krajcevski | 6c35488 | 2014-07-22 07:44:00 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2014 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "SkTextureCompressor.h" |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 9 | #include "SkTextureCompressor_Blitter.h" |
krajcevski | 6c35488 | 2014-07-22 07:44:00 -0700 | [diff] [blame] | 10 | |
krajcevski | b8ccc2f | 2014-08-07 08:15:14 -0700 | [diff] [blame] | 11 | #include "SkBlitter.h" |
krajcevski | 6c35488 | 2014-07-22 07:44:00 -0700 | [diff] [blame] | 12 | #include "SkEndian.h" |
| 13 | |
| 14 | // #define COMPRESS_R11_EAC_SLOW 1 |
| 15 | // #define COMPRESS_R11_EAC_FAST 1 |
| 16 | #define COMPRESS_R11_EAC_FASTEST 1 |
| 17 | |
| 18 | // Blocks compressed into R11 EAC are represented as follows: |
| 19 | // 0000000000000000000000000000000000000000000000000000000000000000 |
| 20 | // |base_cw|mod|mul| ----------------- indices ------------------- |
| 21 | // |
| 22 | // To reconstruct the value of a given pixel, we use the formula: |
| 23 | // clamp[0, 2047](base_cw * 8 + 4 + mod_val*mul*8) |
| 24 | // |
| 25 | // mod_val is chosen from a palette of values based on the index of the |
| 26 | // given pixel. The palette is chosen by the value stored in mod. |
| 27 | // This formula returns a value between 0 and 2047, which is converted |
| 28 | // to a float from 0 to 1 in OpenGL. |
| 29 | // |
| 30 | // If mul is zero, then we set mul = 1/8, so that the formula becomes |
| 31 | // clamp[0, 2047](base_cw * 8 + 4 + mod_val) |
| 32 | |
krajcevski | 6c35488 | 2014-07-22 07:44:00 -0700 | [diff] [blame] | 33 | static const int kNumR11EACPalettes = 16; |
| 34 | static const int kR11EACPaletteSize = 8; |
| 35 | static const int kR11EACModifierPalettes[kNumR11EACPalettes][kR11EACPaletteSize] = { |
| 36 | {-3, -6, -9, -15, 2, 5, 8, 14}, |
| 37 | {-3, -7, -10, -13, 2, 6, 9, 12}, |
| 38 | {-2, -5, -8, -13, 1, 4, 7, 12}, |
| 39 | {-2, -4, -6, -13, 1, 3, 5, 12}, |
| 40 | {-3, -6, -8, -12, 2, 5, 7, 11}, |
| 41 | {-3, -7, -9, -11, 2, 6, 8, 10}, |
| 42 | {-4, -7, -8, -11, 3, 6, 7, 10}, |
| 43 | {-3, -5, -8, -11, 2, 4, 7, 10}, |
| 44 | {-2, -6, -8, -10, 1, 5, 7, 9}, |
| 45 | {-2, -5, -8, -10, 1, 4, 7, 9}, |
| 46 | {-2, -4, -8, -10, 1, 3, 7, 9}, |
| 47 | {-2, -5, -7, -10, 1, 4, 6, 9}, |
| 48 | {-3, -4, -7, -10, 2, 3, 6, 9}, |
| 49 | {-1, -2, -3, -10, 0, 1, 2, 9}, |
| 50 | {-4, -6, -8, -9, 3, 5, 7, 8}, |
| 51 | {-3, -5, -7, -9, 2, 4, 6, 8} |
| 52 | }; |
| 53 | |
krajcevski | 4ad76e3 | 2014-07-31 14:12:50 -0700 | [diff] [blame] | 54 | #if COMPRESS_R11_EAC_SLOW |
| 55 | |
krajcevski | 6c35488 | 2014-07-22 07:44:00 -0700 | [diff] [blame] | 56 | // Pack the base codeword, palette, and multiplier into the 64 bits necessary |
| 57 | // to decode it. |
| 58 | static uint64_t pack_r11eac_block(uint16_t base_cw, uint16_t palette, uint16_t multiplier, |
| 59 | uint64_t indices) { |
| 60 | SkASSERT(palette < 16); |
| 61 | SkASSERT(multiplier < 16); |
| 62 | SkASSERT(indices < (static_cast<uint64_t>(1) << 48)); |
| 63 | |
| 64 | const uint64_t b = static_cast<uint64_t>(base_cw) << 56; |
| 65 | const uint64_t m = static_cast<uint64_t>(multiplier) << 52; |
| 66 | const uint64_t p = static_cast<uint64_t>(palette) << 48; |
| 67 | return SkEndian_SwapBE64(b | m | p | indices); |
| 68 | } |
| 69 | |
| 70 | // Given a base codeword, a modifier, and a multiplier, compute the proper |
| 71 | // pixel value in the range [0, 2047]. |
| 72 | static uint16_t compute_r11eac_pixel(int base_cw, int modifier, int multiplier) { |
| 73 | int ret = (base_cw * 8 + 4) + (modifier * multiplier * 8); |
| 74 | return (ret > 2047)? 2047 : ((ret < 0)? 0 : ret); |
| 75 | } |
| 76 | |
| 77 | // Compress a block into R11 EAC format. |
| 78 | // The compression works as follows: |
| 79 | // 1. Find the center of the span of the block's values. Use this as the base codeword. |
| 80 | // 2. Choose a multiplier based roughly on the size of the span of block values |
| 81 | // 3. Iterate through each palette and choose the one with the most accurate |
| 82 | // modifiers. |
| 83 | static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) { |
| 84 | // Find the center of the data... |
| 85 | uint16_t bmin = block[0]; |
| 86 | uint16_t bmax = block[0]; |
| 87 | for (int i = 1; i < 16; ++i) { |
| 88 | bmin = SkTMin<uint16_t>(bmin, block[i]); |
| 89 | bmax = SkTMax<uint16_t>(bmax, block[i]); |
| 90 | } |
| 91 | |
| 92 | uint16_t center = (bmax + bmin) >> 1; |
| 93 | SkASSERT(center <= 255); |
| 94 | |
| 95 | // Based on the min and max, we can guesstimate a proper multiplier |
| 96 | // This is kind of a magic choice to start with. |
| 97 | uint16_t multiplier = (bmax - center) / 10; |
| 98 | |
| 99 | // Now convert the block to 11 bits and transpose it to match |
| 100 | // the proper layout |
| 101 | uint16_t cblock[16]; |
| 102 | for (int i = 0; i < 4; ++i) { |
| 103 | for (int j = 0; j < 4; ++j) { |
| 104 | int srcIdx = i*4+j; |
| 105 | int dstIdx = j*4+i; |
| 106 | cblock[dstIdx] = (block[srcIdx] << 3) | (block[srcIdx] >> 5); |
| 107 | } |
| 108 | } |
| 109 | |
| 110 | // Finally, choose the proper palette and indices |
| 111 | uint32_t bestError = 0xFFFFFFFF; |
| 112 | uint64_t bestIndices = 0; |
| 113 | uint16_t bestPalette = 0; |
| 114 | for (uint16_t paletteIdx = 0; paletteIdx < kNumR11EACPalettes; ++paletteIdx) { |
| 115 | const int *palette = kR11EACModifierPalettes[paletteIdx]; |
| 116 | |
| 117 | // Iterate through each pixel to find the best palette index |
| 118 | // and update the indices with the choice. Also store the error |
| 119 | // for this palette to be compared against the best error... |
| 120 | uint32_t error = 0; |
| 121 | uint64_t indices = 0; |
| 122 | for (int pixelIdx = 0; pixelIdx < 16; ++pixelIdx) { |
| 123 | const uint16_t pixel = cblock[pixelIdx]; |
| 124 | |
| 125 | // Iterate through each palette value to find the best index |
| 126 | // for this particular pixel for this particular palette. |
| 127 | uint16_t bestPixelError = |
| 128 | abs_diff(pixel, compute_r11eac_pixel(center, palette[0], multiplier)); |
| 129 | int bestIndex = 0; |
| 130 | for (int i = 1; i < kR11EACPaletteSize; ++i) { |
| 131 | const uint16_t p = compute_r11eac_pixel(center, palette[i], multiplier); |
| 132 | const uint16_t perror = abs_diff(pixel, p); |
| 133 | |
| 134 | // Is this index better? |
| 135 | if (perror < bestPixelError) { |
| 136 | bestIndex = i; |
| 137 | bestPixelError = perror; |
| 138 | } |
| 139 | } |
| 140 | |
| 141 | SkASSERT(bestIndex < 8); |
| 142 | |
| 143 | error += bestPixelError; |
| 144 | indices <<= 3; |
| 145 | indices |= bestIndex; |
| 146 | } |
| 147 | |
| 148 | SkASSERT(indices < (static_cast<uint64_t>(1) << 48)); |
| 149 | |
| 150 | // Is this palette better? |
| 151 | if (error < bestError) { |
| 152 | bestPalette = paletteIdx; |
| 153 | bestIndices = indices; |
| 154 | bestError = error; |
| 155 | } |
| 156 | } |
| 157 | |
| 158 | // Finally, pack everything together... |
| 159 | return pack_r11eac_block(center, bestPalette, multiplier, bestIndices); |
| 160 | } |
| 161 | #endif // COMPRESS_R11_EAC_SLOW |
| 162 | |
| 163 | #if COMPRESS_R11_EAC_FAST |
| 164 | // This function takes into account that most blocks that we compress have a gradation from |
| 165 | // fully opaque to fully transparent. The compression scheme works by selecting the |
| 166 | // palette and multiplier that has the tightest fit to the 0-255 range. This is encoded |
| 167 | // as the block header (0x8490). The indices are then selected by considering the top |
| 168 | // three bits of each alpha value. For alpha masks, this reduces the dynamic range from |
| 169 | // 17 to 8, but the quality is still acceptable. |
| 170 | // |
| 171 | // There are a few caveats that need to be taken care of... |
| 172 | // |
| 173 | // 1. The block is read in as scanlines, so the indices are stored as: |
| 174 | // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
| 175 | // However, the decomrpession routine reads them in column-major order, so they |
| 176 | // need to be packed as: |
| 177 | // 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15 |
| 178 | // So when reading, they must be transposed. |
| 179 | // |
| 180 | // 2. We cannot use the top three bits as an index directly, since the R11 EAC palettes |
| 181 | // above store the modulation values first decreasing and then increasing: |
| 182 | // e.g. {-3, -6, -9, -15, 2, 5, 8, 14} |
| 183 | // Hence, we need to convert the indices with the following mapping: |
| 184 | // From: 0 1 2 3 4 5 6 7 |
| 185 | // To: 3 2 1 0 4 5 6 7 |
| 186 | static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) { |
| 187 | uint64_t retVal = static_cast<uint64_t>(0x8490) << 48; |
| 188 | for(int i = 0; i < 4; ++i) { |
| 189 | for(int j = 0; j < 4; ++j) { |
| 190 | const int shift = 45-3*(j*4+i); |
| 191 | SkASSERT(shift <= 45); |
| 192 | const uint64_t idx = block[i*4+j] >> 5; |
| 193 | SkASSERT(idx < 8); |
| 194 | |
| 195 | // !SPEED! This is slightly faster than having an if-statement. |
| 196 | switch(idx) { |
| 197 | case 0: |
| 198 | case 1: |
| 199 | case 2: |
| 200 | case 3: |
| 201 | retVal |= (3-idx) << shift; |
| 202 | break; |
| 203 | default: |
| 204 | retVal |= idx << shift; |
| 205 | break; |
| 206 | } |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | return SkEndian_SwapBE64(retVal); |
| 211 | } |
| 212 | #endif // COMPRESS_R11_EAC_FAST |
| 213 | |
| 214 | #if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST) |
| 215 | static uint64_t compress_r11eac_block(const uint8_t block[16]) { |
| 216 | // Are all blocks a solid color? |
| 217 | bool solid = true; |
| 218 | for (int i = 1; i < 16; ++i) { |
| 219 | if (block[i] != block[0]) { |
| 220 | solid = false; |
| 221 | break; |
| 222 | } |
| 223 | } |
| 224 | |
| 225 | if (solid) { |
| 226 | switch(block[0]) { |
| 227 | // Fully transparent? We know the encoding... |
| 228 | case 0: |
| 229 | // (0x0020 << 48) produces the following: |
| 230 | // basw_cw: 0 |
| 231 | // mod: 0, palette: {-3, -6, -9, -15, 2, 5, 8, 14} |
| 232 | // multiplier: 2 |
| 233 | // mod_val: -3 |
| 234 | // |
| 235 | // this gives the following formula: |
| 236 | // clamp[0, 2047](0*8+4+(-3)*2*8) = 0 |
| 237 | // |
| 238 | // Furthermore, it is impervious to endianness: |
| 239 | // 0x0020000000002000ULL |
| 240 | // Will produce one pixel with index 2, which gives: |
| 241 | // clamp[0, 2047](0*8+4+(-9)*2*8) = 0 |
| 242 | return 0x0020000000002000ULL; |
| 243 | |
| 244 | // Fully opaque? We know this encoding too... |
| 245 | case 255: |
| 246 | |
| 247 | // -1 produces the following: |
| 248 | // basw_cw: 255 |
| 249 | // mod: 15, palette: {-3, -5, -7, -9, 2, 4, 6, 8} |
| 250 | // mod_val: 8 |
| 251 | // |
| 252 | // this gives the following formula: |
| 253 | // clamp[0, 2047](255*8+4+8*8*8) = clamp[0, 2047](2556) = 2047 |
| 254 | return 0xFFFFFFFFFFFFFFFFULL; |
| 255 | |
| 256 | default: |
| 257 | // !TODO! krajcevski: |
| 258 | // This will probably never happen, since we're using this format |
| 259 | // primarily for compressing alpha maps. Usually the only |
| 260 | // non-fullly opaque or fully transparent blocks are not a solid |
| 261 | // intermediate color. If we notice that they are, then we can |
| 262 | // add another optimization... |
| 263 | break; |
| 264 | } |
| 265 | } |
| 266 | |
| 267 | return compress_heterogeneous_r11eac_block(block); |
| 268 | } |
| 269 | |
| 270 | // This function is used by R11 EAC to compress 4x4 blocks |
| 271 | // of 8-bit alpha into 64-bit values that comprise the compressed data. |
| 272 | // We need to make sure that the dimensions of the src pixels are divisible |
| 273 | // by 4, and copy 4x4 blocks one at a time for compression. |
| 274 | typedef uint64_t (*A84x4To64BitProc)(const uint8_t block[]); |
| 275 | |
| 276 | static bool compress_4x4_a8_to_64bit(uint8_t* dst, const uint8_t* src, |
| 277 | int width, int height, int rowBytes, |
| 278 | A84x4To64BitProc proc) { |
| 279 | // Make sure that our data is well-formed enough to be considered for compression |
| 280 | if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) { |
| 281 | return false; |
| 282 | } |
| 283 | |
| 284 | int blocksX = width >> 2; |
| 285 | int blocksY = height >> 2; |
| 286 | |
| 287 | uint8_t block[16]; |
| 288 | uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst); |
| 289 | for (int y = 0; y < blocksY; ++y) { |
| 290 | for (int x = 0; x < blocksX; ++x) { |
| 291 | // Load block |
| 292 | for (int k = 0; k < 4; ++k) { |
| 293 | memcpy(block + k*4, src + k*rowBytes + 4*x, 4); |
| 294 | } |
| 295 | |
| 296 | // Compress it |
| 297 | *encPtr = proc(block); |
| 298 | ++encPtr; |
| 299 | } |
| 300 | src += 4 * rowBytes; |
| 301 | } |
| 302 | |
| 303 | return true; |
| 304 | } |
| 305 | #endif // (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST) |
| 306 | |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 307 | // This function converts an integer containing four bytes of alpha |
| 308 | // values into an integer containing four bytes of indices into R11 EAC. |
| 309 | // Note, there needs to be a mapping of indices: |
| 310 | // 0 1 2 3 4 5 6 7 |
| 311 | // 3 2 1 0 4 5 6 7 |
| 312 | // |
| 313 | // To compute this, we first negate each byte, and then add three, which |
| 314 | // gives the mapping |
| 315 | // 3 2 1 0 -1 -2 -3 -4 |
| 316 | // |
| 317 | // Then we mask out the negative values, take their absolute value, and |
| 318 | // add three. |
| 319 | // |
| 320 | // Most of the voodoo in this function comes from Hacker's Delight, section 2-18 |
| 321 | static inline uint32_t convert_indices(uint32_t x) { |
| 322 | // Take the top three bits... |
| 323 | x = (x & 0xE0E0E0E0) >> 5; |
| 324 | |
| 325 | // Negate... |
| 326 | x = ~((0x80808080 - x) ^ 0x7F7F7F7F); |
| 327 | |
| 328 | // Add three |
| 329 | const uint32_t s = (x & 0x7F7F7F7F) + 0x03030303; |
| 330 | x = ((x ^ 0x03030303) & 0x80808080) ^ s; |
| 331 | |
| 332 | // Absolute value |
| 333 | const uint32_t a = x & 0x80808080; |
| 334 | const uint32_t b = a >> 7; |
| 335 | |
| 336 | // Aside: mask negatives (m is three if the byte was negative) |
| 337 | const uint32_t m = (a >> 6) | b; |
| 338 | |
| 339 | // .. continue absolute value |
| 340 | x = (x ^ ((a - b) | a)) + b; |
| 341 | |
| 342 | // Add three |
| 343 | return x + m; |
| 344 | } |
| 345 | |
krajcevski | 6c35488 | 2014-07-22 07:44:00 -0700 | [diff] [blame] | 346 | #if COMPRESS_R11_EAC_FASTEST |
| 347 | template<unsigned shift> |
| 348 | static inline uint64_t swap_shift(uint64_t x, uint64_t mask) { |
| 349 | const uint64_t t = (x ^ (x >> shift)) & mask; |
| 350 | return x ^ t ^ (t << shift); |
| 351 | } |
| 352 | |
| 353 | static inline uint64_t interleave6(uint64_t topRows, uint64_t bottomRows) { |
| 354 | // If our 3-bit block indices are laid out as: |
| 355 | // a b c d |
| 356 | // e f g h |
| 357 | // i j k l |
| 358 | // m n o p |
| 359 | // |
| 360 | // This function expects topRows and bottomRows to contain the first two rows |
| 361 | // of indices interleaved in the least significant bits of a and b. In other words... |
| 362 | // |
| 363 | // If the architecture is big endian, then topRows and bottomRows will contain the following: |
| 364 | // Bits 31-0: |
| 365 | // a: 00 a e 00 b f 00 c g 00 d h |
| 366 | // b: 00 i m 00 j n 00 k o 00 l p |
| 367 | // |
| 368 | // If the architecture is little endian, then topRows and bottomRows will contain |
| 369 | // the following: |
| 370 | // Bits 31-0: |
| 371 | // a: 00 d h 00 c g 00 b f 00 a e |
| 372 | // b: 00 l p 00 k o 00 j n 00 i m |
| 373 | // |
| 374 | // This function returns a 48-bit packing of the form: |
| 375 | // a e i m b f j n c g k o d h l p |
| 376 | // |
| 377 | // !SPEED! this function might be even faster if certain SIMD intrinsics are |
| 378 | // used.. |
| 379 | |
| 380 | // For both architectures, we can figure out a packing of the bits by |
| 381 | // using a shuffle and a few shift-rotates... |
| 382 | uint64_t x = (static_cast<uint64_t>(topRows) << 32) | static_cast<uint64_t>(bottomRows); |
| 383 | |
| 384 | // x: 00 a e 00 b f 00 c g 00 d h 00 i m 00 j n 00 k o 00 l p |
| 385 | |
| 386 | x = swap_shift<10>(x, 0x3FC0003FC00000ULL); |
| 387 | |
| 388 | // x: b f 00 00 00 a e c g i m 00 00 00 d h j n 00 k o 00 l p |
| 389 | |
| 390 | x = (x | ((x << 52) & (0x3FULL << 52)) | ((x << 20) & (0x3FULL << 28))) >> 16; |
| 391 | |
| 392 | // x: 00 00 00 00 00 00 00 00 b f l p a e c g i m k o d h j n |
| 393 | |
| 394 | x = swap_shift<6>(x, 0xFC0000ULL); |
| 395 | |
| 396 | #if defined (SK_CPU_BENDIAN) |
| 397 | // x: 00 00 00 00 00 00 00 00 b f l p a e i m c g k o d h j n |
| 398 | |
| 399 | x = swap_shift<36>(x, 0x3FULL); |
| 400 | |
| 401 | // x: 00 00 00 00 00 00 00 00 b f j n a e i m c g k o d h l p |
| 402 | |
| 403 | x = swap_shift<12>(x, 0xFFF000000ULL); |
| 404 | #else |
| 405 | // If our CPU is little endian, then the above logic will |
| 406 | // produce the following indices: |
| 407 | // x: 00 00 00 00 00 00 00 00 c g i m d h l p b f j n a e k o |
| 408 | |
| 409 | x = swap_shift<36>(x, 0xFC0ULL); |
| 410 | |
| 411 | // x: 00 00 00 00 00 00 00 00 a e i m d h l p b f j n c g k o |
| 412 | |
| 413 | x = (x & (0xFFFULL << 36)) | ((x & 0xFFFFFFULL) << 12) | ((x >> 24) & 0xFFFULL); |
| 414 | #endif |
| 415 | |
| 416 | // x: 00 00 00 00 00 00 00 00 a e i m b f j n c g k o d h l p |
| 417 | return x; |
| 418 | } |
| 419 | |
krajcevski | 6c35488 | 2014-07-22 07:44:00 -0700 | [diff] [blame] | 420 | // This function follows the same basic procedure as compress_heterogeneous_r11eac_block |
| 421 | // above when COMPRESS_R11_EAC_FAST is defined, but it avoids a few loads/stores and |
| 422 | // tries to optimize where it can using SIMD. |
| 423 | static uint64_t compress_r11eac_block_fast(const uint8_t* src, int rowBytes) { |
| 424 | // Store each row of alpha values in an integer |
| 425 | const uint32_t alphaRow1 = *(reinterpret_cast<const uint32_t*>(src)); |
| 426 | const uint32_t alphaRow2 = *(reinterpret_cast<const uint32_t*>(src + rowBytes)); |
| 427 | const uint32_t alphaRow3 = *(reinterpret_cast<const uint32_t*>(src + 2*rowBytes)); |
| 428 | const uint32_t alphaRow4 = *(reinterpret_cast<const uint32_t*>(src + 3*rowBytes)); |
| 429 | |
| 430 | // Check for solid blocks. The explanations for these values |
| 431 | // can be found in the comments of compress_r11eac_block above |
| 432 | if (alphaRow1 == alphaRow2 && alphaRow1 == alphaRow3 && alphaRow1 == alphaRow4) { |
| 433 | if (0 == alphaRow1) { |
| 434 | // Fully transparent block |
| 435 | return 0x0020000000002000ULL; |
| 436 | } else if (0xFFFFFFFF == alphaRow1) { |
| 437 | // Fully opaque block |
| 438 | return 0xFFFFFFFFFFFFFFFFULL; |
| 439 | } |
| 440 | } |
| 441 | |
| 442 | // Convert each integer of alpha values into an integer of indices |
| 443 | const uint32_t indexRow1 = convert_indices(alphaRow1); |
| 444 | const uint32_t indexRow2 = convert_indices(alphaRow2); |
| 445 | const uint32_t indexRow3 = convert_indices(alphaRow3); |
| 446 | const uint32_t indexRow4 = convert_indices(alphaRow4); |
| 447 | |
| 448 | // Interleave the indices from the top two rows and bottom two rows |
| 449 | // prior to passing them to interleave6. Since each index is at most |
| 450 | // three bits, then each byte can hold two indices... The way that the |
| 451 | // compression scheme expects the packing allows us to efficiently pack |
| 452 | // the top two rows and bottom two rows. Interleaving each 6-bit sequence |
| 453 | // and tightly packing it into a uint64_t is a little trickier, which is |
| 454 | // taken care of in interleave6. |
| 455 | const uint32_t r1r2 = (indexRow1 << 3) | indexRow2; |
| 456 | const uint32_t r3r4 = (indexRow3 << 3) | indexRow4; |
| 457 | const uint64_t indices = interleave6(r1r2, r3r4); |
| 458 | |
| 459 | // Return the packed incdices in the least significant bits with the magic header |
| 460 | return SkEndian_SwapBE64(0x8490000000000000ULL | indices); |
| 461 | } |
| 462 | |
| 463 | static bool compress_a8_to_r11eac_fast(uint8_t* dst, const uint8_t* src, |
| 464 | int width, int height, int rowBytes) { |
| 465 | // Make sure that our data is well-formed enough to be considered for compression |
| 466 | if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) { |
| 467 | return false; |
| 468 | } |
| 469 | |
| 470 | const int blocksX = width >> 2; |
| 471 | const int blocksY = height >> 2; |
| 472 | |
| 473 | uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst); |
| 474 | for (int y = 0; y < blocksY; ++y) { |
| 475 | for (int x = 0; x < blocksX; ++x) { |
| 476 | // Compress it |
| 477 | *encPtr = compress_r11eac_block_fast(src + 4*x, rowBytes); |
| 478 | ++encPtr; |
| 479 | } |
| 480 | src += 4 * rowBytes; |
| 481 | } |
| 482 | return true; |
| 483 | } |
| 484 | #endif // COMPRESS_R11_EAC_FASTEST |
| 485 | |
| 486 | //////////////////////////////////////////////////////////////////////////////// |
| 487 | // |
| 488 | // Utility functions used by the blitter |
| 489 | // |
| 490 | //////////////////////////////////////////////////////////////////////////////// |
| 491 | |
| 492 | // The R11 EAC format expects that indices are given in column-major order. Since |
| 493 | // we receive alpha values in raster order, this usually means that we have to use |
| 494 | // pack6 above to properly pack our indices. However, if our indices come from the |
| 495 | // blitter, then each integer will be a column of indices, and hence can be efficiently |
| 496 | // packed. This function takes the bottom three bits of each byte and places them in |
| 497 | // the least significant 12 bits of the resulting integer. |
| 498 | static inline uint32_t pack_indices_vertical(uint32_t x) { |
| 499 | #if defined (SK_CPU_BENDIAN) |
| 500 | return |
| 501 | (x & 7) | |
| 502 | ((x >> 5) & (7 << 3)) | |
| 503 | ((x >> 10) & (7 << 6)) | |
| 504 | ((x >> 15) & (7 << 9)); |
| 505 | #else |
| 506 | return |
| 507 | ((x >> 24) & 7) | |
| 508 | ((x >> 13) & (7 << 3)) | |
| 509 | ((x >> 2) & (7 << 6)) | |
| 510 | ((x << 9) & (7 << 9)); |
| 511 | #endif |
| 512 | } |
| 513 | |
| 514 | // This function returns the compressed format of a block given as four columns of |
| 515 | // alpha values. Each column is assumed to be loaded from top to bottom, and hence |
| 516 | // must first be converted to indices and then packed into the resulting 64-bit |
| 517 | // integer. |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 518 | inline void compress_block_vertical(uint8_t* dstPtr, const uint8_t *block) { |
| 519 | |
| 520 | const uint32_t* src = reinterpret_cast<const uint32_t*>(block); |
| 521 | uint64_t* dst = reinterpret_cast<uint64_t*>(dstPtr); |
| 522 | |
| 523 | const uint32_t alphaColumn0 = src[0]; |
| 524 | const uint32_t alphaColumn1 = src[1]; |
| 525 | const uint32_t alphaColumn2 = src[2]; |
| 526 | const uint32_t alphaColumn3 = src[3]; |
krajcevski | 6c35488 | 2014-07-22 07:44:00 -0700 | [diff] [blame] | 527 | |
| 528 | if (alphaColumn0 == alphaColumn1 && |
| 529 | alphaColumn2 == alphaColumn3 && |
| 530 | alphaColumn0 == alphaColumn2) { |
| 531 | |
| 532 | if (0 == alphaColumn0) { |
| 533 | // Transparent |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 534 | *dst = 0x0020000000002000ULL; |
| 535 | return; |
krajcevski | 6c35488 | 2014-07-22 07:44:00 -0700 | [diff] [blame] | 536 | } |
| 537 | else if (0xFFFFFFFF == alphaColumn0) { |
| 538 | // Opaque |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 539 | *dst = 0xFFFFFFFFFFFFFFFFULL; |
| 540 | return; |
krajcevski | 6c35488 | 2014-07-22 07:44:00 -0700 | [diff] [blame] | 541 | } |
| 542 | } |
| 543 | |
| 544 | const uint32_t indexColumn0 = convert_indices(alphaColumn0); |
| 545 | const uint32_t indexColumn1 = convert_indices(alphaColumn1); |
| 546 | const uint32_t indexColumn2 = convert_indices(alphaColumn2); |
| 547 | const uint32_t indexColumn3 = convert_indices(alphaColumn3); |
| 548 | |
| 549 | const uint32_t packedIndexColumn0 = pack_indices_vertical(indexColumn0); |
| 550 | const uint32_t packedIndexColumn1 = pack_indices_vertical(indexColumn1); |
| 551 | const uint32_t packedIndexColumn2 = pack_indices_vertical(indexColumn2); |
| 552 | const uint32_t packedIndexColumn3 = pack_indices_vertical(indexColumn3); |
| 553 | |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 554 | *dst = SkEndian_SwapBE64(0x8490000000000000ULL | |
krajcevski | 6c35488 | 2014-07-22 07:44:00 -0700 | [diff] [blame] | 555 | (static_cast<uint64_t>(packedIndexColumn0) << 36) | |
| 556 | (static_cast<uint64_t>(packedIndexColumn1) << 24) | |
| 557 | static_cast<uint64_t>(packedIndexColumn2 << 12) | |
| 558 | static_cast<uint64_t>(packedIndexColumn3)); |
krajcevski | 6c35488 | 2014-07-22 07:44:00 -0700 | [diff] [blame] | 559 | } |
| 560 | |
krajcevski | 4ad76e3 | 2014-07-31 14:12:50 -0700 | [diff] [blame] | 561 | static inline int get_r11_eac_index(uint64_t block, int x, int y) { |
| 562 | SkASSERT(x >= 0 && x < 4); |
| 563 | SkASSERT(y >= 0 && y < 4); |
| 564 | const int idx = x*4 + y; |
| 565 | return (block >> ((15-idx)*3)) & 0x7; |
| 566 | } |
| 567 | |
| 568 | static void decompress_r11_eac_block(uint8_t* dst, int dstRowBytes, const uint8_t* src) { |
| 569 | const uint64_t block = SkEndian_SwapBE64(*(reinterpret_cast<const uint64_t *>(src))); |
| 570 | |
| 571 | const int base_cw = (block >> 56) & 0xFF; |
| 572 | const int mod = (block >> 52) & 0xF; |
| 573 | const int palette_idx = (block >> 48) & 0xF; |
| 574 | |
| 575 | const int* palette = kR11EACModifierPalettes[palette_idx]; |
| 576 | |
| 577 | for (int j = 0; j < 4; ++j) { |
| 578 | for (int i = 0; i < 4; ++i) { |
| 579 | const int idx = get_r11_eac_index(block, i, j); |
| 580 | const int val = base_cw*8 + 4 + palette[idx]*mod*8; |
| 581 | if (val < 0) { |
| 582 | dst[i] = 0; |
| 583 | } else if (val > 2047) { |
| 584 | dst[i] = 0xFF; |
| 585 | } else { |
| 586 | dst[i] = (val >> 3) & 0xFF; |
| 587 | } |
| 588 | } |
| 589 | dst += dstRowBytes; |
| 590 | } |
| 591 | } |
| 592 | |
krajcevski | 45a0bf5 | 2014-08-07 11:10:22 -0700 | [diff] [blame] | 593 | // This is the type passed as the CompressorType argument of the compressed |
| 594 | // blitter for the R11 EAC format. The static functions required to be in this |
| 595 | // struct are documented in SkTextureCompressor_Blitter.h |
| 596 | struct CompressorR11EAC { |
| 597 | static inline void CompressA8Vertical(uint8_t* dst, const uint8_t* src) { |
| 598 | compress_block_vertical(dst, src); |
| 599 | } |
| 600 | |
| 601 | static inline void CompressA8Horizontal(uint8_t* dst, const uint8_t* src, |
| 602 | int srcRowBytes) { |
| 603 | *(reinterpret_cast<uint64_t*>(dst)) = compress_r11eac_block_fast(src, srcRowBytes); |
| 604 | } |
| 605 | |
krajcevski | a10555a | 2014-08-11 13:34:22 -0700 | [diff] [blame^] | 606 | #if PEDANTIC_BLIT_RECT |
| 607 | static inline void UpdateBlock(uint8_t* dst, const uint8_t* src, int srcRowBytes, |
| 608 | const uint8_t* mask) { |
| 609 | // TODO: krajcevski |
| 610 | // The implementation of this function should be similar to that of LATC, since |
| 611 | // the R11EAC indices directly correspond to pixel values. |
| 612 | SkFAIL("Implement me!"); |
krajcevski | 45a0bf5 | 2014-08-07 11:10:22 -0700 | [diff] [blame] | 613 | } |
krajcevski | a10555a | 2014-08-11 13:34:22 -0700 | [diff] [blame^] | 614 | #endif |
krajcevski | 45a0bf5 | 2014-08-07 11:10:22 -0700 | [diff] [blame] | 615 | }; |
| 616 | |
krajcevski | 6c35488 | 2014-07-22 07:44:00 -0700 | [diff] [blame] | 617 | //////////////////////////////////////////////////////////////////////////////// |
| 618 | |
| 619 | namespace SkTextureCompressor { |
| 620 | |
| 621 | bool CompressA8ToR11EAC(uint8_t* dst, const uint8_t* src, int width, int height, int rowBytes) { |
| 622 | |
| 623 | #if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST) |
| 624 | |
| 625 | return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_r11eac_block); |
| 626 | |
| 627 | #elif COMPRESS_R11_EAC_FASTEST |
| 628 | |
| 629 | return compress_a8_to_r11eac_fast(dst, src, width, height, rowBytes); |
| 630 | |
| 631 | #else |
| 632 | #error "Must choose R11 EAC algorithm" |
| 633 | #endif |
| 634 | } |
| 635 | |
krajcevski | b8ccc2f | 2014-08-07 08:15:14 -0700 | [diff] [blame] | 636 | SkBlitter* CreateR11EACBlitter(int width, int height, void* outputBuffer, |
| 637 | SkTBlitterAllocator* allocator) { |
| 638 | |
| 639 | if ((width % 4) != 0 || (height % 4) != 0) { |
| 640 | return NULL; |
| 641 | } |
| 642 | |
| 643 | // Memset the output buffer to an encoding that decodes to zero. We must do this |
| 644 | // in order to avoid having uninitialized values in the buffer if the blitter |
| 645 | // decides not to write certain scanlines (and skip entire rows of blocks). |
| 646 | // In the case of R11, we use the encoding from recognizing all zero pixels from above. |
| 647 | const int nBlocks = (width * height / 16); // 4x4 pixel blocks. |
| 648 | uint64_t *dst = reinterpret_cast<uint64_t *>(outputBuffer); |
| 649 | for (int i = 0; i < nBlocks; ++i) { |
| 650 | *dst = 0x0020000000002000ULL; |
| 651 | ++dst; |
| 652 | } |
| 653 | |
| 654 | return allocator->createT< |
krajcevski | 45a0bf5 | 2014-08-07 11:10:22 -0700 | [diff] [blame] | 655 | SkTCompressedAlphaBlitter<4, 8, CompressorR11EAC>, int, int, void*> |
krajcevski | d5e46c7 | 2014-07-28 14:14:16 -0700 | [diff] [blame] | 656 | (width, height, outputBuffer); |
krajcevski | 6c35488 | 2014-07-22 07:44:00 -0700 | [diff] [blame] | 657 | } |
| 658 | |
krajcevski | 4ad76e3 | 2014-07-31 14:12:50 -0700 | [diff] [blame] | 659 | void DecompressR11EAC(uint8_t* dst, int dstRowBytes, const uint8_t* src, int width, int height) { |
| 660 | for (int j = 0; j < height; j += 4) { |
| 661 | for (int i = 0; i < width; i += 4) { |
| 662 | decompress_r11_eac_block(dst + i, dstRowBytes, src); |
| 663 | src += 8; |
| 664 | } |
| 665 | dst += 4 * dstRowBytes; |
| 666 | } |
| 667 | } |
| 668 | |
krajcevski | 6c35488 | 2014-07-22 07:44:00 -0700 | [diff] [blame] | 669 | } // namespace SkTextureCompressor |