| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkBlitRow_opts_DEFINED |
| #define SkBlitRow_opts_DEFINED |
| |
| #include "Sk4px.h" |
| #include "SkColorData.h" |
| #include "SkMSAN.h" |
| |
| #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 |
| #include "SkColor_opts_SSE2.h" |
| #endif |
| |
| namespace SK_OPTS_NS { |
| |
| // Color32 uses the blend_256_round_alt algorithm from tests/BlendTest.cpp. |
| // It's not quite perfect, but it's never wrong in the interesting edge cases, |
| // and it's quite a bit faster than blend_perfect. |
| // |
| // blend_256_round_alt is our currently blessed algorithm. Please use it or an analogous one. |
| static inline |
| void blit_row_color32(SkPMColor* dst, const SkPMColor* src, int count, SkPMColor color) { |
| unsigned invA = 255 - SkGetPackedA32(color); |
| invA += invA >> 7; |
| SkASSERT(invA < 256); // We've should have already handled alpha == 0 externally. |
| |
| Sk16h colorHighAndRound = Sk4px::DupPMColor(color).widenHi() + Sk16h(128); |
| Sk16b invA_16x(invA); |
| |
| Sk4px::MapSrc(count, dst, src, [&](const Sk4px& src4) -> Sk4px { |
| return (src4 * invA_16x).addNarrowHi(colorHighAndRound); |
| }); |
| } |
| |
| #if defined(SK_ARM_HAS_NEON) |
| |
| // Return a uint8x8_t value, r, computed as r[i] = SkMulDiv255Round(x[i], y[i]), where r[i], x[i], |
| // y[i] are the i-th lanes of the corresponding NEON vectors. |
| static inline uint8x8_t SkMulDiv255Round_neon8(uint8x8_t x, uint8x8_t y) { |
| uint16x8_t prod = vmull_u8(x, y); |
| return vraddhn_u16(prod, vrshrq_n_u16(prod, 8)); |
| } |
| |
| // The implementations of SkPMSrcOver below perform alpha blending consistently with |
| // SkMulDiv255Round. They compute the color components (numbers in the interval [0, 255]) as: |
| // |
| // result_i = src_i + rint(g(src_alpha, dst_i)) |
| // |
| // where g(x, y) = ((255.0 - x) * y) / 255.0 and rint rounds to the nearest integer. |
| |
| // In this variant of SkPMSrcOver each NEON register, dst.val[i], src.val[i], contains the value |
| // of the same color component for 8 consecutive pixels. The result of this function follows the |
| // same convention. |
| static inline uint8x8x4_t SkPMSrcOver_neon8(uint8x8x4_t dst, uint8x8x4_t src) { |
| uint8x8_t nalphas = vmvn_u8(src.val[3]); |
| uint8x8x4_t result; |
| result.val[0] = vadd_u8(src.val[0], SkMulDiv255Round_neon8(nalphas, dst.val[0])); |
| result.val[1] = vadd_u8(src.val[1], SkMulDiv255Round_neon8(nalphas, dst.val[1])); |
| result.val[2] = vadd_u8(src.val[2], SkMulDiv255Round_neon8(nalphas, dst.val[2])); |
| result.val[3] = vadd_u8(src.val[3], SkMulDiv255Round_neon8(nalphas, dst.val[3])); |
| return result; |
| } |
| |
| // In this variant of SkPMSrcOver dst and src contain the color components of two consecutive |
| // pixels. The return value follows the same convention. |
| static inline uint8x8_t SkPMSrcOver_neon2(uint8x8_t dst, uint8x8_t src) { |
| const uint8x8_t alpha_indices = vcreate_u8(0x0707070703030303); |
| uint8x8_t nalphas = vmvn_u8(vtbl1_u8(src, alpha_indices)); |
| return vadd_u8(src, SkMulDiv255Round_neon8(nalphas, dst)); |
| } |
| |
| #endif |
| |
| /*not static*/ inline |
| void blit_row_s32a_opaque(SkPMColor* dst, const SkPMColor* src, int len, U8CPU alpha) { |
| SkASSERT(alpha == 0xFF); |
| sk_msan_assert_initialized(src, src+len); |
| |
| #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 |
| while (len >= 16) { |
| // Load 16 source pixels. |
| auto s0 = _mm_loadu_si128((const __m128i*)(src) + 0), |
| s1 = _mm_loadu_si128((const __m128i*)(src) + 1), |
| s2 = _mm_loadu_si128((const __m128i*)(src) + 2), |
| s3 = _mm_loadu_si128((const __m128i*)(src) + 3); |
| |
| const auto alphaMask = _mm_set1_epi32(0xFF000000); |
| |
| auto ORed = _mm_or_si128(s3, _mm_or_si128(s2, _mm_or_si128(s1, s0))); |
| if (_mm_testz_si128(ORed, alphaMask)) { |
| // All 16 source pixels are transparent. Nothing to do. |
| src += 16; |
| dst += 16; |
| len -= 16; |
| continue; |
| } |
| |
| auto d0 = (__m128i*)(dst) + 0, |
| d1 = (__m128i*)(dst) + 1, |
| d2 = (__m128i*)(dst) + 2, |
| d3 = (__m128i*)(dst) + 3; |
| |
| auto ANDed = _mm_and_si128(s3, _mm_and_si128(s2, _mm_and_si128(s1, s0))); |
| if (_mm_testc_si128(ANDed, alphaMask)) { |
| // All 16 source pixels are opaque. SrcOver becomes Src. |
| _mm_storeu_si128(d0, s0); |
| _mm_storeu_si128(d1, s1); |
| _mm_storeu_si128(d2, s2); |
| _mm_storeu_si128(d3, s3); |
| src += 16; |
| dst += 16; |
| len -= 16; |
| continue; |
| } |
| |
| // TODO: This math is wrong. |
| // Do SrcOver. |
| _mm_storeu_si128(d0, SkPMSrcOver_SSE2(s0, _mm_loadu_si128(d0))); |
| _mm_storeu_si128(d1, SkPMSrcOver_SSE2(s1, _mm_loadu_si128(d1))); |
| _mm_storeu_si128(d2, SkPMSrcOver_SSE2(s2, _mm_loadu_si128(d2))); |
| _mm_storeu_si128(d3, SkPMSrcOver_SSE2(s3, _mm_loadu_si128(d3))); |
| src += 16; |
| dst += 16; |
| len -= 16; |
| } |
| |
| #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 |
| while (len >= 16) { |
| // Load 16 source pixels. |
| auto s0 = _mm_loadu_si128((const __m128i*)(src) + 0), |
| s1 = _mm_loadu_si128((const __m128i*)(src) + 1), |
| s2 = _mm_loadu_si128((const __m128i*)(src) + 2), |
| s3 = _mm_loadu_si128((const __m128i*)(src) + 3); |
| |
| const auto alphaMask = _mm_set1_epi32(0xFF000000); |
| |
| auto ORed = _mm_or_si128(s3, _mm_or_si128(s2, _mm_or_si128(s1, s0))); |
| if (0xffff == _mm_movemask_epi8(_mm_cmpeq_epi8(_mm_and_si128(ORed, alphaMask), |
| _mm_setzero_si128()))) { |
| // All 16 source pixels are transparent. Nothing to do. |
| src += 16; |
| dst += 16; |
| len -= 16; |
| continue; |
| } |
| |
| auto d0 = (__m128i*)(dst) + 0, |
| d1 = (__m128i*)(dst) + 1, |
| d2 = (__m128i*)(dst) + 2, |
| d3 = (__m128i*)(dst) + 3; |
| |
| auto ANDed = _mm_and_si128(s3, _mm_and_si128(s2, _mm_and_si128(s1, s0))); |
| if (0xffff == _mm_movemask_epi8(_mm_cmpeq_epi8(_mm_and_si128(ANDed, alphaMask), |
| alphaMask))) { |
| // All 16 source pixels are opaque. SrcOver becomes Src. |
| _mm_storeu_si128(d0, s0); |
| _mm_storeu_si128(d1, s1); |
| _mm_storeu_si128(d2, s2); |
| _mm_storeu_si128(d3, s3); |
| src += 16; |
| dst += 16; |
| len -= 16; |
| continue; |
| } |
| |
| // TODO: This math is wrong. |
| // Do SrcOver. |
| _mm_storeu_si128(d0, SkPMSrcOver_SSE2(s0, _mm_loadu_si128(d0))); |
| _mm_storeu_si128(d1, SkPMSrcOver_SSE2(s1, _mm_loadu_si128(d1))); |
| _mm_storeu_si128(d2, SkPMSrcOver_SSE2(s2, _mm_loadu_si128(d2))); |
| _mm_storeu_si128(d3, SkPMSrcOver_SSE2(s3, _mm_loadu_si128(d3))); |
| |
| src += 16; |
| dst += 16; |
| len -= 16; |
| } |
| |
| #elif defined(SK_ARM_HAS_NEON) |
| // Do 8-pixels at a time. A 16-pixels at a time version of this code was also tested, but it |
| // underperformed on some of the platforms under test for inputs with frequent transitions of |
| // alpha (corresponding to changes of the conditions [~]alpha_u64 == 0 below). It may be worth |
| // revisiting the situation in the future. |
| while (len >= 8) { |
| // Load 8 pixels in 4 NEON registers. src_col.val[i] will contain the same color component |
| // for 8 consecutive pixels (e.g. src_col.val[3] will contain all alpha components of 8 |
| // pixels). |
| uint8x8x4_t src_col = vld4_u8(reinterpret_cast<const uint8_t*>(src)); |
| src += 8; |
| len -= 8; |
| |
| // We now detect 2 special cases: the first occurs when all alphas are zero (the 8 pixels |
| // are all transparent), the second when all alphas are fully set (they are all opaque). |
| uint8x8_t alphas = src_col.val[3]; |
| uint64_t alphas_u64 = vget_lane_u64(vreinterpret_u64_u8(alphas), 0); |
| if (alphas_u64 == 0) { |
| // All pixels transparent. |
| dst += 8; |
| continue; |
| } |
| |
| if (~alphas_u64 == 0) { |
| // All pixels opaque. |
| vst4_u8(reinterpret_cast<uint8_t*>(dst), src_col); |
| dst += 8; |
| continue; |
| } |
| |
| uint8x8x4_t dst_col = vld4_u8(reinterpret_cast<uint8_t*>(dst)); |
| vst4_u8(reinterpret_cast<uint8_t*>(dst), SkPMSrcOver_neon8(dst_col, src_col)); |
| dst += 8; |
| } |
| |
| // Deal with leftover pixels. |
| for (; len >= 2; len -= 2, src += 2, dst += 2) { |
| uint8x8_t src2 = vld1_u8(reinterpret_cast<const uint8_t*>(src)); |
| uint8x8_t dst2 = vld1_u8(reinterpret_cast<const uint8_t*>(dst)); |
| vst1_u8(reinterpret_cast<uint8_t*>(dst), SkPMSrcOver_neon2(dst2, src2)); |
| } |
| |
| if (len != 0) { |
| uint8x8_t result = SkPMSrcOver_neon2(vcreate_u8(*dst), vcreate_u8(*src)); |
| vst1_lane_u32(dst, vreinterpret_u32_u8(result), 0); |
| } |
| return; |
| #endif |
| |
| while (len-- > 0) { |
| // This 0xFF000000 is not semantically necessary, but for compatibility |
| // with chromium:611002 we need to keep it until we figure out where |
| // the non-premultiplied src values (like 0x00FFFFFF) are coming from. |
| // TODO(mtklein): sort this out and assert *src is premul here. |
| if (*src & 0xFF000000) { |
| *dst = (*src >= 0xFF000000) ? *src : SkPMSrcOver(*src, *dst); |
| } |
| src++; |
| dst++; |
| } |
| } |
| |
| } // SK_OPTS_NS |
| |
| #endif//SkBlitRow_opts_DEFINED |