blob: 86a95a973c49b0f99f25c62b80ee9baec6ae3205 [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrGpuGL.h"
#include "GrGLStencilBuffer.h"
#include "GrTypes.h"
#include "SkTemplates.h"
static const GrGLuint GR_MAX_GLUINT = ~0;
static const GrGLint GR_INVAL_GLINT = ~0;
#define GL_CALL(X) GR_GL_CALL(this->glInterface(), X)
#define GL_CALL_RET(RET, X) GR_GL_CALL_RET(this->glInterface(), RET, X)
// we use a spare texture unit to avoid
// mucking with the state of any of the stages.
static const int SPARE_TEX_UNIT = GrDrawState::kNumStages;
#define SKIP_CACHE_CHECK true
static const GrGLenum gXfermodeCoeff2Blend[] = {
GR_GL_ZERO,
GR_GL_ONE,
GR_GL_SRC_COLOR,
GR_GL_ONE_MINUS_SRC_COLOR,
GR_GL_DST_COLOR,
GR_GL_ONE_MINUS_DST_COLOR,
GR_GL_SRC_ALPHA,
GR_GL_ONE_MINUS_SRC_ALPHA,
GR_GL_DST_ALPHA,
GR_GL_ONE_MINUS_DST_ALPHA,
GR_GL_CONSTANT_COLOR,
GR_GL_ONE_MINUS_CONSTANT_COLOR,
GR_GL_CONSTANT_ALPHA,
GR_GL_ONE_MINUS_CONSTANT_ALPHA,
// extended blend coeffs
GR_GL_SRC1_COLOR,
GR_GL_ONE_MINUS_SRC1_COLOR,
GR_GL_SRC1_ALPHA,
GR_GL_ONE_MINUS_SRC1_ALPHA,
};
bool GrGpuGL::BlendCoeffReferencesConstant(GrBlendCoeff coeff) {
static const bool gCoeffReferencesBlendConst[] = {
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
true,
true,
true,
true,
// extended blend coeffs
false,
false,
false,
false,
};
return gCoeffReferencesBlendConst[coeff];
GR_STATIC_ASSERT(kTotalBlendCoeffCount == GR_ARRAY_COUNT(gCoeffReferencesBlendConst));
GR_STATIC_ASSERT(0 == kZero_BlendCoeff);
GR_STATIC_ASSERT(1 == kOne_BlendCoeff);
GR_STATIC_ASSERT(2 == kSC_BlendCoeff);
GR_STATIC_ASSERT(3 == kISC_BlendCoeff);
GR_STATIC_ASSERT(4 == kDC_BlendCoeff);
GR_STATIC_ASSERT(5 == kIDC_BlendCoeff);
GR_STATIC_ASSERT(6 == kSA_BlendCoeff);
GR_STATIC_ASSERT(7 == kISA_BlendCoeff);
GR_STATIC_ASSERT(8 == kDA_BlendCoeff);
GR_STATIC_ASSERT(9 == kIDA_BlendCoeff);
GR_STATIC_ASSERT(10 == kConstC_BlendCoeff);
GR_STATIC_ASSERT(11 == kIConstC_BlendCoeff);
GR_STATIC_ASSERT(12 == kConstA_BlendCoeff);
GR_STATIC_ASSERT(13 == kIConstA_BlendCoeff);
GR_STATIC_ASSERT(14 == kS2C_BlendCoeff);
GR_STATIC_ASSERT(15 == kIS2C_BlendCoeff);
GR_STATIC_ASSERT(16 == kS2A_BlendCoeff);
GR_STATIC_ASSERT(17 == kIS2A_BlendCoeff);
// assertion for gXfermodeCoeff2Blend have to be in GrGpu scope
GR_STATIC_ASSERT(kTotalBlendCoeffCount == GR_ARRAY_COUNT(gXfermodeCoeff2Blend));
}
///////////////////////////////////////////////////////////////////////////////
void GrGpuGL::AdjustTextureMatrix(const GrGLTexture* texture,
GrSamplerState::SampleMode mode,
GrMatrix* matrix) {
GrAssert(NULL != texture);
GrAssert(NULL != matrix);
GrGLTexture::Orientation orientation = texture->orientation();
if (GrGLTexture::kBottomUp_Orientation == orientation) {
GrMatrix invY;
invY.setAll(GR_Scalar1, 0, 0,
0, -GR_Scalar1, GR_Scalar1,
0, 0, GrMatrix::I()[8]);
matrix->postConcat(invY);
} else {
GrAssert(GrGLTexture::kTopDown_Orientation == orientation);
}
}
bool GrGpuGL::TextureMatrixIsIdentity(const GrGLTexture* texture,
const GrSamplerState& sampler) {
GrAssert(NULL != texture);
if (!sampler.getMatrix().isIdentity()) {
return false;
}
GrGLTexture::Orientation orientation = texture->orientation();
if (GrGLTexture::kBottomUp_Orientation == orientation) {
return false;
} else {
GrAssert(GrGLTexture::kTopDown_Orientation == orientation);
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
static bool gPrintStartupSpew;
static bool fbo_test(const GrGLInterface* gl, int w, int h) {
GR_GL_CALL(gl, ActiveTexture(GR_GL_TEXTURE0 + SPARE_TEX_UNIT));
GrGLuint testFBO;
GR_GL_CALL(gl, GenFramebuffers(1, &testFBO));
GR_GL_CALL(gl, BindFramebuffer(GR_GL_FRAMEBUFFER, testFBO));
GrGLuint testRTTex;
GR_GL_CALL(gl, GenTextures(1, &testRTTex));
GR_GL_CALL(gl, BindTexture(GR_GL_TEXTURE_2D, testRTTex));
// some implementations require texture to be mip-map complete before
// FBO with level 0 bound as color attachment will be framebuffer complete.
GR_GL_CALL(gl, TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MIN_FILTER,
GR_GL_NEAREST));
GR_GL_CALL(gl, TexImage2D(GR_GL_TEXTURE_2D, 0, GR_GL_RGBA, w, h,
0, GR_GL_RGBA, GR_GL_UNSIGNED_BYTE, NULL));
GR_GL_CALL(gl, BindTexture(GR_GL_TEXTURE_2D, 0));
GR_GL_CALL(gl, FramebufferTexture2D(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_TEXTURE_2D, testRTTex, 0));
GrGLenum status;
GR_GL_CALL_RET(gl, status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
GR_GL_CALL(gl, DeleteFramebuffers(1, &testFBO));
GR_GL_CALL(gl, DeleteTextures(1, &testRTTex));
return status == GR_GL_FRAMEBUFFER_COMPLETE;
}
GrGpuGL::GrGpuGL(const GrGLInterface* gl, GrGLBinding glBinding) {
fPrintedCaps = false;
gl->ref();
fGL = gl;
fGLBinding = glBinding;
switch (glBinding) {
case kDesktop_GrGLBinding:
GrAssert(gl->supportsDesktop());
break;
case kES2_GrGLBinding:
GrAssert(gl->supportsES2());
break;
default:
GrCrash("Expect exactly one valid GL binding bit to be in use.");
}
GrGLClearErr(fGL);
const GrGLubyte* ext;
GL_CALL_RET(ext, GetString(GR_GL_EXTENSIONS));
if (gPrintStartupSpew) {
const GrGLubyte* vendor;
const GrGLubyte* renderer;
const GrGLubyte* version;
GL_CALL_RET(vendor, GetString(GR_GL_VENDOR));
GL_CALL_RET(renderer, GetString(GR_GL_RENDERER));
GL_CALL_RET(version, GetString(GR_GL_VERSION));
GrPrintf("------------------------- create GrGpuGL %p --------------\n",
this);
GrPrintf("------ VENDOR %s\n", vendor);
GrPrintf("------ RENDERER %s\n", renderer);
GrPrintf("------ VERSION %s\n", version);
GrPrintf("------ EXTENSIONS\n %s \n", ext);
}
fGLVersion = GrGLGetVersion(gl);
GrAssert(0 != fGLVersion);
fExtensionString = (const char*) ext;
this->resetDirtyFlags();
this->initCaps();
fLastSuccessfulStencilFmtIdx = 0;
}
GrGpuGL::~GrGpuGL() {
// This must be called by before the GrDrawTarget destructor
this->releaseGeometry();
// This subclass must do this before the base class destructor runs
// since we will unref the GrGLInterface.
this->releaseResources();
fGL->unref();
}
///////////////////////////////////////////////////////////////////////////////
static const GrGLuint kUnknownBitCount = ~0;
void GrGpuGL::initCaps() {
GrGLint maxTextureUnits;
// check FS and fixed-function texture unit limits
// we only use textures in the fragment stage currently.
// checks are > to make sure we have a spare unit.
GR_GL_GetIntegerv(fGL, GR_GL_MAX_TEXTURE_IMAGE_UNITS, &maxTextureUnits);
GrAssert(maxTextureUnits > GrDrawState::kNumStages);
if (kES2_GrGLBinding != this->glBinding()) {
GR_GL_GetIntegerv(fGL, GR_GL_MAX_TEXTURE_UNITS, &maxTextureUnits);
GrAssert(maxTextureUnits > GrDrawState::kNumStages);
}
if (kES2_GrGLBinding == this->glBinding()) {
GR_GL_GetIntegerv(fGL, GR_GL_MAX_FRAGMENT_UNIFORM_VECTORS,
&fGLCaps.fMaxFragmentUniformVectors);
} else if (kDesktop_GrGLBinding != this->glBinding()) {
GrGLint max;
GR_GL_GetIntegerv(fGL, GR_GL_MAX_FRAGMENT_UNIFORM_COMPONENTS, &max);
fGLCaps.fMaxFragmentUniformVectors = max / 4;
} else {
fGLCaps.fMaxFragmentUniformVectors = 16;
}
GrGLint numFormats;
GR_GL_GetIntegerv(fGL, GR_GL_NUM_COMPRESSED_TEXTURE_FORMATS, &numFormats);
SkAutoSTMalloc<10, GrGLint> formats(numFormats);
GR_GL_GetIntegerv(fGL, GR_GL_COMPRESSED_TEXTURE_FORMATS, formats);
for (int i = 0; i < numFormats; ++i) {
if (formats[i] == GR_GL_PALETTE8_RGBA8) {
fCaps.f8BitPaletteSupport = true;
break;
}
}
if (kDesktop_GrGLBinding == this->glBinding()) {
// we could also look for GL_ATI_separate_stencil extension or
// GL_EXT_stencil_two_side but they use different function signatures
// than GL2.0+ (and than each other).
fCaps.fTwoSidedStencilSupport = (fGLVersion >= GR_GL_VER(2,0));
// supported on GL 1.4 and higher or by extension
fCaps.fStencilWrapOpsSupport = (fGLVersion >= GR_GL_VER(1,4)) ||
this->hasExtension("GL_EXT_stencil_wrap");
} else {
// ES 2 has two sided stencil and stencil wrap
fCaps.fTwoSidedStencilSupport = true;
fCaps.fStencilWrapOpsSupport = true;
}
if (kDesktop_GrGLBinding == this->glBinding()) {
fGLCaps.fRGBA8RenderbufferSupport = true;
} else {
fGLCaps.fRGBA8RenderbufferSupport =
this->hasExtension("GL_OES_rgb8_rgba8") ||
this->hasExtension("GL_ARM_rgba8");
}
if (kDesktop_GrGLBinding == this->glBinding()) {
fGLCaps.fBGRAFormatSupport = this->glVersion() >= GR_GL_VER(1,2) ||
this->hasExtension("GL_EXT_bgra");
} else {
bool hasBGRAExt = false;
if (this->hasExtension("GL_APPLE_texture_format_BGRA8888")) {
fGLCaps.fBGRAFormatSupport = true;
} else if (this->hasExtension("GL_EXT_texture_format_BGRA8888")) {
fGLCaps.fBGRAFormatSupport = true;
fGLCaps.fBGRAIsInternalFormat = true;
}
GrAssert(fGLCaps.fBGRAFormatSupport ||
kSkia8888_PM_GrPixelConfig != kBGRA_8888_PM_GrPixelConfig);
}
if (kDesktop_GrGLBinding == this->glBinding()) {
fGLCaps.fTextureSwizzleSupport = this->glVersion() >= GR_GL_VER(3,3) ||
this->hasExtension("GL_ARB_texture_swizzle");
} else {
fGLCaps.fTextureSwizzleSupport = false;
}
if (kDesktop_GrGLBinding == this->glBinding()) {
fGLCaps.fUnpackRowLengthSupport = true;
fGLCaps.fPackRowLengthSupport = true;
} else {
fGLCaps.fUnpackRowLengthSupport = this->hasExtension("GL_EXT_unpack_subimage");
// no extension for pack row length
fGLCaps.fPackRowLengthSupport = false;
}
if (kDesktop_GrGLBinding == this->glBinding()) {
fCaps.fBufferLockSupport = true; // we require VBO support and the desktop VBO
// extension includes glMapBuffer.
} else {
fCaps.fBufferLockSupport = this->hasExtension("GL_OES_mapbuffer");
}
if (kDesktop_GrGLBinding == this->glBinding()) {
if (fGLVersion >= GR_GL_VER(2,0) ||
this->hasExtension("GL_ARB_texture_non_power_of_two")) {
fCaps.fNPOTTextureTileSupport = true;
} else {
fCaps.fNPOTTextureTileSupport = false;
}
} else {
// Unextended ES2 supports NPOT textures with clamp_to_edge and non-mip filters only
fCaps.fNPOTTextureTileSupport = this->hasExtension("GL_OES_texture_npot");
}
fCaps.fHWAALineSupport = (kDesktop_GrGLBinding == this->glBinding());
////////////////////////////////////////////////////////////////////////////
// Experiments to determine limitations that can't be queried.
// TODO: Make these a preprocess that generate some compile time constants.
// TODO: probe once at startup, rather than once per context creation.
GR_GL_GetIntegerv(fGL, GR_GL_MAX_TEXTURE_SIZE, &fCaps.fMaxTextureSize);
GR_GL_GetIntegerv(fGL, GR_GL_MAX_RENDERBUFFER_SIZE, &fCaps.fMaxRenderTargetSize);
// Our render targets are always created with textures as the color
// attachment, hence this min:
fCaps.fMaxRenderTargetSize = GrMin(fCaps.fMaxTextureSize, fCaps.fMaxRenderTargetSize);
this->initFSAASupport();
this->initStencilFormats();
}
void GrGpuGL::initFSAASupport() {
// TODO: Get rid of GrAALevel and use # samples directly.
GR_STATIC_ASSERT(0 == kNone_GrAALevel);
GR_STATIC_ASSERT(1 == kLow_GrAALevel);
GR_STATIC_ASSERT(2 == kMed_GrAALevel);
GR_STATIC_ASSERT(3 == kHigh_GrAALevel);
memset(fGLCaps.fAASamples, 0, sizeof(fGLCaps.fAASamples));
fGLCaps.fMSFBOType = GLCaps::kNone_MSFBO;
if (kDesktop_GrGLBinding != this->glBinding()) {
if (this->hasExtension("GL_CHROMIUM_framebuffer_multisample")) {
// chrome's extension is equivalent to the EXT msaa
// and fbo_blit extensions.
fGLCaps.fMSFBOType = GLCaps::kDesktopEXT_MSFBO;
} else if (this->hasExtension("GL_APPLE_framebuffer_multisample")) {
fGLCaps.fMSFBOType = GLCaps::kAppleES_MSFBO;
}
} else {
if ((fGLVersion >= GR_GL_VER(3,0)) || this->hasExtension("GL_ARB_framebuffer_object")) {
fGLCaps.fMSFBOType = GLCaps::kDesktopARB_MSFBO;
} else if (this->hasExtension("GL_EXT_framebuffer_multisample") &&
this->hasExtension("GL_EXT_framebuffer_blit")) {
fGLCaps.fMSFBOType = GLCaps::kDesktopEXT_MSFBO;
}
}
if (GLCaps::kNone_MSFBO != fGLCaps.fMSFBOType) {
GrGLint maxSamples;
GR_GL_GetIntegerv(fGL, GR_GL_MAX_SAMPLES, &maxSamples);
if (maxSamples > 1 ) {
fGLCaps.fAASamples[kNone_GrAALevel] = 0;
fGLCaps.fAASamples[kLow_GrAALevel] =
GrMax(2, GrFixedFloorToInt((GR_FixedHalf) * maxSamples));
fGLCaps.fAASamples[kMed_GrAALevel] =
GrMax(2, GrFixedFloorToInt(((GR_Fixed1*3)/4) * maxSamples));
fGLCaps.fAASamples[kHigh_GrAALevel] = maxSamples;
}
}
fCaps.fFSAASupport = fGLCaps.fAASamples[kHigh_GrAALevel] > 0;
}
void GrGpuGL::initStencilFormats() {
// Build up list of legal stencil formats (though perhaps not supported on
// the particular gpu/driver) from most preferred to least.
// these consts are in order of most preferred to least preferred
// we don't bother with GL_STENCIL_INDEX1 or GL_DEPTH32F_STENCIL8
static const GrGLStencilBuffer::Format
// internal Format stencil bits total bits packed?
gS8 = {GR_GL_STENCIL_INDEX8, 8, 8, false},
gS16 = {GR_GL_STENCIL_INDEX16, 16, 16, false},
gD24S8 = {GR_GL_DEPTH24_STENCIL8, 8, 32, true },
gS4 = {GR_GL_STENCIL_INDEX4, 4, 4, false},
gS = {GR_GL_STENCIL_INDEX, kUnknownBitCount, kUnknownBitCount, false},
gDS = {GR_GL_DEPTH_STENCIL, kUnknownBitCount, kUnknownBitCount, true };
if (kDesktop_GrGLBinding == this->glBinding()) {
bool supportsPackedDS = fGLVersion >= GR_GL_VER(3,0) ||
this->hasExtension("GL_EXT_packed_depth_stencil") ||
this->hasExtension("GL_ARB_framebuffer_object");
// S1 thru S16 formats are in GL 3.0+, EXT_FBO, and ARB_FBO since we
// require FBO support we can expect these are legal formats and don't
// check. These also all support the unsized GL_STENCIL_INDEX.
fGLCaps.fStencilFormats.push_back() = gS8;
fGLCaps.fStencilFormats.push_back() = gS16;
if (supportsPackedDS) {
fGLCaps.fStencilFormats.push_back() = gD24S8;
}
fGLCaps.fStencilFormats.push_back() = gS4;
if (supportsPackedDS) {
fGLCaps.fStencilFormats.push_back() = gDS;
}
} else {
// ES2 has STENCIL_INDEX8 without extensions but requires extensions
// for other formats.
// ES doesn't support using the unsized format.
fGLCaps.fStencilFormats.push_back() = gS8;
//fStencilFormats.push_back() = gS16;
if (this->hasExtension("GL_OES_packed_depth_stencil")) {
fGLCaps.fStencilFormats.push_back() = gD24S8;
}
if (this->hasExtension("GL_OES_stencil4")) {
fGLCaps.fStencilFormats.push_back() = gS4;
}
}
}
GrPixelConfig GrGpuGL::preferredReadPixelsConfig(GrPixelConfig config) {
if (GR_GL_RGBA_8888_READBACK_SLOW && GrPixelConfigIsRGBA8888(config)) {
return GrPixelConfigSwapRAndB(config);
} else {
return config;
}
}
void GrGpuGL::onResetContext() {
if (gPrintStartupSpew && !fPrintedCaps) {
fPrintedCaps = true;
this->getCaps().print();
fGLCaps.print();
}
// We detect cases when blending is effectively off
fHWBlendDisabled = false;
GL_CALL(Enable(GR_GL_BLEND));
// we don't use the zb at all
GL_CALL(Disable(GR_GL_DEPTH_TEST));
GL_CALL(DepthMask(GR_GL_FALSE));
GL_CALL(Disable(GR_GL_CULL_FACE));
GL_CALL(FrontFace(GR_GL_CCW));
fHWDrawState.fDrawFace = GrDrawState::kBoth_DrawFace;
GL_CALL(Disable(GR_GL_DITHER));
if (kDesktop_GrGLBinding == this->glBinding()) {
GL_CALL(Disable(GR_GL_LINE_SMOOTH));
GL_CALL(Disable(GR_GL_POINT_SMOOTH));
GL_CALL(Disable(GR_GL_MULTISAMPLE));
fHWAAState.fMSAAEnabled = false;
fHWAAState.fSmoothLineEnabled = false;
}
GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE));
fHWDrawState.fFlagBits = 0;
// we only ever use lines in hairline mode
GL_CALL(LineWidth(1));
// invalid
fActiveTextureUnitIdx = -1;
// illegal values
//fHWDrawState.fSrcBlend = (GrBlendCoeff)(uint8_t)-1;
fHWDrawState.fSrcBlend = (GrBlendCoeff)0xFF;
fHWDrawState.fDstBlend = (GrBlendCoeff)(uint8_t)-1;
fHWDrawState.fBlendConstant = 0x00000000;
GL_CALL(BlendColor(0,0,0,0));
fHWDrawState.fColor = GrColor_ILLEGAL;
fHWDrawState.fViewMatrix = GrMatrix::InvalidMatrix();
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
fHWDrawState.fTextures[s] = NULL;
fHWDrawState.fSamplerStates[s].setRadial2Params(-GR_ScalarMax,
-GR_ScalarMax,
true);
fHWDrawState.fSamplerStates[s].setMatrix(GrMatrix::InvalidMatrix());
fHWDrawState.fSamplerStates[s].setConvolutionParams(0, NULL, NULL);
}
fHWBounds.fScissorRect.invalidate();
fHWBounds.fScissorEnabled = false;
GL_CALL(Disable(GR_GL_SCISSOR_TEST));
fHWBounds.fViewportRect.invalidate();
fHWDrawState.fStencilSettings.invalidate();
fHWStencilClip = false;
fClipInStencil = false;
fHWGeometryState.fIndexBuffer = NULL;
fHWGeometryState.fVertexBuffer = NULL;
fHWGeometryState.fArrayPtrsDirty = true;
GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE));
fHWDrawState.fRenderTarget = NULL;
}
GrTexture* GrGpuGL::onCreatePlatformTexture(const GrPlatformTextureDesc& desc) {
GrGLenum internalFormat; // we don't need this value
GrGLTexture::Desc glTexDesc;
if (!this->canBeTexture(desc.fConfig, &internalFormat,
&glTexDesc.fUploadFormat, &glTexDesc.fUploadType)) {
return NULL;
}
glTexDesc.fWidth = desc.fWidth;
glTexDesc.fHeight = desc.fHeight;
glTexDesc.fConfig = desc.fConfig;
glTexDesc.fTextureID = static_cast<GrGLuint>(desc.fTextureHandle);
glTexDesc.fOwnsID = false;
glTexDesc.fOrientation = GrGLTexture::kBottomUp_Orientation;
GrGLTexture* texture = NULL;
if (desc.fFlags & kRenderTarget_GrPlatformTextureFlag) {
GrGLRenderTarget::Desc glRTDesc;
glRTDesc.fRTFBOID = 0;
glRTDesc.fTexFBOID = 0;
glRTDesc.fMSColorRenderbufferID = 0;
glRTDesc.fOwnIDs = true;
glRTDesc.fConfig = desc.fConfig;
glRTDesc.fSampleCnt = desc.fSampleCnt;
if (!this->createRenderTargetObjects(glTexDesc.fWidth,
glTexDesc.fHeight,
glTexDesc.fTextureID,
&glRTDesc)) {
return NULL;
}
texture = new GrGLTexture(this, glTexDesc, glRTDesc);
} else {
texture = new GrGLTexture(this, glTexDesc);
}
if (NULL == texture) {
return NULL;
}
this->setSpareTextureUnit();
return texture;
}
GrRenderTarget* GrGpuGL::onCreatePlatformRenderTarget(const GrPlatformRenderTargetDesc& desc) {
GrGLRenderTarget::Desc glDesc;
glDesc.fConfig = desc.fConfig;
glDesc.fRTFBOID = static_cast<GrGLuint>(desc.fRenderTargetHandle);
glDesc.fMSColorRenderbufferID = 0;
glDesc.fTexFBOID = GrGLRenderTarget::kUnresolvableFBOID;
glDesc.fSampleCnt = desc.fSampleCnt;
glDesc.fOwnIDs = false;
GrGLIRect viewport;
viewport.fLeft = 0;
viewport.fBottom = 0;
viewport.fWidth = desc.fWidth;
viewport.fHeight = desc.fHeight;
GrRenderTarget* tgt = new GrGLRenderTarget(this, glDesc, viewport);
if (desc.fStencilBits) {
GrGLStencilBuffer::Format format;
format.fInternalFormat = GrGLStencilBuffer::kUnknownInternalFormat;
format.fPacked = false;
format.fStencilBits = desc.fStencilBits;
format.fTotalBits = desc.fStencilBits;
GrGLStencilBuffer* sb = new GrGLStencilBuffer(this,
0,
desc.fWidth,
desc.fHeight,
desc.fSampleCnt,
format);
tgt->setStencilBuffer(sb);
sb->unref();
}
return tgt;
}
GrResource* GrGpuGL::onCreatePlatformSurface(const GrPlatformSurfaceDesc& desc) {
bool isTexture = kTexture_GrPlatformSurfaceType == desc.fSurfaceType ||
kTextureRenderTarget_GrPlatformSurfaceType == desc.fSurfaceType;
bool isRenderTarget = kRenderTarget_GrPlatformSurfaceType == desc.fSurfaceType ||
kTextureRenderTarget_GrPlatformSurfaceType == desc.fSurfaceType;
GrGLRenderTarget::Desc rtDesc;
SkAutoTUnref<GrGLStencilBuffer> sb;
if (isRenderTarget) {
rtDesc.fRTFBOID = desc.fPlatformRenderTarget;
rtDesc.fConfig = desc.fConfig;
if (desc.fSampleCnt) {
if (kGrCanResolve_GrPlatformRenderTargetFlagBit & desc.fRenderTargetFlags) {
rtDesc.fTexFBOID = desc.fPlatformResolveDestination;
} else {
GrAssert(!isTexture); // this should have been filtered by GrContext
rtDesc.fTexFBOID = GrGLRenderTarget::kUnresolvableFBOID;
}
} else {
rtDesc.fTexFBOID = desc.fPlatformRenderTarget;
}
// we don't know what the RB ids are without glGets and we don't care
// since we aren't responsible for deleting them.
rtDesc.fMSColorRenderbufferID = 0;
rtDesc.fSampleCnt = desc.fSampleCnt;
if (desc.fStencilBits) {
GrGLStencilBuffer::Format format;
format.fInternalFormat = GrGLStencilBuffer::kUnknownInternalFormat;
format.fPacked = false;
format.fStencilBits = desc.fStencilBits;
format.fTotalBits = desc.fStencilBits;
sb.reset(new GrGLStencilBuffer(this, 0, desc.fWidth, desc.fHeight,
rtDesc.fSampleCnt, format));
}
rtDesc.fOwnIDs = false;
}
if (isTexture) {
GrGLTexture::Desc texDesc;
GrGLenum dontCare;
if (!canBeTexture(desc.fConfig, &dontCare,
&texDesc.fUploadFormat,
&texDesc.fUploadType)) {
return NULL;
}
texDesc.fWidth = desc.fWidth;
texDesc.fHeight = desc.fHeight;
texDesc.fConfig = desc.fConfig;
texDesc.fOrientation = GrGLTexture::kBottomUp_Orientation;
texDesc.fTextureID = desc.fPlatformTexture;
texDesc.fOwnsID = false;
if (isRenderTarget) {
GrTexture* tex = new GrGLTexture(this, texDesc, rtDesc);
tex->asRenderTarget()->setStencilBuffer(sb.get());
return tex;
} else {
return new GrGLTexture(this, texDesc);
}
} else {
GrGLIRect viewport;
viewport.fLeft = 0;
viewport.fBottom = 0;
viewport.fWidth = desc.fWidth;
viewport.fHeight = desc.fHeight;
GrGLRenderTarget* rt = new GrGLRenderTarget(this, rtDesc, viewport);
rt->setStencilBuffer(sb.get());
return rt;
}
}
////////////////////////////////////////////////////////////////////////////////
void GrGpuGL::allocateAndUploadTexData(const GrGLTexture::Desc& desc,
GrGLenum internalFormat,
const void* data,
size_t rowBytes) {
// we assume the texture is bound
size_t bpp = GrBytesPerPixel(desc.fConfig);
size_t trimRowBytes = desc.fWidth * bpp;
if (!rowBytes) {
rowBytes = trimRowBytes;
}
// in case we need a temporary, trimmed copy of the src pixels
SkAutoSMalloc<128 * 128> tempStorage;
/*
* check whether to allocate a temporary buffer for flipping y or
* because our data has extra bytes past each row. If so, we need
* to trim those off here, since GL ES doesn't let us specify
* GL_UNPACK_ROW_LENGTH.
*/
bool flipY = GrGLTexture::kBottomUp_Orientation == desc.fOrientation;
if (this->glCaps().fUnpackRowLengthSupport && !flipY) {
if (data && rowBytes != trimRowBytes) {
GrGLint rowLength = static_cast<GrGLint>(rowBytes / bpp);
GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowLength));
}
} else {
if (data && (trimRowBytes != rowBytes || flipY)) {
// copy the data into our new storage, skipping the trailing bytes
size_t trimSize = desc.fHeight * trimRowBytes;
const char* src = (const char*)data;
if (flipY) {
src += (desc.fHeight - 1) * rowBytes;
}
char* dst = (char*)tempStorage.reset(trimSize);
for (int y = 0; y < desc.fHeight; y++) {
memcpy(dst, src, trimRowBytes);
if (flipY) {
src -= rowBytes;
} else {
src += rowBytes;
}
dst += trimRowBytes;
}
// now point data to our trimmed version
data = tempStorage.get();
rowBytes = trimRowBytes;
}
}
GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, static_cast<GrGLint>(bpp)));
if (kIndex_8_GrPixelConfig == desc.fConfig &&
this->getCaps().f8BitPaletteSupport) {
// ES only supports CompressedTexImage2D, not CompressedTexSubimage2D
GrGLsizei imageSize = desc.fWidth * desc.fHeight +
kGrColorTableSize;
GL_CALL(CompressedTexImage2D(GR_GL_TEXTURE_2D, 0, desc.fUploadFormat,
desc.fWidth, desc.fHeight,
0, imageSize, data));
if (this->glCaps().fUnpackRowLengthSupport) {
GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0));
}
} else {
GL_CALL(TexImage2D(GR_GL_TEXTURE_2D, 0, internalFormat,
desc.fWidth, desc.fHeight, 0,
desc.fUploadFormat, desc.fUploadType, data));
if (this->glCaps().fUnpackRowLengthSupport) {
GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0));
}
}
}
bool GrGpuGL::createRenderTargetObjects(int width, int height,
GrGLuint texID,
GrGLRenderTarget::Desc* desc) {
desc->fMSColorRenderbufferID = 0;
desc->fRTFBOID = 0;
desc->fTexFBOID = 0;
desc->fOwnIDs = true;
GrGLenum status;
GrGLint err;
GrGLenum msColorFormat = 0; // suppress warning
GL_CALL(GenFramebuffers(1, &desc->fTexFBOID));
if (!desc->fTexFBOID) {
goto FAILED;
}
// If we are using multisampling we will create two FBOS. We render
// to one and then resolve to the texture bound to the other.
if (desc->fSampleCnt > 0) {
if (GLCaps::kNone_MSFBO == fGLCaps.fMSFBOType) {
goto FAILED;
}
GL_CALL(GenFramebuffers(1, &desc->fRTFBOID));
GL_CALL(GenRenderbuffers(1, &desc->fMSColorRenderbufferID));
if (!desc->fRTFBOID ||
!desc->fMSColorRenderbufferID ||
!this->fboInternalFormat(desc->fConfig, &msColorFormat)) {
goto FAILED;
}
} else {
desc->fRTFBOID = desc->fTexFBOID;
}
if (desc->fRTFBOID != desc->fTexFBOID) {
GrAssert(desc->fSampleCnt > 1);
GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER,
desc->fMSColorRenderbufferID));
GR_GL_CALL_NOERRCHECK(this->glInterface(),
RenderbufferStorageMultisample(GR_GL_RENDERBUFFER,
desc->fSampleCnt,
msColorFormat,
width, height));
err = GR_GL_GET_ERROR(this->glInterface());
if (err != GR_GL_NO_ERROR) {
goto FAILED;
}
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, desc->fRTFBOID));
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_RENDERBUFFER,
desc->fMSColorRenderbufferID));
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status != GR_GL_FRAMEBUFFER_COMPLETE) {
goto FAILED;
}
}
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, desc->fTexFBOID));
GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_TEXTURE_2D,
texID, 0));
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status != GR_GL_FRAMEBUFFER_COMPLETE) {
goto FAILED;
}
return true;
FAILED:
if (desc->fMSColorRenderbufferID) {
GL_CALL(DeleteRenderbuffers(1, &desc->fMSColorRenderbufferID));
}
if (desc->fRTFBOID != desc->fTexFBOID) {
GL_CALL(DeleteFramebuffers(1, &desc->fRTFBOID));
}
if (desc->fTexFBOID) {
GL_CALL(DeleteFramebuffers(1, &desc->fTexFBOID));
}
return false;
}
// good to set a break-point here to know when createTexture fails
static GrTexture* return_null_texture() {
// GrAssert(!"null texture");
return NULL;
}
#if GR_DEBUG
static size_t as_size_t(int x) {
return x;
}
#endif
GrTexture* GrGpuGL::onCreateTexture(const GrTextureDesc& desc,
const void* srcData,
size_t rowBytes) {
#if GR_COLLECT_STATS
++fStats.fTextureCreateCnt;
#endif
GrGLTexture::Desc glTexDesc;
GrGLRenderTarget::Desc glRTDesc;
GrGLenum internalFormat;
glTexDesc.fWidth = desc.fWidth;
glTexDesc.fHeight = desc.fHeight;
glTexDesc.fConfig = desc.fConfig;
glTexDesc.fOwnsID = true;
glRTDesc.fMSColorRenderbufferID = 0;
glRTDesc.fRTFBOID = 0;
glRTDesc.fTexFBOID = 0;
glRTDesc.fOwnIDs = true;
glRTDesc.fConfig = glTexDesc.fConfig;
bool renderTarget = 0 != (desc.fFlags & kRenderTarget_GrTextureFlagBit);
if (!canBeTexture(desc.fConfig,
&internalFormat,
&glTexDesc.fUploadFormat,
&glTexDesc.fUploadType)) {
return return_null_texture();
}
const Caps& caps = this->getCaps();
// We keep GrRenderTargets in GL's normal orientation so that they
// can be drawn to by the outside world without the client having
// to render upside down.
glTexDesc.fOrientation = renderTarget ? GrGLTexture::kBottomUp_Orientation :
GrGLTexture::kTopDown_Orientation;
GrAssert(as_size_t(desc.fAALevel) < GR_ARRAY_COUNT(fGLCaps.fAASamples));
glRTDesc.fSampleCnt = fGLCaps.fAASamples[desc.fAALevel];
if (GLCaps::kNone_MSFBO == fGLCaps.fMSFBOType &&
desc.fAALevel != kNone_GrAALevel) {
GrPrintf("AA RT requested but not supported on this platform.");
}
if (renderTarget) {
if (glTexDesc.fWidth > caps.fMaxRenderTargetSize ||
glTexDesc.fHeight > caps.fMaxRenderTargetSize) {
return return_null_texture();
}
}
GL_CALL(GenTextures(1, &glTexDesc.fTextureID));
if (!glTexDesc.fTextureID) {
return return_null_texture();
}
this->setSpareTextureUnit();
GL_CALL(BindTexture(GR_GL_TEXTURE_2D, glTexDesc.fTextureID));
// Some drivers like to know filter/wrap before seeing glTexImage2D. Some
// drivers have a bug where an FBO won't be complete if it includes a
// texture that is not mipmap complete (considering the filter in use).
GrGLTexture::TexParams initialTexParams;
// we only set a subset here so invalidate first
initialTexParams.invalidate();
initialTexParams.fFilter = GR_GL_NEAREST;
initialTexParams.fWrapS = GR_GL_CLAMP_TO_EDGE;
initialTexParams.fWrapT = GR_GL_CLAMP_TO_EDGE;
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MAG_FILTER,
initialTexParams.fFilter));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MIN_FILTER,
initialTexParams.fFilter));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_WRAP_S,
initialTexParams.fWrapS));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_WRAP_T,
initialTexParams.fWrapT));
this->allocateAndUploadTexData(glTexDesc, internalFormat,srcData, rowBytes);
GrGLTexture* tex;
if (renderTarget) {
#if GR_COLLECT_STATS
++fStats.fRenderTargetCreateCnt;
#endif
if (!this->createRenderTargetObjects(glTexDesc.fWidth,
glTexDesc.fHeight,
glTexDesc.fTextureID,
&glRTDesc)) {
GL_CALL(DeleteTextures(1, &glTexDesc.fTextureID));
return return_null_texture();
}
tex = new GrGLTexture(this, glTexDesc, glRTDesc);
} else {
tex = new GrGLTexture(this, glTexDesc);
}
tex->setCachedTexParams(initialTexParams, this->getResetTimestamp());
#ifdef TRACE_TEXTURE_CREATION
GrPrintf("--- new texture [%d] size=(%d %d) config=%d\n",
glTexDesc.fTextureID, desc.fWidth, desc.fHeight, desc.fConfig);
#endif
return tex;
}
namespace {
void inline get_stencil_rb_sizes(const GrGLInterface* gl,
GrGLuint rb,
GrGLStencilBuffer::Format* format) {
// we shouldn't ever know one size and not the other
GrAssert((kUnknownBitCount == format->fStencilBits) ==
(kUnknownBitCount == format->fTotalBits));
if (kUnknownBitCount == format->fStencilBits) {
GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER,
GR_GL_RENDERBUFFER_STENCIL_SIZE,
(GrGLint*)&format->fStencilBits);
if (format->fPacked) {
GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER,
GR_GL_RENDERBUFFER_DEPTH_SIZE,
(GrGLint*)&format->fTotalBits);
format->fTotalBits += format->fStencilBits;
} else {
format->fTotalBits = format->fStencilBits;
}
}
}
}
bool GrGpuGL::createStencilBufferForRenderTarget(GrRenderTarget* rt,
int width, int height) {
// All internally created RTs are also textures. We don't create
// SBs for a client's standalone RT (that is RT that isnt also a texture).
GrAssert(rt->asTexture());
GrAssert(width >= rt->width());
GrAssert(height >= rt->height());
int samples = rt->numSamples();
GrGLuint sbID;
GL_CALL(GenRenderbuffers(1, &sbID));
if (!sbID) {
return false;
}
GrGLStencilBuffer* sb = NULL;
int stencilFmtCnt = fGLCaps.fStencilFormats.count();
for (int i = 0; i < stencilFmtCnt; ++i) {
GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbID));
// we start with the last stencil format that succeeded in hopes
// that we won't go through this loop more than once after the
// first (painful) stencil creation.
int sIdx = (i + fLastSuccessfulStencilFmtIdx) % stencilFmtCnt;
const GrGLStencilBuffer::Format& sFmt = fGLCaps.fStencilFormats[sIdx];
// we do this "if" so that we don't call the multisample
// version on a GL that doesn't have an MSAA extension.
if (samples > 1) {
GR_GL_CALL_NOERRCHECK(this->glInterface(),
RenderbufferStorageMultisample(
GR_GL_RENDERBUFFER,
samples,
sFmt.fInternalFormat,
width,
height));
} else {
GR_GL_CALL_NOERRCHECK(this->glInterface(),
RenderbufferStorage(GR_GL_RENDERBUFFER,
sFmt.fInternalFormat,
width, height));
}
GrGLenum err = GR_GL_GET_ERROR(this->glInterface());
if (err == GR_GL_NO_ERROR) {
// After sized formats we attempt an unsized format and take whatever
// sizes GL gives us. In that case we query for the size.
GrGLStencilBuffer::Format format = sFmt;
get_stencil_rb_sizes(this->glInterface(), sbID, &format);
sb = new GrGLStencilBuffer(this, sbID, width, height,
samples, format);
if (this->attachStencilBufferToRenderTarget(sb, rt)) {
fLastSuccessfulStencilFmtIdx = sIdx;
rt->setStencilBuffer(sb);
sb->unref();
return true;
}
sb->abandon(); // otherwise we lose sbID
sb->unref();
}
}
GL_CALL(DeleteRenderbuffers(1, &sbID));
return false;
}
bool GrGpuGL::attachStencilBufferToRenderTarget(GrStencilBuffer* sb,
GrRenderTarget* rt) {
GrGLRenderTarget* glrt = (GrGLRenderTarget*) rt;
GrGLuint fbo = glrt->renderFBOID();
if (NULL == sb) {
if (NULL != rt->getStencilBuffer()) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_STENCIL_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
#if GR_DEBUG
GrGLenum status;
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
GrAssert(GR_GL_FRAMEBUFFER_COMPLETE == status);
#endif
}
return true;
} else {
GrGLStencilBuffer* glsb = (GrGLStencilBuffer*) sb;
GrGLuint rb = glsb->renderbufferID();
fHWDrawState.fRenderTarget = NULL;
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, fbo));
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_STENCIL_ATTACHMENT,
GR_GL_RENDERBUFFER, rb));
if (glsb->format().fPacked) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, rb));
} else {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
}
GrGLenum status;
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status != GR_GL_FRAMEBUFFER_COMPLETE) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_STENCIL_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
if (glsb->format().fPacked) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
}
return false;
} else {
return true;
}
}
}
////////////////////////////////////////////////////////////////////////////////
GrVertexBuffer* GrGpuGL::onCreateVertexBuffer(uint32_t size, bool dynamic) {
GrGLuint id;
GL_CALL(GenBuffers(1, &id));
if (id) {
GL_CALL(BindBuffer(GR_GL_ARRAY_BUFFER, id));
fHWGeometryState.fArrayPtrsDirty = true;
GrGLClearErr(this->glInterface());
// make sure driver can allocate memory for this buffer
GR_GL_CALL_NOERRCHECK(this->glInterface(),
BufferData(GR_GL_ARRAY_BUFFER, size, NULL,
dynamic ? GR_GL_DYNAMIC_DRAW : GR_GL_STATIC_DRAW));
if (this->glInterface()->fGetError() != GR_GL_NO_ERROR) {
GL_CALL(DeleteBuffers(1, &id));
// deleting bound buffer does implicit bind to 0
fHWGeometryState.fVertexBuffer = NULL;
return NULL;
}
GrGLVertexBuffer* vertexBuffer = new GrGLVertexBuffer(this, id,
size, dynamic);
fHWGeometryState.fVertexBuffer = vertexBuffer;
return vertexBuffer;
}
return NULL;
}
GrIndexBuffer* GrGpuGL::onCreateIndexBuffer(uint32_t size, bool dynamic) {
GrGLuint id;
GL_CALL(GenBuffers(1, &id));
if (id) {
GL_CALL(BindBuffer(GR_GL_ELEMENT_ARRAY_BUFFER, id));
GrGLClearErr(this->glInterface());
// make sure driver can allocate memory for this buffer
GR_GL_CALL_NOERRCHECK(this->glInterface(),
BufferData(GR_GL_ELEMENT_ARRAY_BUFFER, size, NULL,
dynamic ? GR_GL_DYNAMIC_DRAW : GR_GL_STATIC_DRAW));
if (this->glInterface()->fGetError() != GR_GL_NO_ERROR) {
GL_CALL(DeleteBuffers(1, &id));
// deleting bound buffer does implicit bind to 0
fHWGeometryState.fIndexBuffer = NULL;
return NULL;
}
GrIndexBuffer* indexBuffer = new GrGLIndexBuffer(this, id,
size, dynamic);
fHWGeometryState.fIndexBuffer = indexBuffer;
return indexBuffer;
}
return NULL;
}
void GrGpuGL::flushScissor(const GrIRect* rect) {
GrAssert(NULL != fCurrDrawState.fRenderTarget);
const GrGLIRect& vp =
((GrGLRenderTarget*)fCurrDrawState.fRenderTarget)->getViewport();
GrGLIRect scissor;
if (NULL != rect) {
scissor.setRelativeTo(vp, rect->fLeft, rect->fTop,
rect->width(), rect->height());
if (scissor.contains(vp)) {
rect = NULL;
}
}
if (NULL != rect) {
if (fHWBounds.fScissorRect != scissor) {
scissor.pushToGLScissor(this->glInterface());
fHWBounds.fScissorRect = scissor;
}
if (!fHWBounds.fScissorEnabled) {
GL_CALL(Enable(GR_GL_SCISSOR_TEST));
fHWBounds.fScissorEnabled = true;
}
} else {
if (fHWBounds.fScissorEnabled) {
GL_CALL(Disable(GR_GL_SCISSOR_TEST));
fHWBounds.fScissorEnabled = false;
}
}
}
void GrGpuGL::onClear(const GrIRect* rect, GrColor color) {
// parent class should never let us get here with no RT
GrAssert(NULL != fCurrDrawState.fRenderTarget);
GrIRect clippedRect;
if (NULL != rect) {
// flushScissor expects rect to be clipped to the target.
clippedRect = *rect;
GrIRect rtRect = SkIRect::MakeWH(fCurrDrawState.fRenderTarget->width(),
fCurrDrawState.fRenderTarget->height());
if (clippedRect.intersect(rtRect)) {
rect = &clippedRect;
} else {
return;
}
}
this->flushRenderTarget(rect);
this->flushScissor(rect);
GrGLfloat r, g, b, a;
static const GrGLfloat scale255 = 1.f / 255.f;
a = GrColorUnpackA(color) * scale255;
GrGLfloat scaleRGB = scale255;
if (GrPixelConfigIsUnpremultiplied(fCurrDrawState.fRenderTarget->config())) {
scaleRGB *= a;
}
r = GrColorUnpackR(color) * scaleRGB;
g = GrColorUnpackG(color) * scaleRGB;
b = GrColorUnpackB(color) * scaleRGB;
GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE));
fHWDrawState.fFlagBits &= ~kNoColorWrites_StateBit;
GL_CALL(ClearColor(r, g, b, a));
GL_CALL(Clear(GR_GL_COLOR_BUFFER_BIT));
}
void GrGpuGL::clearStencil() {
if (NULL == fCurrDrawState.fRenderTarget) {
return;
}
this->flushRenderTarget(&GrIRect::EmptyIRect());
if (fHWBounds.fScissorEnabled) {
GL_CALL(Disable(GR_GL_SCISSOR_TEST));
fHWBounds.fScissorEnabled = false;
}
GL_CALL(StencilMask(0xffffffff));
GL_CALL(ClearStencil(0));
GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT));
fHWDrawState.fStencilSettings.invalidate();
}
void GrGpuGL::clearStencilClip(const GrIRect& rect, bool insideClip) {
GrAssert(NULL != fCurrDrawState.fRenderTarget);
// this should only be called internally when we know we have a
// stencil buffer.
GrAssert(NULL != fCurrDrawState.fRenderTarget->getStencilBuffer());
GrGLint stencilBitCount =
fCurrDrawState.fRenderTarget->getStencilBuffer()->bits();
#if 0
GrAssert(stencilBitCount > 0);
GrGLint clipStencilMask = (1 << (stencilBitCount - 1));
#else
// we could just clear the clip bit but when we go through
// ANGLE a partial stencil mask will cause clears to be
// turned into draws. Our contract on GrDrawTarget says that
// changing the clip between stencil passes may or may not
// zero the client's clip bits. So we just clear the whole thing.
static const GrGLint clipStencilMask = ~0;
#endif
GrGLint value;
if (insideClip) {
value = (1 << (stencilBitCount - 1));
} else {
value = 0;
}
this->flushRenderTarget(&GrIRect::EmptyIRect());
this->flushScissor(&rect);
GL_CALL(StencilMask(clipStencilMask));
GL_CALL(ClearStencil(value));
GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT));
fHWDrawState.fStencilSettings.invalidate();
}
void GrGpuGL::onForceRenderTargetFlush() {
this->flushRenderTarget(&GrIRect::EmptyIRect());
}
bool GrGpuGL::readPixelsWillPayForYFlip(GrRenderTarget* renderTarget,
int left, int top,
int width, int height,
GrPixelConfig config,
size_t rowBytes) {
// if we have to do memcpy to handle non-trim rowBytes then we
// get the flip for free. Otherwise it costs.
return this->glCaps().fPackRowLengthSupport ||
0 == rowBytes ||
GrBytesPerPixel(config) * width == rowBytes;
}
bool GrGpuGL::onReadPixels(GrRenderTarget* target,
int left, int top,
int width, int height,
GrPixelConfig config,
void* buffer,
size_t rowBytes,
bool invertY) {
GrGLenum internalFormat; // we don't use this for glReadPixels
GrGLenum format;
GrGLenum type;
if (!this->canBeTexture(config, &internalFormat, &format, &type)) {
return false;
}
// resolve the render target if necessary
GrGLRenderTarget* tgt = static_cast<GrGLRenderTarget*>(target);
GrAutoTPtrValueRestore<GrRenderTarget*> autoTargetRestore;
switch (tgt->getResolveType()) {
case GrGLRenderTarget::kCantResolve_ResolveType:
return false;
case GrGLRenderTarget::kAutoResolves_ResolveType:
autoTargetRestore.save(&fCurrDrawState.fRenderTarget);
fCurrDrawState.fRenderTarget = target;
this->flushRenderTarget(&GrIRect::EmptyIRect());
break;
case GrGLRenderTarget::kCanResolve_ResolveType:
this->resolveRenderTarget(tgt);
// we don't track the state of the READ FBO ID.
GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER,
tgt->textureFBOID()));
break;
default:
GrCrash("Unknown resolve type");
}
const GrGLIRect& glvp = tgt->getViewport();
// the read rect is viewport-relative
GrGLIRect readRect;
readRect.setRelativeTo(glvp, left, top, width, height);
size_t tightRowBytes = GrBytesPerPixel(config) * width;
if (0 == rowBytes) {
rowBytes = tightRowBytes;
}
size_t readDstRowBytes = tightRowBytes;
void* readDst = buffer;
// determine if GL can read using the passed rowBytes or if we need
// a scratch buffer.
SkAutoSMalloc<32 * sizeof(GrColor)> scratch;
if (rowBytes != tightRowBytes) {
if (this->glCaps().fPackRowLengthSupport) {
GrAssert(!(rowBytes % sizeof(GrColor)));
GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, rowBytes / sizeof(GrColor)));
readDstRowBytes = rowBytes;
} else {
scratch.reset(tightRowBytes * height);
readDst = scratch.get();
}
}
GL_CALL(ReadPixels(readRect.fLeft, readRect.fBottom,
readRect.fWidth, readRect.fHeight,
format, type, readDst));
if (readDstRowBytes != tightRowBytes) {
GrAssert(this->glCaps().fPackRowLengthSupport);
GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0));
}
// now reverse the order of the rows, since GL's are bottom-to-top, but our
// API presents top-to-bottom. We must preserve the padding contents. Note
// that the above readPixels did not overwrite the padding.
if (readDst == buffer) {
GrAssert(rowBytes == readDstRowBytes);
if (!invertY) {
scratch.reset(tightRowBytes);
void* tmpRow = scratch.get();
// flip y in-place by rows
const int halfY = height >> 1;
char* top = reinterpret_cast<char*>(buffer);
char* bottom = top + (height - 1) * rowBytes;
for (int y = 0; y < halfY; y++) {
memcpy(tmpRow, top, tightRowBytes);
memcpy(top, bottom, tightRowBytes);
memcpy(bottom, tmpRow, tightRowBytes);
top += rowBytes;
bottom -= rowBytes;
}
}
} else {
GrAssert(readDst != buffer); GrAssert(rowBytes != tightRowBytes);
// copy from readDst to buffer while flipping y
const int halfY = height >> 1;
const char* src = reinterpret_cast<const char*>(readDst);
char* dst = reinterpret_cast<char*>(buffer);
if (!invertY) {
dst += (height-1) * rowBytes;
}
for (int y = 0; y < height; y++) {
memcpy(dst, src, tightRowBytes);
src += readDstRowBytes;
if (invertY) {
dst += rowBytes;
} else {
dst -= rowBytes;
}
}
}
return true;
}
void GrGpuGL::flushRenderTarget(const GrIRect* bound) {
GrAssert(NULL != fCurrDrawState.fRenderTarget);
GrGLRenderTarget* rt = (GrGLRenderTarget*)fCurrDrawState.fRenderTarget;
if (fHWDrawState.fRenderTarget != fCurrDrawState.fRenderTarget) {
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, rt->renderFBOID()));
#if GR_COLLECT_STATS
++fStats.fRenderTargetChngCnt;
#endif
#if GR_DEBUG
GrGLenum status;
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status != GR_GL_FRAMEBUFFER_COMPLETE) {
GrPrintf("GrGpuGL::flushRenderTarget glCheckFramebufferStatus %x\n", status);
}
#endif
fDirtyFlags.fRenderTargetChanged = true;
fHWDrawState.fRenderTarget = fCurrDrawState.fRenderTarget;
const GrGLIRect& vp = rt->getViewport();
if (fHWBounds.fViewportRect != vp) {
vp.pushToGLViewport(this->glInterface());
fHWBounds.fViewportRect = vp;
}
}
if (NULL == bound || !bound->isEmpty()) {
rt->flagAsNeedingResolve(bound);
}
}
GrGLenum gPrimitiveType2GLMode[] = {
GR_GL_TRIANGLES,
GR_GL_TRIANGLE_STRIP,
GR_GL_TRIANGLE_FAN,
GR_GL_POINTS,
GR_GL_LINES,
GR_GL_LINE_STRIP
};
#define SWAP_PER_DRAW 0
#if SWAP_PER_DRAW
#if GR_MAC_BUILD
#include <AGL/agl.h>
#elif GR_WIN32_BUILD
void SwapBuf() {
DWORD procID = GetCurrentProcessId();
HWND hwnd = GetTopWindow(GetDesktopWindow());
while(hwnd) {
DWORD wndProcID = 0;
GetWindowThreadProcessId(hwnd, &wndProcID);
if(wndProcID == procID) {
SwapBuffers(GetDC(hwnd));
}
hwnd = GetNextWindow(hwnd, GW_HWNDNEXT);
}
}
#endif
#endif
void GrGpuGL::onGpuDrawIndexed(GrPrimitiveType type,
uint32_t startVertex,
uint32_t startIndex,
uint32_t vertexCount,
uint32_t indexCount) {
GrAssert((size_t)type < GR_ARRAY_COUNT(gPrimitiveType2GLMode));
GrGLvoid* indices = (GrGLvoid*)(sizeof(uint16_t) * startIndex);
GrAssert(NULL != fHWGeometryState.fIndexBuffer);
GrAssert(NULL != fHWGeometryState.fVertexBuffer);
// our setupGeometry better have adjusted this to zero since
// DrawElements always draws from the begining of the arrays for idx 0.
GrAssert(0 == startVertex);
GL_CALL(DrawElements(gPrimitiveType2GLMode[type], indexCount,
GR_GL_UNSIGNED_SHORT, indices));
#if SWAP_PER_DRAW
glFlush();
#if GR_MAC_BUILD
aglSwapBuffers(aglGetCurrentContext());
int set_a_break_pt_here = 9;
aglSwapBuffers(aglGetCurrentContext());
#elif GR_WIN32_BUILD
SwapBuf();
int set_a_break_pt_here = 9;
SwapBuf();
#endif
#endif
}
void GrGpuGL::onGpuDrawNonIndexed(GrPrimitiveType type,
uint32_t startVertex,
uint32_t vertexCount) {
GrAssert((size_t)type < GR_ARRAY_COUNT(gPrimitiveType2GLMode));
GrAssert(NULL != fHWGeometryState.fVertexBuffer);
// our setupGeometry better have adjusted this to zero.
// DrawElements doesn't take an offset so we always adjus the startVertex.
GrAssert(0 == startVertex);
// pass 0 for parameter first. We have to adjust gl*Pointer() to
// account for startVertex in the DrawElements case. So we always
// rely on setupGeometry to have accounted for startVertex.
GL_CALL(DrawArrays(gPrimitiveType2GLMode[type], 0, vertexCount));
#if SWAP_PER_DRAW
glFlush();
#if GR_MAC_BUILD
aglSwapBuffers(aglGetCurrentContext());
int set_a_break_pt_here = 9;
aglSwapBuffers(aglGetCurrentContext());
#elif GR_WIN32_BUILD
SwapBuf();
int set_a_break_pt_here = 9;
SwapBuf();
#endif
#endif
}
void GrGpuGL::resolveRenderTarget(GrGLRenderTarget* rt) {
if (rt->needsResolve()) {
GrAssert(GLCaps::kNone_MSFBO != fGLCaps.fMSFBOType);
GrAssert(rt->textureFBOID() != rt->renderFBOID());
GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER,
rt->renderFBOID()));
GL_CALL(BindFramebuffer(GR_GL_DRAW_FRAMEBUFFER,
rt->textureFBOID()));
#if GR_COLLECT_STATS
++fStats.fRenderTargetChngCnt;
#endif
// make sure we go through flushRenderTarget() since we've modified
// the bound DRAW FBO ID.
fHWDrawState.fRenderTarget = NULL;
const GrGLIRect& vp = rt->getViewport();
const GrIRect dirtyRect = rt->getResolveRect();
GrGLIRect r;
r.setRelativeTo(vp, dirtyRect.fLeft, dirtyRect.fTop,
dirtyRect.width(), dirtyRect.height());
if (GLCaps::kAppleES_MSFBO == fGLCaps.fMSFBOType) {
// Apple's extension uses the scissor as the blit bounds.
GL_CALL(Enable(GR_GL_SCISSOR_TEST));
GL_CALL(Scissor(r.fLeft, r.fBottom,
r.fWidth, r.fHeight));
GL_CALL(ResolveMultisampleFramebuffer());
fHWBounds.fScissorRect.invalidate();
fHWBounds.fScissorEnabled = true;
} else {
if (GLCaps::kDesktopARB_MSFBO != fGLCaps.fMSFBOType) {
// this respects the scissor during the blit, so disable it.
GrAssert(GLCaps::kDesktopEXT_MSFBO == fGLCaps.fMSFBOType);
this->flushScissor(NULL);
}
int right = r.fLeft + r.fWidth;
int top = r.fBottom + r.fHeight;
GL_CALL(BlitFramebuffer(r.fLeft, r.fBottom, right, top,
r.fLeft, r.fBottom, right, top,
GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST));
}
rt->flagAsResolved();
}
}
static const GrGLenum grToGLStencilFunc[] = {
GR_GL_ALWAYS, // kAlways_StencilFunc
GR_GL_NEVER, // kNever_StencilFunc
GR_GL_GREATER, // kGreater_StencilFunc
GR_GL_GEQUAL, // kGEqual_StencilFunc
GR_GL_LESS, // kLess_StencilFunc
GR_GL_LEQUAL, // kLEqual_StencilFunc,
GR_GL_EQUAL, // kEqual_StencilFunc,
GR_GL_NOTEQUAL, // kNotEqual_StencilFunc,
};
GR_STATIC_ASSERT(GR_ARRAY_COUNT(grToGLStencilFunc) == kBasicStencilFuncCount);
GR_STATIC_ASSERT(0 == kAlways_StencilFunc);
GR_STATIC_ASSERT(1 == kNever_StencilFunc);
GR_STATIC_ASSERT(2 == kGreater_StencilFunc);
GR_STATIC_ASSERT(3 == kGEqual_StencilFunc);
GR_STATIC_ASSERT(4 == kLess_StencilFunc);
GR_STATIC_ASSERT(5 == kLEqual_StencilFunc);
GR_STATIC_ASSERT(6 == kEqual_StencilFunc);
GR_STATIC_ASSERT(7 == kNotEqual_StencilFunc);
static const GrGLenum grToGLStencilOp[] = {
GR_GL_KEEP, // kKeep_StencilOp
GR_GL_REPLACE, // kReplace_StencilOp
GR_GL_INCR_WRAP, // kIncWrap_StencilOp
GR_GL_INCR, // kIncClamp_StencilOp
GR_GL_DECR_WRAP, // kDecWrap_StencilOp
GR_GL_DECR, // kDecClamp_StencilOp
GR_GL_ZERO, // kZero_StencilOp
GR_GL_INVERT, // kInvert_StencilOp
};
GR_STATIC_ASSERT(GR_ARRAY_COUNT(grToGLStencilOp) == kStencilOpCount);
GR_STATIC_ASSERT(0 == kKeep_StencilOp);
GR_STATIC_ASSERT(1 == kReplace_StencilOp);
GR_STATIC_ASSERT(2 == kIncWrap_StencilOp);
GR_STATIC_ASSERT(3 == kIncClamp_StencilOp);
GR_STATIC_ASSERT(4 == kDecWrap_StencilOp);
GR_STATIC_ASSERT(5 == kDecClamp_StencilOp);
GR_STATIC_ASSERT(6 == kZero_StencilOp);
GR_STATIC_ASSERT(7 == kInvert_StencilOp);
void GrGpuGL::flushStencil() {
const GrStencilSettings* settings = &fCurrDrawState.fStencilSettings;
// use stencil for clipping if clipping is enabled and the clip
// has been written into the stencil.
bool stencilClip = fClipInStencil &&
(kClip_StateBit & fCurrDrawState.fFlagBits);
bool stencilChange = fHWStencilClip != stencilClip ||
fHWDrawState.fStencilSettings != *settings ||
((fHWDrawState.fFlagBits & kModifyStencilClip_StateBit) !=
(fCurrDrawState.fFlagBits & kModifyStencilClip_StateBit));
if (stencilChange) {
// we can't simultaneously perform stencil-clipping and modify the stencil clip
GrAssert(!stencilClip || !(fCurrDrawState.fFlagBits & kModifyStencilClip_StateBit));
if (settings->isDisabled()) {
if (stencilClip) {
settings = &gClipStencilSettings;
}
}
if (settings->isDisabled()) {
GL_CALL(Disable(GR_GL_STENCIL_TEST));
} else {
GL_CALL(Enable(GR_GL_STENCIL_TEST));
#if GR_DEBUG
if (!this->getCaps().fStencilWrapOpsSupport) {
GrAssert(settings->fFrontPassOp != kIncWrap_StencilOp);
GrAssert(settings->fFrontPassOp != kDecWrap_StencilOp);
GrAssert(settings->fFrontFailOp != kIncWrap_StencilOp);
GrAssert(settings->fBackFailOp != kDecWrap_StencilOp);
GrAssert(settings->fBackPassOp != kIncWrap_StencilOp);
GrAssert(settings->fBackPassOp != kDecWrap_StencilOp);
GrAssert(settings->fBackFailOp != kIncWrap_StencilOp);
GrAssert(settings->fFrontFailOp != kDecWrap_StencilOp);
}
#endif
int stencilBits = 0;
GrStencilBuffer* stencilBuffer =
fCurrDrawState.fRenderTarget->getStencilBuffer();
if (NULL != stencilBuffer) {
stencilBits = stencilBuffer->bits();
}
// TODO: dynamically attach a stencil buffer
GrAssert(stencilBits ||
(GrStencilSettings::gDisabled ==
fCurrDrawState.fStencilSettings));
GrGLuint clipStencilMask = 1 << (stencilBits - 1);
GrGLuint userStencilMask = clipStencilMask - 1;
unsigned int frontRef = settings->fFrontFuncRef;
unsigned int frontMask = settings->fFrontFuncMask;
unsigned int frontWriteMask = settings->fFrontWriteMask;
GrGLenum frontFunc;
if (fCurrDrawState.fFlagBits & kModifyStencilClip_StateBit) {
GrAssert(settings->fFrontFunc < kBasicStencilFuncCount);
frontFunc = grToGLStencilFunc[settings->fFrontFunc];
} else {
frontFunc = grToGLStencilFunc[ConvertStencilFunc(
stencilClip, settings->fFrontFunc)];
ConvertStencilFuncAndMask(settings->fFrontFunc,
stencilClip,
clipStencilMask,
userStencilMask,
&frontRef,
&frontMask);
frontWriteMask &= userStencilMask;
}
GrAssert((size_t)
settings->fFrontFailOp < GR_ARRAY_COUNT(grToGLStencilOp));
GrAssert((size_t)
settings->fFrontPassOp < GR_ARRAY_COUNT(grToGLStencilOp));
GrAssert((size_t)
settings->fBackFailOp < GR_ARRAY_COUNT(grToGLStencilOp));
GrAssert((size_t)
settings->fBackPassOp < GR_ARRAY_COUNT(grToGLStencilOp));
if (this->getCaps().fTwoSidedStencilSupport) {
GrGLenum backFunc;
unsigned int backRef = settings->fBackFuncRef;
unsigned int backMask = settings->fBackFuncMask;
unsigned int backWriteMask = settings->fBackWriteMask;
if (fCurrDrawState.fFlagBits & kModifyStencilClip_StateBit) {
GrAssert(settings->fBackFunc < kBasicStencilFuncCount);
backFunc = grToGLStencilFunc[settings->fBackFunc];
} else {
backFunc = grToGLStencilFunc[ConvertStencilFunc(
stencilClip, settings->fBackFunc)];
ConvertStencilFuncAndMask(settings->fBackFunc,
stencilClip,
clipStencilMask,
userStencilMask,
&backRef,
&backMask);
backWriteMask &= userStencilMask;
}
GL_CALL(StencilFuncSeparate(GR_GL_FRONT, frontFunc,
frontRef, frontMask));
GL_CALL(StencilMaskSeparate(GR_GL_FRONT, frontWriteMask));
GL_CALL(StencilFuncSeparate(GR_GL_BACK, backFunc,
backRef, backMask));
GL_CALL(StencilMaskSeparate(GR_GL_BACK, backWriteMask));
GL_CALL(StencilOpSeparate(GR_GL_FRONT,
grToGLStencilOp[settings->fFrontFailOp],
grToGLStencilOp[settings->fFrontPassOp],
grToGLStencilOp[settings->fFrontPassOp]));
GL_CALL(StencilOpSeparate(GR_GL_BACK,
grToGLStencilOp[settings->fBackFailOp],
grToGLStencilOp[settings->fBackPassOp],
grToGLStencilOp[settings->fBackPassOp]));
} else {
GL_CALL(StencilFunc(frontFunc, frontRef, frontMask));
GL_CALL(StencilMask(frontWriteMask));
GL_CALL(StencilOp(grToGLStencilOp[settings->fFrontFailOp],
grToGLStencilOp[settings->fFrontPassOp],
grToGLStencilOp[settings->fFrontPassOp]));
}
}
fHWDrawState.fStencilSettings = fCurrDrawState.fStencilSettings;
fHWStencilClip = stencilClip;
}
}
void GrGpuGL::flushAAState(GrPrimitiveType type) {
if (kDesktop_GrGLBinding == this->glBinding()) {
// ES doesn't support toggling GL_MULTISAMPLE and doesn't have
// smooth lines.
// we prefer smooth lines over multisampled lines
// msaa should be disabled if drawing smooth lines.
if (GrIsPrimTypeLines(type)) {
bool smooth = this->willUseHWAALines();
if (!fHWAAState.fSmoothLineEnabled && smooth) {
GL_CALL(Enable(GR_GL_LINE_SMOOTH));
fHWAAState.fSmoothLineEnabled = true;
} else if (fHWAAState.fSmoothLineEnabled && !smooth) {
GL_CALL(Disable(GR_GL_LINE_SMOOTH));
fHWAAState.fSmoothLineEnabled = false;
}
if (fCurrDrawState.fRenderTarget->isMultisampled() &&
fHWAAState.fMSAAEnabled) {
GL_CALL(Disable(GR_GL_MULTISAMPLE));
fHWAAState.fMSAAEnabled = false;
}
} else if (fCurrDrawState.fRenderTarget->isMultisampled() &&
SkToBool(kHWAntialias_StateBit & fCurrDrawState.fFlagBits) !=
fHWAAState.fMSAAEnabled) {
if (fHWAAState.fMSAAEnabled) {
GL_CALL(Disable(GR_GL_MULTISAMPLE));
fHWAAState.fMSAAEnabled = false;
} else {
GL_CALL(Enable(GR_GL_MULTISAMPLE));
fHWAAState.fMSAAEnabled = true;
}
}
}
}
void GrGpuGL::flushBlend(GrPrimitiveType type,
GrBlendCoeff srcCoeff,
GrBlendCoeff dstCoeff) {
if (GrIsPrimTypeLines(type) && this->willUseHWAALines()) {
if (fHWBlendDisabled) {
GL_CALL(Enable(GR_GL_BLEND));
fHWBlendDisabled = false;
}
if (kSA_BlendCoeff != fHWDrawState.fSrcBlend ||
kISA_BlendCoeff != fHWDrawState.fDstBlend) {
GL_CALL(BlendFunc(gXfermodeCoeff2Blend[kSA_BlendCoeff],
gXfermodeCoeff2Blend[kISA_BlendCoeff]));
fHWDrawState.fSrcBlend = kSA_BlendCoeff;
fHWDrawState.fDstBlend = kISA_BlendCoeff;
}
} else {
// any optimization to disable blending should
// have already been applied and tweaked the coeffs
// to (1, 0).
bool blendOff = kOne_BlendCoeff == srcCoeff &&
kZero_BlendCoeff == dstCoeff;
if (fHWBlendDisabled != blendOff) {
if (blendOff) {
GL_CALL(Disable(GR_GL_BLEND));
} else {
GL_CALL(Enable(GR_GL_BLEND));
}
fHWBlendDisabled = blendOff;
}
if (!blendOff) {
if (fHWDrawState.fSrcBlend != srcCoeff ||
fHWDrawState.fDstBlend != dstCoeff) {
GL_CALL(BlendFunc(gXfermodeCoeff2Blend[srcCoeff],
gXfermodeCoeff2Blend[dstCoeff]));
fHWDrawState.fSrcBlend = srcCoeff;
fHWDrawState.fDstBlend = dstCoeff;
}
if ((BlendCoeffReferencesConstant(srcCoeff) ||
BlendCoeffReferencesConstant(dstCoeff)) &&
fHWDrawState.fBlendConstant != fCurrDrawState.fBlendConstant) {
float c[] = {
GrColorUnpackR(fCurrDrawState.fBlendConstant) / 255.f,
GrColorUnpackG(fCurrDrawState.fBlendConstant) / 255.f,
GrColorUnpackB(fCurrDrawState.fBlendConstant) / 255.f,
GrColorUnpackA(fCurrDrawState.fBlendConstant) / 255.f
};
GL_CALL(BlendColor(c[0], c[1], c[2], c[3]));
fHWDrawState.fBlendConstant = fCurrDrawState.fBlendConstant;
}
}
}
}
namespace {
unsigned gr_to_gl_filter(GrSamplerState::Filter filter) {
switch (filter) {
case GrSamplerState::kBilinear_Filter:
case GrSamplerState::k4x4Downsample_Filter:
return GR_GL_LINEAR;
case GrSamplerState::kNearest_Filter:
case GrSamplerState::kConvolution_Filter:
return GR_GL_NEAREST;
default:
GrAssert(!"Unknown filter type");
return GR_GL_LINEAR;
}
}
const GrGLenum* get_swizzle(GrPixelConfig config,
const GrSamplerState& sampler) {
if (GrPixelConfigIsAlphaOnly(config)) {
static const GrGLenum gAlphaSmear[] = { GR_GL_ALPHA, GR_GL_ALPHA,
GR_GL_ALPHA, GR_GL_ALPHA };
return gAlphaSmear;
} else if (sampler.swapsRAndB()) {
static const GrGLenum gRedBlueSwap[] = { GR_GL_BLUE, GR_GL_GREEN,
GR_GL_RED, GR_GL_ALPHA };
return gRedBlueSwap;
} else {
static const GrGLenum gStraight[] = { GR_GL_RED, GR_GL_GREEN,
GR_GL_BLUE, GR_GL_ALPHA };
return gStraight;
}
}
void set_tex_swizzle(GrGLenum swizzle[4], const GrGLInterface* gl) {
// should add texparameteri to interface to make 1 instead of 4 calls here
GR_GL_CALL(gl, TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_SWIZZLE_R,
swizzle[0]));
GR_GL_CALL(gl, TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_SWIZZLE_G,
swizzle[1]));
GR_GL_CALL(gl, TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_SWIZZLE_B,
swizzle[2]));
GR_GL_CALL(gl, TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_SWIZZLE_A,
swizzle[3]));
}
}
bool GrGpuGL::flushGLStateCommon(GrPrimitiveType type) {
// GrGpu::setupClipAndFlushState should have already checked this
// and bailed if not true.
GrAssert(NULL != fCurrDrawState.fRenderTarget);
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
// bind texture and set sampler state
if (this->isStageEnabled(s)) {
GrGLTexture* nextTexture = (GrGLTexture*)fCurrDrawState.fTextures[s];
// true for now, but maybe not with GrEffect.
GrAssert(NULL != nextTexture);
// if we created a rt/tex and rendered to it without using a
// texture and now we're texuring from the rt it will still be
// the last bound texture, but it needs resolving. So keep this
// out of the "last != next" check.
GrGLRenderTarget* texRT =
static_cast<GrGLRenderTarget*>(nextTexture->asRenderTarget());
if (NULL != texRT) {
resolveRenderTarget(texRT);
}
if (fHWDrawState.fTextures[s] != nextTexture) {
setTextureUnit(s);
GL_CALL(BindTexture(GR_GL_TEXTURE_2D, nextTexture->textureID()));
#if GR_COLLECT_STATS
++fStats.fTextureChngCnt;
#endif
//GrPrintf("---- bindtexture %d\n", nextTexture->textureID());
fHWDrawState.fTextures[s] = nextTexture;
// The texture matrix has to compensate for texture width/height
// and NPOT-embedded-in-POT
fDirtyFlags.fTextureChangedMask |= (1 << s);
}
const GrSamplerState& sampler = fCurrDrawState.fSamplerStates[s];
ResetTimestamp timestamp;
const GrGLTexture::TexParams& oldTexParams =
nextTexture->getCachedTexParams(&timestamp);
bool setAll = timestamp < this->getResetTimestamp();
GrGLTexture::TexParams newTexParams;
newTexParams.fFilter = gr_to_gl_filter(sampler.getFilter());
const GrGLenum* wraps = GrGLTexture::WrapMode2GLWrap();
newTexParams.fWrapS = wraps[sampler.getWrapX()];
newTexParams.fWrapT = wraps[sampler.getWrapY()];
memcpy(newTexParams.fSwizzleRGBA,
get_swizzle(nextTexture->config(), sampler),
sizeof(newTexParams.fSwizzleRGBA));
if (setAll || newTexParams.fFilter != oldTexParams.fFilter) {
setTextureUnit(s);
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MAG_FILTER,
newTexParams.fFilter));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MIN_FILTER,
newTexParams.fFilter));
}
if (setAll || newTexParams.fWrapS != oldTexParams.fWrapS) {
setTextureUnit(s);
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_WRAP_S,
newTexParams.fWrapS));
}
if (setAll || newTexParams.fWrapT != oldTexParams.fWrapT) {
setTextureUnit(s);
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_WRAP_T,
newTexParams.fWrapT));
}
if (this->glCaps().fTextureSwizzleSupport &&
(setAll ||
memcmp(newTexParams.fSwizzleRGBA,
oldTexParams.fSwizzleRGBA,
sizeof(newTexParams.fSwizzleRGBA)))) {
setTextureUnit(s);
set_tex_swizzle(newTexParams.fSwizzleRGBA,
this->glInterface());
}
nextTexture->setCachedTexParams(newTexParams,
this->getResetTimestamp());
}
}
GrIRect* rect = NULL;
GrIRect clipBounds;
if ((fCurrDrawState.fFlagBits & kClip_StateBit) &&
fClip.hasConservativeBounds()) {
fClip.getConservativeBounds().roundOut(&clipBounds);
rect = &clipBounds;
}
this->flushRenderTarget(rect);
this->flushAAState(type);
if ((fCurrDrawState.fFlagBits & kDither_StateBit) !=
(fHWDrawState.fFlagBits & kDither_StateBit)) {
if (fCurrDrawState.fFlagBits & kDither_StateBit) {
GL_CALL(Enable(GR_GL_DITHER));
} else {
GL_CALL(Disable(GR_GL_DITHER));
}
}
if ((fCurrDrawState.fFlagBits & kNoColorWrites_StateBit) !=
(fHWDrawState.fFlagBits & kNoColorWrites_StateBit)) {
GrGLenum mask;
if (fCurrDrawState.fFlagBits & kNoColorWrites_StateBit) {
mask = GR_GL_FALSE;
} else {
mask = GR_GL_TRUE;
}
GL_CALL(ColorMask(mask, mask, mask, mask));
}
if (fHWDrawState.fDrawFace != fCurrDrawState.fDrawFace) {
switch (fCurrDrawState.fDrawFace) {
case GrDrawState::kCCW_DrawFace:
GL_CALL(Enable(GR_GL_CULL_FACE));
GL_CALL(CullFace(GR_GL_BACK));
break;
case GrDrawState::kCW_DrawFace:
GL_CALL(Enable(GR_GL_CULL_FACE));
GL_CALL(CullFace(GR_GL_FRONT));
break;
case GrDrawState::kBoth_DrawFace:
GL_CALL(Disable(GR_GL_CULL_FACE));
break;
default:
GrCrash("Unknown draw face.");
}
fHWDrawState.fDrawFace = fCurrDrawState.fDrawFace;
}
#if GR_DEBUG
// check for circular rendering
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
GrAssert(!this->isStageEnabled(s) ||
NULL == fCurrDrawState.fRenderTarget ||
NULL == fCurrDrawState.fTextures[s] ||
fCurrDrawState.fTextures[s]->asRenderTarget() !=
fCurrDrawState.fRenderTarget);
}
#endif
flushStencil();
// flushStencil may look at the private state bits, so keep it before this.
fHWDrawState.fFlagBits = fCurrDrawState.fFlagBits;
return true;
}
void GrGpuGL::notifyVertexBufferBind(const GrGLVertexBuffer* buffer) {
if (fHWGeometryState.fVertexBuffer != buffer) {
fHWGeometryState.fArrayPtrsDirty = true;
fHWGeometryState.fVertexBuffer = buffer;
}
}
void GrGpuGL::notifyVertexBufferDelete(const GrGLVertexBuffer* buffer) {
if (fHWGeometryState.fVertexBuffer == buffer) {
// deleting bound buffer does implied bind to 0
fHWGeometryState.fVertexBuffer = NULL;
fHWGeometryState.fArrayPtrsDirty = true;
}
}
void GrGpuGL::notifyIndexBufferBind(const GrGLIndexBuffer* buffer) {
fHWGeometryState.fIndexBuffer = buffer;
}
void GrGpuGL::notifyIndexBufferDelete(const GrGLIndexBuffer* buffer) {
if (fHWGeometryState.fIndexBuffer == buffer) {
// deleting bound buffer does implied bind to 0
fHWGeometryState.fIndexBuffer = NULL;
}
}
void GrGpuGL::notifyRenderTargetDelete(GrRenderTarget* renderTarget) {
GrAssert(NULL != renderTarget);
if (fCurrDrawState.fRenderTarget == renderTarget) {
fCurrDrawState.fRenderTarget = NULL;
}
if (fHWDrawState.fRenderTarget == renderTarget) {
fHWDrawState.fRenderTarget = NULL;
}
}
void GrGpuGL::notifyTextureDelete(GrGLTexture* texture) {
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
if (fCurrDrawState.fTextures[s] == texture) {
fCurrDrawState.fTextures[s] = NULL;
}
if (fHWDrawState.fTextures[s] == texture) {
// deleting bound texture does implied bind to 0
fHWDrawState.fTextures[s] = NULL;
}
}
}
bool GrGpuGL::canBeTexture(GrPixelConfig config,
GrGLenum* internalFormat,
GrGLenum* format,
GrGLenum* type) {
switch (config) {
case kRGBA_8888_PM_GrPixelConfig:
case kRGBA_8888_UPM_GrPixelConfig:
*format = GR_GL_RGBA;
*internalFormat = GR_GL_RGBA;
*type = GR_GL_UNSIGNED_BYTE;
break;
case kBGRA_8888_PM_GrPixelConfig:
case kBGRA_8888_UPM_GrPixelConfig:
if (!fGLCaps.fBGRAFormatSupport) {
return false;
}
*format = GR_GL_BGRA;
if (fGLCaps.fBGRAIsInternalFormat) {
*internalFormat = GR_GL_BGRA;
} else {
*internalFormat = GR_GL_RGBA;
}
*type = GR_GL_UNSIGNED_BYTE;
break;
case kRGB_565_GrPixelConfig:
*format = GR_GL_RGB;
*internalFormat = GR_GL_RGB;
*type = GR_GL_UNSIGNED_SHORT_5_6_5;
break;
case kRGBA_4444_GrPixelConfig:
*format = GR_GL_RGBA;
*internalFormat = GR_GL_RGBA;
*type = GR_GL_UNSIGNED_SHORT_4_4_4_4;
break;
case kIndex_8_GrPixelConfig:
if (this->getCaps().f8BitPaletteSupport) {
*format = GR_GL_PALETTE8_RGBA8;
*internalFormat = GR_GL_PALETTE8_RGBA8;
*type = GR_GL_UNSIGNED_BYTE; // unused I think
} else {
return false;
}
break;
case kAlpha_8_GrPixelConfig:
*format = GR_GL_ALPHA;
*internalFormat = GR_GL_ALPHA;
*type = GR_GL_UNSIGNED_BYTE;
break;
default:
return false;
}
return true;
}
void GrGpuGL::setTextureUnit(int unit) {
GrAssert(unit >= 0 && unit < GrDrawState::kNumStages);
if (fActiveTextureUnitIdx != unit) {
GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + unit));
fActiveTextureUnitIdx = unit;
}
}
void GrGpuGL::setSpareTextureUnit() {
if (fActiveTextureUnitIdx != (GR_GL_TEXTURE0 + SPARE_TEX_UNIT)) {
GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + SPARE_TEX_UNIT));
fActiveTextureUnitIdx = SPARE_TEX_UNIT;
}
}
/* On ES the internalFormat and format must match for TexImage and we use
GL_RGB, GL_RGBA for color formats. We also generally like having the driver
decide the internalFormat. However, on ES internalFormat for
RenderBufferStorage* has to be a specific format (not a base format like
GL_RGBA).
*/
bool GrGpuGL::fboInternalFormat(GrPixelConfig config, GrGLenum* format) {
switch (config) {
// The ES story for BGRA and RenderbufferStorage appears murky. It
// takes an internal format as a parameter. The OES FBO extension and
// 2.0 spec don't refer to BGRA as it's not part of the core. One ES
// BGRA extensions adds BGRA as both an internal and external format
// and the other only as an external format (like desktop GL). OES
// restricts RenderbufferStorage's format to a *sized* internal format.
// There is no sized BGRA internal format.
// So if the texture has internal format BGRA we just hope that the
// resolve blit can do RGBA->BGRA internal format conversion.
case kRGBA_8888_PM_GrPixelConfig:
case kRGBA_8888_UPM_GrPixelConfig:
case kBGRA_8888_PM_GrPixelConfig:
case kBGRA_8888_UPM_GrPixelConfig:
if (fGLCaps.fRGBA8RenderbufferSupport) {
// The GL_OES_rgba8_rgb8 extension defines GL_RGBA8 as a sized
// internal format.
*format = GR_GL_RGBA8;
return true;
} else {
return false;
}
case kRGB_565_GrPixelConfig:
// ES2 supports 565, but desktop GL does not.
if (kDesktop_GrGLBinding != this->glBinding()) {
*format = GR_GL_RGB565;
return true;
} else {
return false;
}
case kRGBA_4444_GrPixelConfig:
*format = GR_GL_RGBA4;
return true;
default:
return false;
}
}
void GrGpuGL::resetDirtyFlags() {
Gr_bzero(&fDirtyFlags, sizeof(fDirtyFlags));
}
void GrGpuGL::setBuffers(bool indexed,
int* extraVertexOffset,
int* extraIndexOffset) {
GrAssert(NULL != extraVertexOffset);
const GeometryPoolState& geoPoolState = this->getGeomPoolState();
GrGLVertexBuffer* vbuf;
switch (this->getGeomSrc().fVertexSrc) {
case kBuffer_GeometrySrcType:
*extraVertexOffset = 0;
vbuf = (GrGLVertexBuffer*) this->getGeomSrc().fVertexBuffer;
break;
case kArray_GeometrySrcType:
case kReserved_GeometrySrcType:
this->finalizeReservedVertices();
*extraVertexOffset = geoPoolState.fPoolStartVertex;
vbuf = (GrGLVertexBuffer*) geoPoolState.fPoolVertexBuffer;
break;
default:
vbuf = NULL; // suppress warning
GrCrash("Unknown geometry src type!");
}
GrAssert(NULL != vbuf);
GrAssert(!vbuf->isLocked());
if (fHWGeometryState.fVertexBuffer != vbuf) {
GL_CALL(BindBuffer(GR_GL_ARRAY_BUFFER, vbuf->bufferID()));
fHWGeometryState.fArrayPtrsDirty = true;
fHWGeometryState.fVertexBuffer = vbuf;
}
if (indexed) {
GrAssert(NULL != extraIndexOffset);
GrGLIndexBuffer* ibuf;
switch (this->getGeomSrc().fIndexSrc) {
case kBuffer_GeometrySrcType:
*extraIndexOffset = 0;
ibuf = (GrGLIndexBuffer*)this->getGeomSrc().fIndexBuffer;
break;
case kArray_GeometrySrcType:
case kReserved_GeometrySrcType:
this->finalizeReservedIndices();
*extraIndexOffset = geoPoolState.fPoolStartIndex;
ibuf = (GrGLIndexBuffer*) geoPoolState.fPoolIndexBuffer;
break;
default:
ibuf = NULL; // suppress warning
GrCrash("Unknown geometry src type!");
}
GrAssert(NULL != ibuf);
GrAssert(!ibuf->isLocked());
if (fHWGeometryState.fIndexBuffer != ibuf) {
GL_CALL(BindBuffer(GR_GL_ELEMENT_ARRAY_BUFFER, ibuf->bufferID()));
fHWGeometryState.fIndexBuffer = ibuf;
}
}
}
int GrGpuGL::getMaxEdges() const {
// FIXME: This is a pessimistic estimate based on how many other things
// want to add uniforms. This should be centralized somewhere.
return GR_CT_MIN(fGLCaps.fMaxFragmentUniformVectors - 8,
GrDrawState::kMaxEdges);
}
void GrGpuGL::GLCaps::print() const {
for (int i = 0; i < fStencilFormats.count(); ++i) {
GrPrintf("Stencil Format %d, stencil bits: %02d, total bits: %02d\n",
i,
fStencilFormats[i].fStencilBits,
fStencilFormats[i].fTotalBits);
}
GR_STATIC_ASSERT(0 == kNone_MSFBO);
GR_STATIC_ASSERT(1 == kDesktopARB_MSFBO);
GR_STATIC_ASSERT(2 == kDesktopEXT_MSFBO);
GR_STATIC_ASSERT(3 == kAppleES_MSFBO);
static const char* gMSFBOExtStr[] = {
"None",
"ARB",
"EXT",
"Apple",
};
GrPrintf("MSAA Type: %s\n", gMSFBOExtStr[fMSFBOType]);
for (int i = 0; i < (int)GR_ARRAY_COUNT(fAASamples); ++i) {
GrPrintf("AA Level %d has %d samples\n", i, fAASamples[i]);
}
GrPrintf("Max FS Uniform Vectors: %d\n", fMaxFragmentUniformVectors);
GrPrintf("Support RGBA8 Render Buffer: %s\n",
(fRGBA8RenderbufferSupport ? "YES": "NO"));
GrPrintf("BGRA is an internal format: %s\n",
(fBGRAIsInternalFormat ? "YES": "NO"));
GrPrintf("Support texture swizzle: %s\n",
(fTextureSwizzleSupport ? "YES": "NO"));
GrPrintf("Unpack Row length support: %s\n",
(fUnpackRowLengthSupport ? "YES": "NO"));
GrPrintf("Pack Row length support: %s\n",
(fPackRowLengthSupport ? "YES": "NO"));
}