hstern | 0446a3c | 2016-08-08 12:28:13 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2016 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "SkCurveMeasure.h" |
hstern | 4ab47e0 | 2016-08-10 10:55:09 -0700 | [diff] [blame^] | 9 | #include "SkGeometry.h" |
hstern | 0446a3c | 2016-08-08 12:28:13 -0700 | [diff] [blame] | 10 | |
| 11 | // for abs |
| 12 | #include <cmath> |
| 13 | |
hstern | 4ab47e0 | 2016-08-10 10:55:09 -0700 | [diff] [blame^] | 14 | #define UNIMPLEMENTED SkDEBUGF(("%s:%d unimplemented\n", __FILE__, __LINE__)) |
| 15 | |
| 16 | /// Used inside SkCurveMeasure::getTime's Newton's iteration |
| 17 | static inline SkPoint evaluate(const SkPoint pts[4], SkSegType segType, |
| 18 | SkScalar t) { |
| 19 | SkPoint pos; |
| 20 | switch (segType) { |
| 21 | case kQuad_SegType: |
| 22 | pos = SkEvalQuadAt(pts, t); |
| 23 | break; |
| 24 | case kLine_SegType: |
| 25 | pos = SkPoint::Make(SkScalarInterp(pts[0].x(), pts[1].x(), t), |
| 26 | SkScalarInterp(pts[0].y(), pts[1].y(), t)); |
| 27 | break; |
| 28 | case kCubic_SegType: |
| 29 | SkEvalCubicAt(pts, t, &pos, nullptr, nullptr); |
| 30 | break; |
| 31 | case kConic_SegType: { |
| 32 | SkConic conic(pts, pts[3].x()); |
| 33 | conic.evalAt(t, &pos); |
| 34 | } |
| 35 | break; |
| 36 | default: |
| 37 | UNIMPLEMENTED; |
| 38 | } |
| 39 | |
| 40 | return pos; |
| 41 | } |
| 42 | |
| 43 | /// Used inside SkCurveMeasure::getTime's Newton's iteration |
| 44 | static inline SkVector evaluateDerivative(const SkPoint pts[4], |
| 45 | SkSegType segType, SkScalar t) { |
| 46 | SkVector tan; |
| 47 | switch (segType) { |
| 48 | case kQuad_SegType: |
| 49 | tan = SkEvalQuadTangentAt(pts, t); |
| 50 | break; |
| 51 | case kLine_SegType: |
| 52 | tan = pts[1] - pts[0]; |
| 53 | break; |
| 54 | case kCubic_SegType: |
| 55 | SkEvalCubicAt(pts, t, nullptr, &tan, nullptr); |
| 56 | break; |
| 57 | case kConic_SegType: { |
| 58 | SkConic conic(pts, pts[3].x()); |
| 59 | conic.evalAt(t, nullptr, &tan); |
| 60 | } |
| 61 | break; |
| 62 | default: |
| 63 | UNIMPLEMENTED; |
| 64 | } |
| 65 | |
| 66 | return tan; |
| 67 | } |
| 68 | /// Used in ArcLengthIntegrator::computeLength |
hstern | 0446a3c | 2016-08-08 12:28:13 -0700 | [diff] [blame] | 69 | static inline Sk8f evaluateDerivativeLength(const Sk8f& ts, |
| 70 | const Sk8f (&xCoeff)[3], |
| 71 | const Sk8f (&yCoeff)[3], |
| 72 | const SkSegType segType) { |
| 73 | Sk8f x; |
| 74 | Sk8f y; |
| 75 | switch (segType) { |
| 76 | case kQuad_SegType: |
| 77 | x = xCoeff[0]*ts + xCoeff[1]; |
| 78 | y = yCoeff[0]*ts + yCoeff[1]; |
| 79 | break; |
| 80 | case kLine_SegType: |
hstern | 4ab47e0 | 2016-08-10 10:55:09 -0700 | [diff] [blame^] | 81 | // length of line derivative is constant |
| 82 | // and we precompute it in the constructor |
| 83 | return xCoeff[0]; |
hstern | 0446a3c | 2016-08-08 12:28:13 -0700 | [diff] [blame] | 84 | case kCubic_SegType: |
| 85 | x = (xCoeff[0]*ts + xCoeff[1])*ts + xCoeff[2]; |
| 86 | y = (yCoeff[0]*ts + yCoeff[1])*ts + yCoeff[2]; |
| 87 | break; |
| 88 | case kConic_SegType: |
hstern | 4ab47e0 | 2016-08-10 10:55:09 -0700 | [diff] [blame^] | 89 | UNIMPLEMENTED; |
hstern | 0446a3c | 2016-08-08 12:28:13 -0700 | [diff] [blame] | 90 | break; |
| 91 | default: |
hstern | 4ab47e0 | 2016-08-10 10:55:09 -0700 | [diff] [blame^] | 92 | UNIMPLEMENTED; |
hstern | 0446a3c | 2016-08-08 12:28:13 -0700 | [diff] [blame] | 93 | } |
| 94 | |
| 95 | x = x * x; |
| 96 | y = y * y; |
| 97 | |
| 98 | return (x + y).sqrt(); |
| 99 | } |
hstern | 4ab47e0 | 2016-08-10 10:55:09 -0700 | [diff] [blame^] | 100 | |
hstern | 0446a3c | 2016-08-08 12:28:13 -0700 | [diff] [blame] | 101 | ArcLengthIntegrator::ArcLengthIntegrator(const SkPoint* pts, SkSegType segType) |
| 102 | : fSegType(segType) { |
| 103 | switch (fSegType) { |
| 104 | case kQuad_SegType: { |
| 105 | float Ax = pts[0].x(); |
| 106 | float Bx = pts[1].x(); |
| 107 | float Cx = pts[2].x(); |
| 108 | float Ay = pts[0].y(); |
| 109 | float By = pts[1].y(); |
| 110 | float Cy = pts[2].y(); |
| 111 | |
| 112 | // precompute coefficients for derivative |
| 113 | xCoeff[0] = Sk8f(2.0f*(Ax - 2*Bx + Cx)); |
| 114 | xCoeff[1] = Sk8f(2.0f*(Bx - Ax)); |
| 115 | |
| 116 | yCoeff[0] = Sk8f(2.0f*(Ay - 2*By + Cy)); |
| 117 | yCoeff[1] = Sk8f(2.0f*(By - Ay)); |
| 118 | } |
| 119 | break; |
hstern | 4ab47e0 | 2016-08-10 10:55:09 -0700 | [diff] [blame^] | 120 | case kLine_SegType: { |
| 121 | // the length of the derivative of a line is constant |
| 122 | // we put in in both coeff arrays for consistency's sake |
| 123 | SkScalar length = (pts[1] - pts[0]).length(); |
| 124 | xCoeff[0] = Sk8f(length); |
| 125 | yCoeff[0] = Sk8f(length); |
| 126 | } |
hstern | 0446a3c | 2016-08-08 12:28:13 -0700 | [diff] [blame] | 127 | break; |
| 128 | case kCubic_SegType: |
| 129 | { |
| 130 | float Ax = pts[0].x(); |
| 131 | float Bx = pts[1].x(); |
| 132 | float Cx = pts[2].x(); |
| 133 | float Dx = pts[3].x(); |
| 134 | float Ay = pts[0].y(); |
| 135 | float By = pts[1].y(); |
| 136 | float Cy = pts[2].y(); |
| 137 | float Dy = pts[3].y(); |
| 138 | |
hstern | 4ab47e0 | 2016-08-10 10:55:09 -0700 | [diff] [blame^] | 139 | // precompute coefficients for derivative |
hstern | 0446a3c | 2016-08-08 12:28:13 -0700 | [diff] [blame] | 140 | xCoeff[0] = Sk8f(3.0f*(-Ax + 3.0f*(Bx - Cx) + Dx)); |
| 141 | xCoeff[1] = Sk8f(3.0f*(2.0f*(Ax - 2.0f*Bx + Cx))); |
| 142 | xCoeff[2] = Sk8f(3.0f*(-Ax + Bx)); |
| 143 | |
| 144 | yCoeff[0] = Sk8f(3.0f*(-Ay + 3.0f*(By - Cy) + Dy)); |
| 145 | yCoeff[1] = Sk8f(3.0f * -Ay + By + 2.0f*(Ay - 2.0f*By + Cy)); |
| 146 | yCoeff[2] = Sk8f(3.0f*(-Ay + By)); |
| 147 | } |
| 148 | break; |
| 149 | case kConic_SegType: |
hstern | 4ab47e0 | 2016-08-10 10:55:09 -0700 | [diff] [blame^] | 150 | UNIMPLEMENTED; |
hstern | 0446a3c | 2016-08-08 12:28:13 -0700 | [diff] [blame] | 151 | break; |
| 152 | default: |
hstern | 4ab47e0 | 2016-08-10 10:55:09 -0700 | [diff] [blame^] | 153 | UNIMPLEMENTED; |
hstern | 0446a3c | 2016-08-08 12:28:13 -0700 | [diff] [blame] | 154 | } |
| 155 | } |
| 156 | |
| 157 | // We use Gaussian quadrature |
| 158 | // (https://en.wikipedia.org/wiki/Gaussian_quadrature) |
| 159 | // to approximate the arc length integral here, because it is amenable to SIMD. |
| 160 | SkScalar ArcLengthIntegrator::computeLength(SkScalar t) { |
| 161 | SkScalar length = 0.0f; |
| 162 | |
| 163 | Sk8f lengths = evaluateDerivativeLength(absc*t, xCoeff, yCoeff, fSegType); |
| 164 | lengths = weights*lengths; |
| 165 | // is it faster or more accurate to sum and then multiply or vice versa? |
| 166 | lengths = lengths*(t*0.5f); |
| 167 | |
| 168 | // Why does SkNx index with ints? does negative index mean something? |
| 169 | for (int i = 0; i < 8; i++) { |
| 170 | length += lengths[i]; |
| 171 | } |
| 172 | return length; |
| 173 | } |
| 174 | |
| 175 | SkCurveMeasure::SkCurveMeasure(const SkPoint* pts, SkSegType segType) |
| 176 | : fSegType(segType) { |
| 177 | switch (fSegType) { |
| 178 | case SkSegType::kQuad_SegType: |
| 179 | for (size_t i = 0; i < 3; i++) { |
| 180 | fPts[i] = pts[i]; |
| 181 | } |
| 182 | break; |
| 183 | case SkSegType::kLine_SegType: |
hstern | 4ab47e0 | 2016-08-10 10:55:09 -0700 | [diff] [blame^] | 184 | fPts[0] = pts[0]; |
| 185 | fPts[1] = pts[1]; |
hstern | 0446a3c | 2016-08-08 12:28:13 -0700 | [diff] [blame] | 186 | break; |
| 187 | case SkSegType::kCubic_SegType: |
| 188 | for (size_t i = 0; i < 4; i++) { |
| 189 | fPts[i] = pts[i]; |
| 190 | } |
| 191 | break; |
| 192 | case SkSegType::kConic_SegType: |
hstern | 4ab47e0 | 2016-08-10 10:55:09 -0700 | [diff] [blame^] | 193 | for (size_t i = 0; i < 4; i++) { |
| 194 | fPts[i] = pts[i]; |
| 195 | } |
hstern | 0446a3c | 2016-08-08 12:28:13 -0700 | [diff] [blame] | 196 | break; |
| 197 | default: |
hstern | 4ab47e0 | 2016-08-10 10:55:09 -0700 | [diff] [blame^] | 198 | UNIMPLEMENTED; |
hstern | 0446a3c | 2016-08-08 12:28:13 -0700 | [diff] [blame] | 199 | break; |
| 200 | } |
| 201 | fIntegrator = ArcLengthIntegrator(fPts, fSegType); |
| 202 | } |
| 203 | |
| 204 | SkScalar SkCurveMeasure::getLength() { |
| 205 | if (-1.0f == fLength) { |
| 206 | fLength = fIntegrator.computeLength(1.0f); |
| 207 | } |
| 208 | return fLength; |
| 209 | } |
| 210 | |
| 211 | // Given an arc length targetLength, we want to determine what t |
| 212 | // gives us the corresponding arc length along the curve. |
| 213 | // We do this by letting the arc length integral := f(t) and |
| 214 | // solving for the root of the equation f(t) - targetLength = 0 |
| 215 | // using Newton's method and lerp-bisection. |
| 216 | // The computationally expensive parts are the integral approximation |
| 217 | // at each step, and computing the derivative of the arc length integral, |
| 218 | // which is equal to the length of the tangent (so we have to do a sqrt). |
| 219 | |
| 220 | SkScalar SkCurveMeasure::getTime(SkScalar targetLength) { |
| 221 | if (targetLength == 0.0f) { |
| 222 | return 0.0f; |
| 223 | } |
| 224 | |
| 225 | SkScalar currentLength = getLength(); |
| 226 | |
| 227 | if (SkScalarNearlyEqual(targetLength, currentLength)) { |
| 228 | return 1.0f; |
| 229 | } |
| 230 | |
| 231 | // initial estimate of t is percentage of total length |
| 232 | SkScalar currentT = targetLength / currentLength; |
| 233 | SkScalar prevT = -1.0f; |
| 234 | SkScalar newT; |
| 235 | |
| 236 | SkScalar minT = 0.0f; |
| 237 | SkScalar maxT = 1.0f; |
| 238 | |
| 239 | int iterations = 0; |
| 240 | while (iterations < kNewtonIters + kBisectIters) { |
| 241 | currentLength = fIntegrator.computeLength(currentT); |
| 242 | SkScalar lengthDiff = currentLength - targetLength; |
| 243 | |
| 244 | // Update root bounds. |
| 245 | // If lengthDiff is positive, we have overshot the target, so |
| 246 | // we know the current t is an upper bound, and similarly |
| 247 | // for the lower bound. |
| 248 | if (lengthDiff > 0.0f) { |
| 249 | if (currentT < maxT) { |
| 250 | maxT = currentT; |
| 251 | } |
| 252 | } else { |
| 253 | if (currentT > minT) { |
| 254 | minT = currentT; |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | // We have a tolerance on both the absolute value of the difference and |
| 259 | // on the t value |
| 260 | // because we may not have enough precision in the t to get close enough |
| 261 | // in the length. |
| 262 | if ((std::abs(lengthDiff) < kTolerance) || |
| 263 | (std::abs(prevT - currentT) < kTolerance)) { |
| 264 | break; |
| 265 | } |
| 266 | |
| 267 | prevT = currentT; |
| 268 | if (iterations < kNewtonIters) { |
hstern | 0446a3c | 2016-08-08 12:28:13 -0700 | [diff] [blame] | 269 | // This is just newton's formula. |
hstern | 4ab47e0 | 2016-08-10 10:55:09 -0700 | [diff] [blame^] | 270 | SkScalar dt = evaluateDerivative(fPts, fSegType, currentT).length(); |
hstern | 0446a3c | 2016-08-08 12:28:13 -0700 | [diff] [blame] | 271 | newT = currentT - (lengthDiff / dt); |
| 272 | |
| 273 | // If newT is out of bounds, bisect inside newton. |
| 274 | if ((newT < 0.0f) || (newT > 1.0f)) { |
| 275 | newT = (minT + maxT) * 0.5f; |
| 276 | } |
| 277 | } else if (iterations < kNewtonIters + kBisectIters) { |
| 278 | if (lengthDiff > 0.0f) { |
| 279 | maxT = currentT; |
| 280 | } else { |
| 281 | minT = currentT; |
| 282 | } |
| 283 | // TODO(hstern) do a lerp here instead of a bisection |
| 284 | newT = (minT + maxT) * 0.5f; |
| 285 | } else { |
| 286 | SkDEBUGF(("%.7f %.7f didn't get close enough after bisection.\n", |
hstern | 4ab47e0 | 2016-08-10 10:55:09 -0700 | [diff] [blame^] | 287 | currentT, currentLength)); |
hstern | 0446a3c | 2016-08-08 12:28:13 -0700 | [diff] [blame] | 288 | break; |
| 289 | } |
| 290 | currentT = newT; |
| 291 | |
| 292 | SkASSERT(minT <= maxT); |
| 293 | |
| 294 | iterations++; |
| 295 | } |
| 296 | |
| 297 | // debug. is there an SKDEBUG or something for ifdefs? |
| 298 | fIters = iterations; |
| 299 | |
| 300 | return currentT; |
| 301 | } |
| 302 | |
hstern | 80ac591 | 2016-08-10 07:45:31 -0700 | [diff] [blame] | 303 | void SkCurveMeasure::getPosTanTime(SkScalar targetLength, SkPoint* pos, |
hstern | 4ab47e0 | 2016-08-10 10:55:09 -0700 | [diff] [blame^] | 304 | SkVector* tan, SkScalar* time) { |
hstern | 0446a3c | 2016-08-08 12:28:13 -0700 | [diff] [blame] | 305 | SkScalar t = getTime(targetLength); |
| 306 | |
hstern | 80ac591 | 2016-08-10 07:45:31 -0700 | [diff] [blame] | 307 | if (time) { |
| 308 | *time = t; |
| 309 | } |
hstern | 0446a3c | 2016-08-08 12:28:13 -0700 | [diff] [blame] | 310 | if (pos) { |
hstern | 4ab47e0 | 2016-08-10 10:55:09 -0700 | [diff] [blame^] | 311 | *pos = evaluate(fPts, fSegType, t); |
hstern | 0446a3c | 2016-08-08 12:28:13 -0700 | [diff] [blame] | 312 | } |
| 313 | if (tan) { |
hstern | 4ab47e0 | 2016-08-10 10:55:09 -0700 | [diff] [blame^] | 314 | *tan = evaluateDerivative(fPts, fSegType, t); |
hstern | 0446a3c | 2016-08-08 12:28:13 -0700 | [diff] [blame] | 315 | } |
| 316 | } |