mtklein | 4a37d08 | 2015-09-10 10:38:02 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2015 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #ifndef SkBlitRow_opts_DEFINED |
| 9 | #define SkBlitRow_opts_DEFINED |
| 10 | |
| 11 | #include "Sk4px.h" |
Cary Clark | a4083c9 | 2017-09-15 11:59:23 -0400 | [diff] [blame] | 12 | #include "SkColorData.h" |
mtklein | b4a7dc9 | 2016-03-23 06:29:12 -0700 | [diff] [blame] | 13 | #include "SkMSAN.h" |
| 14 | |
| 15 | #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 |
| 16 | #include "SkColor_opts_SSE2.h" |
| 17 | #endif |
mtklein | 4a37d08 | 2015-09-10 10:38:02 -0700 | [diff] [blame] | 18 | |
| 19 | namespace SK_OPTS_NS { |
| 20 | |
| 21 | // Color32 uses the blend_256_round_alt algorithm from tests/BlendTest.cpp. |
| 22 | // It's not quite perfect, but it's never wrong in the interesting edge cases, |
| 23 | // and it's quite a bit faster than blend_perfect. |
| 24 | // |
| 25 | // blend_256_round_alt is our currently blessed algorithm. Please use it or an analogous one. |
mtklein | b4a7dc9 | 2016-03-23 06:29:12 -0700 | [diff] [blame] | 26 | static inline |
| 27 | void blit_row_color32(SkPMColor* dst, const SkPMColor* src, int count, SkPMColor color) { |
mtklein | 4a37d08 | 2015-09-10 10:38:02 -0700 | [diff] [blame] | 28 | unsigned invA = 255 - SkGetPackedA32(color); |
| 29 | invA += invA >> 7; |
| 30 | SkASSERT(invA < 256); // We've should have already handled alpha == 0 externally. |
| 31 | |
| 32 | Sk16h colorHighAndRound = Sk4px::DupPMColor(color).widenHi() + Sk16h(128); |
| 33 | Sk16b invA_16x(invA); |
| 34 | |
| 35 | Sk4px::MapSrc(count, dst, src, [&](const Sk4px& src4) -> Sk4px { |
| 36 | return (src4 * invA_16x).addNarrowHi(colorHighAndRound); |
| 37 | }); |
| 38 | } |
| 39 | |
Matteo Franchin | a132c38 | 2017-05-26 18:56:51 +0100 | [diff] [blame] | 40 | #if defined(SK_ARM_HAS_NEON) |
| 41 | |
| 42 | // Return a uint8x8_t value, r, computed as r[i] = SkMulDiv255Round(x[i], y[i]), where r[i], x[i], |
| 43 | // y[i] are the i-th lanes of the corresponding NEON vectors. |
| 44 | static inline uint8x8_t SkMulDiv255Round_neon8(uint8x8_t x, uint8x8_t y) { |
| 45 | uint16x8_t prod = vmull_u8(x, y); |
| 46 | return vraddhn_u16(prod, vrshrq_n_u16(prod, 8)); |
| 47 | } |
| 48 | |
| 49 | // The implementations of SkPMSrcOver below perform alpha blending consistently with |
| 50 | // SkMulDiv255Round. They compute the color components (numbers in the interval [0, 255]) as: |
| 51 | // |
| 52 | // result_i = src_i + rint(g(src_alpha, dst_i)) |
| 53 | // |
| 54 | // where g(x, y) = ((255.0 - x) * y) / 255.0 and rint rounds to the nearest integer. |
| 55 | |
| 56 | // In this variant of SkPMSrcOver each NEON register, dst.val[i], src.val[i], contains the value |
| 57 | // of the same color component for 8 consecutive pixels. The result of this function follows the |
| 58 | // same convention. |
| 59 | static inline uint8x8x4_t SkPMSrcOver_neon8(uint8x8x4_t dst, uint8x8x4_t src) { |
| 60 | uint8x8_t nalphas = vmvn_u8(src.val[3]); |
| 61 | uint8x8x4_t result; |
| 62 | result.val[0] = vadd_u8(src.val[0], SkMulDiv255Round_neon8(nalphas, dst.val[0])); |
| 63 | result.val[1] = vadd_u8(src.val[1], SkMulDiv255Round_neon8(nalphas, dst.val[1])); |
| 64 | result.val[2] = vadd_u8(src.val[2], SkMulDiv255Round_neon8(nalphas, dst.val[2])); |
| 65 | result.val[3] = vadd_u8(src.val[3], SkMulDiv255Round_neon8(nalphas, dst.val[3])); |
| 66 | return result; |
| 67 | } |
| 68 | |
| 69 | // In this variant of SkPMSrcOver dst and src contain the color components of two consecutive |
| 70 | // pixels. The return value follows the same convention. |
| 71 | static inline uint8x8_t SkPMSrcOver_neon2(uint8x8_t dst, uint8x8_t src) { |
| 72 | const uint8x8_t alpha_indices = vcreate_u8(0x0707070703030303); |
| 73 | uint8x8_t nalphas = vmvn_u8(vtbl1_u8(src, alpha_indices)); |
| 74 | return vadd_u8(src, SkMulDiv255Round_neon8(nalphas, dst)); |
| 75 | } |
| 76 | |
| 77 | #endif |
| 78 | |
Mike Klein | cd71f11 | 2017-08-23 11:11:55 -0400 | [diff] [blame] | 79 | /*not static*/ inline |
mtklein | b4a7dc9 | 2016-03-23 06:29:12 -0700 | [diff] [blame] | 80 | void blit_row_s32a_opaque(SkPMColor* dst, const SkPMColor* src, int len, U8CPU alpha) { |
| 81 | SkASSERT(alpha == 0xFF); |
| 82 | sk_msan_assert_initialized(src, src+len); |
| 83 | |
| 84 | #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 |
| 85 | while (len >= 16) { |
| 86 | // Load 16 source pixels. |
| 87 | auto s0 = _mm_loadu_si128((const __m128i*)(src) + 0), |
| 88 | s1 = _mm_loadu_si128((const __m128i*)(src) + 1), |
| 89 | s2 = _mm_loadu_si128((const __m128i*)(src) + 2), |
| 90 | s3 = _mm_loadu_si128((const __m128i*)(src) + 3); |
| 91 | |
| 92 | const auto alphaMask = _mm_set1_epi32(0xFF000000); |
| 93 | |
| 94 | auto ORed = _mm_or_si128(s3, _mm_or_si128(s2, _mm_or_si128(s1, s0))); |
| 95 | if (_mm_testz_si128(ORed, alphaMask)) { |
| 96 | // All 16 source pixels are transparent. Nothing to do. |
| 97 | src += 16; |
| 98 | dst += 16; |
| 99 | len -= 16; |
| 100 | continue; |
| 101 | } |
| 102 | |
| 103 | auto d0 = (__m128i*)(dst) + 0, |
| 104 | d1 = (__m128i*)(dst) + 1, |
| 105 | d2 = (__m128i*)(dst) + 2, |
| 106 | d3 = (__m128i*)(dst) + 3; |
| 107 | |
| 108 | auto ANDed = _mm_and_si128(s3, _mm_and_si128(s2, _mm_and_si128(s1, s0))); |
| 109 | if (_mm_testc_si128(ANDed, alphaMask)) { |
| 110 | // All 16 source pixels are opaque. SrcOver becomes Src. |
| 111 | _mm_storeu_si128(d0, s0); |
| 112 | _mm_storeu_si128(d1, s1); |
| 113 | _mm_storeu_si128(d2, s2); |
| 114 | _mm_storeu_si128(d3, s3); |
| 115 | src += 16; |
| 116 | dst += 16; |
| 117 | len -= 16; |
| 118 | continue; |
| 119 | } |
| 120 | |
| 121 | // TODO: This math is wrong. |
| 122 | // Do SrcOver. |
| 123 | _mm_storeu_si128(d0, SkPMSrcOver_SSE2(s0, _mm_loadu_si128(d0))); |
| 124 | _mm_storeu_si128(d1, SkPMSrcOver_SSE2(s1, _mm_loadu_si128(d1))); |
| 125 | _mm_storeu_si128(d2, SkPMSrcOver_SSE2(s2, _mm_loadu_si128(d2))); |
| 126 | _mm_storeu_si128(d3, SkPMSrcOver_SSE2(s3, _mm_loadu_si128(d3))); |
| 127 | src += 16; |
| 128 | dst += 16; |
| 129 | len -= 16; |
| 130 | } |
| 131 | |
| 132 | #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 |
| 133 | while (len >= 16) { |
| 134 | // Load 16 source pixels. |
| 135 | auto s0 = _mm_loadu_si128((const __m128i*)(src) + 0), |
| 136 | s1 = _mm_loadu_si128((const __m128i*)(src) + 1), |
| 137 | s2 = _mm_loadu_si128((const __m128i*)(src) + 2), |
| 138 | s3 = _mm_loadu_si128((const __m128i*)(src) + 3); |
| 139 | |
| 140 | const auto alphaMask = _mm_set1_epi32(0xFF000000); |
| 141 | |
| 142 | auto ORed = _mm_or_si128(s3, _mm_or_si128(s2, _mm_or_si128(s1, s0))); |
| 143 | if (0xffff == _mm_movemask_epi8(_mm_cmpeq_epi8(_mm_and_si128(ORed, alphaMask), |
| 144 | _mm_setzero_si128()))) { |
| 145 | // All 16 source pixels are transparent. Nothing to do. |
| 146 | src += 16; |
| 147 | dst += 16; |
| 148 | len -= 16; |
| 149 | continue; |
| 150 | } |
| 151 | |
| 152 | auto d0 = (__m128i*)(dst) + 0, |
| 153 | d1 = (__m128i*)(dst) + 1, |
| 154 | d2 = (__m128i*)(dst) + 2, |
| 155 | d3 = (__m128i*)(dst) + 3; |
| 156 | |
| 157 | auto ANDed = _mm_and_si128(s3, _mm_and_si128(s2, _mm_and_si128(s1, s0))); |
| 158 | if (0xffff == _mm_movemask_epi8(_mm_cmpeq_epi8(_mm_and_si128(ANDed, alphaMask), |
| 159 | alphaMask))) { |
| 160 | // All 16 source pixels are opaque. SrcOver becomes Src. |
| 161 | _mm_storeu_si128(d0, s0); |
| 162 | _mm_storeu_si128(d1, s1); |
| 163 | _mm_storeu_si128(d2, s2); |
| 164 | _mm_storeu_si128(d3, s3); |
| 165 | src += 16; |
| 166 | dst += 16; |
| 167 | len -= 16; |
| 168 | continue; |
| 169 | } |
| 170 | |
| 171 | // TODO: This math is wrong. |
| 172 | // Do SrcOver. |
| 173 | _mm_storeu_si128(d0, SkPMSrcOver_SSE2(s0, _mm_loadu_si128(d0))); |
| 174 | _mm_storeu_si128(d1, SkPMSrcOver_SSE2(s1, _mm_loadu_si128(d1))); |
| 175 | _mm_storeu_si128(d2, SkPMSrcOver_SSE2(s2, _mm_loadu_si128(d2))); |
| 176 | _mm_storeu_si128(d3, SkPMSrcOver_SSE2(s3, _mm_loadu_si128(d3))); |
| 177 | |
| 178 | src += 16; |
| 179 | dst += 16; |
| 180 | len -= 16; |
| 181 | } |
| 182 | |
| 183 | #elif defined(SK_ARM_HAS_NEON) |
Matteo Franchin | a132c38 | 2017-05-26 18:56:51 +0100 | [diff] [blame] | 184 | // Do 8-pixels at a time. A 16-pixels at a time version of this code was also tested, but it |
| 185 | // underperformed on some of the platforms under test for inputs with frequent transitions of |
| 186 | // alpha (corresponding to changes of the conditions [~]alpha_u64 == 0 below). It may be worth |
| 187 | // revisiting the situation in the future. |
| 188 | while (len >= 8) { |
| 189 | // Load 8 pixels in 4 NEON registers. src_col.val[i] will contain the same color component |
| 190 | // for 8 consecutive pixels (e.g. src_col.val[3] will contain all alpha components of 8 |
| 191 | // pixels). |
| 192 | uint8x8x4_t src_col = vld4_u8(reinterpret_cast<const uint8_t*>(src)); |
| 193 | src += 8; |
| 194 | len -= 8; |
| 195 | |
| 196 | // We now detect 2 special cases: the first occurs when all alphas are zero (the 8 pixels |
| 197 | // are all transparent), the second when all alphas are fully set (they are all opaque). |
| 198 | uint8x8_t alphas = src_col.val[3]; |
| 199 | uint64_t alphas_u64 = vget_lane_u64(vreinterpret_u64_u8(alphas), 0); |
| 200 | if (alphas_u64 == 0) { |
| 201 | // All pixels transparent. |
| 202 | dst += 8; |
mtklein | b4a7dc9 | 2016-03-23 06:29:12 -0700 | [diff] [blame] | 203 | continue; |
| 204 | } |
| 205 | |
Matteo Franchin | a132c38 | 2017-05-26 18:56:51 +0100 | [diff] [blame] | 206 | if (~alphas_u64 == 0) { |
| 207 | // All pixels opaque. |
| 208 | vst4_u8(reinterpret_cast<uint8_t*>(dst), src_col); |
| 209 | dst += 8; |
mtklein | b4a7dc9 | 2016-03-23 06:29:12 -0700 | [diff] [blame] | 210 | continue; |
| 211 | } |
| 212 | |
Matteo Franchin | a132c38 | 2017-05-26 18:56:51 +0100 | [diff] [blame] | 213 | uint8x8x4_t dst_col = vld4_u8(reinterpret_cast<uint8_t*>(dst)); |
| 214 | vst4_u8(reinterpret_cast<uint8_t*>(dst), SkPMSrcOver_neon8(dst_col, src_col)); |
| 215 | dst += 8; |
mtklein | b4a7dc9 | 2016-03-23 06:29:12 -0700 | [diff] [blame] | 216 | } |
Matteo Franchin | a132c38 | 2017-05-26 18:56:51 +0100 | [diff] [blame] | 217 | |
| 218 | // Deal with leftover pixels. |
| 219 | for (; len >= 2; len -= 2, src += 2, dst += 2) { |
| 220 | uint8x8_t src2 = vld1_u8(reinterpret_cast<const uint8_t*>(src)); |
| 221 | uint8x8_t dst2 = vld1_u8(reinterpret_cast<const uint8_t*>(dst)); |
| 222 | vst1_u8(reinterpret_cast<uint8_t*>(dst), SkPMSrcOver_neon2(dst2, src2)); |
| 223 | } |
| 224 | |
| 225 | if (len != 0) { |
| 226 | uint8x8_t result = SkPMSrcOver_neon2(vcreate_u8(*dst), vcreate_u8(*src)); |
| 227 | vst1_lane_u32(dst, vreinterpret_u32_u8(result), 0); |
| 228 | } |
| 229 | return; |
mtklein | b4a7dc9 | 2016-03-23 06:29:12 -0700 | [diff] [blame] | 230 | #endif |
| 231 | |
| 232 | while (len-- > 0) { |
mtklein | 3e31812 | 2016-06-17 13:47:53 -0700 | [diff] [blame] | 233 | // This 0xFF000000 is not semantically necessary, but for compatibility |
| 234 | // with chromium:611002 we need to keep it until we figure out where |
| 235 | // the non-premultiplied src values (like 0x00FFFFFF) are coming from. |
| 236 | // TODO(mtklein): sort this out and assert *src is premul here. |
| 237 | if (*src & 0xFF000000) { |
mtklein | b4a7dc9 | 2016-03-23 06:29:12 -0700 | [diff] [blame] | 238 | *dst = (*src >= 0xFF000000) ? *src : SkPMSrcOver(*src, *dst); |
| 239 | } |
| 240 | src++; |
| 241 | dst++; |
| 242 | } |
| 243 | } |
| 244 | |
mtklein | 4a37d08 | 2015-09-10 10:38:02 -0700 | [diff] [blame] | 245 | } // SK_OPTS_NS |
| 246 | |
| 247 | #endif//SkBlitRow_opts_DEFINED |