blob: 8664fa8259425edb00dfb582b7b94949935a7ab1 [file] [log] [blame]
Michael Ludwiga195d102020-09-15 14:51:52 -04001/*
2 * Copyright 2020 Google LLC
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "src/gpu/GrClipStack.h"
9
10#include "include/core/SkMatrix.h"
11#include "src/core/SkRRectPriv.h"
12#include "src/core/SkRectPriv.h"
13#include "src/core/SkTaskGroup.h"
14#include "src/gpu/GrClip.h"
Michael Ludwiga195d102020-09-15 14:51:52 -040015#include "src/gpu/GrDeferredProxyUploader.h"
Adlai Hollera0693042020-10-14 11:23:11 -040016#include "src/gpu/GrDirectContextPriv.h"
Michael Ludwiga195d102020-09-15 14:51:52 -040017#include "src/gpu/GrProxyProvider.h"
18#include "src/gpu/GrRecordingContextPriv.h"
Michael Ludwiga195d102020-09-15 14:51:52 -040019#include "src/gpu/GrSWMaskHelper.h"
20#include "src/gpu/GrStencilMaskHelper.h"
21#include "src/gpu/ccpr/GrCoverageCountingPathRenderer.h"
22#include "src/gpu/effects/GrBlendFragmentProcessor.h"
23#include "src/gpu/effects/GrConvexPolyEffect.h"
24#include "src/gpu/effects/GrRRectEffect.h"
25#include "src/gpu/effects/GrTextureEffect.h"
26#include "src/gpu/effects/generated/GrAARectEffect.h"
27#include "src/gpu/effects/generated/GrDeviceSpaceEffect.h"
28#include "src/gpu/geometry/GrQuadUtils.h"
29
30namespace {
31
32// This captures which of the two elements in (A op B) would be required when they are combined,
33// where op is intersect or difference.
34enum class ClipGeometry {
35 kEmpty,
36 kAOnly,
37 kBOnly,
38 kBoth
39};
40
41// A and B can be Element, SaveRecord, or Draw. Supported combinations are, order not mattering,
42// (Element, Element), (Element, SaveRecord), (Element, Draw), and (SaveRecord, Draw).
43template<typename A, typename B>
44static ClipGeometry get_clip_geometry(const A& a, const B& b) {
45 // NOTE: SkIRect::Intersects() returns false when two rectangles touch at an edge (so the result
46 // is empty). This behavior is desired for the following clip effect policies.
47 if (a.op() == SkClipOp::kIntersect) {
48 if (b.op() == SkClipOp::kIntersect) {
49 // Intersect (A) + Intersect (B)
50 if (!SkIRect::Intersects(a.outerBounds(), b.outerBounds())) {
51 // Regions with non-zero coverage are disjoint, so intersection = empty
52 return ClipGeometry::kEmpty;
53 } else if (b.contains(a)) {
54 // B's full coverage region contains entirety of A, so intersection = A
55 return ClipGeometry::kAOnly;
56 } else if (a.contains(b)) {
57 // A's full coverage region contains entirety of B, so intersection = B
58 return ClipGeometry::kBOnly;
59 } else {
60 // The shapes intersect in some non-trivial manner
61 return ClipGeometry::kBoth;
62 }
63 } else {
64 SkASSERT(b.op() == SkClipOp::kDifference);
65 // Intersect (A) + Difference (B)
66 if (!SkIRect::Intersects(a.outerBounds(), b.outerBounds())) {
67 // A only intersects B's full coverage region, so intersection = A
68 return ClipGeometry::kAOnly;
69 } else if (b.contains(a)) {
70 // B's zero coverage region completely contains A, so intersection = empty
71 return ClipGeometry::kEmpty;
72 } else {
73 // Intersection cannot be simplified. Note that the combination of a intersect
74 // and difference op in this order cannot produce kBOnly
75 return ClipGeometry::kBoth;
76 }
77 }
78 } else {
79 SkASSERT(a.op() == SkClipOp::kDifference);
80 if (b.op() == SkClipOp::kIntersect) {
81 // Difference (A) + Intersect (B) - the mirror of Intersect(A) + Difference(B),
82 // but combining is commutative so this is equivalent barring naming.
83 if (!SkIRect::Intersects(b.outerBounds(), a.outerBounds())) {
84 // B only intersects A's full coverage region, so intersection = B
85 return ClipGeometry::kBOnly;
86 } else if (a.contains(b)) {
87 // A's zero coverage region completely contains B, so intersection = empty
88 return ClipGeometry::kEmpty;
89 } else {
90 // Cannot be simplified
91 return ClipGeometry::kBoth;
92 }
93 } else {
94 SkASSERT(b.op() == SkClipOp::kDifference);
95 // Difference (A) + Difference (B)
96 if (a.contains(b)) {
97 // A's zero coverage region contains B, so B doesn't remove any extra
98 // coverage from their intersection.
99 return ClipGeometry::kAOnly;
100 } else if (b.contains(a)) {
101 // Mirror of the above case, intersection = B instead
102 return ClipGeometry::kBOnly;
103 } else {
104 // Intersection of the two differences cannot be simplified. Note that for
105 // this op combination it is not possible to produce kEmpty.
106 return ClipGeometry::kBoth;
107 }
108 }
109 }
110}
111
112// a.contains(b) where a's local space is defined by 'aToDevice', and b's possibly separate local
113// space is defined by 'bToDevice'. 'a' and 'b' geometry are provided in their local spaces.
114// Automatically takes into account if the anti-aliasing policies differ. When the policies match,
115// we assume that coverage AA or GPU's non-AA rasterization will apply to A and B equivalently, so
116// we can compare the original shapes. When the modes are mixed, we outset B in device space first.
117static bool shape_contains_rect(
118 const GrShape& a, const SkMatrix& aToDevice, const SkMatrix& deviceToA,
119 const SkRect& b, const SkMatrix& bToDevice, bool mixedAAMode) {
120 if (!a.convex()) {
121 return false;
122 }
123
124 if (!mixedAAMode && aToDevice == bToDevice) {
125 // A and B are in the same coordinate space, so don't bother mapping
126 return a.conservativeContains(b);
Michael Ludwigd30e9ef2020-09-28 12:03:01 -0400127 } else if (bToDevice.isIdentity() && aToDevice.preservesAxisAlignment()) {
Michael Ludwig84a008f2020-09-18 15:30:55 -0400128 // Optimize the common case of draws (B, with identity matrix) and axis-aligned shapes,
129 // instead of checking the four corners separately.
130 SkRect bInA = b;
131 if (mixedAAMode) {
132 bInA.outset(0.5f, 0.5f);
133 }
134 SkAssertResult(deviceToA.mapRect(&bInA));
135 return a.conservativeContains(bInA);
Michael Ludwiga195d102020-09-15 14:51:52 -0400136 }
137
138 // Test each corner for contains; since a is convex, if all 4 corners of b's bounds are
139 // contained, then the entirety of b is within a.
140 GrQuad deviceQuad = GrQuad::MakeFromRect(b, bToDevice);
141 if (any(deviceQuad.w4f() < SkPathPriv::kW0PlaneDistance)) {
142 // Something in B actually projects behind the W = 0 plane and would be clipped to infinity,
143 // so it's extremely unlikely that A can contain B.
144 return false;
145 }
146 if (mixedAAMode) {
147 // Outset it so its edges are 1/2px out, giving us a buffer to avoid cases where a non-AA
148 // clip or draw would snap outside an aa element.
149 GrQuadUtils::Outset({0.5f, 0.5f, 0.5f, 0.5f}, &deviceQuad);
150 }
151
152 for (int i = 0; i < 4; ++i) {
153 SkPoint cornerInA = deviceQuad.point(i);
154 deviceToA.mapPoints(&cornerInA, 1);
155 if (!a.conservativeContains(cornerInA)) {
156 return false;
157 }
158 }
159
160 return true;
161}
162
163static SkIRect subtract(const SkIRect& a, const SkIRect& b, bool exact) {
164 SkIRect diff;
165 if (SkRectPriv::Subtract(a, b, &diff) || !exact) {
166 // Either A-B is exactly the rectangle stored in diff, or we don't need an exact answer
167 // and can settle for the subrect of A excluded from B (which is also 'diff')
168 return diff;
169 } else {
170 // For our purposes, we want the original A when A-B cannot be exactly represented
171 return a;
172 }
173}
174
175static GrClipEdgeType get_clip_edge_type(SkClipOp op, GrAA aa) {
176 if (op == SkClipOp::kIntersect) {
177 return aa == GrAA::kYes ? GrClipEdgeType::kFillAA : GrClipEdgeType::kFillBW;
178 } else {
179 return aa == GrAA::kYes ? GrClipEdgeType::kInverseFillAA : GrClipEdgeType::kInverseFillBW;
180 }
181}
182
183static uint32_t kInvalidGenID = 0;
184static uint32_t kEmptyGenID = 1;
185static uint32_t kWideOpenGenID = 2;
186
187static uint32_t next_gen_id() {
188 // 0-2 are reserved for invalid, empty & wide-open
189 static const uint32_t kFirstUnreservedGenID = 3;
190 static std::atomic<uint32_t> nextID{kFirstUnreservedGenID};
191
192 uint32_t id;
193 do {
Adlai Holler4888cda2020-11-06 16:37:37 -0500194 id = nextID.fetch_add(1, std::memory_order_relaxed);
Michael Ludwiga195d102020-09-15 14:51:52 -0400195 } while (id < kFirstUnreservedGenID);
196 return id;
197}
198
199// Functions for rendering / applying clip shapes in various ways
200// The general strategy is:
201// - Represent the clip element as an analytic FP that tests sk_FragCoord vs. its device shape
202// - Render the clip element to the stencil, if stencil is allowed and supports the AA, and the
203// size of the element indicates stenciling will be worth it, vs. making a mask.
204// - Try to put the individual element into a clip atlas, which is then sampled during the draw
205// - Render the element into a SW mask and upload it. If possible, the SW rasterization happens
206// in parallel.
207static constexpr GrSurfaceOrigin kMaskOrigin = kTopLeft_GrSurfaceOrigin;
208
209static GrFPResult analytic_clip_fp(const GrClipStack::Element& e,
210 const GrShaderCaps& caps,
211 std::unique_ptr<GrFragmentProcessor> fp) {
212 // All analytic clip shape FPs need to be in device space
213 GrClipEdgeType edgeType = get_clip_edge_type(e.fOp, e.fAA);
214 if (e.fLocalToDevice.isIdentity()) {
215 if (e.fShape.isRect()) {
216 return GrFPSuccess(GrAARectEffect::Make(std::move(fp), edgeType, e.fShape.rect()));
217 } else if (e.fShape.isRRect()) {
218 return GrRRectEffect::Make(std::move(fp), edgeType, e.fShape.rrect(), caps);
219 }
220 }
221
222 // A convex hull can be transformed into device space (this will handle rect shapes with a
223 // non-identity transform).
224 if (e.fShape.segmentMask() == SkPath::kLine_SegmentMask && e.fShape.convex()) {
225 SkPath devicePath;
226 e.fShape.asPath(&devicePath);
227 devicePath.transform(e.fLocalToDevice);
228 return GrConvexPolyEffect::Make(std::move(fp), edgeType, devicePath);
229 }
230
231 return GrFPFailure(std::move(fp));
232}
233
234// TODO: Currently this only works with CCPR because CCPR owns and manages the clip atlas. The
235// high-level concept should be generalized to support any path renderer going into a shared atlas.
236static std::unique_ptr<GrFragmentProcessor> clip_atlas_fp(GrCoverageCountingPathRenderer* ccpr,
237 uint32_t opsTaskID,
238 const SkIRect& bounds,
239 const GrClipStack::Element& e,
240 SkPath* devicePath,
241 const GrCaps& caps,
242 std::unique_ptr<GrFragmentProcessor> fp) {
243 // TODO: Currently the atlas manages device-space paths, so we have to transform by the ctm.
244 // In the future, the atlas manager should see the local path and the ctm so that it can
245 // cache across integer-only translations (internally, it already does this, just not exposed).
246 if (devicePath->isEmpty()) {
247 e.fShape.asPath(devicePath);
248 devicePath->transform(e.fLocalToDevice);
249 SkASSERT(!devicePath->isEmpty());
250 }
251
252 SkASSERT(!devicePath->isInverseFillType());
253 if (e.fOp == SkClipOp::kIntersect) {
254 return ccpr->makeClipProcessor(std::move(fp), opsTaskID, *devicePath, bounds, caps);
255 } else {
256 // Use kDstOut to convert the non-inverted mask alpha into (1-alpha), so the atlas only
257 // ever renders non-inverse filled paths.
258 // - When the input FP is null, this turns into "(1-sample(ccpr, 1).a) * input"
259 // - When not null, it works out to
260 // (1-sample(ccpr, input.rgb1).a) * sample(fp, input.rgb1) * input.a
261 // - Since clips only care about the alpha channel, these are both equivalent to the
262 // desired product of (1-ccpr) * fp * input.a.
263 return GrBlendFragmentProcessor::Make(
264 ccpr->makeClipProcessor(nullptr, opsTaskID, *devicePath, bounds, caps), // src
265 std::move(fp), // dst
266 SkBlendMode::kDstOut);
267 }
268}
269
270static void draw_to_sw_mask(GrSWMaskHelper* helper, const GrClipStack::Element& e, bool clearMask) {
271 // If the first element to draw is an intersect, we clear to 0 and will draw it directly with
272 // coverage 1 (subsequent intersect elements will be inverse-filled and draw 0 outside).
273 // If the first element to draw is a difference, we clear to 1, and in all cases we draw the
274 // difference element directly with coverage 0.
275 if (clearMask) {
276 helper->clear(e.fOp == SkClipOp::kIntersect ? 0x00 : 0xFF);
277 }
278
279 uint8_t alpha;
280 bool invert;
281 if (e.fOp == SkClipOp::kIntersect) {
282 // Intersect modifies pixels outside of its geometry. If this isn't the first op, we
283 // draw the inverse-filled shape with 0 coverage to erase everything outside the element
284 // But if we are the first element, we can draw directly with coverage 1 since we
285 // cleared to 0.
286 if (clearMask) {
287 alpha = 0xFF;
288 invert = false;
289 } else {
290 alpha = 0x00;
291 invert = true;
292 }
293 } else {
294 // For difference ops, can always just subtract the shape directly by drawing 0 coverage
295 SkASSERT(e.fOp == SkClipOp::kDifference);
296 alpha = 0x00;
297 invert = false;
298 }
299
300 // Draw the shape; based on how we've initialized the buffer and chosen alpha+invert,
301 // every element is drawn with the kReplace_Op
302 if (invert) {
303 // Must invert the path
304 SkASSERT(!e.fShape.inverted());
305 // TODO: this is an extra copy effectively, just so we can toggle inversion; would be
306 // better perhaps to just call a drawPath() since we know it'll use path rendering w/
307 // the inverse fill type.
308 GrShape inverted(e.fShape);
309 inverted.setInverted(true);
310 helper->drawShape(inverted, e.fLocalToDevice, SkRegion::kReplace_Op, e.fAA, alpha);
311 } else {
312 helper->drawShape(e.fShape, e.fLocalToDevice, SkRegion::kReplace_Op, e.fAA, alpha);
313 }
314}
315
316static GrSurfaceProxyView render_sw_mask(GrRecordingContext* context, const SkIRect& bounds,
317 const GrClipStack::Element** elements, int count) {
318 SkASSERT(count > 0);
319
Adlai Holler990a0d82021-02-05 13:40:51 -0500320 SkTArray<GrClipStack::Element> data(count);
321 for (int i = 0; i < count; ++i) {
322 data.push_back(*(elements[i]));
Michael Ludwiga195d102020-09-15 14:51:52 -0400323 }
Adlai Holler990a0d82021-02-05 13:40:51 -0500324 return GrSWMaskHelper::MakeTexture(bounds,
325 context,
326 SkBackingFit::kApprox,
327 [data{std::move(data)}](GrSWMaskHelper* helper) {
328 TRACE_EVENT0("skia.gpu", "SW Clip Mask Render");
329 for (int i = 0; i < data.count(); ++i) {
330 draw_to_sw_mask(helper, data[i], i == 0);
Michael Ludwiga195d102020-09-15 14:51:52 -0400331 }
Adlai Holler990a0d82021-02-05 13:40:51 -0500332 });
Michael Ludwiga195d102020-09-15 14:51:52 -0400333}
334
Brian Salomoneebe7352020-12-09 16:37:04 -0500335static void render_stencil_mask(GrRecordingContext* context, GrSurfaceDrawContext* rtc,
Michael Ludwiga195d102020-09-15 14:51:52 -0400336 uint32_t genID, const SkIRect& bounds,
337 const GrClipStack::Element** elements, int count,
338 GrAppliedClip* out) {
339 GrStencilMaskHelper helper(context, rtc);
340 if (helper.init(bounds, genID, out->windowRectsState().windows(), 0)) {
341 // This follows the same logic as in draw_sw_mask
342 bool startInside = elements[0]->fOp == SkClipOp::kDifference;
343 helper.clear(startInside);
344 for (int i = 0; i < count; ++i) {
345 const GrClipStack::Element& e = *(elements[i]);
346 SkRegion::Op op;
347 if (e.fOp == SkClipOp::kIntersect) {
348 op = (i == 0) ? SkRegion::kReplace_Op : SkRegion::kIntersect_Op;
349 } else {
350 op = SkRegion::kDifference_Op;
351 }
352 helper.drawShape(e.fShape, e.fLocalToDevice, op, e.fAA);
353 }
354 helper.finish();
355 }
356 out->hardClip().addStencilClip(genID);
357}
358
359} // anonymous namespace
360
361class GrClipStack::Draw {
362public:
363 Draw(const SkRect& drawBounds, GrAA aa)
364 : fBounds(GrClip::GetPixelIBounds(drawBounds, aa, BoundsType::kExterior))
365 , fAA(aa) {
366 // Be slightly more forgiving on whether or not a draw is inside a clip element.
367 fOriginalBounds = drawBounds.makeInset(GrClip::kBoundsTolerance, GrClip::kBoundsTolerance);
368 if (fOriginalBounds.isEmpty()) {
369 fOriginalBounds = drawBounds;
370 }
371 }
372
373 // Common clip type interface
374 SkClipOp op() const { return SkClipOp::kIntersect; }
375 const SkIRect& outerBounds() const { return fBounds; }
376
377 // Draw does not have inner bounds so cannot contain anything.
378 bool contains(const RawElement& e) const { return false; }
379 bool contains(const SaveRecord& s) const { return false; }
380
381 bool applyDeviceBounds(const SkIRect& deviceBounds) {
382 return fBounds.intersect(deviceBounds);
383 }
384
385 const SkRect& bounds() const { return fOriginalBounds; }
386 GrAA aa() const { return fAA; }
387
388private:
389 SkRect fOriginalBounds;
390 SkIRect fBounds;
391 GrAA fAA;
392};
393
394///////////////////////////////////////////////////////////////////////////////
395// GrClipStack::Element
396
397GrClipStack::RawElement::RawElement(const SkMatrix& localToDevice, const GrShape& shape,
398 GrAA aa, SkClipOp op)
399 : Element{shape, localToDevice, op, aa}
400 , fInnerBounds(SkIRect::MakeEmpty())
401 , fOuterBounds(SkIRect::MakeEmpty())
402 , fInvalidatedByIndex(-1) {
403 if (!localToDevice.invert(&fDeviceToLocal)) {
404 // If the transform can't be inverted, it means that two dimensions are collapsed to 0 or
405 // 1 dimension, making the device-space geometry effectively empty.
406 fShape.reset();
407 }
408}
409
410void GrClipStack::RawElement::markInvalid(const SaveRecord& current) {
411 SkASSERT(!this->isInvalid());
412 fInvalidatedByIndex = current.firstActiveElementIndex();
413}
414
415void GrClipStack::RawElement::restoreValid(const SaveRecord& current) {
416 if (current.firstActiveElementIndex() < fInvalidatedByIndex) {
417 fInvalidatedByIndex = -1;
418 }
419}
420
421bool GrClipStack::RawElement::contains(const Draw& d) const {
422 if (fInnerBounds.contains(d.outerBounds())) {
423 return true;
424 } else {
425 // If the draw is non-AA, use the already computed outer bounds so we don't need to use
426 // device-space outsetting inside shape_contains_rect.
427 SkRect queryBounds = d.aa() == GrAA::kYes ? d.bounds() : SkRect::Make(d.outerBounds());
428 return shape_contains_rect(fShape, fLocalToDevice, fDeviceToLocal,
429 queryBounds, SkMatrix::I(), /* mixed-aa */ false);
430 }
431}
432
433bool GrClipStack::RawElement::contains(const SaveRecord& s) const {
434 if (fInnerBounds.contains(s.outerBounds())) {
435 return true;
436 } else {
437 // This is very similar to contains(Draw) but we just have outerBounds to work with.
438 SkRect queryBounds = SkRect::Make(s.outerBounds());
439 return shape_contains_rect(fShape, fLocalToDevice, fDeviceToLocal,
440 queryBounds, SkMatrix::I(), /* mixed-aa */ false);
441 }
442}
443
444bool GrClipStack::RawElement::contains(const RawElement& e) const {
445 // This is similar to how RawElement checks containment for a Draw, except that both the tester
446 // and testee have a transform that needs to be considered.
447 if (fInnerBounds.contains(e.fOuterBounds)) {
448 return true;
449 }
450
451 bool mixedAA = fAA != e.fAA;
452 if (!mixedAA && fLocalToDevice == e.fLocalToDevice) {
453 // Test the shapes directly against each other, with a special check for a rrect+rrect
454 // containment (a intersect b == a implies b contains a) and paths (same gen ID, or same
455 // path for small paths means they contain each other).
456 static constexpr int kMaxPathComparePoints = 16;
457 if (fShape.isRRect() && e.fShape.isRRect()) {
458 return SkRRectPriv::ConservativeIntersect(fShape.rrect(), e.fShape.rrect())
459 == e.fShape.rrect();
460 } else if (fShape.isPath() && e.fShape.isPath()) {
461 return fShape.path().getGenerationID() == e.fShape.path().getGenerationID() ||
462 (fShape.path().getPoints(nullptr, 0) <= kMaxPathComparePoints &&
463 fShape.path() == e.fShape.path());
464 } // else fall through to shape_contains_rect
465 }
466
467 return shape_contains_rect(fShape, fLocalToDevice, fDeviceToLocal,
468 e.fShape.bounds(), e.fLocalToDevice, mixedAA);
469
470}
471
472void GrClipStack::RawElement::simplify(const SkIRect& deviceBounds, bool forceAA) {
473 // Make sure the shape is not inverted. An inverted shape is equivalent to a non-inverted shape
474 // with the clip op toggled.
475 if (fShape.inverted()) {
476 fOp = fOp == SkClipOp::kIntersect ? SkClipOp::kDifference : SkClipOp::kIntersect;
477 fShape.setInverted(false);
478 }
479
480 // Then simplify the base shape, if it becomes empty, no need to update the bounds
481 fShape.simplify();
482 SkASSERT(!fShape.inverted());
483 if (fShape.isEmpty()) {
484 return;
485 }
486
487 // Lines and points should have been turned into empty since we assume everything is filled
488 SkASSERT(!fShape.isPoint() && !fShape.isLine());
489 // Validity check, we have no public API to create an arc at the moment
490 SkASSERT(!fShape.isArc());
491
492 SkRect outer = fLocalToDevice.mapRect(fShape.bounds());
493 if (!outer.intersect(SkRect::Make(deviceBounds))) {
494 // A non-empty shape is offscreen, so treat it as empty
495 fShape.reset();
496 return;
497 }
498
Michael Ludwig462bdfc2020-09-22 16:27:04 -0400499 // Except for axis-aligned clip rects, upgrade to AA when forced. We skip axis-aligned clip
500 // rects because a non-AA axis aligned rect can always be set as just a scissor test or window
501 // rect, avoiding an expensive stencil mask generation.
Michael Ludwigd30e9ef2020-09-28 12:03:01 -0400502 if (forceAA && !(fShape.isRect() && fLocalToDevice.preservesAxisAlignment())) {
Michael Ludwiga195d102020-09-15 14:51:52 -0400503 fAA = GrAA::kYes;
504 }
505
506 // Except for non-AA axis-aligned rects, the outer bounds is the rounded-out device-space
507 // mapped bounds of the shape.
508 fOuterBounds = GrClip::GetPixelIBounds(outer, fAA, BoundsType::kExterior);
509
Michael Ludwigd30e9ef2020-09-28 12:03:01 -0400510 if (fLocalToDevice.preservesAxisAlignment()) {
Michael Ludwiga195d102020-09-15 14:51:52 -0400511 if (fShape.isRect()) {
512 // The actual geometry can be updated to the device-intersected bounds and we can
513 // know the inner bounds
514 fShape.rect() = outer;
515 fLocalToDevice.setIdentity();
516 fDeviceToLocal.setIdentity();
517
518 if (fAA == GrAA::kNo && outer.width() >= 1.f && outer.height() >= 1.f) {
519 // NOTE: Legacy behavior to avoid performance regressions. For non-aa axis-aligned
520 // clip rects we always just round so that they can be scissor-only (avoiding the
521 // uncertainty in how a GPU might actually round an edge on fractional coords).
522 fOuterBounds = outer.round();
523 fInnerBounds = fOuterBounds;
524 } else {
525 fInnerBounds = GrClip::GetPixelIBounds(outer, fAA, BoundsType::kInterior);
526 SkASSERT(fOuterBounds.contains(fInnerBounds) || fInnerBounds.isEmpty());
527 }
528 } else if (fShape.isRRect()) {
Michael Ludwig3dad8032020-09-28 11:24:05 -0400529 // Can't transform in place and must still check transform result since some very
530 // ill-formed scale+translate matrices can cause invalid rrect radii.
531 SkRRect src;
532 if (fShape.rrect().transform(fLocalToDevice, &src)) {
533 fShape.rrect() = src;
534 fLocalToDevice.setIdentity();
535 fDeviceToLocal.setIdentity();
Michael Ludwiga195d102020-09-15 14:51:52 -0400536
Michael Ludwig3dad8032020-09-28 11:24:05 -0400537 SkRect inner = SkRRectPriv::InnerBounds(fShape.rrect());
538 fInnerBounds = GrClip::GetPixelIBounds(inner, fAA, BoundsType::kInterior);
539 if (!fInnerBounds.intersect(deviceBounds)) {
540 fInnerBounds = SkIRect::MakeEmpty();
541 }
Michael Ludwiga195d102020-09-15 14:51:52 -0400542 }
543 }
544 }
545
546 if (fOuterBounds.isEmpty()) {
547 // This can happen if we have non-AA shapes smaller than a pixel that do not cover a pixel
548 // center. We could round out, but rasterization would still result in an empty clip.
549 fShape.reset();
550 }
551
552 // Post-conditions on inner and outer bounds
553 SkASSERT(fShape.isEmpty() || (!fOuterBounds.isEmpty() && deviceBounds.contains(fOuterBounds)));
554 SkASSERT(fShape.isEmpty() || fInnerBounds.isEmpty() || fOuterBounds.contains(fInnerBounds));
555}
556
557bool GrClipStack::RawElement::combine(const RawElement& other, const SaveRecord& current) {
558 // To reduce the number of possibilities, only consider intersect+intersect. Difference and
559 // mixed op cases could be analyzed to simplify one of the shapes, but that is a rare
560 // occurrence and the math is much more complicated.
561 if (other.fOp != SkClipOp::kIntersect || fOp != SkClipOp::kIntersect) {
562 return false;
563 }
564
565 // At the moment, only rect+rect or rrect+rrect are supported (although rect+rrect is
566 // treated as a degenerate case of rrect+rrect).
567 bool shapeUpdated = false;
568 if (fShape.isRect() && other.fShape.isRect()) {
569 bool aaMatch = fAA == other.fAA;
570 if (fLocalToDevice.isIdentity() && other.fLocalToDevice.isIdentity() && !aaMatch) {
571 if (GrClip::IsPixelAligned(fShape.rect())) {
572 // Our AA type doesn't really matter, take other's since its edges may not be
573 // pixel aligned, so after intersection clip behavior should respect its aa type.
574 fAA = other.fAA;
575 } else if (!GrClip::IsPixelAligned(other.fShape.rect())) {
576 // Neither shape is pixel aligned and AA types don't match so can't combine
577 return false;
578 }
579 // Either we've updated this->fAA to actually match, or other->fAA doesn't matter so
580 // this can be set to true. We just can't modify other to set it's aa to this->fAA.
581 // But since 'this' becomes the combo of the two, other will be deleted so that's fine.
582 aaMatch = true;
583 }
584
585 if (aaMatch && fLocalToDevice == other.fLocalToDevice) {
586 if (!fShape.rect().intersect(other.fShape.rect())) {
587 // By floating point, it turns out the combination should be empty
588 this->fShape.reset();
589 this->markInvalid(current);
590 return true;
591 }
592 shapeUpdated = true;
593 }
594 } else if ((fShape.isRect() || fShape.isRRect()) &&
595 (other.fShape.isRect() || other.fShape.isRRect())) {
596 // No such pixel-aligned disregard for AA for round rects
597 if (fAA == other.fAA && fLocalToDevice == other.fLocalToDevice) {
598 // Treat rrect+rect intersections as rrect+rrect
599 SkRRect a = fShape.isRect() ? SkRRect::MakeRect(fShape.rect()) : fShape.rrect();
600 SkRRect b = other.fShape.isRect() ? SkRRect::MakeRect(other.fShape.rect())
601 : other.fShape.rrect();
602
603 SkRRect joined = SkRRectPriv::ConservativeIntersect(a, b);
604 if (!joined.isEmpty()) {
605 // Can reduce to a single element
606 if (joined.isRect()) {
607 // And with a simplified type
608 fShape.setRect(joined.rect());
609 } else {
610 fShape.setRRect(joined);
611 }
612 shapeUpdated = true;
613 } else if (!a.getBounds().intersects(b.getBounds())) {
614 // Like the rect+rect combination, the intersection is actually empty
615 fShape.reset();
616 this->markInvalid(current);
617 return true;
618 }
619 }
620 }
621
622 if (shapeUpdated) {
623 // This logic works under the assumption that both combined elements were intersect, so we
624 // don't do the full bounds computations like in simplify().
625 SkASSERT(fOp == SkClipOp::kIntersect && other.fOp == SkClipOp::kIntersect);
626 SkAssertResult(fOuterBounds.intersect(other.fOuterBounds));
627 if (!fInnerBounds.intersect(other.fInnerBounds)) {
628 fInnerBounds = SkIRect::MakeEmpty();
629 }
630 return true;
631 } else {
632 return false;
633 }
634}
635
636void GrClipStack::RawElement::updateForElement(RawElement* added, const SaveRecord& current) {
637 if (this->isInvalid()) {
638 // Already doesn't do anything, so skip this element
639 return;
640 }
641
642 // 'A' refers to this element, 'B' refers to 'added'.
643 switch (get_clip_geometry(*this, *added)) {
644 case ClipGeometry::kEmpty:
645 // Mark both elements as invalid to signal that the clip is fully empty
646 this->markInvalid(current);
647 added->markInvalid(current);
648 break;
649
650 case ClipGeometry::kAOnly:
651 // This element already clips more than 'added', so mark 'added' is invalid to skip it
652 added->markInvalid(current);
653 break;
654
655 case ClipGeometry::kBOnly:
656 // 'added' clips more than this element, so mark this as invalid
657 this->markInvalid(current);
658 break;
659
660 case ClipGeometry::kBoth:
661 // Else the bounds checks think we need to keep both, but depending on the combination
662 // of the ops and shape kinds, we may be able to do better.
663 if (added->combine(*this, current)) {
664 // 'added' now fully represents the combination of the two elements
665 this->markInvalid(current);
666 }
667 break;
668 }
669}
670
671GrClipStack::ClipState GrClipStack::RawElement::clipType() const {
672 // Map from the internal shape kind to the clip state enum
673 switch (fShape.type()) {
674 case GrShape::Type::kEmpty:
675 return ClipState::kEmpty;
676
677 case GrShape::Type::kRect:
678 return fOp == SkClipOp::kIntersect && fLocalToDevice.isIdentity()
679 ? ClipState::kDeviceRect : ClipState::kComplex;
680
681 case GrShape::Type::kRRect:
682 return fOp == SkClipOp::kIntersect && fLocalToDevice.isIdentity()
683 ? ClipState::kDeviceRRect : ClipState::kComplex;
684
685 case GrShape::Type::kArc:
686 case GrShape::Type::kLine:
687 case GrShape::Type::kPoint:
688 // These types should never become RawElements
689 SkASSERT(false);
690 [[fallthrough]];
691
692 case GrShape::Type::kPath:
693 return ClipState::kComplex;
694 }
695 SkUNREACHABLE;
696}
697
698///////////////////////////////////////////////////////////////////////////////
699// GrClipStack::Mask
700
701GrClipStack::Mask::Mask(const SaveRecord& current, const SkIRect& drawBounds)
702 : fBounds(drawBounds)
703 , fGenID(current.genID()) {
704 static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
705
706 // The gen ID should not be invalid, empty, or wide open, since those do not require masks
707 SkASSERT(fGenID != kInvalidGenID && fGenID != kEmptyGenID && fGenID != kWideOpenGenID);
708
709 GrUniqueKey::Builder builder(&fKey, kDomain, 3, "clip_mask");
710 builder[0] = fGenID;
711 // SkToS16 because image filters outset layers to a size indicated by the filter, which can
712 // sometimes result in negative coordinates from device space.
713 builder[1] = SkToS16(drawBounds.fLeft) | (SkToS16(drawBounds.fRight) << 16);
714 builder[2] = SkToS16(drawBounds.fTop) | (SkToS16(drawBounds.fBottom) << 16);
715 SkASSERT(fKey.isValid());
716
717 SkDEBUGCODE(fOwner = &current;)
718}
719
720bool GrClipStack::Mask::appliesToDraw(const SaveRecord& current, const SkIRect& drawBounds) const {
721 // For the same save record, a larger mask will have the same or more elements
722 // baked into it, so it can be reused to clip the smaller draw.
723 SkASSERT(fGenID != current.genID() || &current == fOwner);
724 return fGenID == current.genID() && fBounds.contains(drawBounds);
725}
726
727void GrClipStack::Mask::invalidate(GrProxyProvider* proxyProvider) {
728 SkASSERT(proxyProvider);
729 SkASSERT(fKey.isValid()); // Should only be invalidated once
730 proxyProvider->processInvalidUniqueKey(
731 fKey, nullptr, GrProxyProvider::InvalidateGPUResource::kYes);
732 fKey.reset();
733}
734
735///////////////////////////////////////////////////////////////////////////////
736// GrClipStack::SaveRecord
737
738GrClipStack::SaveRecord::SaveRecord(const SkIRect& deviceBounds)
739 : fInnerBounds(deviceBounds)
740 , fOuterBounds(deviceBounds)
741 , fShader(nullptr)
742 , fStartingMaskIndex(0)
743 , fStartingElementIndex(0)
744 , fOldestValidIndex(0)
745 , fDeferredSaveCount(0)
746 , fStackOp(SkClipOp::kIntersect)
747 , fState(ClipState::kWideOpen)
748 , fGenID(kInvalidGenID) {}
749
750GrClipStack::SaveRecord::SaveRecord(const SaveRecord& prior,
751 int startingMaskIndex,
752 int startingElementIndex)
753 : fInnerBounds(prior.fInnerBounds)
754 , fOuterBounds(prior.fOuterBounds)
755 , fShader(prior.fShader)
756 , fStartingMaskIndex(startingMaskIndex)
757 , fStartingElementIndex(startingElementIndex)
758 , fOldestValidIndex(prior.fOldestValidIndex)
759 , fDeferredSaveCount(0)
760 , fStackOp(prior.fStackOp)
761 , fState(prior.fState)
762 , fGenID(kInvalidGenID) {
763 // If the prior record never needed a mask, this one will insert into the same index
764 // (that's okay since we'll remove it when this record is popped off the stack).
765 SkASSERT(startingMaskIndex >= prior.fStartingMaskIndex);
766 // The same goes for elements (the prior could have been wide open).
767 SkASSERT(startingElementIndex >= prior.fStartingElementIndex);
768}
769
770uint32_t GrClipStack::SaveRecord::genID() const {
771 if (fState == ClipState::kEmpty) {
772 return kEmptyGenID;
773 } else if (fState == ClipState::kWideOpen) {
774 return kWideOpenGenID;
775 } else {
776 // The gen ID shouldn't be empty or wide open, since they are reserved for the above
777 // if-cases. It may be kInvalid if the record hasn't had any elements added to it yet.
778 SkASSERT(fGenID != kEmptyGenID && fGenID != kWideOpenGenID);
779 return fGenID;
780 }
781}
782
783GrClipStack::ClipState GrClipStack::SaveRecord::state() const {
784 if (fShader && fState != ClipState::kEmpty) {
785 return ClipState::kComplex;
786 } else {
787 return fState;
788 }
789}
790
791bool GrClipStack::SaveRecord::contains(const GrClipStack::Draw& draw) const {
792 return fInnerBounds.contains(draw.outerBounds());
793}
794
795bool GrClipStack::SaveRecord::contains(const GrClipStack::RawElement& element) const {
796 return fInnerBounds.contains(element.outerBounds());
797}
798
799void GrClipStack::SaveRecord::removeElements(RawElement::Stack* elements) {
800 while (elements->count() > fStartingElementIndex) {
801 elements->pop_back();
802 }
803}
804
805void GrClipStack::SaveRecord::restoreElements(RawElement::Stack* elements) {
806 // Presumably this SaveRecord is the new top of the stack, and so it owns the elements
807 // from its starting index to restoreCount - 1. Elements from the old save record have
808 // been destroyed already, so their indices would have been >= restoreCount, and any
809 // still-present element can be un-invalidated based on that.
810 int i = elements->count() - 1;
811 for (RawElement& e : elements->ritems()) {
812 if (i < fOldestValidIndex) {
813 break;
814 }
815 e.restoreValid(*this);
816 --i;
817 }
818}
819
820void GrClipStack::SaveRecord::invalidateMasks(GrProxyProvider* proxyProvider,
821 Mask::Stack* masks) {
822 // Must explicitly invalidate the key before removing the mask object from the stack
823 while (masks->count() > fStartingMaskIndex) {
824 SkASSERT(masks->back().owner() == this && proxyProvider);
825 masks->back().invalidate(proxyProvider);
826 masks->pop_back();
827 }
828 SkASSERT(masks->empty() || masks->back().genID() != fGenID);
829}
830
831void GrClipStack::SaveRecord::reset(const SkIRect& bounds) {
832 SkASSERT(this->canBeUpdated());
833 fOldestValidIndex = fStartingElementIndex;
834 fOuterBounds = bounds;
835 fInnerBounds = bounds;
836 fStackOp = SkClipOp::kIntersect;
837 fState = ClipState::kWideOpen;
838 fShader = nullptr;
839}
840
841void GrClipStack::SaveRecord::addShader(sk_sp<SkShader> shader) {
842 SkASSERT(shader);
843 SkASSERT(this->canBeUpdated());
844 if (!fShader) {
845 fShader = std::move(shader);
846 } else {
847 // The total coverage is computed by multiplying the coverage from each element (shape or
848 // shader), but since multiplication is associative, we can use kSrcIn blending to make
849 // a new shader that represents 'shader' * 'fShader'
850 fShader = SkShaders::Blend(SkBlendMode::kSrcIn, std::move(shader), fShader);
851 }
852}
853
854bool GrClipStack::SaveRecord::addElement(RawElement&& toAdd, RawElement::Stack* elements) {
855 // Validity check the element's state first; if the shape class isn't empty, the outer bounds
856 // shouldn't be empty; if the inner bounds are not empty, they must be contained in outer.
857 SkASSERT((toAdd.shape().isEmpty() || !toAdd.outerBounds().isEmpty()) &&
858 (toAdd.innerBounds().isEmpty() || toAdd.outerBounds().contains(toAdd.innerBounds())));
859 // And we shouldn't be adding an element if we have a deferred save
860 SkASSERT(this->canBeUpdated());
861
862 if (fState == ClipState::kEmpty) {
863 // The clip is already empty, and we only shrink, so there's no need to record this element.
864 return false;
865 } else if (toAdd.shape().isEmpty()) {
866 // An empty difference op should have been detected earlier, since it's a no-op
867 SkASSERT(toAdd.op() == SkClipOp::kIntersect);
868 fState = ClipState::kEmpty;
869 return true;
870 }
871
872 // In this invocation, 'A' refers to the existing stack's bounds and 'B' refers to the new
873 // element.
874 switch (get_clip_geometry(*this, toAdd)) {
875 case ClipGeometry::kEmpty:
876 // The combination results in an empty clip
877 fState = ClipState::kEmpty;
878 return true;
879
880 case ClipGeometry::kAOnly:
881 // The combination would not be any different than the existing clip
882 return false;
883
884 case ClipGeometry::kBOnly:
885 // The combination would invalidate the entire existing stack and can be replaced with
886 // just the new element.
887 this->replaceWithElement(std::move(toAdd), elements);
888 return true;
889
890 case ClipGeometry::kBoth:
891 // The new element combines in a complex manner, so update the stack's bounds based on
892 // the combination of its and the new element's ops (handled below)
893 break;
894 }
895
896 if (fState == ClipState::kWideOpen) {
897 // When the stack was wide open and the clip effect was kBoth, the "complex" manner is
898 // simply to keep the element and update the stack bounds to be the element's intersected
899 // with the device.
900 this->replaceWithElement(std::move(toAdd), elements);
901 return true;
902 }
903
904 // Some form of actual clip element(s) to combine with.
905 if (fStackOp == SkClipOp::kIntersect) {
906 if (toAdd.op() == SkClipOp::kIntersect) {
907 // Intersect (stack) + Intersect (toAdd)
908 // - Bounds updates is simply the paired intersections of outer and inner.
909 SkAssertResult(fOuterBounds.intersect(toAdd.outerBounds()));
910 if (!fInnerBounds.intersect(toAdd.innerBounds())) {
911 // NOTE: this does the right thing if either rect is empty, since we set the
912 // inner bounds to empty here
913 fInnerBounds = SkIRect::MakeEmpty();
914 }
915 } else {
916 // Intersect (stack) + Difference (toAdd)
917 // - Shrink the stack's outer bounds if the difference op's inner bounds completely
918 // cuts off an edge.
919 // - Shrink the stack's inner bounds to completely exclude the op's outer bounds.
920 fOuterBounds = subtract(fOuterBounds, toAdd.innerBounds(), /* exact */ true);
921 fInnerBounds = subtract(fInnerBounds, toAdd.outerBounds(), /* exact */ false);
922 }
923 } else {
924 if (toAdd.op() == SkClipOp::kIntersect) {
925 // Difference (stack) + Intersect (toAdd)
926 // - Bounds updates are just the mirror of Intersect(stack) + Difference(toAdd)
927 SkIRect oldOuter = fOuterBounds;
928 fOuterBounds = subtract(toAdd.outerBounds(), fInnerBounds, /* exact */ true);
929 fInnerBounds = subtract(toAdd.innerBounds(), oldOuter, /* exact */ false);
930 } else {
931 // Difference (stack) + Difference (toAdd)
932 // - The updated outer bounds is the union of outer bounds and the inner becomes the
933 // largest of the two possible inner bounds
934 fOuterBounds.join(toAdd.outerBounds());
935 if (toAdd.innerBounds().width() * toAdd.innerBounds().height() >
936 fInnerBounds.width() * fInnerBounds.height()) {
937 fInnerBounds = toAdd.innerBounds();
938 }
939 }
940 }
941
942 // If we get here, we're keeping the new element and the stack's bounds have been updated.
943 // We ought to have caught the cases where the stack bounds resemble an empty or wide open
944 // clip, so assert that's the case.
945 SkASSERT(!fOuterBounds.isEmpty() &&
946 (fInnerBounds.isEmpty() || fOuterBounds.contains(fInnerBounds)));
947
948 return this->appendElement(std::move(toAdd), elements);
949}
950
951bool GrClipStack::SaveRecord::appendElement(RawElement&& toAdd, RawElement::Stack* elements) {
952 // Update past elements to account for the new element
953 int i = elements->count() - 1;
954
955 // After the loop, elements between [max(youngestValid, startingIndex)+1, count-1] can be
956 // removed from the stack (these are the active elements that have been invalidated by the
957 // newest element; since it's the active part of the stack, no restore() can bring them back).
958 int youngestValid = fStartingElementIndex - 1;
959 // After the loop, elements between [0, oldestValid-1] are all invalid. The value of oldestValid
960 // becomes the save record's new fLastValidIndex value.
961 int oldestValid = elements->count();
962 // After the loop, this is the earliest active element that was invalidated. It may be
963 // older in the stack than earliestValid, so cannot be popped off, but can be used to store
964 // the new element instead of allocating more.
965 RawElement* oldestActiveInvalid = nullptr;
966 int oldestActiveInvalidIndex = elements->count();
967
968 for (RawElement& existing : elements->ritems()) {
969 if (i < fOldestValidIndex) {
970 break;
971 }
972 // We don't need to pass the actual index that toAdd will be saved to; just the minimum
973 // index of this save record, since that will result in the same restoration behavior later.
974 existing.updateForElement(&toAdd, *this);
975
976 if (toAdd.isInvalid()) {
977 if (existing.isInvalid()) {
978 // Both new and old invalid implies the entire clip becomes empty
979 fState = ClipState::kEmpty;
980 return true;
981 } else {
982 // The new element doesn't change the clip beyond what the old element already does
983 return false;
984 }
985 } else if (existing.isInvalid()) {
986 // The new element cancels out the old element. The new element may have been modified
987 // to account for the old element's geometry.
988 if (i >= fStartingElementIndex) {
989 // Still active, so the invalidated index could be used to store the new element
990 oldestActiveInvalid = &existing;
991 oldestActiveInvalidIndex = i;
992 }
993 } else {
994 // Keep both new and old elements
995 oldestValid = i;
996 if (i > youngestValid) {
997 youngestValid = i;
998 }
999 }
1000
1001 --i;
1002 }
1003
1004 // Post-iteration validity check
1005 SkASSERT(oldestValid == elements->count() ||
1006 (oldestValid >= fOldestValidIndex && oldestValid < elements->count()));
1007 SkASSERT(youngestValid == fStartingElementIndex - 1 ||
1008 (youngestValid >= fStartingElementIndex && youngestValid < elements->count()));
1009 SkASSERT((oldestActiveInvalid && oldestActiveInvalidIndex >= fStartingElementIndex &&
1010 oldestActiveInvalidIndex < elements->count()) || !oldestActiveInvalid);
1011
1012 // Update final state
1013 SkASSERT(oldestValid >= fOldestValidIndex);
1014 fOldestValidIndex = std::min(oldestValid, oldestActiveInvalidIndex);
1015 fState = oldestValid == elements->count() ? toAdd.clipType() : ClipState::kComplex;
1016 if (fStackOp == SkClipOp::kDifference && toAdd.op() == SkClipOp::kIntersect) {
1017 // The stack remains in difference mode only as long as all elements are difference
1018 fStackOp = SkClipOp::kIntersect;
1019 }
1020
1021 int targetCount = youngestValid + 1;
1022 if (!oldestActiveInvalid || oldestActiveInvalidIndex >= targetCount) {
1023 // toAdd will be stored right after youngestValid
1024 targetCount++;
1025 oldestActiveInvalid = nullptr;
1026 }
1027 while (elements->count() > targetCount) {
1028 SkASSERT(oldestActiveInvalid != &elements->back()); // shouldn't delete what we'll reuse
1029 elements->pop_back();
1030 }
1031 if (oldestActiveInvalid) {
1032 *oldestActiveInvalid = std::move(toAdd);
1033 } else if (elements->count() < targetCount) {
1034 elements->push_back(std::move(toAdd));
1035 } else {
1036 elements->back() = std::move(toAdd);
1037 }
1038
1039 // Changing this will prompt GrClipStack to invalidate any masks associated with this record.
1040 fGenID = next_gen_id();
1041 return true;
1042}
1043
1044void GrClipStack::SaveRecord::replaceWithElement(RawElement&& toAdd, RawElement::Stack* elements) {
1045 // The aggregate state of the save record mirrors the element
1046 fInnerBounds = toAdd.innerBounds();
1047 fOuterBounds = toAdd.outerBounds();
1048 fStackOp = toAdd.op();
1049 fState = toAdd.clipType();
1050
1051 // All prior active element can be removed from the stack: [startingIndex, count - 1]
1052 int targetCount = fStartingElementIndex + 1;
1053 while (elements->count() > targetCount) {
1054 elements->pop_back();
1055 }
1056 if (elements->count() < targetCount) {
1057 elements->push_back(std::move(toAdd));
1058 } else {
1059 elements->back() = std::move(toAdd);
1060 }
1061
1062 SkASSERT(elements->count() == fStartingElementIndex + 1);
1063
1064 // This invalidates all older elements that are owned by save records lower in the clip stack.
1065 fOldestValidIndex = fStartingElementIndex;
1066 fGenID = next_gen_id();
1067}
1068
1069///////////////////////////////////////////////////////////////////////////////
1070// GrClipStack
1071
1072// NOTE: Based on draw calls in all GMs, SKPs, and SVGs as of 08/20, 98% use a clip stack with
1073// one Element and up to two SaveRecords, thus the inline size for RawElement::Stack and
1074// SaveRecord::Stack (this conveniently keeps the size of GrClipStack manageable). The max
1075// encountered element stack depth was 5 and the max save depth was 6. Using an increment of 8 for
1076// these stacks means that clip management will incur a single allocation for the remaining 2%
1077// of the draws, with extra head room for more complex clips encountered in the wild.
1078//
1079// The mask stack increment size was chosen to be smaller since only 0.2% of the evaluated draw call
1080// set ever used a mask (which includes stencil masks), or up to 0.3% when CCPR is disabled.
1081static constexpr int kElementStackIncrement = 8;
1082static constexpr int kSaveStackIncrement = 8;
1083static constexpr int kMaskStackIncrement = 4;
1084
1085// And from this same draw call set, the most complex clip could only use 5 analytic coverage FPs.
1086// Historically we limited it to 4 based on Blink's call pattern, so we keep the limit as-is since
1087// it's so close to the empirically encountered max.
1088static constexpr int kMaxAnalyticFPs = 4;
1089// The number of stack-allocated mask pointers to store before extending the arrays.
1090// Stack size determined empirically, the maximum number of elements put in a SW mask was 4
1091// across our set of GMs, SKPs, and SVGs used for testing.
1092static constexpr int kNumStackMasks = 4;
1093
1094GrClipStack::GrClipStack(const SkIRect& deviceBounds, const SkMatrixProvider* matrixProvider,
1095 bool forceAA)
1096 : fElements(kElementStackIncrement)
1097 , fSaves(kSaveStackIncrement)
1098 , fMasks(kMaskStackIncrement)
1099 , fProxyProvider(nullptr)
1100 , fDeviceBounds(deviceBounds)
1101 , fMatrixProvider(matrixProvider)
1102 , fForceAA(forceAA) {
1103 // Start with a save record that is wide open
1104 fSaves.emplace_back(deviceBounds);
1105}
1106
1107GrClipStack::~GrClipStack() {
1108 // Invalidate all mask keys that remain. Since we're tearing the clip stack down, we don't need
1109 // to go through SaveRecord.
1110 SkASSERT(fProxyProvider || fMasks.empty());
1111 if (fProxyProvider) {
1112 for (Mask& m : fMasks.ritems()) {
1113 m.invalidate(fProxyProvider);
1114 }
1115 }
1116}
1117
1118void GrClipStack::save() {
1119 SkASSERT(!fSaves.empty());
1120 fSaves.back().pushSave();
1121}
1122
1123void GrClipStack::restore() {
1124 SkASSERT(!fSaves.empty());
1125 SaveRecord& current = fSaves.back();
1126 if (current.popSave()) {
1127 // This was just a deferred save being undone, so the record doesn't need to be removed yet
1128 return;
1129 }
1130
1131 // When we remove a save record, we delete all elements >= its starting index and any masks
1132 // that were rasterized for it.
1133 current.removeElements(&fElements);
1134 SkASSERT(fProxyProvider || fMasks.empty());
1135 if (fProxyProvider) {
1136 current.invalidateMasks(fProxyProvider, &fMasks);
1137 }
1138 fSaves.pop_back();
1139 // Restore any remaining elements that were only invalidated by the now-removed save record.
1140 fSaves.back().restoreElements(&fElements);
1141}
1142
1143SkIRect GrClipStack::getConservativeBounds() const {
1144 const SaveRecord& current = this->currentSaveRecord();
1145 if (current.state() == ClipState::kEmpty) {
1146 return SkIRect::MakeEmpty();
1147 } else if (current.state() == ClipState::kWideOpen) {
1148 return fDeviceBounds;
1149 } else {
1150 if (current.op() == SkClipOp::kDifference) {
1151 // The outer/inner bounds represent what's cut out, so full bounds remains the device
1152 // bounds, minus any fully clipped content that spans the device edge.
1153 return subtract(fDeviceBounds, current.innerBounds(), /* exact */ true);
1154 } else {
1155 SkASSERT(fDeviceBounds.contains(current.outerBounds()));
1156 return current.outerBounds();
1157 }
1158 }
1159}
1160
1161GrClip::PreClipResult GrClipStack::preApply(const SkRect& bounds, GrAA aa) const {
1162 Draw draw(bounds, fForceAA ? GrAA::kYes : aa);
1163 if (!draw.applyDeviceBounds(fDeviceBounds)) {
1164 return GrClip::Effect::kClippedOut;
1165 }
1166
1167 const SaveRecord& cs = this->currentSaveRecord();
1168 // Early out if we know a priori that the clip is full 0s or full 1s.
1169 if (cs.state() == ClipState::kEmpty) {
1170 return GrClip::Effect::kClippedOut;
1171 } else if (cs.state() == ClipState::kWideOpen) {
1172 SkASSERT(!cs.shader());
1173 return GrClip::Effect::kUnclipped;
1174 }
1175
1176 // Given argument order, 'A' == current clip, 'B' == draw
1177 switch (get_clip_geometry(cs, draw)) {
1178 case ClipGeometry::kEmpty:
1179 // Can ignore the shader since the geometry removed everything already
1180 return GrClip::Effect::kClippedOut;
1181
1182 case ClipGeometry::kBOnly:
1183 // Geometrically, the draw is unclipped, but can't ignore a shader
1184 return cs.shader() ? GrClip::Effect::kClipped : GrClip::Effect::kUnclipped;
1185
1186 case ClipGeometry::kAOnly:
1187 // Shouldn't happen since the inner bounds of a draw are unknown
1188 SkASSERT(false);
1189 // But if it did, it technically means the draw covered the clip and should be
1190 // considered kClipped or similar, which is what the next case handles.
1191 [[fallthrough]];
1192
1193 case ClipGeometry::kBoth: {
1194 SkASSERT(fElements.count() > 0);
1195 const RawElement& back = fElements.back();
1196 if (cs.state() == ClipState::kDeviceRect) {
1197 SkASSERT(back.clipType() == ClipState::kDeviceRect);
1198 return {back.shape().rect(), back.aa()};
1199 } else if (cs.state() == ClipState::kDeviceRRect) {
1200 SkASSERT(back.clipType() == ClipState::kDeviceRRect);
1201 return {back.shape().rrect(), back.aa()};
1202 } else {
1203 // The clip stack has complex shapes, multiple elements, or a shader; we could
1204 // iterate per element like we would in apply(), but preApply() is meant to be
1205 // conservative and efficient.
1206 SkASSERT(cs.state() == ClipState::kComplex);
1207 return GrClip::Effect::kClipped;
1208 }
1209 }
1210 }
1211
1212 SkUNREACHABLE;
1213}
1214
Brian Salomoneebe7352020-12-09 16:37:04 -05001215GrClip::Effect GrClipStack::apply(GrRecordingContext* context, GrSurfaceDrawContext* rtc,
Michael Ludwiga195d102020-09-15 14:51:52 -04001216 GrAAType aa, bool hasUserStencilSettings,
1217 GrAppliedClip* out, SkRect* bounds) const {
1218 // TODO: Once we no longer store SW masks, we don't need to sneak the provider in like this
1219 if (!fProxyProvider) {
1220 fProxyProvider = context->priv().proxyProvider();
1221 }
1222 SkASSERT(fProxyProvider == context->priv().proxyProvider());
1223 const GrCaps* caps = context->priv().caps();
1224
1225 // Convert the bounds to a Draw and apply device bounds clipping, making our query as tight
1226 // as possible.
1227 Draw draw(*bounds, GrAA(fForceAA || aa != GrAAType::kNone));
1228 if (!draw.applyDeviceBounds(fDeviceBounds)) {
1229 return Effect::kClippedOut;
1230 }
1231 SkAssertResult(bounds->intersect(SkRect::Make(fDeviceBounds)));
1232
1233 const SaveRecord& cs = this->currentSaveRecord();
1234 // Early out if we know a priori that the clip is full 0s or full 1s.
1235 if (cs.state() == ClipState::kEmpty) {
1236 return Effect::kClippedOut;
1237 } else if (cs.state() == ClipState::kWideOpen) {
1238 SkASSERT(!cs.shader());
1239 return Effect::kUnclipped;
1240 }
1241
1242 // Convert any clip shader first, since it's not geometrically related to the draw bounds
1243 std::unique_ptr<GrFragmentProcessor> clipFP = nullptr;
1244 if (cs.shader()) {
1245 static const GrColorInfo kCoverageColorInfo{GrColorType::kUnknown, kPremul_SkAlphaType,
1246 nullptr};
Mike Reed52130b02020-12-28 15:33:13 -05001247 GrFPArgs args(context, *fMatrixProvider, SkSamplingOptions(), &kCoverageColorInfo);
Michael Ludwiga195d102020-09-15 14:51:52 -04001248 clipFP = as_SB(cs.shader())->asFragmentProcessor(args);
1249 if (clipFP) {
Michael Ludwig4ce77862020-10-27 18:07:29 -04001250 // The initial input is the coverage from the geometry processor, so this ensures it
1251 // is multiplied properly with the alpha of the clip shader.
1252 clipFP = GrFragmentProcessor::MulInputByChildAlpha(std::move(clipFP));
Michael Ludwiga195d102020-09-15 14:51:52 -04001253 }
1254 }
1255
1256 // A refers to the entire clip stack, B refers to the draw
1257 switch (get_clip_geometry(cs, draw)) {
1258 case ClipGeometry::kEmpty:
1259 return Effect::kClippedOut;
1260
1261 case ClipGeometry::kBOnly:
1262 // Geometrically unclipped, but may need to add the shader as a coverage FP
1263 if (clipFP) {
1264 out->addCoverageFP(std::move(clipFP));
1265 return Effect::kClipped;
1266 } else {
1267 return Effect::kUnclipped;
1268 }
1269
1270 case ClipGeometry::kAOnly:
1271 // Shouldn't happen since draws don't report inner bounds
1272 SkASSERT(false);
1273 [[fallthrough]];
1274
1275 case ClipGeometry::kBoth:
1276 // The draw is combined with the saved clip elements; the below logic tries to skip
1277 // as many elements as possible.
1278 SkASSERT(cs.state() == ClipState::kDeviceRect ||
1279 cs.state() == ClipState::kDeviceRRect ||
1280 cs.state() == ClipState::kComplex);
1281 break;
1282 }
1283
1284 // We can determine a scissor based on the draw and the overall stack bounds.
1285 SkIRect scissorBounds;
1286 if (cs.op() == SkClipOp::kIntersect) {
1287 // Initially we keep this as large as possible; if the clip is applied solely with coverage
1288 // FPs then using a loose scissor increases the chance we can batch the draws.
1289 // We tighten it later if any form of mask or atlas element is needed.
1290 scissorBounds = cs.outerBounds();
1291 } else {
1292 scissorBounds = subtract(draw.outerBounds(), cs.innerBounds(), /* exact */ true);
1293 }
1294
1295 // We mark this true once we have a coverage FP (since complex clipping is occurring), or we
1296 // have an element that wouldn't affect the scissored draw bounds, but does affect the regular
1297 // draw bounds. In that case, the scissor is sufficient for clipping and we can skip the
1298 // element but definitely cannot then drop the scissor.
1299 bool scissorIsNeeded = SkToBool(cs.shader());
1300
1301 int remainingAnalyticFPs = kMaxAnalyticFPs;
Michael Ludwigb28e1412020-09-18 15:07:49 -04001302 if (hasUserStencilSettings) {
1303 // Disable analytic clips when there are user stencil settings to ensure the clip is
1304 // respected in the stencil buffer.
Michael Ludwiga195d102020-09-15 14:51:52 -04001305 remainingAnalyticFPs = 0;
Michael Ludwigb28e1412020-09-18 15:07:49 -04001306 // If we have user stencil settings, we shouldn't be avoiding the stencil buffer anyways.
Michael Ludwiga195d102020-09-15 14:51:52 -04001307 SkASSERT(!context->priv().caps()->avoidStencilBuffers());
1308 }
1309
1310 // If window rectangles are supported, we can use them to exclude inner bounds of difference ops
Brian Salomon70fe17e2020-11-30 14:33:58 -05001311 int maxWindowRectangles = rtc->maxWindowRectangles();
Michael Ludwiga195d102020-09-15 14:51:52 -04001312 GrWindowRectangles windowRects;
1313
1314 // Elements not represented as an analytic FP or skipped will be collected here and later
1315 // applied by using the stencil buffer, CCPR clip atlas, or a cached SW mask.
1316 SkSTArray<kNumStackMasks, const Element*> elementsForMask;
1317 SkSTArray<kNumStackMasks, const RawElement*> elementsForAtlas;
1318
1319 bool maskRequiresAA = false;
1320 auto* ccpr = context->priv().drawingManager()->getCoverageCountingPathRenderer();
1321
1322 int i = fElements.count();
1323 for (const RawElement& e : fElements.ritems()) {
1324 --i;
1325 if (i < cs.oldestElementIndex()) {
1326 // All earlier elements have been invalidated by elements already processed
1327 break;
1328 } else if (e.isInvalid()) {
1329 continue;
1330 }
1331
1332 switch (get_clip_geometry(e, draw)) {
1333 case ClipGeometry::kEmpty:
1334 // This can happen for difference op elements that have a larger fInnerBounds than
1335 // can be preserved at the next level.
1336 return Effect::kClippedOut;
1337
1338 case ClipGeometry::kBOnly:
1339 // We don't need to produce a coverage FP or mask for the element
1340 break;
1341
1342 case ClipGeometry::kAOnly:
1343 // Shouldn't happen for draws, fall through to regular element processing
1344 SkASSERT(false);
1345 [[fallthrough]];
1346
1347 case ClipGeometry::kBoth: {
1348 // The element must apply coverage to the draw, enable the scissor to limit overdraw
1349 scissorIsNeeded = true;
1350
1351 // First apply using HW methods (scissor and window rects). When the inner and outer
1352 // bounds match, nothing else needs to be done.
1353 bool fullyApplied = false;
1354 if (e.op() == SkClipOp::kIntersect) {
1355 // The second test allows clipped draws that are scissored by multiple elements
1356 // to remain scissor-only.
1357 fullyApplied = e.innerBounds() == e.outerBounds() ||
1358 e.innerBounds().contains(scissorBounds);
1359 } else {
Robert Phillipsc4fbc8d2020-11-30 10:17:53 -05001360 if (!e.innerBounds().isEmpty() && windowRects.count() < maxWindowRectangles) {
Michael Ludwiga195d102020-09-15 14:51:52 -04001361 // TODO: If we have more difference ops than available window rects, we
1362 // should prioritize those with the largest inner bounds.
1363 windowRects.addWindow(e.innerBounds());
1364 fullyApplied = e.innerBounds() == e.outerBounds();
1365 }
1366 }
1367
1368 if (!fullyApplied && remainingAnalyticFPs > 0) {
1369 std::tie(fullyApplied, clipFP) = analytic_clip_fp(e.asElement(),
1370 *caps->shaderCaps(),
1371 std::move(clipFP));
1372 if (fullyApplied) {
1373 remainingAnalyticFPs--;
1374 } else if (ccpr && e.aa() == GrAA::kYes) {
1375 // While technically the element is turned into a mask, each atlas entry
1376 // counts towards the FP complexity of the clip.
1377 // TODO - CCPR needs a stable ops task ID so we can't create FPs until we
1378 // know any other mask generation is finished. It also only works with AA
1379 // shapes, future atlas systems can improve on this.
1380 elementsForAtlas.push_back(&e);
1381 remainingAnalyticFPs--;
1382 fullyApplied = true;
1383 }
1384 }
1385
1386 if (!fullyApplied) {
1387 elementsForMask.push_back(&e.asElement());
1388 maskRequiresAA |= (e.aa() == GrAA::kYes);
1389 }
1390
1391 break;
1392 }
1393 }
1394 }
1395
1396 if (!scissorIsNeeded) {
1397 // More detailed analysis of the element shapes determined no clip is needed
1398 SkASSERT(elementsForMask.empty() && elementsForAtlas.empty() && !clipFP);
1399 return Effect::kUnclipped;
1400 }
1401
1402 // Fill out the GrAppliedClip with what we know so far, possibly with a tightened scissor
1403 if (cs.op() == SkClipOp::kIntersect &&
1404 (!elementsForMask.empty() || !elementsForAtlas.empty())) {
1405 SkAssertResult(scissorBounds.intersect(draw.outerBounds()));
1406 }
1407 if (!GrClip::IsInsideClip(scissorBounds, *bounds)) {
1408 out->hardClip().addScissor(scissorBounds, bounds);
1409 }
1410 if (!windowRects.empty()) {
1411 out->hardClip().addWindowRectangles(windowRects, GrWindowRectsState::Mode::kExclusive);
1412 }
1413
1414 // Now rasterize any remaining elements, either to the stencil or a SW mask. All elements are
1415 // flattened into a single mask.
1416 if (!elementsForMask.empty()) {
1417 bool stencilUnavailable = context->priv().caps()->avoidStencilBuffers() ||
1418 rtc->wrapsVkSecondaryCB();
1419
1420 bool hasSWMask = false;
1421 if ((rtc->numSamples() <= 1 && maskRequiresAA) || stencilUnavailable) {
1422 // Must use a texture mask to represent the combined clip elements since the stencil
1423 // cannot be used, or cannot handle smooth clips.
1424 std::tie(hasSWMask, clipFP) = GetSWMaskFP(
1425 context, &fMasks, cs, scissorBounds, elementsForMask.begin(),
1426 elementsForMask.count(), std::move(clipFP));
1427 }
1428
1429 if (!hasSWMask) {
1430 if (stencilUnavailable) {
1431 SkDebugf("WARNING: Clip mask requires stencil, but stencil unavailable. "
1432 "Draw will be ignored.\n");
1433 return Effect::kClippedOut;
1434 } else {
1435 // Rasterize the remaining elements to the stencil buffer
1436 render_stencil_mask(context, rtc, cs.genID(), scissorBounds,
1437 elementsForMask.begin(), elementsForMask.count(), out);
1438 }
1439 }
1440 }
1441
1442 // Finish CCPR paths now that the render target's ops task is stable.
1443 if (!elementsForAtlas.empty()) {
1444 uint32_t opsTaskID = rtc->getOpsTask()->uniqueID();
1445 for (int i = 0; i < elementsForAtlas.count(); ++i) {
1446 SkASSERT(elementsForAtlas[i]->aa() == GrAA::kYes);
1447 clipFP = clip_atlas_fp(ccpr, opsTaskID, scissorBounds, elementsForAtlas[i]->asElement(),
1448 elementsForAtlas[i]->devicePath(), *caps, std::move(clipFP));
1449 }
1450 }
1451
1452 if (clipFP) {
1453 // This will include all analytic FPs, all CCPR atlas FPs, and a SW mask FP.
1454 out->addCoverageFP(std::move(clipFP));
1455 }
1456
1457 SkASSERT(out->doesClip());
1458 return Effect::kClipped;
1459}
1460
1461GrClipStack::SaveRecord& GrClipStack::writableSaveRecord(bool* wasDeferred) {
1462 SaveRecord& current = fSaves.back();
1463 if (current.canBeUpdated()) {
1464 // Current record is still open, so it can be modified directly
1465 *wasDeferred = false;
1466 return current;
1467 } else {
1468 // Must undefer the save to get a new record.
1469 SkAssertResult(current.popSave());
1470 *wasDeferred = true;
1471 return fSaves.emplace_back(current, fMasks.count(), fElements.count());
1472 }
1473}
1474
1475void GrClipStack::clipShader(sk_sp<SkShader> shader) {
1476 // Shaders can't bring additional coverage
1477 if (this->currentSaveRecord().state() == ClipState::kEmpty) {
1478 return;
1479 }
1480
1481 bool wasDeferred;
1482 this->writableSaveRecord(&wasDeferred).addShader(std::move(shader));
1483 // Masks and geometry elements are not invalidated by updating the clip shader
1484}
1485
1486void GrClipStack::replaceClip(const SkIRect& rect) {
1487 bool wasDeferred;
1488 SaveRecord& save = this->writableSaveRecord(&wasDeferred);
1489
1490 if (!wasDeferred) {
1491 save.removeElements(&fElements);
1492 save.invalidateMasks(fProxyProvider, &fMasks);
1493 }
1494
1495 save.reset(fDeviceBounds);
1496 if (rect != fDeviceBounds) {
1497 this->clipRect(SkMatrix::I(), SkRect::Make(rect), GrAA::kNo, SkClipOp::kIntersect);
1498 }
1499}
1500
1501void GrClipStack::clip(RawElement&& element) {
1502 if (this->currentSaveRecord().state() == ClipState::kEmpty) {
1503 return;
1504 }
1505
1506 // Reduce the path to anything simpler, will apply the transform if it's a scale+translate
1507 // and ensures the element's bounds are clipped to the device (NOT the conservative clip bounds,
1508 // since those are based on the net effect of all elements while device bounds clipping happens
1509 // implicitly. During addElement, we may still be able to invalidate some older elements).
1510 element.simplify(fDeviceBounds, fForceAA);
1511 SkASSERT(!element.shape().inverted());
1512
1513 // An empty op means do nothing (for difference), or close the save record, so we try and detect
1514 // that early before doing additional unnecessary save record allocation.
1515 if (element.shape().isEmpty()) {
1516 if (element.op() == SkClipOp::kDifference) {
1517 // If the shape is empty and we're subtracting, this has no effect on the clip
1518 return;
1519 }
1520 // else we will make the clip empty, but we need a new save record to record that change
1521 // in the clip state; fall through to below and updateForElement() will handle it.
1522 }
1523
1524 bool wasDeferred;
1525 SaveRecord& save = this->writableSaveRecord(&wasDeferred);
1526 SkDEBUGCODE(uint32_t oldGenID = save.genID();)
1527 SkDEBUGCODE(int elementCount = fElements.count();)
1528 if (!save.addElement(std::move(element), &fElements)) {
1529 if (wasDeferred) {
1530 // We made a new save record, but ended up not adding an element to the stack.
1531 // So instead of keeping an empty save record around, pop it off and restore the counter
1532 SkASSERT(elementCount == fElements.count());
1533 fSaves.pop_back();
1534 fSaves.back().pushSave();
1535 } else {
1536 // Should not have changed gen ID if the element and save were not modified
1537 SkASSERT(oldGenID == save.genID());
1538 }
1539 } else {
1540 // The gen ID should be new, and should not be invalid
1541 SkASSERT(oldGenID != save.genID() && save.genID() != kInvalidGenID);
1542 if (fProxyProvider && !wasDeferred) {
1543 // We modified an active save record so any old masks it had can be invalidated
1544 save.invalidateMasks(fProxyProvider, &fMasks);
1545 }
1546 }
1547}
1548
1549GrFPResult GrClipStack::GetSWMaskFP(GrRecordingContext* context, Mask::Stack* masks,
1550 const SaveRecord& current, const SkIRect& bounds,
1551 const Element** elements, int count,
1552 std::unique_ptr<GrFragmentProcessor> clipFP) {
1553 GrProxyProvider* proxyProvider = context->priv().proxyProvider();
Brian Salomonc85bce82020-12-29 09:32:52 -05001554 GrSurfaceProxyView maskProxy;
Michael Ludwiga195d102020-09-15 14:51:52 -04001555
1556 SkIRect maskBounds; // may not be 'bounds' if we reuse a large clip mask
1557 // Check the existing masks from this save record for compatibility
1558 for (const Mask& m : masks->ritems()) {
1559 if (m.genID() != current.genID()) {
1560 break;
1561 }
1562 if (m.appliesToDraw(current, bounds)) {
Brian Salomonc85bce82020-12-29 09:32:52 -05001563 maskProxy = proxyProvider->findCachedProxyWithColorTypeFallback(
1564 m.key(), kMaskOrigin, GrColorType::kAlpha_8, 1);
1565 if (maskProxy) {
Michael Ludwiga195d102020-09-15 14:51:52 -04001566 maskBounds = m.bounds();
1567 break;
1568 }
1569 }
1570 }
1571
Brian Salomonc85bce82020-12-29 09:32:52 -05001572 if (!maskProxy) {
Michael Ludwiga195d102020-09-15 14:51:52 -04001573 // No existing mask was found, so need to render a new one
Brian Salomonc85bce82020-12-29 09:32:52 -05001574 maskProxy = render_sw_mask(context, bounds, elements, count);
1575 if (!maskProxy) {
Michael Ludwiga195d102020-09-15 14:51:52 -04001576 // If we still don't have one, there's nothing we can do
1577 return GrFPFailure(std::move(clipFP));
1578 }
1579
1580 // Register the mask for later invalidation
1581 Mask& mask = masks->emplace_back(current, bounds);
Brian Salomonc85bce82020-12-29 09:32:52 -05001582 proxyProvider->assignUniqueKeyToProxy(mask.key(), maskProxy.asTextureProxy());
Michael Ludwiga195d102020-09-15 14:51:52 -04001583 maskBounds = bounds;
1584 }
1585
1586 // Wrap the mask in an FP that samples it for coverage
Brian Salomonc85bce82020-12-29 09:32:52 -05001587 SkASSERT(maskProxy && maskProxy.origin() == kMaskOrigin);
Michael Ludwiga195d102020-09-15 14:51:52 -04001588
1589 GrSamplerState samplerState(GrSamplerState::WrapMode::kClampToBorder,
1590 GrSamplerState::Filter::kNearest);
1591 // Maps the device coords passed to the texture effect to the top-left corner of the mask, and
1592 // make sure that the draw bounds are pre-mapped into the mask's space as well.
1593 auto m = SkMatrix::Translate(-maskBounds.fLeft, -maskBounds.fTop);
1594 auto subset = SkRect::Make(bounds);
1595 subset.offset(-maskBounds.fLeft, -maskBounds.fTop);
1596 // We scissor to bounds. The mask's texel centers are aligned to device space
1597 // pixel centers. Hence this domain of texture coordinates.
1598 auto domain = subset.makeInset(0.5, 0.5);
Brian Salomonc85bce82020-12-29 09:32:52 -05001599 auto fp = GrTextureEffect::MakeSubset(std::move(maskProxy), kPremul_SkAlphaType, m,
1600 samplerState, subset, domain, *context->priv().caps());
Michael Ludwiga195d102020-09-15 14:51:52 -04001601 fp = GrDeviceSpaceEffect::Make(std::move(fp));
1602
1603 // Must combine the coverage sampled from the texture effect with the previous coverage
Brian Salomonb43d6992021-01-05 14:37:40 -05001604 fp = GrBlendFragmentProcessor::Make(std::move(fp), std::move(clipFP), SkBlendMode::kDstIn);
Michael Ludwiga195d102020-09-15 14:51:52 -04001605 return GrFPSuccess(std::move(fp));
1606}