||
fBlurRec.fQuality != blurRec.fQuality)) {
return true;
}
// Similarly, we only cache one version for each style
if (fKey.fStyle != SkPaint::kFill_Style &&
(fStrokeInfo.fFrameWidth != paint.getStrokeWidth() ||
fStrokeInfo.fMiterLimit != paint.getStrokeMiter() ||
fStrokeInfo.fJoin != paint.getStrokeJoin())) {
return true;
}
// Mixed blobs must be regenerated. We could probably figure out a way to do integer scrolls
// for mixed blobs if this becomes an issue.
if (this->hasBitmap() && this->hasDistanceField()) {
// Identical viewmatrices and we can reuse in all cases
if (fViewMatrix.cheapEqualTo(viewMatrix) && x == fX && y == fY) {
return false;
}
return true;
}
if (this->hasBitmap()) {
if (fViewMatrix.getScaleX() != viewMatrix.getScaleX() ||
fViewMatrix.getScaleY() != viewMatrix.getScaleY() ||
fViewMatrix.getSkewX() != viewMatrix.getSkewX() ||
fViewMatrix.getSkewY() != viewMatrix.getSkewY()) {
return true;
}
// We can update the positions in the cachedtextblobs without regenerating the whole blob,
// but only for integer translations.
// This cool bit of math will determine the necessary translation to apply to the already
// generated vertex coordinates to move them to the correct position
SkScalar transX = viewMatrix.getTranslateX() +
viewMatrix.getScaleX() * (x - fX) +
viewMatrix.getSkewX() * (y - fY) -
fViewMatrix.getTranslateX();
SkScalar transY = viewMatrix.getTranslateY() +
viewMatrix.getSkewY() * (x - fX) +
viewMatrix.getScaleY() * (y - fY) -
fViewMatrix.getTranslateY();
if (!SkScalarIsInt(transX) || !SkScalarIsInt(transY) ) {
return true;
}
(*outTransX) = transX;
(*outTransY) = transY;
} else if (this->hasDistanceField()) {
// A scale outside of [blob.fMaxMinScale, blob.fMinMaxScale] would result in a different
// distance field being generated, so we have to regenerate in those cases
SkScalar newMaxScale = viewMatrix.getMaxScale();
SkScalar oldMaxScale = fViewMatrix.getMaxScale();
SkScalar scaleAdjust = newMaxScale / oldMaxScale;
if (scaleAdjust < fMaxMinScale || scaleAdjust > fMinMaxScale) {
return true;
}
(*outTransX) = x - fX;
(*outTransY) = y - fY;
}
// If we can reuse the blob, then make sure we update the blob's viewmatrix, and x/y
// offsets. Note, we offset the vertex bounds right before flushing
fViewMatrix = viewMatrix;
fX = x;
fY = y;
// It is possible that a blob has neither distanceField nor bitmaptext. This is in the case
// when all of the runs inside the blob are drawn as paths. In this case, we always regenerate
// the blob anyways at flush time, so no need to regenerate explicitly
return false;
}
// TODO get this code building again
#ifdef CACHE_SANITY_CHECK
void GrAtlasTextBlob::AssertEqual(const GrAtlasTextBlob& l, const GrAtlasTextBlob& r) {
SkASSERT(l.fSize == r.fSize);
SkASSERT(l.fPool == r.fPool);
SkASSERT(l.fBlurRec.fSigma == r.fBlurRec.fSigma);
SkASSERT(l.fBlurRec.fStyle == r.fBlurRec.fStyle);
SkASSERT(l.fBlurRec.fQuality == r.fBlurRec.fQuality);
SkASSERT(l.fStrokeInfo.fFrameWidth == r.fStrokeInfo.fFrameWidth);
SkASSERT(l.fStrokeInfo.fMiterLimit == r.fStrokeInfo.fMiterLimit);
SkASSERT(l.fStrokeInfo.fJoin == r.fStrokeInfo.fJoin);
SkASSERT(l.fBigGlyphs.count() == r.fBigGlyphs.count());
for (int i = 0; i < l.fBigGlyphs.count(); i++) {
const BigGlyph& lBigGlyph = l.fBigGlyphs[i];
const BigGlyph& rBigGlyph = r.fBigGlyphs[i];
SkASSERT(lBigGlyph.fPath == rBigGlyph.fPath);
// We can't assert that these have the same translations
}
SkASSERT(l.fKey == r.fKey);
SkASSERT(l.fViewMatrix.cheapEqualTo(r.fViewMatrix));
SkASSERT(l.fPaintColor == r.fPaintColor);
SkASSERT(l.fMaxMinScale == r.fMaxMinScale);
SkASSERT(l.fMinMaxScale == r.fMinMaxScale);
SkASSERT(l.fTextType == r.fTextType);
SkASSERT(l.fRunCount == r.fRunCount);
for (int i = 0; i < l.fRunCount; i++) {
const Run& lRun = l.fRuns[i];
const Run& rRun = r.fRuns[i];
if (lRun.fStrike.get()) {
SkASSERT(rRun.fStrike.get());
SkASSERT(GrBatchTextStrike::GetKey(*lRun.fStrike) ==
GrBatchTextStrike::GetKey(*rRun.fStrike));
} else {
SkASSERT(!rRun.fStrike.get());
}
if (lRun.fTypeface.get()) {
SkASSERT(rRun.fTypeface.get());
SkASSERT(SkTypeface::Equal(lRun.fTypeface, rRun.fTypeface));
} else {
SkASSERT(!rRun.fTypeface.get());
}
// We offset bounds right before flush time so they will not be correct here
//SkASSERT(lRun.fVertexBounds == rRun.fVertexBounds);
SkASSERT(lRun.fDescriptor.getDesc());
SkASSERT(rRun.fDescriptor.getDesc());
SkASSERT(lRun.fDescriptor.getDesc()->equals(*rRun.fDescriptor.getDesc()));
if (lRun.fOverrideDescriptor.get()) {
SkASSERT(lRun.fOverrideDescriptor->getDesc());
SkASSERT(rRun.fOverrideDescriptor.get() && rRun.fOverrideDescriptor->getDesc());;
SkASSERT(lRun.fOverrideDescriptor->getDesc()->equals(
*rRun.fOverrideDescriptor->getDesc()));
} else {
SkASSERT(!rRun.fOverrideDescriptor.get());
}
// color can be changed
//SkASSERT(lRun.fColor == rRun.fColor);
SkASSERT(lRun.fInitialized == rRun.fInitialized);
SkASSERT(lRun.fDrawAsPaths == rRun.fDrawAsPaths);
SkASSERT(lRun.fSubRunInfo.count() == rRun.fSubRunInfo.count());
for(int j = 0; j < lRun.fSubRunInfo.count(); j++) {
const Run::SubRunInfo& lSubRun = lRun.fSubRunInfo[j];
const Run::SubRunInfo& rSubRun = rRun.fSubRunInfo[j];
SkASSERT(lSubRun.fVertexStartIndex == rSubRun.fVertexStartIndex);
SkASSERT(lSubRun.fVertexEndIndex == rSubRun.fVertexEndIndex);
SkASSERT(lSubRun.fGlyphStartIndex == rSubRun.fGlyphStartIndex);
SkASSERT(lSubRun.fGlyphEndIndex == rSubRun.fGlyphEndIndex);
SkASSERT(lSubRun.fTextRatio == rSubRun.fTextRatio);
SkASSERT(lSubRun.fMaskFormat == rSubRun.fMaskFormat);
SkASSERT(lSubRun.fDrawAsDistanceFields == rSubRun.fDrawAsDistanceFields);
SkASSERT(lSubRun.fUseLCDText == rSubRun.fUseLCDText);
//We can't compare the bulk use tokens with this method
/*
SkASSERT(lSubRun.fBulkUseToken.fPlotsToUpdate.count() ==
rSubRun.fBulkUseToken.fPlotsToUpdate.count());
SkASSERT(lSubRun.fBulkUseToken.fPlotAlreadyUpdated ==
rSubRun.fBulkUseToken.fPlotAlreadyUpdated);
for (int k = 0; k < lSubRun.fBulkUseToken.fPlotsToUpdate.count(); k++) {
SkASSERT(lSubRun.fBulkUseToken.fPlotsToUpdate[k] ==
rSubRun.fBulkUseToken.fPlotsToUpdate[k]);
}*/
}
}
}
#endif