blob: 9062d3457dc7fe748759173bc7e83917912ccfe3 [file] [log] [blame]
John Stiles44e96be2020-08-31 13:16:04 -04001/*
2 * Copyright 2020 Google LLC
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "src/sksl/SkSLInliner.h"
9
10#include "limits.h"
11#include <memory>
12#include <unordered_set>
13
14#include "src/sksl/SkSLAnalysis.h"
15#include "src/sksl/ir/SkSLBinaryExpression.h"
16#include "src/sksl/ir/SkSLBoolLiteral.h"
17#include "src/sksl/ir/SkSLBreakStatement.h"
18#include "src/sksl/ir/SkSLConstructor.h"
19#include "src/sksl/ir/SkSLContinueStatement.h"
20#include "src/sksl/ir/SkSLDiscardStatement.h"
21#include "src/sksl/ir/SkSLDoStatement.h"
22#include "src/sksl/ir/SkSLEnum.h"
23#include "src/sksl/ir/SkSLExpressionStatement.h"
24#include "src/sksl/ir/SkSLExternalFunctionCall.h"
25#include "src/sksl/ir/SkSLExternalValueReference.h"
26#include "src/sksl/ir/SkSLField.h"
27#include "src/sksl/ir/SkSLFieldAccess.h"
28#include "src/sksl/ir/SkSLFloatLiteral.h"
29#include "src/sksl/ir/SkSLForStatement.h"
30#include "src/sksl/ir/SkSLFunctionCall.h"
31#include "src/sksl/ir/SkSLFunctionDeclaration.h"
32#include "src/sksl/ir/SkSLFunctionDefinition.h"
33#include "src/sksl/ir/SkSLFunctionReference.h"
34#include "src/sksl/ir/SkSLIfStatement.h"
35#include "src/sksl/ir/SkSLIndexExpression.h"
John Stiles98c1f822020-09-09 14:18:53 -040036#include "src/sksl/ir/SkSLInlineMarker.h"
John Stiles44e96be2020-08-31 13:16:04 -040037#include "src/sksl/ir/SkSLIntLiteral.h"
38#include "src/sksl/ir/SkSLInterfaceBlock.h"
39#include "src/sksl/ir/SkSLLayout.h"
40#include "src/sksl/ir/SkSLNop.h"
41#include "src/sksl/ir/SkSLNullLiteral.h"
42#include "src/sksl/ir/SkSLPostfixExpression.h"
43#include "src/sksl/ir/SkSLPrefixExpression.h"
44#include "src/sksl/ir/SkSLReturnStatement.h"
45#include "src/sksl/ir/SkSLSetting.h"
46#include "src/sksl/ir/SkSLSwitchCase.h"
47#include "src/sksl/ir/SkSLSwitchStatement.h"
48#include "src/sksl/ir/SkSLSwizzle.h"
49#include "src/sksl/ir/SkSLTernaryExpression.h"
50#include "src/sksl/ir/SkSLUnresolvedFunction.h"
51#include "src/sksl/ir/SkSLVarDeclarations.h"
52#include "src/sksl/ir/SkSLVarDeclarationsStatement.h"
53#include "src/sksl/ir/SkSLVariable.h"
54#include "src/sksl/ir/SkSLVariableReference.h"
55#include "src/sksl/ir/SkSLWhileStatement.h"
56
57namespace SkSL {
58namespace {
59
John Stiles44dff4f2020-09-21 12:28:01 -040060static bool contains_returns_above_limit(const FunctionDefinition& funcDef, int limit) {
61 class CountReturnsWithLimit : public ProgramVisitor {
John Stiles44e96be2020-08-31 13:16:04 -040062 public:
John Stiles44dff4f2020-09-21 12:28:01 -040063 CountReturnsWithLimit(const FunctionDefinition& funcDef, int limit) : fLimit(limit) {
John Stiles44e96be2020-08-31 13:16:04 -040064 this->visitProgramElement(funcDef);
65 }
66
67 bool visitStatement(const Statement& stmt) override {
Ethan Nicholase6592142020-09-08 10:22:09 -040068 switch (stmt.kind()) {
69 case Statement::Kind::kReturn:
John Stiles44e96be2020-08-31 13:16:04 -040070 ++fNumReturns;
John Stiles44dff4f2020-09-21 12:28:01 -040071 return (fNumReturns > fLimit) || INHERITED::visitStatement(stmt);
John Stiles44e96be2020-08-31 13:16:04 -040072
73 default:
John Stiles93442622020-09-11 12:11:27 -040074 return INHERITED::visitStatement(stmt);
John Stiles44e96be2020-08-31 13:16:04 -040075 }
76 }
77
78 int fNumReturns = 0;
John Stiles44dff4f2020-09-21 12:28:01 -040079 int fLimit = 0;
John Stiles44e96be2020-08-31 13:16:04 -040080 using INHERITED = ProgramVisitor;
81 };
82
John Stiles44dff4f2020-09-21 12:28:01 -040083 return CountReturnsWithLimit{funcDef, limit}.fNumReturns > limit;
John Stiles44e96be2020-08-31 13:16:04 -040084}
85
86static int count_returns_at_end_of_control_flow(const FunctionDefinition& funcDef) {
87 class CountReturnsAtEndOfControlFlow : public ProgramVisitor {
88 public:
89 CountReturnsAtEndOfControlFlow(const FunctionDefinition& funcDef) {
90 this->visitProgramElement(funcDef);
91 }
92
93 bool visitStatement(const Statement& stmt) override {
Ethan Nicholase6592142020-09-08 10:22:09 -040094 switch (stmt.kind()) {
95 case Statement::Kind::kBlock: {
John Stiles44e96be2020-08-31 13:16:04 -040096 // Check only the last statement of a block.
Ethan Nicholas7bd60432020-09-25 14:31:59 -040097 const auto& block = stmt.as<Block>();
98 return block.children().size() &&
99 this->visitStatement(*block.children().back());
John Stiles44e96be2020-08-31 13:16:04 -0400100 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400101 case Statement::Kind::kSwitch:
102 case Statement::Kind::kWhile:
103 case Statement::Kind::kDo:
104 case Statement::Kind::kFor:
John Stiles44e96be2020-08-31 13:16:04 -0400105 // Don't introspect switches or loop structures at all.
106 return false;
107
Ethan Nicholase6592142020-09-08 10:22:09 -0400108 case Statement::Kind::kReturn:
John Stiles44e96be2020-08-31 13:16:04 -0400109 ++fNumReturns;
110 [[fallthrough]];
111
112 default:
John Stiles93442622020-09-11 12:11:27 -0400113 return INHERITED::visitStatement(stmt);
John Stiles44e96be2020-08-31 13:16:04 -0400114 }
115 }
116
117 int fNumReturns = 0;
118 using INHERITED = ProgramVisitor;
119 };
120
121 return CountReturnsAtEndOfControlFlow{funcDef}.fNumReturns;
122}
123
124static int count_returns_in_breakable_constructs(const FunctionDefinition& funcDef) {
125 class CountReturnsInBreakableConstructs : public ProgramVisitor {
126 public:
127 CountReturnsInBreakableConstructs(const FunctionDefinition& funcDef) {
128 this->visitProgramElement(funcDef);
129 }
130
131 bool visitStatement(const Statement& stmt) override {
Ethan Nicholase6592142020-09-08 10:22:09 -0400132 switch (stmt.kind()) {
133 case Statement::Kind::kSwitch:
134 case Statement::Kind::kWhile:
135 case Statement::Kind::kDo:
136 case Statement::Kind::kFor: {
John Stiles44e96be2020-08-31 13:16:04 -0400137 ++fInsideBreakableConstruct;
John Stiles93442622020-09-11 12:11:27 -0400138 bool result = INHERITED::visitStatement(stmt);
John Stiles44e96be2020-08-31 13:16:04 -0400139 --fInsideBreakableConstruct;
140 return result;
141 }
142
Ethan Nicholase6592142020-09-08 10:22:09 -0400143 case Statement::Kind::kReturn:
John Stiles44e96be2020-08-31 13:16:04 -0400144 fNumReturns += (fInsideBreakableConstruct > 0) ? 1 : 0;
145 [[fallthrough]];
146
147 default:
John Stiles93442622020-09-11 12:11:27 -0400148 return INHERITED::visitStatement(stmt);
John Stiles44e96be2020-08-31 13:16:04 -0400149 }
150 }
151
152 int fNumReturns = 0;
153 int fInsideBreakableConstruct = 0;
154 using INHERITED = ProgramVisitor;
155 };
156
157 return CountReturnsInBreakableConstructs{funcDef}.fNumReturns;
158}
159
160static bool has_early_return(const FunctionDefinition& funcDef) {
John Stiles44e96be2020-08-31 13:16:04 -0400161 int returnsAtEndOfControlFlow = count_returns_at_end_of_control_flow(funcDef);
John Stiles44dff4f2020-09-21 12:28:01 -0400162 return contains_returns_above_limit(funcDef, returnsAtEndOfControlFlow);
John Stiles44e96be2020-08-31 13:16:04 -0400163}
164
John Stiles991b09d2020-09-10 13:33:40 -0400165static bool contains_recursive_call(const FunctionDeclaration& funcDecl) {
166 class ContainsRecursiveCall : public ProgramVisitor {
167 public:
168 bool visit(const FunctionDeclaration& funcDecl) {
169 fFuncDecl = &funcDecl;
170 return funcDecl.fDefinition ? this->visitProgramElement(*funcDecl.fDefinition)
171 : false;
172 }
173
174 bool visitExpression(const Expression& expr) override {
175 if (expr.is<FunctionCall>() && expr.as<FunctionCall>().fFunction.matches(*fFuncDecl)) {
176 return true;
177 }
178 return INHERITED::visitExpression(expr);
179 }
180
181 bool visitStatement(const Statement& stmt) override {
182 if (stmt.is<InlineMarker>() && stmt.as<InlineMarker>().fFuncDecl->matches(*fFuncDecl)) {
183 return true;
184 }
185 return INHERITED::visitStatement(stmt);
186 }
187
188 const FunctionDeclaration* fFuncDecl;
189 using INHERITED = ProgramVisitor;
190 };
191
192 return ContainsRecursiveCall{}.visit(funcDecl);
193}
194
John Stiles44e96be2020-08-31 13:16:04 -0400195static const Type* copy_if_needed(const Type* src, SymbolTable& symbolTable) {
Ethan Nicholase6592142020-09-08 10:22:09 -0400196 if (src->typeKind() == Type::TypeKind::kArray) {
John Stiles44e96be2020-08-31 13:16:04 -0400197 return symbolTable.takeOwnershipOfSymbol(std::make_unique<Type>(*src));
198 }
199 return src;
200}
201
John Stiles915a38c2020-09-14 09:38:13 -0400202static Statement* find_parent_statement(const std::vector<std::unique_ptr<Statement>*>& stmtStack) {
203 SkASSERT(!stmtStack.empty());
204
205 // Walk the statement stack from back to front, ignoring the last element (which is the
206 // enclosing statement).
207 auto iter = stmtStack.rbegin();
208 ++iter;
209
210 // Anything counts as a parent statement other than a scopeless Block.
211 for (; iter != stmtStack.rend(); ++iter) {
212 Statement* stmt = (*iter)->get();
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400213 if (!stmt->is<Block>() || stmt->as<Block>().isScope()) {
John Stiles915a38c2020-09-14 09:38:13 -0400214 return stmt;
215 }
216 }
217
218 // There wasn't any parent statement to be found.
219 return nullptr;
220}
221
John Stilese41b4ee2020-09-28 12:28:16 -0400222std::unique_ptr<Expression> clone_with_ref_kind(const Expression& expr,
223 VariableReference::RefKind refKind) {
224 std::unique_ptr<Expression> clone = expr.clone();
225 class SetRefKindInExpression : public ProgramVisitor {
226 public:
227 SetRefKindInExpression(VariableReference::RefKind refKind) : fRefKind(refKind) {}
228 bool visitExpression(const Expression& expr) override {
229 if (expr.is<VariableReference>()) {
230 // TODO: create a const-savvy ProgramVisitor and remove const_cast
231 const_cast<VariableReference&>(expr.as<VariableReference>()).setRefKind(fRefKind);
232 }
233 return INHERITED::visitExpression(expr);
234 }
235
236 private:
237 VariableReference::RefKind fRefKind;
238
239 using INHERITED = ProgramVisitor;
240 };
241
242 SetRefKindInExpression{refKind}.visitExpression(*clone);
243 return clone;
244}
245
John Stiles44733aa2020-09-29 17:42:23 -0400246bool is_trivial_argument(const Expression& argument) {
247 return argument.is<VariableReference>() ||
248 (argument.is<Swizzle>() && is_trivial_argument(*argument.as<Swizzle>().fBase)) ||
249 (argument.is<FieldAccess>() && is_trivial_argument(*argument.as<FieldAccess>().fBase)) ||
250 (argument.is<IndexExpression>() &&
251 argument.as<IndexExpression>().fIndex->is<IntLiteral>() &&
252 is_trivial_argument(*argument.as<IndexExpression>().fBase));
253}
254
John Stiles44e96be2020-08-31 13:16:04 -0400255} // namespace
256
John Stilesb61ee902020-09-21 12:26:59 -0400257void Inliner::ensureScopedBlocks(Statement* inlinedBody, Statement* parentStmt) {
258 // No changes necessary if this statement isn't actually a block.
259 if (!inlinedBody || !inlinedBody->is<Block>()) {
260 return;
261 }
262
263 // No changes necessary if the parent statement doesn't require a scope.
264 if (!parentStmt || !(parentStmt->is<IfStatement>() || parentStmt->is<ForStatement>() ||
265 parentStmt->is<DoStatement>() || parentStmt->is<WhileStatement>())) {
266 return;
267 }
268
269 Block& block = inlinedBody->as<Block>();
270
271 // The inliner will create inlined function bodies as a Block containing multiple statements,
272 // but no scope. Normally, this is fine, but if this block is used as the statement for a
273 // do/for/if/while, this isn't actually possible to represent textually; a scope must be added
274 // for the generated code to match the intent. In the case of Blocks nested inside other Blocks,
275 // we add the scope to the outermost block if needed. Zero-statement blocks have similar
276 // issues--if we don't represent the Block textually somehow, we run the risk of accidentally
277 // absorbing the following statement into our loop--so we also add a scope to these.
278 for (Block* nestedBlock = &block;; ) {
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400279 if (nestedBlock->isScope()) {
John Stilesb61ee902020-09-21 12:26:59 -0400280 // We found an explicit scope; all is well.
281 return;
282 }
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400283 if (nestedBlock->children().size() != 1) {
John Stilesb61ee902020-09-21 12:26:59 -0400284 // We found a block with multiple (or zero) statements, but no scope? Let's add a scope
285 // to the outermost block.
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400286 block.setIsScope(true);
John Stilesb61ee902020-09-21 12:26:59 -0400287 return;
288 }
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400289 if (!nestedBlock->children()[0]->is<Block>()) {
John Stilesb61ee902020-09-21 12:26:59 -0400290 // This block has exactly one thing inside, and it's not another block. No need to scope
291 // it.
292 return;
293 }
294 // We have to go deeper.
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400295 nestedBlock = &nestedBlock->children()[0]->as<Block>();
John Stilesb61ee902020-09-21 12:26:59 -0400296 }
297}
298
John Stiles44e96be2020-08-31 13:16:04 -0400299void Inliner::reset(const Context& context, const Program::Settings& settings) {
300 fContext = &context;
301 fSettings = &settings;
302 fInlineVarCounter = 0;
303}
304
John Stilesc75abb82020-09-14 18:24:12 -0400305String Inliner::uniqueNameForInlineVar(const String& baseName, SymbolTable* symbolTable) {
306 // If the base name starts with an underscore, like "_coords", we can't append another
307 // underscore, because OpenGL disallows two consecutive underscores anywhere in the string. But
308 // in the general case, using the underscore as a splitter reads nicely enough that it's worth
309 // putting in this special case.
310 const char* splitter = baseName.startsWith("_") ? "" : "_";
311
312 // Append a unique numeric prefix to avoid name overlap. Check the symbol table to make sure
313 // we're not reusing an existing name. (Note that within a single compilation pass, this check
314 // isn't fully comprehensive, as code isn't always generated in top-to-bottom order.)
315 String uniqueName;
316 for (;;) {
317 uniqueName = String::printf("_%d%s%s", fInlineVarCounter++, splitter, baseName.c_str());
318 StringFragment frag{uniqueName.data(), uniqueName.length()};
319 if ((*symbolTable)[frag] == nullptr) {
320 break;
321 }
322 }
323
324 return uniqueName;
325}
326
John Stiles44e96be2020-08-31 13:16:04 -0400327std::unique_ptr<Expression> Inliner::inlineExpression(int offset,
328 VariableRewriteMap* varMap,
329 const Expression& expression) {
330 auto expr = [&](const std::unique_ptr<Expression>& e) -> std::unique_ptr<Expression> {
331 if (e) {
332 return this->inlineExpression(offset, varMap, *e);
333 }
334 return nullptr;
335 };
336 auto argList = [&](const std::vector<std::unique_ptr<Expression>>& originalArgs)
337 -> std::vector<std::unique_ptr<Expression>> {
338 std::vector<std::unique_ptr<Expression>> args;
339 args.reserve(originalArgs.size());
340 for (const std::unique_ptr<Expression>& arg : originalArgs) {
341 args.push_back(expr(arg));
342 }
343 return args;
344 };
345
Ethan Nicholase6592142020-09-08 10:22:09 -0400346 switch (expression.kind()) {
347 case Expression::Kind::kBinary: {
John Stiles44e96be2020-08-31 13:16:04 -0400348 const BinaryExpression& b = expression.as<BinaryExpression>();
349 return std::make_unique<BinaryExpression>(offset,
Ethan Nicholasc8d9c8e2020-09-22 15:05:37 -0400350 expr(b.leftPointer()),
351 b.getOperator(),
352 expr(b.rightPointer()),
Ethan Nicholas30d30222020-09-11 12:27:26 -0400353 &b.type());
John Stiles44e96be2020-08-31 13:16:04 -0400354 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400355 case Expression::Kind::kBoolLiteral:
356 case Expression::Kind::kIntLiteral:
357 case Expression::Kind::kFloatLiteral:
358 case Expression::Kind::kNullLiteral:
John Stiles44e96be2020-08-31 13:16:04 -0400359 return expression.clone();
Ethan Nicholase6592142020-09-08 10:22:09 -0400360 case Expression::Kind::kConstructor: {
John Stiles44e96be2020-08-31 13:16:04 -0400361 const Constructor& constructor = expression.as<Constructor>();
Ethan Nicholas30d30222020-09-11 12:27:26 -0400362 return std::make_unique<Constructor>(offset, &constructor.type(),
Ethan Nicholasf70f0442020-09-29 12:41:35 -0400363 argList(constructor.arguments()));
John Stiles44e96be2020-08-31 13:16:04 -0400364 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400365 case Expression::Kind::kExternalFunctionCall: {
John Stiles44e96be2020-08-31 13:16:04 -0400366 const ExternalFunctionCall& externalCall = expression.as<ExternalFunctionCall>();
Ethan Nicholas30d30222020-09-11 12:27:26 -0400367 return std::make_unique<ExternalFunctionCall>(offset, &externalCall.type(),
John Stiles44e96be2020-08-31 13:16:04 -0400368 externalCall.fFunction,
369 argList(externalCall.fArguments));
370 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400371 case Expression::Kind::kExternalValue:
John Stiles44e96be2020-08-31 13:16:04 -0400372 return expression.clone();
Ethan Nicholase6592142020-09-08 10:22:09 -0400373 case Expression::Kind::kFieldAccess: {
John Stiles44e96be2020-08-31 13:16:04 -0400374 const FieldAccess& f = expression.as<FieldAccess>();
375 return std::make_unique<FieldAccess>(expr(f.fBase), f.fFieldIndex, f.fOwnerKind);
376 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400377 case Expression::Kind::kFunctionCall: {
John Stiles44e96be2020-08-31 13:16:04 -0400378 const FunctionCall& funcCall = expression.as<FunctionCall>();
Ethan Nicholas30d30222020-09-11 12:27:26 -0400379 return std::make_unique<FunctionCall>(offset, &funcCall.type(), funcCall.fFunction,
John Stiles44e96be2020-08-31 13:16:04 -0400380 argList(funcCall.fArguments));
381 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400382 case Expression::Kind::kFunctionReference:
Brian Osman2b3b35f2020-09-08 09:17:36 -0400383 return expression.clone();
Ethan Nicholase6592142020-09-08 10:22:09 -0400384 case Expression::Kind::kIndex: {
John Stiles44e96be2020-08-31 13:16:04 -0400385 const IndexExpression& idx = expression.as<IndexExpression>();
386 return std::make_unique<IndexExpression>(*fContext, expr(idx.fBase), expr(idx.fIndex));
387 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400388 case Expression::Kind::kPrefix: {
John Stiles44e96be2020-08-31 13:16:04 -0400389 const PrefixExpression& p = expression.as<PrefixExpression>();
390 return std::make_unique<PrefixExpression>(p.fOperator, expr(p.fOperand));
391 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400392 case Expression::Kind::kPostfix: {
John Stiles44e96be2020-08-31 13:16:04 -0400393 const PostfixExpression& p = expression.as<PostfixExpression>();
394 return std::make_unique<PostfixExpression>(expr(p.fOperand), p.fOperator);
395 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400396 case Expression::Kind::kSetting:
John Stiles44e96be2020-08-31 13:16:04 -0400397 return expression.clone();
Ethan Nicholase6592142020-09-08 10:22:09 -0400398 case Expression::Kind::kSwizzle: {
John Stiles44e96be2020-08-31 13:16:04 -0400399 const Swizzle& s = expression.as<Swizzle>();
400 return std::make_unique<Swizzle>(*fContext, expr(s.fBase), s.fComponents);
401 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400402 case Expression::Kind::kTernary: {
John Stiles44e96be2020-08-31 13:16:04 -0400403 const TernaryExpression& t = expression.as<TernaryExpression>();
404 return std::make_unique<TernaryExpression>(offset, expr(t.fTest),
405 expr(t.fIfTrue), expr(t.fIfFalse));
406 }
Brian Osman83ba9302020-09-11 13:33:46 -0400407 case Expression::Kind::kTypeReference:
408 return expression.clone();
Ethan Nicholase6592142020-09-08 10:22:09 -0400409 case Expression::Kind::kVariableReference: {
John Stiles44e96be2020-08-31 13:16:04 -0400410 const VariableReference& v = expression.as<VariableReference>();
John Stilese41b4ee2020-09-28 12:28:16 -0400411 auto varMapIter = varMap->find(v.fVariable);
412 if (varMapIter != varMap->end()) {
413 return clone_with_ref_kind(*varMapIter->second, v.fRefKind);
John Stiles44e96be2020-08-31 13:16:04 -0400414 }
415 return v.clone();
416 }
417 default:
418 SkASSERT(false);
419 return nullptr;
420 }
421}
422
423std::unique_ptr<Statement> Inliner::inlineStatement(int offset,
424 VariableRewriteMap* varMap,
425 SymbolTable* symbolTableForStatement,
John Stilese41b4ee2020-09-28 12:28:16 -0400426 const Expression* resultExpr,
John Stiles44e96be2020-08-31 13:16:04 -0400427 bool haveEarlyReturns,
428 const Statement& statement) {
429 auto stmt = [&](const std::unique_ptr<Statement>& s) -> std::unique_ptr<Statement> {
430 if (s) {
John Stilesa5f3c312020-09-22 12:05:16 -0400431 return this->inlineStatement(offset, varMap, symbolTableForStatement, resultExpr,
John Stiles44e96be2020-08-31 13:16:04 -0400432 haveEarlyReturns, *s);
433 }
434 return nullptr;
435 };
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400436 auto blockStmts = [&](const Block& block) {
437 std::vector<std::unique_ptr<Statement>> result;
438 for (const std::unique_ptr<Statement>& child : block.children()) {
439 result.push_back(stmt(child));
440 }
441 return result;
442 };
John Stiles44e96be2020-08-31 13:16:04 -0400443 auto stmts = [&](const std::vector<std::unique_ptr<Statement>>& ss) {
444 std::vector<std::unique_ptr<Statement>> result;
445 for (const auto& s : ss) {
446 result.push_back(stmt(s));
447 }
448 return result;
449 };
450 auto expr = [&](const std::unique_ptr<Expression>& e) -> std::unique_ptr<Expression> {
451 if (e) {
452 return this->inlineExpression(offset, varMap, *e);
453 }
454 return nullptr;
455 };
Ethan Nicholase6592142020-09-08 10:22:09 -0400456 switch (statement.kind()) {
457 case Statement::Kind::kBlock: {
John Stiles44e96be2020-08-31 13:16:04 -0400458 const Block& b = statement.as<Block>();
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400459 return std::make_unique<Block>(offset, blockStmts(b), b.symbolTable(), b.isScope());
John Stiles44e96be2020-08-31 13:16:04 -0400460 }
461
Ethan Nicholase6592142020-09-08 10:22:09 -0400462 case Statement::Kind::kBreak:
463 case Statement::Kind::kContinue:
464 case Statement::Kind::kDiscard:
John Stiles44e96be2020-08-31 13:16:04 -0400465 return statement.clone();
466
Ethan Nicholase6592142020-09-08 10:22:09 -0400467 case Statement::Kind::kDo: {
John Stiles44e96be2020-08-31 13:16:04 -0400468 const DoStatement& d = statement.as<DoStatement>();
Ethan Nicholas1fd61162020-09-28 13:14:19 -0400469 return std::make_unique<DoStatement>(offset, stmt(d.statement()), expr(d.test()));
John Stiles44e96be2020-08-31 13:16:04 -0400470 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400471 case Statement::Kind::kExpression: {
John Stiles44e96be2020-08-31 13:16:04 -0400472 const ExpressionStatement& e = statement.as<ExpressionStatement>();
Ethan Nicholasd503a5a2020-09-30 09:29:55 -0400473 return std::make_unique<ExpressionStatement>(expr(e.expression()));
John Stiles44e96be2020-08-31 13:16:04 -0400474 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400475 case Statement::Kind::kFor: {
John Stiles44e96be2020-08-31 13:16:04 -0400476 const ForStatement& f = statement.as<ForStatement>();
477 // need to ensure initializer is evaluated first so that we've already remapped its
478 // declarations by the time we evaluate test & next
479 std::unique_ptr<Statement> initializer = stmt(f.fInitializer);
480 return std::make_unique<ForStatement>(offset, std::move(initializer), expr(f.fTest),
481 expr(f.fNext), stmt(f.fStatement), f.fSymbols);
482 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400483 case Statement::Kind::kIf: {
John Stiles44e96be2020-08-31 13:16:04 -0400484 const IfStatement& i = statement.as<IfStatement>();
485 return std::make_unique<IfStatement>(offset, i.fIsStatic, expr(i.fTest),
486 stmt(i.fIfTrue), stmt(i.fIfFalse));
487 }
John Stiles98c1f822020-09-09 14:18:53 -0400488 case Statement::Kind::kInlineMarker:
Ethan Nicholase6592142020-09-08 10:22:09 -0400489 case Statement::Kind::kNop:
John Stiles44e96be2020-08-31 13:16:04 -0400490 return statement.clone();
Ethan Nicholase6592142020-09-08 10:22:09 -0400491 case Statement::Kind::kReturn: {
John Stiles44e96be2020-08-31 13:16:04 -0400492 const ReturnStatement& r = statement.as<ReturnStatement>();
493 if (r.fExpression) {
John Stilese41b4ee2020-09-28 12:28:16 -0400494 SkASSERT(resultExpr);
John Stilesa5f3c312020-09-22 12:05:16 -0400495 auto assignment =
496 std::make_unique<ExpressionStatement>(std::make_unique<BinaryExpression>(
497 offset,
John Stilese41b4ee2020-09-28 12:28:16 -0400498 clone_with_ref_kind(*resultExpr, VariableReference::kWrite_RefKind),
John Stilesa5f3c312020-09-22 12:05:16 -0400499 Token::Kind::TK_EQ,
500 expr(r.fExpression),
John Stilese41b4ee2020-09-28 12:28:16 -0400501 &resultExpr->type()));
John Stiles44e96be2020-08-31 13:16:04 -0400502 if (haveEarlyReturns) {
503 std::vector<std::unique_ptr<Statement>> block;
504 block.push_back(std::move(assignment));
505 block.emplace_back(new BreakStatement(offset));
506 return std::make_unique<Block>(offset, std::move(block), /*symbols=*/nullptr,
507 /*isScope=*/true);
508 } else {
509 return std::move(assignment);
510 }
511 } else {
512 if (haveEarlyReturns) {
513 return std::make_unique<BreakStatement>(offset);
514 } else {
515 return std::make_unique<Nop>();
516 }
517 }
518 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400519 case Statement::Kind::kSwitch: {
John Stiles44e96be2020-08-31 13:16:04 -0400520 const SwitchStatement& ss = statement.as<SwitchStatement>();
521 std::vector<std::unique_ptr<SwitchCase>> cases;
522 for (const auto& sc : ss.fCases) {
523 cases.emplace_back(new SwitchCase(offset, expr(sc->fValue),
524 stmts(sc->fStatements)));
525 }
526 return std::make_unique<SwitchStatement>(offset, ss.fIsStatic, expr(ss.fValue),
527 std::move(cases), ss.fSymbols);
528 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400529 case Statement::Kind::kVarDeclaration: {
John Stiles44e96be2020-08-31 13:16:04 -0400530 const VarDeclaration& decl = statement.as<VarDeclaration>();
531 std::vector<std::unique_ptr<Expression>> sizes;
532 for (const auto& size : decl.fSizes) {
533 sizes.push_back(expr(size));
534 }
535 std::unique_ptr<Expression> initialValue = expr(decl.fValue);
536 const Variable* old = decl.fVar;
John Stilesc75abb82020-09-14 18:24:12 -0400537 // We assign unique names to inlined variables--scopes hide most of the problems in this
538 // regard, but see `InlinerAvoidsVariableNameOverlap` for a counterexample where unique
539 // names are important.
540 auto name = std::make_unique<String>(
541 this->uniqueNameForInlineVar(String(old->fName), symbolTableForStatement));
John Stiles44e96be2020-08-31 13:16:04 -0400542 const String* namePtr = symbolTableForStatement->takeOwnershipOfString(std::move(name));
Ethan Nicholas30d30222020-09-11 12:27:26 -0400543 const Type* typePtr = copy_if_needed(&old->type(), *symbolTableForStatement);
John Stiles44e96be2020-08-31 13:16:04 -0400544 const Variable* clone = symbolTableForStatement->takeOwnershipOfSymbol(
545 std::make_unique<Variable>(offset,
546 old->fModifiers,
547 namePtr->c_str(),
Ethan Nicholas30d30222020-09-11 12:27:26 -0400548 typePtr,
John Stiles44e96be2020-08-31 13:16:04 -0400549 old->fStorage,
550 initialValue.get()));
John Stilese41b4ee2020-09-28 12:28:16 -0400551 (*varMap)[old] = std::make_unique<VariableReference>(offset, clone);
John Stiles44e96be2020-08-31 13:16:04 -0400552 return std::make_unique<VarDeclaration>(clone, std::move(sizes),
553 std::move(initialValue));
554 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400555 case Statement::Kind::kVarDeclarations: {
John Stiles44e96be2020-08-31 13:16:04 -0400556 const VarDeclarations& decls = *statement.as<VarDeclarationsStatement>().fDeclaration;
557 std::vector<std::unique_ptr<VarDeclaration>> vars;
558 for (const auto& var : decls.fVars) {
559 vars.emplace_back(&stmt(var).release()->as<VarDeclaration>());
560 }
561 const Type* typePtr = copy_if_needed(&decls.fBaseType, *symbolTableForStatement);
562 return std::unique_ptr<Statement>(new VarDeclarationsStatement(
563 std::make_unique<VarDeclarations>(offset, typePtr, std::move(vars))));
564 }
Ethan Nicholase6592142020-09-08 10:22:09 -0400565 case Statement::Kind::kWhile: {
John Stiles44e96be2020-08-31 13:16:04 -0400566 const WhileStatement& w = statement.as<WhileStatement>();
567 return std::make_unique<WhileStatement>(offset, expr(w.fTest), stmt(w.fStatement));
568 }
569 default:
570 SkASSERT(false);
571 return nullptr;
572 }
573}
574
John Stiles6eadf132020-09-08 10:16:10 -0400575Inliner::InlinedCall Inliner::inlineCall(FunctionCall* call,
John Stiles44e96be2020-08-31 13:16:04 -0400576 SymbolTable* symbolTableForCall) {
577 // Inlining is more complicated here than in a typical compiler, because we have to have a
578 // high-level IR and can't just drop statements into the middle of an expression or even use
579 // gotos.
580 //
581 // Since we can't insert statements into an expression, we run the inline function as extra
582 // statements before the statement we're currently processing, relying on a lack of execution
583 // order guarantees. Since we can't use gotos (which are normally used to replace return
584 // statements), we wrap the whole function in a loop and use break statements to jump to the
585 // end.
586 SkASSERT(fSettings);
587 SkASSERT(fContext);
588 SkASSERT(call);
589 SkASSERT(this->isSafeToInline(*call, /*inlineThreshold=*/INT_MAX));
590
John Stiles44e96be2020-08-31 13:16:04 -0400591 std::vector<std::unique_ptr<Expression>>& arguments = call->fArguments;
John Stiles6eadf132020-09-08 10:16:10 -0400592 const int offset = call->fOffset;
John Stiles44e96be2020-08-31 13:16:04 -0400593 const FunctionDefinition& function = *call->fFunction.fDefinition;
John Stiles6eadf132020-09-08 10:16:10 -0400594 const bool hasEarlyReturn = has_early_return(function);
595
John Stiles44e96be2020-08-31 13:16:04 -0400596 InlinedCall inlinedCall;
John Stiles6eadf132020-09-08 10:16:10 -0400597 inlinedCall.fInlinedBody = std::make_unique<Block>(offset,
598 std::vector<std::unique_ptr<Statement>>{},
599 /*symbols=*/nullptr,
600 /*isScope=*/false);
John Stiles98c1f822020-09-09 14:18:53 -0400601
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400602 Block& inlinedBody = *inlinedCall.fInlinedBody;
603 inlinedBody.children().reserve(1 + // Inline marker
604 1 + // Result variable
605 arguments.size() + // Function arguments (passing in)
John Stilese41b4ee2020-09-28 12:28:16 -0400606 arguments.size() + // Function arguments (copy out-params back)
607 1); // Inlined code (Block or do-while loop)
John Stiles98c1f822020-09-09 14:18:53 -0400608
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400609 inlinedBody.children().push_back(std::make_unique<InlineMarker>(call->fFunction));
John Stiles44e96be2020-08-31 13:16:04 -0400610
John Stilese41b4ee2020-09-28 12:28:16 -0400611 auto makeInlineVar =
612 [&](const String& baseName, const Type* type, Modifiers modifiers,
613 std::unique_ptr<Expression>* initialValue) -> std::unique_ptr<Expression> {
John Stilesa003e812020-09-11 09:43:49 -0400614 // $floatLiteral or $intLiteral aren't real types that we can use for scratch variables, so
615 // replace them if they ever appear here. If this happens, we likely forgot to coerce a type
616 // somewhere during compilation.
617 if (type == fContext->fFloatLiteral_Type.get()) {
John Stilesd2be5c52020-09-11 14:58:06 -0400618 SkDEBUGFAIL("found a $floatLiteral type while inlining");
John Stilesa003e812020-09-11 09:43:49 -0400619 type = fContext->fFloat_Type.get();
620 } else if (type == fContext->fIntLiteral_Type.get()) {
John Stilesd2be5c52020-09-11 14:58:06 -0400621 SkDEBUGFAIL("found an $intLiteral type while inlining");
John Stilesa003e812020-09-11 09:43:49 -0400622 type = fContext->fInt_Type.get();
623 }
624
John Stilesc75abb82020-09-14 18:24:12 -0400625 // Provide our new variable with a unique name, and add it to our symbol table.
626 String uniqueName = this->uniqueNameForInlineVar(baseName, symbolTableForCall);
John Stilescf936f92020-08-31 17:18:45 -0400627 const String* namePtr = symbolTableForCall->takeOwnershipOfString(
628 std::make_unique<String>(std::move(uniqueName)));
John Stiles44e96be2020-08-31 13:16:04 -0400629 StringFragment nameFrag{namePtr->c_str(), namePtr->length()};
630
631 // Add our new variable to the symbol table.
Ethan Nicholas30d30222020-09-11 12:27:26 -0400632 auto newVar = std::make_unique<Variable>(/*offset=*/-1, Modifiers(), nameFrag, type,
John Stiles44e96be2020-08-31 13:16:04 -0400633 Variable::kLocal_Storage, initialValue->get());
634 const Variable* variableSymbol = symbolTableForCall->add(nameFrag, std::move(newVar));
635
636 // Prepare the variable declaration (taking extra care with `out` params to not clobber any
637 // initial value).
638 std::vector<std::unique_ptr<VarDeclaration>> variables;
639 if (initialValue && (modifiers.fFlags & Modifiers::kOut_Flag)) {
640 variables.push_back(std::make_unique<VarDeclaration>(
641 variableSymbol, /*sizes=*/std::vector<std::unique_ptr<Expression>>{},
642 (*initialValue)->clone()));
643 } else {
644 variables.push_back(std::make_unique<VarDeclaration>(
645 variableSymbol, /*sizes=*/std::vector<std::unique_ptr<Expression>>{},
646 std::move(*initialValue)));
647 }
648
649 // Add the new variable-declaration statement to our block of extra statements.
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400650 inlinedBody.children().push_back(std::make_unique<VarDeclarationsStatement>(
John Stilesa003e812020-09-11 09:43:49 -0400651 std::make_unique<VarDeclarations>(offset, type, std::move(variables))));
John Stiles44e96be2020-08-31 13:16:04 -0400652
John Stilese41b4ee2020-09-28 12:28:16 -0400653 return std::make_unique<VariableReference>(offset, variableSymbol);
John Stiles44e96be2020-08-31 13:16:04 -0400654 };
655
656 // Create a variable to hold the result in the extra statements (excepting void).
John Stilese41b4ee2020-09-28 12:28:16 -0400657 std::unique_ptr<Expression> resultExpr;
John Stiles44e96be2020-08-31 13:16:04 -0400658 if (function.fDeclaration.fReturnType != *fContext->fVoid_Type) {
John Stiles44e96be2020-08-31 13:16:04 -0400659 std::unique_ptr<Expression> noInitialValue;
John Stilese41b4ee2020-09-28 12:28:16 -0400660 resultExpr = makeInlineVar(String(function.fDeclaration.fName),
661 &function.fDeclaration.fReturnType,
662 Modifiers{}, &noInitialValue);
663 }
John Stiles44e96be2020-08-31 13:16:04 -0400664
665 // Create variables in the extra statements to hold the arguments, and assign the arguments to
666 // them.
667 VariableRewriteMap varMap;
John Stilese41b4ee2020-09-28 12:28:16 -0400668 std::vector<int> argsToCopyBack;
John Stiles44e96be2020-08-31 13:16:04 -0400669 for (int i = 0; i < (int) arguments.size(); ++i) {
670 const Variable* param = function.fDeclaration.fParameters[i];
John Stilese41b4ee2020-09-28 12:28:16 -0400671 bool isOutParam = param->fModifiers.fFlags & Modifiers::kOut_Flag;
John Stiles44e96be2020-08-31 13:16:04 -0400672
John Stiles44733aa2020-09-29 17:42:23 -0400673 // If this argument can be inlined trivially (e.g. a swizzle, or a constant array index)...
674 if (is_trivial_argument(*arguments[i])) {
John Stilese41b4ee2020-09-28 12:28:16 -0400675 // ... and it's an `out` param, or it isn't written to within the inline function...
676 if (isOutParam || !Analysis::StatementWritesToVariable(*function.fBody, *param)) {
John Stilesf201af82020-09-29 16:57:55 -0400677 // ... we don't need to copy it at all! We can just use the existing expression.
678 varMap[param] = arguments[i]->clone();
John Stiles44e96be2020-08-31 13:16:04 -0400679 continue;
680 }
681 }
682
John Stilese41b4ee2020-09-28 12:28:16 -0400683 if (isOutParam) {
684 argsToCopyBack.push_back(i);
685 }
686
Ethan Nicholas30d30222020-09-11 12:27:26 -0400687 varMap[param] = makeInlineVar(String(param->fName), &arguments[i]->type(),
688 param->fModifiers, &arguments[i]);
John Stiles44e96be2020-08-31 13:16:04 -0400689 }
690
691 const Block& body = function.fBody->as<Block>();
John Stiles44e96be2020-08-31 13:16:04 -0400692 auto inlineBlock = std::make_unique<Block>(offset, std::vector<std::unique_ptr<Statement>>{});
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400693 inlineBlock->children().reserve(body.children().size());
694 for (const std::unique_ptr<Statement>& stmt : body.children()) {
695 inlineBlock->children().push_back(this->inlineStatement(
John Stilese41b4ee2020-09-28 12:28:16 -0400696 offset, &varMap, symbolTableForCall, resultExpr.get(), hasEarlyReturn, *stmt));
John Stiles44e96be2020-08-31 13:16:04 -0400697 }
698 if (hasEarlyReturn) {
699 // Since we output to backends that don't have a goto statement (which would normally be
700 // used to perform an early return), we fake it by wrapping the function in a
701 // do { } while (false); and then use break statements to jump to the end in order to
702 // emulate a goto.
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400703 inlinedBody.children().push_back(std::make_unique<DoStatement>(
John Stiles44e96be2020-08-31 13:16:04 -0400704 /*offset=*/-1,
705 std::move(inlineBlock),
706 std::make_unique<BoolLiteral>(*fContext, offset, /*value=*/false)));
707 } else {
John Stiles6eadf132020-09-08 10:16:10 -0400708 // No early returns, so we can just dump the code in. We still need to keep the block so we
709 // don't get name conflicts with locals.
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400710 inlinedBody.children().push_back(std::move(inlineBlock));
John Stiles44e96be2020-08-31 13:16:04 -0400711 }
712
John Stilese41b4ee2020-09-28 12:28:16 -0400713 // Copy back the values of `out` parameters into their real destinations.
714 for (int i : argsToCopyBack) {
John Stiles44e96be2020-08-31 13:16:04 -0400715 const Variable* p = function.fDeclaration.fParameters[i];
John Stilese41b4ee2020-09-28 12:28:16 -0400716 SkASSERT(varMap.find(p) != varMap.end());
717 inlinedBody.children().push_back(
718 std::make_unique<ExpressionStatement>(std::make_unique<BinaryExpression>(
719 offset,
720 clone_with_ref_kind(*arguments[i], VariableReference::kWrite_RefKind),
721 Token::Kind::TK_EQ,
722 std::move(varMap[p]),
723 &arguments[i]->type())));
John Stiles44e96be2020-08-31 13:16:04 -0400724 }
725
John Stilese41b4ee2020-09-28 12:28:16 -0400726 if (resultExpr != nullptr) {
727 // Return our result variable as our replacement expression.
728 SkASSERT(resultExpr->as<VariableReference>().fRefKind == VariableReference::kRead_RefKind);
729 inlinedCall.fReplacementExpr = std::move(resultExpr);
John Stiles44e96be2020-08-31 13:16:04 -0400730 } else {
731 // It's a void function, so it doesn't actually result in anything, but we have to return
732 // something non-null as a standin.
733 inlinedCall.fReplacementExpr = std::make_unique<BoolLiteral>(*fContext, offset,
734 /*value=*/false);
735 }
736
John Stiles44e96be2020-08-31 13:16:04 -0400737 return inlinedCall;
738}
739
John Stiles93442622020-09-11 12:11:27 -0400740bool Inliner::isSafeToInline(const FunctionCall& functionCall, int inlineThreshold) {
John Stiles44e96be2020-08-31 13:16:04 -0400741 SkASSERT(fSettings);
742
743 if (functionCall.fFunction.fDefinition == nullptr) {
744 // Can't inline something if we don't actually have its definition.
745 return false;
746 }
747 const FunctionDefinition& functionDef = *functionCall.fFunction.fDefinition;
748 if (inlineThreshold < INT_MAX) {
749 if (!(functionDef.fDeclaration.fModifiers.fFlags & Modifiers::kInline_Flag) &&
750 Analysis::NodeCount(functionDef) >= inlineThreshold) {
751 // The function exceeds our maximum inline size and is not flagged 'inline'.
752 return false;
753 }
754 }
John Stiles44e96be2020-08-31 13:16:04 -0400755 if (!fSettings->fCaps || !fSettings->fCaps->canUseDoLoops()) {
756 // We don't have do-while loops. We use do-while loops to simulate early returns, so we
757 // can't inline functions that have an early return.
758 bool hasEarlyReturn = has_early_return(functionDef);
759
760 // If we didn't detect an early return, there shouldn't be any returns in breakable
761 // constructs either.
762 SkASSERT(hasEarlyReturn || count_returns_in_breakable_constructs(functionDef) == 0);
763 return !hasEarlyReturn;
764 }
765 // We have do-while loops, but we don't have any mechanism to simulate early returns within a
766 // breakable construct (switch/for/do/while), so we can't inline if there's a return inside one.
767 bool hasReturnInBreakableConstruct = (count_returns_in_breakable_constructs(functionDef) > 0);
768
769 // If we detected returns in breakable constructs, we should also detect an early return.
770 SkASSERT(!hasReturnInBreakableConstruct || has_early_return(functionDef));
771 return !hasReturnInBreakableConstruct;
772}
773
John Stiles93442622020-09-11 12:11:27 -0400774bool Inliner::analyze(Program& program) {
775 // A candidate function for inlining, containing everything that `inlineCall` needs.
776 struct InlineCandidate {
John Stiles915a38c2020-09-14 09:38:13 -0400777 SymbolTable* fSymbols; // the SymbolTable of the candidate
778 Statement* fParentStmt; // the parent Statement of the enclosing stmt
779 std::unique_ptr<Statement>* fEnclosingStmt; // the Statement containing the candidate
780 std::unique_ptr<Expression>* fCandidateExpr; // the candidate FunctionCall to be inlined
John Stiles93442622020-09-11 12:11:27 -0400781 };
782
783 // This is structured much like a ProgramVisitor, but does not actually use ProgramVisitor.
784 // The analyzer needs to keep track of the `unique_ptr<T>*` of statements and expressions so
785 // that they can later be replaced, and ProgramVisitor does not provide this; it only provides a
786 // `const T&`.
787 class InlineCandidateAnalyzer {
788 public:
789 // A list of all the inlining candidates we found during analysis.
790 std::vector<InlineCandidate> fInlineCandidates;
791 // A stack of the symbol tables; since most nodes don't have one, expected to be shallower
792 // than the enclosing-statement stack.
793 std::vector<SymbolTable*> fSymbolTableStack;
794 // A stack of "enclosing" statements--these would be suitable for the inliner to use for
795 // adding new instructions. Not all statements are suitable (e.g. a for-loop's initializer).
796 // The inliner might replace a statement with a block containing the statement.
797 std::vector<std::unique_ptr<Statement>*> fEnclosingStmtStack;
798
799 void visit(Program& program) {
800 fSymbolTableStack.push_back(program.fSymbols.get());
801
802 for (ProgramElement& pe : program) {
803 this->visitProgramElement(&pe);
804 }
805
806 fSymbolTableStack.pop_back();
807 }
808
809 void visitProgramElement(ProgramElement* pe) {
810 switch (pe->kind()) {
811 case ProgramElement::Kind::kFunction: {
812 FunctionDefinition& funcDef = pe->as<FunctionDefinition>();
813 this->visitStatement(&funcDef.fBody);
814 break;
815 }
816 default:
817 // The inliner can't operate outside of a function's scope.
818 break;
819 }
820 }
821
822 void visitStatement(std::unique_ptr<Statement>* stmt,
823 bool isViableAsEnclosingStatement = true) {
824 if (!*stmt) {
825 return;
826 }
827
828 size_t oldEnclosingStmtStackSize = fEnclosingStmtStack.size();
829 size_t oldSymbolStackSize = fSymbolTableStack.size();
830
831 if (isViableAsEnclosingStatement) {
832 fEnclosingStmtStack.push_back(stmt);
833 }
834
835 switch ((*stmt)->kind()) {
836 case Statement::Kind::kBreak:
837 case Statement::Kind::kContinue:
838 case Statement::Kind::kDiscard:
839 case Statement::Kind::kInlineMarker:
840 case Statement::Kind::kNop:
841 break;
842
843 case Statement::Kind::kBlock: {
844 Block& block = (*stmt)->as<Block>();
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400845 if (block.symbolTable()) {
846 fSymbolTableStack.push_back(block.symbolTable().get());
John Stiles93442622020-09-11 12:11:27 -0400847 }
848
Ethan Nicholas7bd60432020-09-25 14:31:59 -0400849 for (std::unique_ptr<Statement>& stmt : block.children()) {
850 this->visitStatement(&stmt);
John Stiles93442622020-09-11 12:11:27 -0400851 }
852 break;
853 }
854 case Statement::Kind::kDo: {
855 DoStatement& doStmt = (*stmt)->as<DoStatement>();
856 // The loop body is a candidate for inlining.
Ethan Nicholas1fd61162020-09-28 13:14:19 -0400857 this->visitStatement(&doStmt.statement());
John Stiles93442622020-09-11 12:11:27 -0400858 // The inliner isn't smart enough to inline the test-expression for a do-while
859 // loop at this time. There are two limitations:
860 // - We would need to insert the inlined-body block at the very end of the do-
861 // statement's inner fStatement. We don't support that today, but it's doable.
862 // - We cannot inline the test expression if the loop uses `continue` anywhere;
863 // that would skip over the inlined block that evaluates the test expression.
864 // There isn't a good fix for this--any workaround would be more complex than
865 // the cost of a function call. However, loops that don't use `continue` would
866 // still be viable candidates for inlining.
867 break;
868 }
869 case Statement::Kind::kExpression: {
870 ExpressionStatement& expr = (*stmt)->as<ExpressionStatement>();
Ethan Nicholasd503a5a2020-09-30 09:29:55 -0400871 this->visitExpression(&expr.expression());
John Stiles93442622020-09-11 12:11:27 -0400872 break;
873 }
874 case Statement::Kind::kFor: {
875 ForStatement& forStmt = (*stmt)->as<ForStatement>();
876 if (forStmt.fSymbols) {
877 fSymbolTableStack.push_back(forStmt.fSymbols.get());
878 }
879
880 // The initializer and loop body are candidates for inlining.
881 this->visitStatement(&forStmt.fInitializer,
882 /*isViableAsEnclosingStatement=*/false);
883 this->visitStatement(&forStmt.fStatement);
884
885 // The inliner isn't smart enough to inline the test- or increment-expressions
886 // of a for loop loop at this time. There are a handful of limitations:
887 // - We would need to insert the test-expression block at the very beginning of
888 // the for-loop's inner fStatement, and the increment-expression block at the
889 // very end. We don't support that today, but it's doable.
890 // - The for-loop's built-in test-expression would need to be dropped entirely,
891 // and the loop would be halted via a break statement at the end of the
892 // inlined test-expression. This is again something we don't support today,
893 // but it could be implemented.
894 // - We cannot inline the increment-expression if the loop uses `continue`
895 // anywhere; that would skip over the inlined block that evaluates the
896 // increment expression. There isn't a good fix for this--any workaround would
897 // be more complex than the cost of a function call. However, loops that don't
898 // use `continue` would still be viable candidates for increment-expression
899 // inlining.
900 break;
901 }
902 case Statement::Kind::kIf: {
903 IfStatement& ifStmt = (*stmt)->as<IfStatement>();
904 this->visitExpression(&ifStmt.fTest);
905 this->visitStatement(&ifStmt.fIfTrue);
906 this->visitStatement(&ifStmt.fIfFalse);
907 break;
908 }
909 case Statement::Kind::kReturn: {
910 ReturnStatement& returnStmt = (*stmt)->as<ReturnStatement>();
911 this->visitExpression(&returnStmt.fExpression);
912 break;
913 }
914 case Statement::Kind::kSwitch: {
915 SwitchStatement& switchStmt = (*stmt)->as<SwitchStatement>();
916 if (switchStmt.fSymbols) {
917 fSymbolTableStack.push_back(switchStmt.fSymbols.get());
918 }
919
920 this->visitExpression(&switchStmt.fValue);
921 for (std::unique_ptr<SwitchCase>& switchCase : switchStmt.fCases) {
922 // The switch-case's fValue cannot be a FunctionCall; skip it.
923 for (std::unique_ptr<Statement>& caseBlock : switchCase->fStatements) {
924 this->visitStatement(&caseBlock);
925 }
926 }
927 break;
928 }
929 case Statement::Kind::kVarDeclaration: {
930 VarDeclaration& varDeclStmt = (*stmt)->as<VarDeclaration>();
931 // Don't need to scan the declaration's sizes; those are always IntLiterals.
932 this->visitExpression(&varDeclStmt.fValue);
933 break;
934 }
935 case Statement::Kind::kVarDeclarations: {
936 VarDeclarationsStatement& varDecls = (*stmt)->as<VarDeclarationsStatement>();
937 for (std::unique_ptr<Statement>& varDecl : varDecls.fDeclaration->fVars) {
938 this->visitStatement(&varDecl, /*isViableAsEnclosingStatement=*/false);
939 }
940 break;
941 }
942 case Statement::Kind::kWhile: {
943 WhileStatement& whileStmt = (*stmt)->as<WhileStatement>();
944 // The loop body is a candidate for inlining.
945 this->visitStatement(&whileStmt.fStatement);
946 // The inliner isn't smart enough to inline the test-expression for a while
947 // loop at this time. There are two limitations:
948 // - We would need to insert the inlined-body block at the very beginning of the
949 // while loop's inner fStatement. We don't support that today, but it's
950 // doable.
951 // - The while-loop's built-in test-expression would need to be replaced with a
952 // `true` BoolLiteral, and the loop would be halted via a break statement at
953 // the end of the inlined test-expression. This is again something we don't
954 // support today, but it could be implemented.
955 break;
956 }
957 default:
958 SkUNREACHABLE;
959 }
960
961 // Pop our symbol and enclosing-statement stacks.
962 fSymbolTableStack.resize(oldSymbolStackSize);
963 fEnclosingStmtStack.resize(oldEnclosingStmtStackSize);
964 }
965
966 void visitExpression(std::unique_ptr<Expression>* expr) {
967 if (!*expr) {
968 return;
969 }
970
971 switch ((*expr)->kind()) {
972 case Expression::Kind::kBoolLiteral:
973 case Expression::Kind::kDefined:
974 case Expression::Kind::kExternalValue:
975 case Expression::Kind::kFieldAccess:
976 case Expression::Kind::kFloatLiteral:
977 case Expression::Kind::kFunctionReference:
978 case Expression::Kind::kIntLiteral:
979 case Expression::Kind::kNullLiteral:
980 case Expression::Kind::kSetting:
981 case Expression::Kind::kTypeReference:
982 case Expression::Kind::kVariableReference:
983 // Nothing to scan here.
984 break;
985
986 case Expression::Kind::kBinary: {
987 BinaryExpression& binaryExpr = (*expr)->as<BinaryExpression>();
Ethan Nicholasc8d9c8e2020-09-22 15:05:37 -0400988 this->visitExpression(&binaryExpr.leftPointer());
John Stiles93442622020-09-11 12:11:27 -0400989
990 // Logical-and and logical-or binary expressions do not inline the right side,
991 // because that would invalidate short-circuiting. That is, when evaluating
992 // expressions like these:
993 // (false && x()) // always false
994 // (true || y()) // always true
995 // It is illegal for side-effects from x() or y() to occur. The simplest way to
996 // enforce that rule is to avoid inlining the right side entirely. However, it
997 // is safe for other types of binary expression to inline both sides.
Ethan Nicholasc8d9c8e2020-09-22 15:05:37 -0400998 Token::Kind op = binaryExpr.getOperator();
999 bool shortCircuitable = (op == Token::Kind::TK_LOGICALAND ||
1000 op == Token::Kind::TK_LOGICALOR);
John Stiles93442622020-09-11 12:11:27 -04001001 if (!shortCircuitable) {
Ethan Nicholasc8d9c8e2020-09-22 15:05:37 -04001002 this->visitExpression(&binaryExpr.rightPointer());
John Stiles93442622020-09-11 12:11:27 -04001003 }
1004 break;
1005 }
1006 case Expression::Kind::kConstructor: {
1007 Constructor& constructorExpr = (*expr)->as<Constructor>();
Ethan Nicholasf70f0442020-09-29 12:41:35 -04001008 for (std::unique_ptr<Expression>& arg : constructorExpr.arguments()) {
John Stiles93442622020-09-11 12:11:27 -04001009 this->visitExpression(&arg);
1010 }
1011 break;
1012 }
1013 case Expression::Kind::kExternalFunctionCall: {
1014 ExternalFunctionCall& funcCallExpr = (*expr)->as<ExternalFunctionCall>();
1015 for (std::unique_ptr<Expression>& arg : funcCallExpr.fArguments) {
1016 this->visitExpression(&arg);
1017 }
1018 break;
1019 }
1020 case Expression::Kind::kFunctionCall: {
1021 FunctionCall& funcCallExpr = (*expr)->as<FunctionCall>();
1022 for (std::unique_ptr<Expression>& arg : funcCallExpr.fArguments) {
1023 this->visitExpression(&arg);
1024 }
1025 this->addInlineCandidate(expr);
1026 break;
1027 }
1028 case Expression::Kind::kIndex:{
1029 IndexExpression& indexExpr = (*expr)->as<IndexExpression>();
1030 this->visitExpression(&indexExpr.fBase);
1031 this->visitExpression(&indexExpr.fIndex);
1032 break;
1033 }
1034 case Expression::Kind::kPostfix: {
1035 PostfixExpression& postfixExpr = (*expr)->as<PostfixExpression>();
1036 this->visitExpression(&postfixExpr.fOperand);
1037 break;
1038 }
1039 case Expression::Kind::kPrefix: {
1040 PrefixExpression& prefixExpr = (*expr)->as<PrefixExpression>();
1041 this->visitExpression(&prefixExpr.fOperand);
1042 break;
1043 }
1044 case Expression::Kind::kSwizzle: {
1045 Swizzle& swizzleExpr = (*expr)->as<Swizzle>();
1046 this->visitExpression(&swizzleExpr.fBase);
1047 break;
1048 }
1049 case Expression::Kind::kTernary: {
1050 TernaryExpression& ternaryExpr = (*expr)->as<TernaryExpression>();
1051 // The test expression is a candidate for inlining.
1052 this->visitExpression(&ternaryExpr.fTest);
1053 // The true- and false-expressions cannot be inlined, because we are only
1054 // allowed to evaluate one side.
1055 break;
1056 }
1057 default:
1058 SkUNREACHABLE;
1059 }
1060 }
1061
1062 void addInlineCandidate(std::unique_ptr<Expression>* candidate) {
1063 fInlineCandidates.push_back(InlineCandidate{fSymbolTableStack.back(),
John Stiles915a38c2020-09-14 09:38:13 -04001064 find_parent_statement(fEnclosingStmtStack),
1065 fEnclosingStmtStack.back(),
1066 candidate});
John Stiles93442622020-09-11 12:11:27 -04001067 }
1068 };
1069
John Stiles93442622020-09-11 12:11:27 -04001070 InlineCandidateAnalyzer analyzer;
1071 analyzer.visit(program);
John Stiles915a38c2020-09-14 09:38:13 -04001072
1073 // For each of our candidate function-call sites, check if it is actually safe to inline.
1074 // Memoize our results so we don't check a function more than once.
John Stiles93442622020-09-11 12:11:27 -04001075 std::unordered_map<const FunctionDeclaration*, bool> inlinableMap; // <function, safe-to-inline>
John Stiles915a38c2020-09-14 09:38:13 -04001076 for (const InlineCandidate& candidate : analyzer.fInlineCandidates) {
John Stiles93442622020-09-11 12:11:27 -04001077 const FunctionCall& funcCall = (*candidate.fCandidateExpr)->as<FunctionCall>();
1078 const FunctionDeclaration* funcDecl = &funcCall.fFunction;
1079 if (inlinableMap.find(funcDecl) == inlinableMap.end()) {
1080 // We do not perform inlining on recursive calls to avoid an infinite death spiral of
1081 // inlining.
1082 int inlineThreshold = (funcDecl->fCallCount.load() > 1) ? fSettings->fInlineThreshold
1083 : INT_MAX;
1084 inlinableMap[funcDecl] = this->isSafeToInline(funcCall, inlineThreshold) &&
1085 !contains_recursive_call(*funcDecl);
John Stiles93442622020-09-11 12:11:27 -04001086 }
1087 }
1088
John Stiles915a38c2020-09-14 09:38:13 -04001089 // Inline the candidates where we've determined that it's safe to do so.
1090 std::unordered_set<const std::unique_ptr<Statement>*> enclosingStmtSet;
1091 bool madeChanges = false;
1092 for (const InlineCandidate& candidate : analyzer.fInlineCandidates) {
1093 FunctionCall& funcCall = (*candidate.fCandidateExpr)->as<FunctionCall>();
1094 const FunctionDeclaration* funcDecl = &funcCall.fFunction;
1095
1096 // If we determined that this candidate was not actually inlinable, skip it.
1097 if (!inlinableMap[funcDecl]) {
1098 continue;
1099 }
1100
1101 // Inlining two expressions using the same enclosing statement in the same inlining pass
1102 // does not work properly. If this happens, skip it; we'll get it in the next pass.
1103 auto [unusedIter, inserted] = enclosingStmtSet.insert(candidate.fEnclosingStmt);
1104 if (!inserted) {
1105 continue;
1106 }
1107
1108 // Convert the function call to its inlined equivalent.
1109 InlinedCall inlinedCall = this->inlineCall(&funcCall, candidate.fSymbols);
1110 if (inlinedCall.fInlinedBody) {
1111 // Ensure that the inlined body has a scope if it needs one.
John Stilesb61ee902020-09-21 12:26:59 -04001112 this->ensureScopedBlocks(inlinedCall.fInlinedBody.get(), candidate.fParentStmt);
John Stiles915a38c2020-09-14 09:38:13 -04001113
1114 // Move the enclosing statement to the end of the unscoped Block containing the inlined
1115 // function, then replace the enclosing statement with that Block.
1116 // Before:
1117 // fInlinedBody = Block{ stmt1, stmt2, stmt3 }
1118 // fEnclosingStmt = stmt4
1119 // After:
1120 // fInlinedBody = null
1121 // fEnclosingStmt = Block{ stmt1, stmt2, stmt3, stmt4 }
Ethan Nicholas7bd60432020-09-25 14:31:59 -04001122 inlinedCall.fInlinedBody->children().push_back(std::move(*candidate.fEnclosingStmt));
John Stiles915a38c2020-09-14 09:38:13 -04001123 *candidate.fEnclosingStmt = std::move(inlinedCall.fInlinedBody);
1124 }
1125
1126 // Replace the candidate function call with our replacement expression.
1127 *candidate.fCandidateExpr = std::move(inlinedCall.fReplacementExpr);
1128 madeChanges = true;
1129
1130 // Note that nothing was destroyed except for the FunctionCall. All other nodes should
1131 // remain valid.
1132 }
1133
1134 return madeChanges;
John Stiles93442622020-09-11 12:11:27 -04001135}
1136
John Stiles44e96be2020-08-31 13:16:04 -04001137} // namespace SkSL