blob: 0ac5a3da78dfc5bb6ac9eb2083d97871a38feaec [file] [log] [blame]
caryclark@google.com07393ca2013-04-08 11:47:37 +00001/*
2 * Copyright 2012 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7#include "SkIntersections.h"
8#include "SkOpAngle.h"
caryclark@google.comcffbcc32013-06-04 17:59:42 +00009#include "SkOpSegment.h"
caryclark@google.com07393ca2013-04-08 11:47:37 +000010#include "SkPathOpsCurve.h"
commit-bot@chromium.orgb76d3b62013-04-22 19:55:19 +000011#include "SkTSort.h"
caryclark@google.com07393ca2013-04-08 11:47:37 +000012
caryclark@google.comcffbcc32013-06-04 17:59:42 +000013#if DEBUG_ANGLE
14#include "SkString.h"
15
16static const char funcName[] = "SkOpSegment::operator<";
17static const int bugChar = strlen(funcName) + 1;
caryclark@google.coma5e55922013-05-07 18:51:31 +000018#endif
19
caryclark@google.comcffbcc32013-06-04 17:59:42 +000020/* Angles are sorted counterclockwise. The smallest angle has a positive x and the smallest
21 positive y. The largest angle has a positive x and a zero y. */
caryclark@google.com07393ca2013-04-08 11:47:37 +000022
caryclark@google.comcffbcc32013-06-04 17:59:42 +000023#if DEBUG_ANGLE
24 static bool CompareResult(SkString* bugOut, const char* append, bool compare) {
25 bugOut->appendf(append);
26 bugOut->writable_str()[bugChar] = "><"[compare];
27 SkDebugf("%s\n", bugOut->c_str());
28 return compare;
29 }
30
31 #define COMPARE_RESULT(append, compare) CompareResult(&bugOut, append, compare)
32#else
skia.committer@gmail.com8f6ef402013-06-05 07:01:06 +000033 #define COMPARE_RESULT(append, compare) compare
caryclark@google.comcffbcc32013-06-04 17:59:42 +000034#endif
35
36bool SkOpAngle::calcSlop(double x, double y, double rx, double ry, bool* result) const{
37 double absX = fabs(x);
38 double absY = fabs(y);
39 double length = absX < absY ? absX / 2 + absY : absX + absY / 2;
40 int exponent;
41 (void) frexp(length, &exponent);
42 double epsilon = ldexp(FLT_EPSILON, exponent);
43 SkPath::Verb verb = fSegment->verb();
44 SkASSERT(verb == SkPath::kQuad_Verb || verb == SkPath::kCubic_Verb);
45 // FIXME: the quad and cubic factors are made up ; determine actual values
46 double slop = verb == SkPath::kQuad_Verb ? 4 * epsilon : 512 * epsilon;
47 double xSlop = slop;
48 double ySlop = x * y < 0 ? -xSlop : xSlop; // OPTIMIZATION: use copysign / _copysign ?
49 double x1 = x - xSlop;
50 double y1 = y + ySlop;
51 double x_ry1 = x1 * ry;
52 double rx_y1 = rx * y1;
53 *result = x_ry1 < rx_y1;
54 double x2 = x + xSlop;
55 double y2 = y - ySlop;
56 double x_ry2 = x2 * ry;
57 double rx_y2 = rx * y2;
58 bool less2 = x_ry2 < rx_y2;
59 return *result == less2;
60}
61
62/*
caryclark@google.com07393ca2013-04-08 11:47:37 +000063for quads and cubics, set up a parameterized line (e.g. LineParameters )
64for points [0] to [1]. See if point [2] is on that line, or on one side
65or the other. If it both quads' end points are on the same side, choose
66the shorter tangent. If the tangents are equal, choose the better second
67tangent angle
68
caryclark@google.comcffbcc32013-06-04 17:59:42 +000069FIXME: maybe I could set up LineParameters lazily
caryclark@google.com07393ca2013-04-08 11:47:37 +000070*/
caryclark@google.comcffbcc32013-06-04 17:59:42 +000071bool SkOpAngle::operator<(const SkOpAngle& rh) const { // this/lh: left-hand; rh: right-hand
caryclark@google.coma5e55922013-05-07 18:51:31 +000072 double y = dy();
caryclark@google.coma5e55922013-05-07 18:51:31 +000073 double ry = rh.dy();
caryclark@google.comcffbcc32013-06-04 17:59:42 +000074#if DEBUG_ANGLE
75 SkString bugOut;
76 bugOut.printf("%s _ id=%d segId=%d tStart=%1.9g tEnd=%1.9g"
77 " | id=%d segId=%d tStart=%1.9g tEnd=%1.9g ", funcName,
78 fID, fSegment->debugID(), fSegment->t(fStart), fSegment->t(fEnd),
79 rh.fID, rh.fSegment->debugID(), rh.fSegment->t(rh.fStart), rh.fSegment->t(rh.fEnd));
80#endif
81 double y_ry = y * ry;
82 if (y_ry < 0) { // if y's are opposite signs, we can do a quick return
83 return COMPARE_RESULT("1 y * ry < 0", y < 0);
caryclark@google.coma5e55922013-05-07 18:51:31 +000084 }
caryclark@google.comcffbcc32013-06-04 17:59:42 +000085 // at this point, both y's must be the same sign, or one (or both) is zero
86 double x = dx();
87 double rx = rh.dx();
88 if (x * rx < 0) { // if x's are opposite signs, use y to determine first or second half
89 if (y < 0 && ry < 0) { // if y's are negative, lh x is smaller if positive
90 return COMPARE_RESULT("2 x_rx < 0 && y < 0 ...", x > 0);
91 }
92 if (y >= 0 && ry >= 0) { // if y's are zero or positive, lh x is smaller if negative
93 return COMPARE_RESULT("3 x_rx < 0 && y >= 0 ...", x < 0);
94 }
95 SkASSERT((y == 0) ^ (ry == 0)); // if one y is zero and one is negative, neg y is smaller
96 return COMPARE_RESULT("4 x_rx < 0 && y == 0 ...", y < 0);
caryclark@google.com07393ca2013-04-08 11:47:37 +000097 }
caryclark@google.comcffbcc32013-06-04 17:59:42 +000098 // at this point, both x's must be the same sign, or one (or both) is zero
99 if (y_ry == 0) { // if either y is zero
100 if (y + ry < 0) { // if the other y is less than zero, it must be smaller
101 return COMPARE_RESULT("5 y_ry == 0 && y + ry < 0", y < 0);
102 }
103 if (y + ry > 0) { // if a y is greater than zero and an x is positive, non zero is smaller
104 return COMPARE_RESULT("6 y_ry == 0 && y + ry > 0", (x + rx > 0) ^ (y == 0));
105 }
106 // at this point, both y's are zero, so lines are coincident or one is degenerate
107 SkASSERT(x * rx != 0); // and a degenerate line should haven't gotten this far
skia.committer@gmail.com8f6ef402013-06-05 07:01:06 +0000108 }
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000109 // see if either curve can be lengthened before trying the tangent
110 if (fSegment->other(fEnd) != rh.fSegment // tangents not absolutely identical
111 && rh.fSegment->other(rh.fEnd) != fSegment) { // and not intersecting
caryclark@google.com07393ca2013-04-08 11:47:37 +0000112 SkOpAngle longer = *this;
113 SkOpAngle rhLonger = rh;
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000114 if ((longer.lengthen(rh) | rhLonger.lengthen(*this)) // lengthen both
115 && (fUnorderable || !longer.fUnorderable)
116 && (rh.fUnorderable || !rhLonger.fUnorderable)) {
117#if DEBUG_ANGLE
118 bugOut.prepend(" ");
119#endif
120 return COMPARE_RESULT("10 longer.lengthen(rh) ...", longer < rhLonger);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000121 }
122 }
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000123 if (y_ry != 0) { // if they aren't coincident, look for a stable cross product
124 // at this point, y's are the same sign, neither is zero
125 // and x's are the same sign, or one (or both) is zero
126 double x_ry = x * ry;
127 double rx_y = rx * y;
128 if (!fComputed && !rh.fComputed) {
129 if (!AlmostEqualUlps(x_ry, rx_y)) {
130 return COMPARE_RESULT("7 !fComputed && !rh.fComputed", x_ry < rx_y);
131 }
132 } else {
133 // if the vector was a result of subdividing a curve, see if it is stable
134 bool sloppy1 = x_ry < rx_y;
135 bool sloppy2 = !sloppy1;
skia.committer@gmail.com8f6ef402013-06-05 07:01:06 +0000136 if ((!fComputed || calcSlop(x, y, rx, ry, &sloppy1))
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000137 && (!rh.fComputed || rh.calcSlop(rx, ry, x, y, &sloppy2))
138 && sloppy1 != sloppy2) {
139 return COMPARE_RESULT("8 CalcSlop(x, y ...", sloppy1);
140 }
141 }
142 }
143 if (fSide * rh.fSide == 0) {
144 SkASSERT(fSide + rh.fSide != 0);
145 return COMPARE_RESULT("9 fSide * rh.fSide == 0 ...", fSide < rh.fSide);
146 }
147 // at this point, the initial tangent line is nearly coincident
148 // see if edges curl away from each other
149 if (fSide * rh.fSide < 0 && (!approximately_zero(fSide) || !approximately_zero(rh.fSide))) {
150 return COMPARE_RESULT("9b fSide * rh.fSide < 0 ...", fSide < rh.fSide);
151 }
152 if (fUnsortable || rh.fUnsortable) {
153 // even with no solution, return a stable sort
154 return COMPARE_RESULT("11 fUnsortable || rh.fUnsortable", this < &rh);
155 }
156 SkPath::Verb verb = fSegment->verb();
157 SkPath::Verb rVerb = rh.fSegment->verb();
158 if ((verb == SkPath::kLine_Verb && approximately_zero(y) && approximately_zero(x))
159 || (rVerb == SkPath::kLine_Verb
160 && approximately_zero(ry) && approximately_zero(rx))) {
caryclark@google.com07393ca2013-04-08 11:47:37 +0000161 // See general unsortable comment below. This case can happen when
162 // one line has a non-zero change in t but no change in x and y.
163 fUnsortable = true;
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000164 return COMPARE_RESULT("12 verb == SkPath::kLine_Verb ...", this < &rh);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000165 }
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000166 if (fSegment->isTiny(this) || rh.fSegment->isTiny(&rh)) {
caryclark@google.com07393ca2013-04-08 11:47:37 +0000167 fUnsortable = true;
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000168 return COMPARE_RESULT("13 verb == fSegment->isTiny(this) ...", this < &rh);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000169 }
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000170 SkASSERT(verb >= SkPath::kQuad_Verb);
171 SkASSERT(rVerb >= SkPath::kQuad_Verb);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000172 // FIXME: until I can think of something better, project a ray from the
173 // end of the shorter tangent to midway between the end points
174 // through both curves and use the resulting angle to sort
175 // FIXME: some of this setup can be moved to set() if it works, or cached if it's expensive
176 double len = fTangent1.normalSquared();
177 double rlen = rh.fTangent1.normalSquared();
178 SkDLine ray;
179 SkIntersections i, ri;
180 int roots, rroots;
181 bool flip = false;
caryclark@google.coma5e55922013-05-07 18:51:31 +0000182 bool useThis;
183 bool leftLessThanRight = fSide > 0;
caryclark@google.com07393ca2013-04-08 11:47:37 +0000184 do {
caryclark@google.coma5e55922013-05-07 18:51:31 +0000185 useThis = (len < rlen) ^ flip;
caryclark@google.com07393ca2013-04-08 11:47:37 +0000186 const SkDCubic& part = useThis ? fCurvePart : rh.fCurvePart;
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000187 SkPath::Verb partVerb = useThis ? verb : rVerb;
caryclark@google.com07393ca2013-04-08 11:47:37 +0000188 ray[0] = partVerb == SkPath::kCubic_Verb && part[0].approximatelyEqual(part[1]) ?
189 part[2] : part[1];
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000190 ray[1] = SkDPoint::Mid(part[0], part[SkPathOpsVerbToPoints(partVerb)]);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000191 SkASSERT(ray[0] != ray[1]);
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000192 roots = (i.*CurveRay[SkPathOpsVerbToPoints(verb)])(fSegment->pts(), ray);
193 rroots = (ri.*CurveRay[SkPathOpsVerbToPoints(rVerb)])(rh.fSegment->pts(), ray);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000194 } while ((roots == 0 || rroots == 0) && (flip ^= true));
195 if (roots == 0 || rroots == 0) {
196 // FIXME: we don't have a solution in this case. The interim solution
197 // is to mark the edges as unsortable, exclude them from this and
198 // future computations, and allow the returned path to be fragmented
199 fUnsortable = true;
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000200 return COMPARE_RESULT("roots == 0 || rroots == 0", this < &rh);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000201 }
caryclark@google.coma5e55922013-05-07 18:51:31 +0000202 SkASSERT(fSide != 0 && rh.fSide != 0);
203 SkASSERT(fSide * rh.fSide > 0); // both are the same sign
204 SkDPoint lLoc;
caryclark@google.com07393ca2013-04-08 11:47:37 +0000205 double best = SK_ScalarInfinity;
caryclark@google.coma5e55922013-05-07 18:51:31 +0000206#if DEBUG_SORT
207 SkDebugf("lh=%d rh=%d use-lh=%d ray={{%1.9g,%1.9g}, {%1.9g,%1.9g}} %c\n",
208 fSegment->debugID(), rh.fSegment->debugID(), useThis, ray[0].fX, ray[0].fY,
209 ray[1].fX, ray[1].fY, "-+"[fSide > 0]);
210#endif
211 for (int index = 0; index < roots; ++index) {
212 SkDPoint loc = i.pt(index);
213 SkDVector dxy = loc - ray[0];
214 double dist = dxy.lengthSquared();
215#if DEBUG_SORT
skia.committer@gmail.com2b34fe02013-05-08 07:01:40 +0000216 SkDebugf("best=%1.9g dist=%1.9g loc={%1.9g,%1.9g} dxy={%1.9g,%1.9g}\n",
caryclark@google.coma5e55922013-05-07 18:51:31 +0000217 best, dist, loc.fX, loc.fY, dxy.fX, dxy.fY);
218#endif
caryclark@google.com07393ca2013-04-08 11:47:37 +0000219 if (best > dist) {
caryclark@google.coma5e55922013-05-07 18:51:31 +0000220 lLoc = loc;
caryclark@google.com07393ca2013-04-08 11:47:37 +0000221 best = dist;
222 }
223 }
caryclark@google.coma5e55922013-05-07 18:51:31 +0000224 flip = false;
225 SkDPoint rLoc;
226 for (int index = 0; index < rroots; ++index) {
227 rLoc = ri.pt(index);
228 SkDVector dxy = rLoc - ray[0];
229 double dist = dxy.lengthSquared();
230#if DEBUG_SORT
skia.committer@gmail.com2b34fe02013-05-08 07:01:40 +0000231 SkDebugf("best=%1.9g dist=%1.9g %c=(fSide < 0) rLoc={%1.9g,%1.9g} dxy={%1.9g,%1.9g}\n",
caryclark@google.coma5e55922013-05-07 18:51:31 +0000232 best, dist, "><"[fSide < 0], rLoc.fX, rLoc.fY, dxy.fX, dxy.fY);
233#endif
caryclark@google.com07393ca2013-04-08 11:47:37 +0000234 if (best > dist) {
caryclark@google.coma5e55922013-05-07 18:51:31 +0000235 flip = true;
236 break;
caryclark@google.com07393ca2013-04-08 11:47:37 +0000237 }
238 }
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000239 if (flip) {
caryclark@google.coma5e55922013-05-07 18:51:31 +0000240 leftLessThanRight = !leftLessThanRight;
caryclark@google.coma5e55922013-05-07 18:51:31 +0000241 }
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000242 return COMPARE_RESULT("14 leftLessThanRight", leftLessThanRight);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000243}
244
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000245bool SkOpAngle::isHorizontal() const {
246 return dy() == 0 && fSegment->verb() == SkPath::kLine_Verb;
caryclark@google.com07393ca2013-04-08 11:47:37 +0000247}
248
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000249// lengthen cannot cross opposite angle
250bool SkOpAngle::lengthen(const SkOpAngle& opp) {
251 if (fSegment->other(fEnd) == opp.fSegment) {
caryclark@google.com07393ca2013-04-08 11:47:37 +0000252 return false;
253 }
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000254 // FIXME: make this a while loop instead and make it as large as possible?
255 int newEnd = fEnd;
256 if (fStart < fEnd ? ++newEnd < fSegment->count() : --newEnd >= 0) {
caryclark@google.com07393ca2013-04-08 11:47:37 +0000257 fEnd = newEnd;
caryclark@google.com07393ca2013-04-08 11:47:37 +0000258 setSpans();
259 return true;
260 }
261 return false;
262}
263
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000264void SkOpAngle::set(const SkOpSegment* segment, int start, int end) {
caryclark@google.com07393ca2013-04-08 11:47:37 +0000265 fSegment = segment;
266 fStart = start;
267 fEnd = end;
caryclark@google.com07393ca2013-04-08 11:47:37 +0000268 setSpans();
269}
270
caryclark@google.com07393ca2013-04-08 11:47:37 +0000271void SkOpAngle::setSpans() {
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000272 fUnorderable = false;
273 if (fSegment->verb() == SkPath::kLine_Verb) {
274 fUnsortable = false;
275 } else {
276 // if start-1 exists and is tiny, then start pt may have moved
277 int smaller = SkMin32(fStart, fEnd);
278 int tinyCheck = smaller;
279 while (tinyCheck > 0 && fSegment->isTiny(tinyCheck - 1)) {
280 --tinyCheck;
281 }
282 if ((fUnsortable = smaller > 0 && tinyCheck == 0)) {
283 return;
284 }
285 int larger = SkMax32(fStart, fEnd);
286 tinyCheck = larger;
287 int max = fSegment->count() - 1;
288 while (tinyCheck < max && fSegment->isTiny(tinyCheck + 1)) {
289 ++tinyCheck;
290 }
291 if ((fUnsortable = larger < max && tinyCheck == max)) {
292 return;
293 }
294 }
295 fComputed = fSegment->subDivide(fStart, fEnd, &fCurvePart);
296 // FIXME: slight errors in subdivision cause sort trouble later on. As an experiment, try
297 // rounding the curve part to float precision here
298 // fCurvePart.round(fSegment->verb());
299 switch (fSegment->verb()) {
caryclark@google.com07393ca2013-04-08 11:47:37 +0000300 case SkPath::kLine_Verb: {
caryclark@google.com07393ca2013-04-08 11:47:37 +0000301 // OPTIMIZATION: for pure line compares, we never need fTangent1.c
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000302 fTangent1.lineEndPoints(*SkTCast<SkDLine*>(&fCurvePart));
caryclark@google.com07393ca2013-04-08 11:47:37 +0000303 fSide = 0;
304 } break;
305 case SkPath::kQuad_Verb: {
306 SkDQuad& quad = *SkTCast<SkDQuad*>(&fCurvePart);
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000307 fTangent1.quadEndPoints(quad);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000308 fSide = -fTangent1.pointDistance(fCurvePart[2]); // not normalized -- compare sign only
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000309 if (fComputed && dx() > 0 && approximately_zero(dy())) {
310 SkDCubic origCurve; // can't use segment's curve in place since it may be flipped
311 int last = fSegment->count() - 1;
312 fSegment->subDivide(fStart < fEnd ? 0 : last, fStart < fEnd ? last : 0, &origCurve);
313 SkLineParameters origTan;
314 origTan.quadEndPoints(*SkTCast<SkDQuad*>(&origCurve));
315 if ((fUnorderable = origTan.dx() <= 0
316 || (dy() != origTan.dy() && dy() * origTan.dy() <= 0))) { // signs match?
317 return;
caryclark@google.com07393ca2013-04-08 11:47:37 +0000318 }
319 }
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000320 } break;
321 case SkPath::kCubic_Verb: {
322 fTangent1.cubicEndPoints(fCurvePart);
caryclark@google.comb3f09212013-04-17 15:49:16 +0000323 double testTs[4];
324 // OPTIMIZATION: keep inflections precomputed with cubic segment?
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000325 const SkPoint* pts = fSegment->pts();
326 int testCount = SkDCubic::FindInflections(pts, testTs);
327 double startT = fSegment->t(fStart);
328 double endT = fSegment->t(fEnd);
caryclark@google.comb3f09212013-04-17 15:49:16 +0000329 double limitT = endT;
330 int index;
331 for (index = 0; index < testCount; ++index) {
332 if (!between(startT, testTs[index], limitT)) {
333 testTs[index] = -1;
334 }
caryclark@google.com07393ca2013-04-08 11:47:37 +0000335 }
caryclark@google.comb3f09212013-04-17 15:49:16 +0000336 testTs[testCount++] = startT;
337 testTs[testCount++] = endT;
commit-bot@chromium.orgb76d3b62013-04-22 19:55:19 +0000338 SkTQSort<double>(testTs, &testTs[testCount - 1]);
caryclark@google.comb3f09212013-04-17 15:49:16 +0000339 double bestSide = 0;
340 int testCases = (testCount << 1) - 1;
341 index = 0;
342 while (testTs[index] < 0) {
343 ++index;
344 }
345 index <<= 1;
346 for (; index < testCases; ++index) {
347 int testIndex = index >> 1;
348 double testT = testTs[testIndex];
349 if (index & 1) {
350 testT = (testT + testTs[testIndex + 1]) / 2;
351 }
352 // OPTIMIZE: could avoid call for t == startT, endT
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000353 SkDPoint pt = dcubic_xy_at_t(pts, testT);
caryclark@google.comb3f09212013-04-17 15:49:16 +0000354 double testSide = fTangent1.pointDistance(pt);
355 if (fabs(bestSide) < fabs(testSide)) {
356 bestSide = testSide;
357 }
358 }
359 fSide = -bestSide; // compare sign only
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000360 if (fComputed && dx() > 0 && approximately_zero(dy())) {
361 SkDCubic origCurve; // can't use segment's curve in place since it may be flipped
362 int last = fSegment->count() - 1;
363 fSegment->subDivide(fStart < fEnd ? 0 : last, fStart < fEnd ? last : 0, &origCurve);
364 SkLineParameters origTan;
365 origTan.cubicEndPoints(origCurve);
366 if ((fUnorderable = origTan.dx() <= 0)) {
367 fUnsortable = fSegment->isTiny(this);
368 return;
369 }
370 // if one is < 0 and the other is >= 0
371 if ((fUnorderable = (dy() < 0) ^ (origTan.dy() < 0))) {
372 fUnsortable = fSegment->isTiny(this);
373 return;
374 }
375 SkDCubicPair split = origCurve.chopAt(startT);
376 SkLineParameters splitTan;
377 splitTan.cubicEndPoints(fStart < fEnd ? split.second() : split.first());
378 if ((fUnorderable = splitTan.dx() <= 0)) {
379 fUnsortable = fSegment->isTiny(this);
380 return;
381 }
382 // if one is < 0 and the other is >= 0
383 if ((fUnorderable = (dy() < 0) ^ (splitTan.dy() < 0))) {
384 fUnsortable = fSegment->isTiny(this);
385 return;
386 }
skia.committer@gmail.com8f6ef402013-06-05 07:01:06 +0000387 }
caryclark@google.com07393ca2013-04-08 11:47:37 +0000388 } break;
389 default:
390 SkASSERT(0);
391 }
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000392 if ((fUnsortable = approximately_zero(dx()) && approximately_zero(dy()))) {
caryclark@google.com07393ca2013-04-08 11:47:37 +0000393 return;
394 }
395 SkASSERT(fStart != fEnd);
396 int step = fStart < fEnd ? 1 : -1; // OPTIMIZE: worth fStart - fEnd >> 31 type macro?
397 for (int index = fStart; index != fEnd; index += step) {
398#if 1
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000399 const SkOpSpan& thisSpan = fSegment->span(index);
400 const SkOpSpan& nextSpan = fSegment->span(index + step);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000401 if (thisSpan.fTiny || precisely_equal(thisSpan.fT, nextSpan.fT)) {
402 continue;
403 }
404 fUnsortable = step > 0 ? thisSpan.fUnsortableStart : nextSpan.fUnsortableEnd;
405#if DEBUG_UNSORTABLE
406 if (fUnsortable) {
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000407 SkPoint iPt = fSegment->xyAtT(index);
408 SkPoint ePt = fSegment->xyAtT(index + step);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000409 SkDebugf("%s unsortable [%d] (%1.9g,%1.9g) [%d] (%1.9g,%1.9g)\n", __FUNCTION__,
410 index, iPt.fX, iPt.fY, fEnd, ePt.fX, ePt.fY);
411 }
412#endif
413 return;
414#else
415 if ((*fSpans)[index].fUnsortableStart) {
416 fUnsortable = true;
417 return;
418 }
419#endif
420 }
421#if 1
422#if DEBUG_UNSORTABLE
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000423 SkPoint iPt = fSegment->xyAtT(fStart);
424 SkPoint ePt = fSegment->xyAtT(fEnd);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000425 SkDebugf("%s all tiny unsortable [%d] (%1.9g,%1.9g) [%d] (%1.9g,%1.9g)\n", __FUNCTION__,
426 fStart, iPt.fX, iPt.fY, fEnd, ePt.fX, ePt.fY);
427#endif
428 fUnsortable = true;
429#endif
430}