Greg Daniel | 164a9f0 | 2016-02-22 09:56:40 -0500 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2015 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "GrVkMemory.h" |
| 9 | |
| 10 | #include "GrVkGpu.h" |
| 11 | #include "GrVkUtil.h" |
| 12 | |
| 13 | static bool get_valid_memory_type_index(VkPhysicalDeviceMemoryProperties physDevMemProps, |
| 14 | uint32_t typeBits, |
| 15 | VkMemoryPropertyFlags requestedMemFlags, |
| 16 | uint32_t* typeIndex) { |
| 17 | uint32_t checkBit = 1; |
| 18 | for (uint32_t i = 0; i < 32; ++i) { |
| 19 | if (typeBits & checkBit) { |
| 20 | uint32_t supportedFlags = physDevMemProps.memoryTypes[i].propertyFlags & |
| 21 | requestedMemFlags; |
| 22 | if (supportedFlags == requestedMemFlags) { |
| 23 | *typeIndex = i; |
| 24 | return true; |
| 25 | } |
| 26 | } |
| 27 | checkBit <<= 1; |
| 28 | } |
| 29 | return false; |
| 30 | } |
| 31 | |
jvanverth | 6b6ffc4 | 2016-06-13 14:28:07 -0700 | [diff] [blame^] | 32 | static GrVkGpu::Heap buffer_type_to_heap(GrVkBuffer::Type type) { |
| 33 | const GrVkGpu::Heap kBufferToHeap[]{ |
| 34 | GrVkGpu::kVertexBuffer_Heap, |
| 35 | GrVkGpu::kIndexBuffer_Heap, |
| 36 | GrVkGpu::kUniformBuffer_Heap, |
| 37 | GrVkGpu::kCopyReadBuffer_Heap, |
| 38 | GrVkGpu::kCopyWriteBuffer_Heap, |
Greg Daniel | 164a9f0 | 2016-02-22 09:56:40 -0500 | [diff] [blame] | 39 | }; |
jvanverth | 6b6ffc4 | 2016-06-13 14:28:07 -0700 | [diff] [blame^] | 40 | GR_STATIC_ASSERT(0 == GrVkBuffer::kVertex_Type); |
| 41 | GR_STATIC_ASSERT(1 == GrVkBuffer::kIndex_Type); |
| 42 | GR_STATIC_ASSERT(2 == GrVkBuffer::kUniform_Type); |
| 43 | GR_STATIC_ASSERT(3 == GrVkBuffer::kCopyRead_Type); |
| 44 | GR_STATIC_ASSERT(4 == GrVkBuffer::kCopyWrite_Type); |
Greg Daniel | 164a9f0 | 2016-02-22 09:56:40 -0500 | [diff] [blame] | 45 | |
jvanverth | 6b6ffc4 | 2016-06-13 14:28:07 -0700 | [diff] [blame^] | 46 | return kBufferToHeap[type]; |
Greg Daniel | 164a9f0 | 2016-02-22 09:56:40 -0500 | [diff] [blame] | 47 | } |
| 48 | |
| 49 | bool GrVkMemory::AllocAndBindBufferMemory(const GrVkGpu* gpu, |
| 50 | VkBuffer buffer, |
jvanverth | 6b6ffc4 | 2016-06-13 14:28:07 -0700 | [diff] [blame^] | 51 | GrVkBuffer::Type type, |
jvanverth | 1e305ba | 2016-06-01 09:39:15 -0700 | [diff] [blame] | 52 | GrVkAlloc* alloc) { |
jvanverth | e50f3e7 | 2016-03-28 07:03:06 -0700 | [diff] [blame] | 53 | const GrVkInterface* iface = gpu->vkInterface(); |
Greg Daniel | 164a9f0 | 2016-02-22 09:56:40 -0500 | [diff] [blame] | 54 | VkDevice device = gpu->device(); |
| 55 | |
| 56 | VkMemoryRequirements memReqs; |
jvanverth | e50f3e7 | 2016-03-28 07:03:06 -0700 | [diff] [blame] | 57 | GR_VK_CALL(iface, GetBufferMemoryRequirements(device, buffer, &memReqs)); |
Greg Daniel | 164a9f0 | 2016-02-22 09:56:40 -0500 | [diff] [blame] | 58 | |
jvanverth | 6b6ffc4 | 2016-06-13 14:28:07 -0700 | [diff] [blame^] | 59 | VkMemoryPropertyFlags desiredMemProps = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | |
| 60 | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | |
| 61 | VK_MEMORY_PROPERTY_HOST_CACHED_BIT; |
| 62 | uint32_t typeIndex; |
| 63 | if (!get_valid_memory_type_index(gpu->physicalDeviceMemoryProperties(), |
| 64 | memReqs.memoryTypeBits, |
| 65 | desiredMemProps, |
| 66 | &typeIndex)) { |
| 67 | // this memory type should always be available |
| 68 | SkASSERT_RELEASE(get_valid_memory_type_index(gpu->physicalDeviceMemoryProperties(), |
| 69 | memReqs.memoryTypeBits, |
| 70 | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | |
| 71 | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, |
| 72 | &typeIndex)); |
| 73 | } |
| 74 | |
| 75 | GrVkHeap* heap = gpu->getHeap(buffer_type_to_heap(type)); |
| 76 | |
| 77 | if (!heap->alloc(memReqs.size, memReqs.alignment, typeIndex, alloc)) { |
| 78 | SkDebugf("Failed to alloc buffer\n"); |
Greg Daniel | 164a9f0 | 2016-02-22 09:56:40 -0500 | [diff] [blame] | 79 | return false; |
| 80 | } |
| 81 | |
jvanverth | 1e305ba | 2016-06-01 09:39:15 -0700 | [diff] [blame] | 82 | // Bind Memory to device |
| 83 | VkResult err = GR_VK_CALL(iface, BindBufferMemory(device, buffer, |
| 84 | alloc->fMemory, alloc->fOffset)); |
Greg Daniel | 164a9f0 | 2016-02-22 09:56:40 -0500 | [diff] [blame] | 85 | if (err) { |
jvanverth | 6b6ffc4 | 2016-06-13 14:28:07 -0700 | [diff] [blame^] | 86 | SkASSERT_RELEASE(heap->free(*alloc)); |
Greg Daniel | 164a9f0 | 2016-02-22 09:56:40 -0500 | [diff] [blame] | 87 | return false; |
| 88 | } |
jvanverth | 6b6ffc4 | 2016-06-13 14:28:07 -0700 | [diff] [blame^] | 89 | |
Greg Daniel | 164a9f0 | 2016-02-22 09:56:40 -0500 | [diff] [blame] | 90 | return true; |
| 91 | } |
| 92 | |
jvanverth | 6b6ffc4 | 2016-06-13 14:28:07 -0700 | [diff] [blame^] | 93 | void GrVkMemory::FreeBufferMemory(const GrVkGpu* gpu, GrVkBuffer::Type type, |
| 94 | const GrVkAlloc& alloc) { |
| 95 | |
| 96 | GrVkHeap* heap = gpu->getHeap(buffer_type_to_heap(type)); |
| 97 | SkASSERT_RELEASE(heap->free(alloc)); |
| 98 | } |
| 99 | |
| 100 | // for debugging |
| 101 | static uint64_t gTotalImageMemory = 0; |
| 102 | static uint64_t gTotalImageMemoryFullPage = 0; |
| 103 | |
| 104 | const VkDeviceSize kMaxSmallImageSize = 16 * 1024; |
| 105 | const VkDeviceSize kMinVulkanPageSize = 16 * 1024; |
| 106 | |
| 107 | static VkDeviceSize align_size(VkDeviceSize size, VkDeviceSize alignment) { |
| 108 | return (size + alignment - 1) & ~(alignment - 1); |
jvanverth | 1e305ba | 2016-06-01 09:39:15 -0700 | [diff] [blame] | 109 | } |
| 110 | |
Greg Daniel | 164a9f0 | 2016-02-22 09:56:40 -0500 | [diff] [blame] | 111 | bool GrVkMemory::AllocAndBindImageMemory(const GrVkGpu* gpu, |
| 112 | VkImage image, |
jvanverth | 6b6ffc4 | 2016-06-13 14:28:07 -0700 | [diff] [blame^] | 113 | bool linearTiling, |
jvanverth | 1e305ba | 2016-06-01 09:39:15 -0700 | [diff] [blame] | 114 | GrVkAlloc* alloc) { |
jvanverth | e50f3e7 | 2016-03-28 07:03:06 -0700 | [diff] [blame] | 115 | const GrVkInterface* iface = gpu->vkInterface(); |
Greg Daniel | 164a9f0 | 2016-02-22 09:56:40 -0500 | [diff] [blame] | 116 | VkDevice device = gpu->device(); |
| 117 | |
| 118 | VkMemoryRequirements memReqs; |
jvanverth | e50f3e7 | 2016-03-28 07:03:06 -0700 | [diff] [blame] | 119 | GR_VK_CALL(iface, GetImageMemoryRequirements(device, image, &memReqs)); |
Greg Daniel | 164a9f0 | 2016-02-22 09:56:40 -0500 | [diff] [blame] | 120 | |
jvanverth | 6b6ffc4 | 2016-06-13 14:28:07 -0700 | [diff] [blame^] | 121 | uint32_t typeIndex; |
| 122 | GrVkHeap* heap; |
| 123 | if (linearTiling) { |
| 124 | VkMemoryPropertyFlags desiredMemProps = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | |
| 125 | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | |
| 126 | VK_MEMORY_PROPERTY_HOST_CACHED_BIT; |
| 127 | if (!get_valid_memory_type_index(gpu->physicalDeviceMemoryProperties(), |
| 128 | memReqs.memoryTypeBits, |
| 129 | desiredMemProps, |
| 130 | &typeIndex)) { |
| 131 | // this memory type should always be available |
| 132 | SkASSERT_RELEASE(get_valid_memory_type_index(gpu->physicalDeviceMemoryProperties(), |
| 133 | memReqs.memoryTypeBits, |
| 134 | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | |
| 135 | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, |
| 136 | &typeIndex)); |
| 137 | } |
| 138 | heap = gpu->getHeap(GrVkGpu::kLinearImage_Heap); |
| 139 | } else { |
| 140 | // this memory type should always be available |
| 141 | SkASSERT_RELEASE(get_valid_memory_type_index(gpu->physicalDeviceMemoryProperties(), |
| 142 | memReqs.memoryTypeBits, |
| 143 | VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, |
| 144 | &typeIndex)); |
| 145 | if (memReqs.size <= kMaxSmallImageSize) { |
| 146 | heap = gpu->getHeap(GrVkGpu::kSmallOptimalImage_Heap); |
| 147 | } else { |
| 148 | heap = gpu->getHeap(GrVkGpu::kOptimalImage_Heap); |
| 149 | } |
| 150 | } |
| 151 | |
| 152 | if (!heap->alloc(memReqs.size, memReqs.alignment, typeIndex, alloc)) { |
| 153 | SkDebugf("Failed to alloc image\n"); |
Greg Daniel | 164a9f0 | 2016-02-22 09:56:40 -0500 | [diff] [blame] | 154 | return false; |
| 155 | } |
| 156 | |
jvanverth | 1e305ba | 2016-06-01 09:39:15 -0700 | [diff] [blame] | 157 | // Bind Memory to device |
| 158 | VkResult err = GR_VK_CALL(iface, BindImageMemory(device, image, |
| 159 | alloc->fMemory, alloc->fOffset)); |
Greg Daniel | 164a9f0 | 2016-02-22 09:56:40 -0500 | [diff] [blame] | 160 | if (err) { |
jvanverth | 6b6ffc4 | 2016-06-13 14:28:07 -0700 | [diff] [blame^] | 161 | SkASSERT_RELEASE(heap->free(*alloc)); |
Greg Daniel | 164a9f0 | 2016-02-22 09:56:40 -0500 | [diff] [blame] | 162 | return false; |
| 163 | } |
jvanverth | 6b6ffc4 | 2016-06-13 14:28:07 -0700 | [diff] [blame^] | 164 | |
| 165 | gTotalImageMemory += alloc->fSize; |
| 166 | |
| 167 | VkDeviceSize pageAlignedSize = align_size(alloc->fSize, kMinVulkanPageSize); |
| 168 | gTotalImageMemoryFullPage += pageAlignedSize; |
| 169 | |
Greg Daniel | 164a9f0 | 2016-02-22 09:56:40 -0500 | [diff] [blame] | 170 | return true; |
| 171 | } |
| 172 | |
jvanverth | 6b6ffc4 | 2016-06-13 14:28:07 -0700 | [diff] [blame^] | 173 | void GrVkMemory::FreeImageMemory(const GrVkGpu* gpu, bool linearTiling, |
| 174 | const GrVkAlloc& alloc) { |
| 175 | GrVkHeap* heap; |
| 176 | if (linearTiling) { |
| 177 | heap = gpu->getHeap(GrVkGpu::kLinearImage_Heap); |
| 178 | } else if (alloc.fSize <= kMaxSmallImageSize) { |
| 179 | heap = gpu->getHeap(GrVkGpu::kSmallOptimalImage_Heap); |
| 180 | } else { |
| 181 | heap = gpu->getHeap(GrVkGpu::kOptimalImage_Heap); |
| 182 | } |
| 183 | if (!heap->free(alloc)) { |
| 184 | // must be an adopted allocation |
| 185 | GR_VK_CALL(gpu->vkInterface(), FreeMemory(gpu->device(), alloc.fMemory, nullptr)); |
| 186 | } else { |
| 187 | gTotalImageMemory -= alloc.fSize; |
| 188 | VkDeviceSize pageAlignedSize = align_size(alloc.fSize, kMinVulkanPageSize); |
| 189 | gTotalImageMemoryFullPage -= pageAlignedSize; |
| 190 | } |
jvanverth | 1e305ba | 2016-06-01 09:39:15 -0700 | [diff] [blame] | 191 | } |
| 192 | |
Greg Daniel | 164a9f0 | 2016-02-22 09:56:40 -0500 | [diff] [blame] | 193 | VkPipelineStageFlags GrVkMemory::LayoutToPipelineStageFlags(const VkImageLayout layout) { |
| 194 | if (VK_IMAGE_LAYOUT_GENERAL == layout) { |
| 195 | return VK_PIPELINE_STAGE_ALL_COMMANDS_BIT; |
| 196 | } else if (VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL == layout || |
| 197 | VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL == layout) { |
| 198 | return VK_PIPELINE_STAGE_TRANSFER_BIT; |
| 199 | } else if (VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL == layout || |
| 200 | VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL == layout || |
| 201 | VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL == layout || |
| 202 | VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL == layout) { |
| 203 | return VK_PIPELINE_STAGE_ALL_COMMANDS_BIT; |
| 204 | } else if (VK_IMAGE_LAYOUT_PREINITIALIZED == layout) { |
| 205 | return VK_PIPELINE_STAGE_HOST_BIT; |
| 206 | } |
| 207 | |
| 208 | SkASSERT(VK_IMAGE_LAYOUT_UNDEFINED == layout); |
| 209 | return VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT; |
| 210 | } |
| 211 | |
| 212 | VkAccessFlags GrVkMemory::LayoutToSrcAccessMask(const VkImageLayout layout) { |
| 213 | // Currently we assume we will never being doing any explict shader writes (this doesn't include |
| 214 | // color attachment or depth/stencil writes). So we will ignore the |
| 215 | // VK_MEMORY_OUTPUT_SHADER_WRITE_BIT. |
| 216 | |
| 217 | // We can only directly access the host memory if we are in preinitialized or general layout, |
| 218 | // and the image is linear. |
| 219 | // TODO: Add check for linear here so we are not always adding host to general, and we should |
| 220 | // only be in preinitialized if we are linear |
| 221 | VkAccessFlags flags = 0;; |
| 222 | if (VK_IMAGE_LAYOUT_GENERAL == layout) { |
| 223 | flags = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | |
| 224 | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | |
| 225 | VK_ACCESS_TRANSFER_WRITE_BIT | |
| 226 | VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_HOST_READ_BIT; |
| 227 | } else if (VK_IMAGE_LAYOUT_PREINITIALIZED == layout) { |
| 228 | flags = VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_HOST_READ_BIT; |
| 229 | } else if (VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL == layout) { |
| 230 | flags = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; |
| 231 | } else if (VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL == layout) { |
| 232 | flags = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; |
| 233 | } else if (VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL == layout) { |
| 234 | flags = VK_ACCESS_TRANSFER_WRITE_BIT; |
| 235 | } else if (VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL == layout) { |
| 236 | flags = VK_ACCESS_TRANSFER_READ_BIT; |
| 237 | } else if (VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL == layout) { |
| 238 | flags = VK_ACCESS_SHADER_READ_BIT; |
| 239 | } |
| 240 | return flags; |
| 241 | } |
jvanverth | 6b6ffc4 | 2016-06-13 14:28:07 -0700 | [diff] [blame^] | 242 | |
| 243 | GrVkSubHeap::GrVkSubHeap(const GrVkGpu* gpu, uint32_t memoryTypeIndex, |
| 244 | VkDeviceSize size, VkDeviceSize alignment) |
| 245 | : fGpu(gpu) |
| 246 | , fMemoryTypeIndex(memoryTypeIndex) { |
| 247 | |
| 248 | VkMemoryAllocateInfo allocInfo = { |
| 249 | VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, // sType |
| 250 | NULL, // pNext |
| 251 | size, // allocationSize |
| 252 | memoryTypeIndex, // memoryTypeIndex |
| 253 | }; |
| 254 | |
| 255 | VkResult err = GR_VK_CALL(gpu->vkInterface(), AllocateMemory(gpu->device(), |
| 256 | &allocInfo, |
| 257 | nullptr, |
| 258 | &fAlloc)); |
| 259 | |
| 260 | if (VK_SUCCESS == err) { |
| 261 | fSize = size; |
| 262 | fAlignment = alignment; |
| 263 | fFreeSize = size; |
| 264 | fLargestBlockSize = size; |
| 265 | fLargestBlockOffset = 0; |
| 266 | |
| 267 | Block* block = fFreeList.addToTail(); |
| 268 | block->fOffset = 0; |
| 269 | block->fSize = fSize; |
| 270 | } else { |
| 271 | fSize = 0; |
| 272 | fAlignment = 0; |
| 273 | fFreeSize = 0; |
| 274 | fLargestBlockSize = 0; |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | GrVkSubHeap::~GrVkSubHeap() { |
| 279 | const GrVkInterface* iface = fGpu->vkInterface(); |
| 280 | GR_VK_CALL(iface, FreeMemory(fGpu->device(), fAlloc, nullptr)); |
| 281 | |
| 282 | fFreeList.reset(); |
| 283 | } |
| 284 | |
| 285 | bool GrVkSubHeap::alloc(VkDeviceSize size, GrVkAlloc* alloc) { |
| 286 | VkDeviceSize alignedSize = align_size(size, fAlignment); |
| 287 | |
| 288 | // find the smallest block big enough for our allocation |
| 289 | FreeList::Iter iter = fFreeList.headIter(); |
| 290 | FreeList::Iter bestFitIter; |
| 291 | VkDeviceSize bestFitSize = fSize + 1; |
| 292 | VkDeviceSize secondLargestSize = 0; |
| 293 | VkDeviceSize secondLargestOffset = 0; |
| 294 | while (iter.get()) { |
| 295 | Block* block = iter.get(); |
| 296 | // need to adjust size to match desired alignment |
| 297 | SkASSERT(align_size(block->fOffset, fAlignment) - block->fOffset == 0); |
| 298 | if (block->fSize >= alignedSize && block->fSize < bestFitSize) { |
| 299 | bestFitIter = iter; |
| 300 | bestFitSize = block->fSize; |
| 301 | } |
| 302 | if (secondLargestSize < block->fSize && block->fOffset != fLargestBlockOffset) { |
| 303 | secondLargestSize = block->fSize; |
| 304 | secondLargestOffset = block->fOffset; |
| 305 | } |
| 306 | iter.next(); |
| 307 | } |
| 308 | SkASSERT(secondLargestSize <= fLargestBlockSize); |
| 309 | |
| 310 | Block* bestFit = bestFitIter.get(); |
| 311 | if (bestFit) { |
| 312 | alloc->fMemory = fAlloc; |
| 313 | SkASSERT(align_size(bestFit->fOffset, fAlignment) == bestFit->fOffset); |
| 314 | alloc->fOffset = bestFit->fOffset; |
| 315 | alloc->fSize = alignedSize; |
| 316 | // adjust or remove current block |
| 317 | VkDeviceSize originalBestFitOffset = bestFit->fOffset; |
| 318 | if (bestFit->fSize > alignedSize) { |
| 319 | bestFit->fOffset += alignedSize; |
| 320 | bestFit->fSize -= alignedSize; |
| 321 | if (fLargestBlockOffset == originalBestFitOffset) { |
| 322 | if (bestFit->fSize >= secondLargestSize) { |
| 323 | fLargestBlockSize = bestFit->fSize; |
| 324 | fLargestBlockOffset = bestFit->fOffset; |
| 325 | } else { |
| 326 | fLargestBlockSize = secondLargestSize; |
| 327 | fLargestBlockOffset = secondLargestOffset; |
| 328 | } |
| 329 | } |
| 330 | #ifdef SK_DEBUG |
| 331 | VkDeviceSize largestSize = 0; |
| 332 | iter = fFreeList.headIter(); |
| 333 | while (iter.get()) { |
| 334 | Block* block = iter.get(); |
| 335 | if (largestSize < block->fSize) { |
| 336 | largestSize = block->fSize; |
| 337 | } |
| 338 | iter.next(); |
| 339 | } |
| 340 | SkASSERT(largestSize == fLargestBlockSize) |
| 341 | #endif |
| 342 | } else { |
| 343 | SkASSERT(bestFit->fSize == alignedSize); |
| 344 | if (fLargestBlockOffset == originalBestFitOffset) { |
| 345 | fLargestBlockSize = secondLargestSize; |
| 346 | fLargestBlockOffset = secondLargestOffset; |
| 347 | } |
| 348 | fFreeList.remove(bestFit); |
| 349 | #ifdef SK_DEBUG |
| 350 | VkDeviceSize largestSize = 0; |
| 351 | iter = fFreeList.headIter(); |
| 352 | while (iter.get()) { |
| 353 | Block* block = iter.get(); |
| 354 | if (largestSize < block->fSize) { |
| 355 | largestSize = block->fSize; |
| 356 | } |
| 357 | iter.next(); |
| 358 | } |
| 359 | SkASSERT(largestSize == fLargestBlockSize); |
| 360 | #endif |
| 361 | } |
| 362 | fFreeSize -= alignedSize; |
| 363 | |
| 364 | return true; |
| 365 | } |
| 366 | |
| 367 | SkDebugf("Can't allocate %d bytes, %d bytes available, largest free block %d\n", alignedSize, fFreeSize, fLargestBlockSize); |
| 368 | |
| 369 | return false; |
| 370 | } |
| 371 | |
| 372 | |
| 373 | void GrVkSubHeap::free(const GrVkAlloc& alloc) { |
| 374 | SkASSERT(alloc.fMemory == fAlloc); |
| 375 | |
| 376 | // find the block right after this allocation |
| 377 | FreeList::Iter iter = fFreeList.headIter(); |
| 378 | while (iter.get() && iter.get()->fOffset < alloc.fOffset) { |
| 379 | iter.next(); |
| 380 | } |
| 381 | FreeList::Iter prev = iter; |
| 382 | prev.prev(); |
| 383 | // we have four cases: |
| 384 | // we exactly follow the previous one |
| 385 | Block* block; |
| 386 | if (prev.get() && prev.get()->fOffset + prev.get()->fSize == alloc.fOffset) { |
| 387 | block = prev.get(); |
| 388 | block->fSize += alloc.fSize; |
| 389 | if (block->fOffset == fLargestBlockOffset) { |
| 390 | fLargestBlockSize = block->fSize; |
| 391 | } |
| 392 | // and additionally we may exactly precede the next one |
| 393 | if (iter.get() && iter.get()->fOffset == alloc.fOffset + alloc.fSize) { |
| 394 | block->fSize += iter.get()->fSize; |
| 395 | if (iter.get()->fOffset == fLargestBlockOffset) { |
| 396 | fLargestBlockOffset = block->fOffset; |
| 397 | fLargestBlockSize = block->fSize; |
| 398 | } |
| 399 | fFreeList.remove(iter.get()); |
| 400 | } |
| 401 | // or we only exactly proceed the next one |
| 402 | } else if (iter.get() && iter.get()->fOffset == alloc.fOffset + alloc.fSize) { |
| 403 | block = iter.get(); |
| 404 | block->fSize += alloc.fSize; |
| 405 | if (block->fOffset == fLargestBlockOffset) { |
| 406 | fLargestBlockOffset = alloc.fOffset; |
| 407 | fLargestBlockSize = block->fSize; |
| 408 | } |
| 409 | block->fOffset = alloc.fOffset; |
| 410 | // or we fall somewhere in between, with gaps |
| 411 | } else { |
| 412 | block = fFreeList.addBefore(iter); |
| 413 | block->fOffset = alloc.fOffset; |
| 414 | block->fSize = alloc.fSize; |
| 415 | } |
| 416 | fFreeSize += alloc.fSize; |
| 417 | if (block->fSize > fLargestBlockSize) { |
| 418 | fLargestBlockSize = block->fSize; |
| 419 | fLargestBlockOffset = block->fOffset; |
| 420 | } |
| 421 | |
| 422 | #ifdef SK_DEBUG |
| 423 | VkDeviceSize largestSize = 0; |
| 424 | iter = fFreeList.headIter(); |
| 425 | while (iter.get()) { |
| 426 | Block* block = iter.get(); |
| 427 | if (largestSize < block->fSize) { |
| 428 | largestSize = block->fSize; |
| 429 | } |
| 430 | iter.next(); |
| 431 | } |
| 432 | SkASSERT(fLargestBlockSize == largestSize); |
| 433 | #endif |
| 434 | } |
| 435 | |
| 436 | GrVkHeap::~GrVkHeap() { |
| 437 | } |
| 438 | |
| 439 | bool GrVkHeap::subAlloc(VkDeviceSize size, VkDeviceSize alignment, |
| 440 | uint32_t memoryTypeIndex, GrVkAlloc* alloc) { |
| 441 | VkDeviceSize alignedSize = align_size(size, alignment); |
| 442 | |
| 443 | // first try to find a subheap that fits our allocation request |
| 444 | int bestFitIndex = -1; |
| 445 | VkDeviceSize bestFitSize = 0x7FFFFFFF; |
| 446 | for (auto i = 0; i < fSubHeaps.count(); ++i) { |
| 447 | if (fSubHeaps[i]->memoryTypeIndex() == memoryTypeIndex) { |
| 448 | VkDeviceSize heapSize = fSubHeaps[i]->largestBlockSize(); |
| 449 | if (heapSize > alignedSize && heapSize < bestFitSize) { |
| 450 | bestFitIndex = i; |
| 451 | bestFitSize = heapSize; |
| 452 | } |
| 453 | } |
| 454 | } |
| 455 | |
| 456 | if (bestFitIndex >= 0) { |
| 457 | SkASSERT(fSubHeaps[bestFitIndex]->alignment() == alignment); |
| 458 | if (fSubHeaps[bestFitIndex]->alloc(size, alloc)) { |
| 459 | fUsedSize += alloc->fSize; |
| 460 | return true; |
| 461 | } |
| 462 | return false; |
| 463 | } |
| 464 | |
| 465 | // need to allocate a new subheap |
| 466 | SkAutoTDelete<GrVkSubHeap>& subHeap = fSubHeaps.push_back(); |
| 467 | subHeap.reset(new GrVkSubHeap(fGpu, memoryTypeIndex, fSubHeapSize, alignment)); |
| 468 | fAllocSize += fSubHeapSize; |
| 469 | if (subHeap->alloc(size, alloc)) { |
| 470 | fUsedSize += alloc->fSize; |
| 471 | return true; |
| 472 | } |
| 473 | |
| 474 | return false; |
| 475 | } |
| 476 | |
| 477 | bool GrVkHeap::singleAlloc(VkDeviceSize size, VkDeviceSize alignment, |
| 478 | uint32_t memoryTypeIndex, GrVkAlloc* alloc) { |
| 479 | VkDeviceSize alignedSize = align_size(size, alignment); |
| 480 | |
| 481 | // first try to find an unallocated subheap that fits our allocation request |
| 482 | int bestFitIndex = -1; |
| 483 | VkDeviceSize bestFitSize = 0x7FFFFFFF; |
| 484 | for (auto i = 0; i < fSubHeaps.count(); ++i) { |
| 485 | if (fSubHeaps[i]->memoryTypeIndex() == memoryTypeIndex && fSubHeaps[i]->unallocated()) { |
| 486 | VkDeviceSize heapSize = fSubHeaps[i]->size(); |
| 487 | if (heapSize > alignedSize && heapSize < bestFitSize) { |
| 488 | bestFitIndex = i; |
| 489 | bestFitSize = heapSize; |
| 490 | } |
| 491 | } |
| 492 | } |
| 493 | |
| 494 | if (bestFitIndex >= 0) { |
| 495 | SkASSERT(fSubHeaps[bestFitIndex]->alignment() == alignment); |
| 496 | if (fSubHeaps[bestFitIndex]->alloc(size, alloc)) { |
| 497 | fUsedSize += alloc->fSize; |
| 498 | return true; |
| 499 | } |
| 500 | return false; |
| 501 | } |
| 502 | |
| 503 | // need to allocate a new subheap |
| 504 | SkAutoTDelete<GrVkSubHeap>& subHeap = fSubHeaps.push_back(); |
| 505 | subHeap.reset(new GrVkSubHeap(fGpu, memoryTypeIndex, alignedSize, alignment)); |
| 506 | fAllocSize += alignedSize; |
| 507 | if (subHeap->alloc(size, alloc)) { |
| 508 | fUsedSize += alloc->fSize; |
| 509 | return true; |
| 510 | } |
| 511 | |
| 512 | return false; |
| 513 | } |
| 514 | |
| 515 | bool GrVkHeap::free(const GrVkAlloc& alloc) { |
| 516 | for (auto i = 0; i < fSubHeaps.count(); ++i) { |
| 517 | if (fSubHeaps[i]->memory() == alloc.fMemory) { |
| 518 | fSubHeaps[i]->free(alloc); |
| 519 | fUsedSize -= alloc.fSize; |
| 520 | return true; |
| 521 | } |
| 522 | } |
| 523 | |
| 524 | return false; |
| 525 | } |
| 526 | |
| 527 | |