Uday Bondhugula | 83a41c9 | 2018-08-30 17:35:15 -0700 | [diff] [blame^] | 1 | //===- SimplifyAffineExpr.cpp - MLIR Affine Structures Class-----*- C++ -*-===// |
| 2 | // |
| 3 | // Copyright 2019 The MLIR Authors. |
| 4 | // |
| 5 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 6 | // you may not use this file except in compliance with the License. |
| 7 | // You may obtain a copy of the License at |
| 8 | // |
| 9 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | // |
| 11 | // Unless required by applicable law or agreed to in writing, software |
| 12 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | // See the License for the specific language governing permissions and |
| 15 | // limitations under the License. |
| 16 | // ============================================================================= |
| 17 | // |
| 18 | // This file implements a pass to simplify affine expressions. |
| 19 | // |
| 20 | //===----------------------------------------------------------------------===// |
| 21 | |
| 22 | #include "mlir/Analysis/AffineStructures.h" |
| 23 | #include "mlir/IR/AffineExprVisitor.h" |
| 24 | #include "mlir/IR/AffineMap.h" |
| 25 | #include "mlir/IR/Attributes.h" |
| 26 | #include "mlir/IR/StmtVisitor.h" |
| 27 | |
| 28 | #include "mlir/Transforms/Pass.h" |
| 29 | #include "mlir/Transforms/Passes.h" |
| 30 | |
| 31 | using namespace mlir; |
| 32 | using llvm::report_fatal_error; |
| 33 | |
| 34 | namespace { |
| 35 | |
| 36 | /// Simplify all affine expressions appearing in the operation statements of the |
| 37 | /// MLFunction. |
| 38 | // TODO(someone): Gradually, extend this to all affine map references found in |
| 39 | // ML functions and CFG functions. |
| 40 | struct SimplifyAffineExpr : public FunctionPass { |
| 41 | explicit SimplifyAffineExpr() {} |
| 42 | |
| 43 | void runOnMLFunction(MLFunction *f); |
| 44 | // Does nothing on CFG functions for now. No reusable walkers/visitors exist |
| 45 | // for this yet? TODO(someone). |
| 46 | void runOnCFGFunction(CFGFunction *f) {} |
| 47 | }; |
| 48 | |
| 49 | // This class is used to flatten a pure affine expression into a sum of products |
| 50 | // (w.r.t constants) when possible, and in that process accumulating |
| 51 | // contributions for each dimensional and symbolic identifier together. Note |
| 52 | // that an affine expression may not always be expressible that way due to the |
| 53 | // preesnce of modulo, floordiv, and ceildiv expressions. A simplification that |
| 54 | // this flattening naturally performs is to fold a modulo expression to a zero, |
| 55 | // if possible. Two examples are below: |
| 56 | // |
| 57 | // (d0 + 3 * d1) + d0) - 2 * d1) - d0 simplified to d0 + d1 |
| 58 | // (d0 - d0 mod 4 + 4) mod 4 simplified to 0. |
| 59 | // |
| 60 | // For modulo and floordiv expressions, an additional variable is introduced to |
| 61 | // rewrite it as a sum of products (w.r.t constants). For example, for the |
| 62 | // second example above, d0 % 4 is replaced by d0 - 4*q with q being introduced: |
| 63 | // the expression simplifies to: |
| 64 | // (d0 - (d0 - 4q) + 4) = 4q + 4, modulo of which w.r.t 4 simplifies to zero. |
| 65 | // |
| 66 | // This is a linear time post order walk for an affine expression that attempts |
| 67 | // the above simplifications through visit methods, with partial results being |
| 68 | // stored in 'operandExprStack'. When a parent expr is visited, the flattened |
| 69 | // expressions corresponding to its two operands would already be on the stack - |
| 70 | // the parent expr looks at the two flattened expressions and combines the two. |
| 71 | // It pops off the operand expressions and pushes the combined result (although |
| 72 | // this is done in-place on its LHS operand expr. When the walk is completed, |
| 73 | // the flattened form of the top-level expression would be left on the stack. |
| 74 | // |
| 75 | class AffineExprFlattener : public AffineExprVisitor<AffineExprFlattener> { |
| 76 | public: |
| 77 | std::vector<SmallVector<int64_t, 32>> operandExprStack; |
| 78 | |
| 79 | // The layout of the flattened expressions is dimensions, symbols, locals, |
| 80 | // and constant term. |
| 81 | unsigned getNumCols() const { return numDims + numSymbols + numLocals + 1; } |
| 82 | |
| 83 | AffineExprFlattener(unsigned numDims, unsigned numSymbols) |
| 84 | : numDims(numDims), numSymbols(numSymbols), numLocals(0) {} |
| 85 | |
| 86 | void visitMulExpr(AffineBinaryOpExpr *expr) { |
| 87 | assert(expr->isPureAffine()); |
| 88 | // Get the RHS constant. |
| 89 | auto rhsConst = operandExprStack.back()[getNumCols() - 1]; |
| 90 | operandExprStack.pop_back(); |
| 91 | // Update the LHS in place instead of pop and push. |
| 92 | auto &lhs = operandExprStack.back(); |
| 93 | for (unsigned i = 0, e = lhs.size(); i < e; i++) { |
| 94 | lhs[i] *= rhsConst; |
| 95 | } |
| 96 | } |
| 97 | void visitAddExpr(AffineBinaryOpExpr *expr) { |
| 98 | const auto &rhs = operandExprStack.back(); |
| 99 | auto &lhs = operandExprStack[operandExprStack.size() - 2]; |
| 100 | assert(lhs.size() == rhs.size()); |
| 101 | // Update the LHS in place. |
| 102 | for (unsigned i = 0; i < rhs.size(); i++) { |
| 103 | lhs[i] += rhs[i]; |
| 104 | } |
| 105 | // Pop off the RHS. |
| 106 | operandExprStack.pop_back(); |
| 107 | } |
| 108 | void visitModExpr(AffineBinaryOpExpr *expr) { |
| 109 | assert(expr->isPureAffine()); |
| 110 | // This is a pure affine expr; the RHS is a constant. |
| 111 | auto rhsConst = operandExprStack.back()[getNumCols() - 1]; |
| 112 | operandExprStack.pop_back(); |
| 113 | auto &lhs = operandExprStack.back(); |
| 114 | assert(rhsConst != 0 && "RHS constant can't be zero"); |
| 115 | unsigned i; |
| 116 | for (i = 0; i < lhs.size(); i++) |
| 117 | if (lhs[i] % rhsConst != 0) |
| 118 | break; |
| 119 | if (i == lhs.size()) { |
| 120 | // The modulo expression here simplifies to zero. |
| 121 | lhs.assign(lhs.size(), 0); |
| 122 | return; |
| 123 | } |
| 124 | // Add an existential quantifier. expr1 % expr2 is replaced by (expr1 - |
| 125 | // q * expr2) where q is the existential quantifier introduced. |
| 126 | addExistentialQuantifier(); |
| 127 | lhs = operandExprStack.back(); |
| 128 | lhs[numDims + numSymbols + numLocals - 1] = -rhsConst; |
| 129 | } |
| 130 | void visitConstantExpr(AffineConstantExpr *expr) { |
| 131 | operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0)); |
| 132 | auto &eq = operandExprStack.back(); |
| 133 | eq[getNumCols() - 1] = expr->getValue(); |
| 134 | } |
| 135 | void visitDimExpr(AffineDimExpr *expr) { |
| 136 | SmallVector<int64_t, 32> eq(getNumCols(), 0); |
| 137 | eq[expr->getPosition()] = 1; |
| 138 | operandExprStack.push_back(eq); |
| 139 | } |
| 140 | void visitSymbolExpr(AffineSymbolExpr *expr) { |
| 141 | SmallVector<int64_t, 32> eq(getNumCols(), 0); |
| 142 | eq[numDims + expr->getPosition()] = 1; |
| 143 | operandExprStack.push_back(eq); |
| 144 | } |
| 145 | void visitCeilDivExpr(AffineBinaryOpExpr *expr) { |
| 146 | // TODO(bondhugula): handle ceildiv as well; won't simplify further through |
| 147 | // this analysis but will be handled (rest of the expr will simplify). |
| 148 | report_fatal_error("ceildiv expr simplification not supported here"); |
| 149 | } |
| 150 | void visitFloorDivExpr(AffineBinaryOpExpr *expr) { |
| 151 | // TODO(bondhugula): handle ceildiv as well; won't simplify further through |
| 152 | // this analysis but will be handled (rest of the expr will simplify). |
| 153 | report_fatal_error("floordiv expr simplification unimplemented"); |
| 154 | } |
| 155 | // Add an existential quantifier (used to flatten a mod or a floordiv expr). |
| 156 | void addExistentialQuantifier() { |
| 157 | for (auto &subExpr : operandExprStack) { |
| 158 | subExpr.insert(subExpr.begin() + numDims + numSymbols + numLocals, 0); |
| 159 | } |
| 160 | numLocals++; |
| 161 | } |
| 162 | |
| 163 | unsigned numDims; |
| 164 | unsigned numSymbols; |
| 165 | unsigned numLocals; |
| 166 | }; |
| 167 | |
| 168 | } // end anonymous namespace |
| 169 | |
| 170 | FunctionPass *mlir::createSimplifyAffineExprPass() { |
| 171 | return new SimplifyAffineExpr(); |
| 172 | } |
| 173 | |
| 174 | AffineMap *MutableAffineMap::getAffineMap() { |
| 175 | return AffineMap::get(numDims, numSymbols, results, rangeSizes, context); |
| 176 | } |
| 177 | |
| 178 | void SimplifyAffineExpr::runOnMLFunction(MLFunction *f) { |
| 179 | struct MapSimplifier : public StmtWalker<MapSimplifier> { |
| 180 | MLIRContext *context; |
| 181 | MapSimplifier(MLIRContext *context) : context(context) {} |
| 182 | |
| 183 | void visitOperationStmt(OperationStmt *opStmt) { |
| 184 | for (auto attr : opStmt->getAttrs()) { |
| 185 | if (auto *mapAttr = dyn_cast<AffineMapAttr>(attr.second)) { |
| 186 | MutableAffineMap mMap(mapAttr->getValue(), context); |
| 187 | mMap.simplify(); |
| 188 | auto *map = mMap.getAffineMap(); |
| 189 | opStmt->setAttr(attr.first, AffineMapAttr::get(map, context)); |
| 190 | } |
| 191 | } |
| 192 | } |
| 193 | }; |
| 194 | |
| 195 | MapSimplifier v(f->getContext()); |
| 196 | v.walkPostOrder(f); |
| 197 | } |
| 198 | |
| 199 | /// Get an affine expression from a flat ArrayRef. If there are local variables |
| 200 | /// (existential quantifiers introduced during the flattening) that appear in |
| 201 | /// the sum of products expression, we can't readily express it as an affine |
| 202 | /// expression of dimension and symbol id's; return nullptr in such cases. |
| 203 | static AffineExpr *toAffineExpr(ArrayRef<int64_t> eq, unsigned numDims, |
| 204 | unsigned numSymbols, MLIRContext *context) { |
| 205 | // Check if any local variable has a non-zero coefficient. |
| 206 | for (unsigned j = numDims + numSymbols; j < eq.size() - 1; j++) { |
| 207 | if (eq[j] != 0) |
| 208 | return nullptr; |
| 209 | } |
| 210 | |
| 211 | AffineExpr *expr = AffineConstantExpr::get(0, context); |
| 212 | for (unsigned j = 0; j < numDims + numSymbols; j++) { |
| 213 | if (eq[j] != 0) { |
| 214 | AffineExpr *id = |
| 215 | j < numDims |
| 216 | ? static_cast<AffineExpr *>(AffineDimExpr::get(j, context)) |
| 217 | : AffineSymbolExpr::get(j - numDims, context); |
| 218 | expr = AffineBinaryOpExpr::get( |
| 219 | AffineExpr::Kind::Add, expr, |
| 220 | AffineBinaryOpExpr::get(AffineExpr::Kind::Mul, |
| 221 | AffineConstantExpr::get(eq[j], context), id, |
| 222 | context), |
| 223 | context); |
| 224 | } |
| 225 | } |
| 226 | unsigned constTerm = eq[eq.size() - 1]; |
| 227 | if (constTerm != 0) |
| 228 | expr = AffineBinaryOpExpr::get(AffineExpr::Kind::Add, expr, |
| 229 | AffineConstantExpr::get(constTerm, context), |
| 230 | context); |
| 231 | return expr; |
| 232 | } |
| 233 | |
| 234 | // Simplify the result affine expressions of this map. The expressions have to |
| 235 | // be pure for the simplification implemented. |
| 236 | void MutableAffineMap::simplify() { |
| 237 | // Simplify each of the results if possible. |
| 238 | for (unsigned i = 0, e = getNumResults(); i < e; i++) { |
| 239 | AffineExpr *result = getResult(i); |
| 240 | if (!result->isPureAffine()) |
| 241 | continue; |
| 242 | |
| 243 | AffineExprFlattener flattener(numDims, numSymbols); |
| 244 | flattener.walkPostOrder(result); |
| 245 | const auto &flattenedExpr = flattener.operandExprStack.back(); |
| 246 | auto *expr = toAffineExpr(flattenedExpr, numDims, numSymbols, context); |
| 247 | if (expr) |
| 248 | results[i] = expr; |
| 249 | flattener.operandExprStack.pop_back(); |
| 250 | assert(flattener.operandExprStack.empty()); |
| 251 | } |
| 252 | } |