blob: 3edb115de361b8706be435e296599624c7d1d0bd [file] [log] [blame]
Chris Lattnerf7e22732018-06-22 22:03:48 -07001//===- MLIRContext.cpp - MLIR Type Classes --------------------------------===//
2//
3// Copyright 2019 The MLIR Authors.
4//
5// Licensed under the Apache License, Version 2.0 (the "License");
6// you may not use this file except in compliance with the License.
7// You may obtain a copy of the License at
8//
9// http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing, software
12// distributed under the License is distributed on an "AS IS" BASIS,
13// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14// See the License for the specific language governing permissions and
15// limitations under the License.
16// =============================================================================
17
18#include "mlir/IR/MLIRContext.h"
Chris Lattnerdf1a2fc2018-07-05 21:20:59 -070019#include "AttributeListStorage.h"
Uday Bondhugulafaf37dd2018-06-29 18:09:29 -070020#include "mlir/IR/AffineExpr.h"
21#include "mlir/IR/AffineMap.h"
Chris Lattner36b4ed12018-07-04 10:43:29 -070022#include "mlir/IR/Attributes.h"
23#include "mlir/IR/Identifier.h"
Chris Lattnerff0d5902018-07-05 09:12:11 -070024#include "mlir/IR/OperationSet.h"
25#include "mlir/IR/StandardOps.h"
Chris Lattnerf7e22732018-06-22 22:03:48 -070026#include "mlir/IR/Types.h"
Chris Lattner36b4ed12018-07-04 10:43:29 -070027#include "mlir/Support/STLExtras.h"
Chris Lattnerdf1a2fc2018-07-05 21:20:59 -070028#include "third_party/llvm/llvm/include/llvm/ADT/STLExtras.h"
Chris Lattnerf7e22732018-06-22 22:03:48 -070029#include "llvm/ADT/DenseSet.h"
Chris Lattnered65a732018-06-28 20:45:33 -070030#include "llvm/ADT/StringMap.h"
Chris Lattner95865062018-08-01 10:18:59 -070031#include "llvm/ADT/Twine.h"
Chris Lattnerf7e22732018-06-22 22:03:48 -070032#include "llvm/Support/Allocator.h"
Chris Lattner95865062018-08-01 10:18:59 -070033#include "llvm/Support/raw_ostream.h"
Chris Lattnerf7e22732018-06-22 22:03:48 -070034using namespace mlir;
35using namespace llvm;
36
37namespace {
James Molloy87d81022018-07-23 11:44:40 -070038struct FunctionTypeKeyInfo : DenseMapInfo<FunctionType *> {
Chris Lattnerf7e22732018-06-22 22:03:48 -070039 // Functions are uniqued based on their inputs and results.
James Molloy87d81022018-07-23 11:44:40 -070040 using KeyTy = std::pair<ArrayRef<Type *>, ArrayRef<Type *>>;
41 using DenseMapInfo<FunctionType *>::getHashValue;
42 using DenseMapInfo<FunctionType *>::isEqual;
Chris Lattnerf7e22732018-06-22 22:03:48 -070043
44 static unsigned getHashValue(KeyTy key) {
James Molloy87d81022018-07-23 11:44:40 -070045 return hash_combine(
46 hash_combine_range(key.first.begin(), key.first.end()),
47 hash_combine_range(key.second.begin(), key.second.end()));
Chris Lattnerf7e22732018-06-22 22:03:48 -070048 }
49
50 static bool isEqual(const KeyTy &lhs, const FunctionType *rhs) {
51 if (rhs == getEmptyKey() || rhs == getTombstoneKey())
52 return false;
53 return lhs == KeyTy(rhs->getInputs(), rhs->getResults());
54 }
55};
Uday Bondhugula015cbb12018-07-03 20:16:08 -070056
Uday Bondhugulafaf37dd2018-06-29 18:09:29 -070057struct AffineMapKeyInfo : DenseMapInfo<AffineMap *> {
Uday Bondhugula015cbb12018-07-03 20:16:08 -070058 // Affine maps are uniqued based on their dim/symbol counts and affine
59 // expressions.
Uday Bondhugula0115dbb2018-07-11 21:31:07 -070060 using KeyTy = std::tuple<unsigned, unsigned, ArrayRef<AffineExpr *>,
61 ArrayRef<AffineExpr *>>;
Uday Bondhugulafaf37dd2018-06-29 18:09:29 -070062 using DenseMapInfo<AffineMap *>::getHashValue;
63 using DenseMapInfo<AffineMap *>::isEqual;
64
65 static unsigned getHashValue(KeyTy key) {
Uday Bondhugula015cbb12018-07-03 20:16:08 -070066 return hash_combine(
Chris Lattner36b4ed12018-07-04 10:43:29 -070067 std::get<0>(key), std::get<1>(key),
Uday Bondhugula0115dbb2018-07-11 21:31:07 -070068 hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()),
69 hash_combine_range(std::get<3>(key).begin(), std::get<3>(key).end()));
Uday Bondhugulafaf37dd2018-06-29 18:09:29 -070070 }
71
Uday Bondhugula015cbb12018-07-03 20:16:08 -070072 static bool isEqual(const KeyTy &lhs, const AffineMap *rhs) {
73 if (rhs == getEmptyKey() || rhs == getTombstoneKey())
74 return false;
Chris Lattner36b4ed12018-07-04 10:43:29 -070075 return lhs == std::make_tuple(rhs->getNumDims(), rhs->getNumSymbols(),
Uday Bondhugula0115dbb2018-07-11 21:31:07 -070076 rhs->getResults(), rhs->getRangeSizes());
Uday Bondhugulafaf37dd2018-06-29 18:09:29 -070077 }
78};
79
James Molloy87d81022018-07-23 11:44:40 -070080struct VectorTypeKeyInfo : DenseMapInfo<VectorType *> {
Chris Lattnerf7e22732018-06-22 22:03:48 -070081 // Vectors are uniqued based on their element type and shape.
James Molloy87d81022018-07-23 11:44:40 -070082 using KeyTy = std::pair<Type *, ArrayRef<unsigned>>;
83 using DenseMapInfo<VectorType *>::getHashValue;
84 using DenseMapInfo<VectorType *>::isEqual;
Chris Lattnerf7e22732018-06-22 22:03:48 -070085
86 static unsigned getHashValue(KeyTy key) {
James Molloy87d81022018-07-23 11:44:40 -070087 return hash_combine(
88 DenseMapInfo<Type *>::getHashValue(key.first),
89 hash_combine_range(key.second.begin(), key.second.end()));
Chris Lattnerf7e22732018-06-22 22:03:48 -070090 }
91
92 static bool isEqual(const KeyTy &lhs, const VectorType *rhs) {
93 if (rhs == getEmptyKey() || rhs == getTombstoneKey())
94 return false;
95 return lhs == KeyTy(rhs->getElementType(), rhs->getShape());
96 }
97};
Chris Lattner36b4ed12018-07-04 10:43:29 -070098
James Molloy87d81022018-07-23 11:44:40 -070099struct RankedTensorTypeKeyInfo : DenseMapInfo<RankedTensorType *> {
MLIR Team355ec862018-06-23 18:09:09 -0700100 // Ranked tensors are uniqued based on their element type and shape.
James Molloy87d81022018-07-23 11:44:40 -0700101 using KeyTy = std::pair<Type *, ArrayRef<int>>;
102 using DenseMapInfo<RankedTensorType *>::getHashValue;
103 using DenseMapInfo<RankedTensorType *>::isEqual;
MLIR Team355ec862018-06-23 18:09:09 -0700104
105 static unsigned getHashValue(KeyTy key) {
James Molloy87d81022018-07-23 11:44:40 -0700106 return hash_combine(
107 DenseMapInfo<Type *>::getHashValue(key.first),
108 hash_combine_range(key.second.begin(), key.second.end()));
MLIR Team355ec862018-06-23 18:09:09 -0700109 }
110
111 static bool isEqual(const KeyTy &lhs, const RankedTensorType *rhs) {
112 if (rhs == getEmptyKey() || rhs == getTombstoneKey())
113 return false;
114 return lhs == KeyTy(rhs->getElementType(), rhs->getShape());
115 }
116};
Chris Lattner36b4ed12018-07-04 10:43:29 -0700117
James Molloy87d81022018-07-23 11:44:40 -0700118struct MemRefTypeKeyInfo : DenseMapInfo<MemRefType *> {
MLIR Team718c82f2018-07-16 09:45:22 -0700119 // MemRefs are uniqued based on their element type, shape, affine map
120 // composition, and memory space.
James Molloy87d81022018-07-23 11:44:40 -0700121 using KeyTy =
122 std::tuple<Type *, ArrayRef<int>, ArrayRef<AffineMap *>, unsigned>;
123 using DenseMapInfo<MemRefType *>::getHashValue;
124 using DenseMapInfo<MemRefType *>::isEqual;
MLIR Team718c82f2018-07-16 09:45:22 -0700125
126 static unsigned getHashValue(KeyTy key) {
127 return hash_combine(
James Molloy87d81022018-07-23 11:44:40 -0700128 DenseMapInfo<Type *>::getHashValue(std::get<0>(key)),
MLIR Team718c82f2018-07-16 09:45:22 -0700129 hash_combine_range(std::get<1>(key).begin(), std::get<1>(key).end()),
130 hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()),
131 std::get<3>(key));
132 }
133
134 static bool isEqual(const KeyTy &lhs, const MemRefType *rhs) {
135 if (rhs == getEmptyKey() || rhs == getTombstoneKey())
136 return false;
137 return lhs == std::make_tuple(rhs->getElementType(), rhs->getShape(),
138 rhs->getAffineMaps(), rhs->getMemorySpace());
139 }
140};
141
James Molloy87d81022018-07-23 11:44:40 -0700142struct ArrayAttrKeyInfo : DenseMapInfo<ArrayAttr *> {
Chris Lattner36b4ed12018-07-04 10:43:29 -0700143 // Array attributes are uniqued based on their elements.
James Molloy87d81022018-07-23 11:44:40 -0700144 using KeyTy = ArrayRef<Attribute *>;
145 using DenseMapInfo<ArrayAttr *>::getHashValue;
146 using DenseMapInfo<ArrayAttr *>::isEqual;
Chris Lattner36b4ed12018-07-04 10:43:29 -0700147
148 static unsigned getHashValue(KeyTy key) {
149 return hash_combine_range(key.begin(), key.end());
150 }
151
152 static bool isEqual(const KeyTy &lhs, const ArrayAttr *rhs) {
153 if (rhs == getEmptyKey() || rhs == getTombstoneKey())
154 return false;
155 return lhs == rhs->getValue();
156 }
157};
Chris Lattnerdf1a2fc2018-07-05 21:20:59 -0700158
159struct AttributeListKeyInfo : DenseMapInfo<AttributeListStorage *> {
160 // Array attributes are uniqued based on their elements.
161 using KeyTy = ArrayRef<NamedAttribute>;
162 using DenseMapInfo<AttributeListStorage *>::getHashValue;
163 using DenseMapInfo<AttributeListStorage *>::isEqual;
164
165 static unsigned getHashValue(KeyTy key) {
166 return hash_combine_range(key.begin(), key.end());
167 }
168
169 static bool isEqual(const KeyTy &lhs, const AttributeListStorage *rhs) {
170 if (rhs == getEmptyKey() || rhs == getTombstoneKey())
171 return false;
172 return lhs == rhs->getElements();
173 }
174};
175
Chris Lattnerf7e22732018-06-22 22:03:48 -0700176} // end anonymous namespace.
177
Chris Lattnerf7e22732018-06-22 22:03:48 -0700178namespace mlir {
179/// This is the implementation of the MLIRContext class, using the pImpl idiom.
180/// This class is completely private to this file, so everything is public.
181class MLIRContextImpl {
182public:
183 /// We put immortal objects into this allocator.
184 llvm::BumpPtrAllocator allocator;
185
Chris Lattnerff0d5902018-07-05 09:12:11 -0700186 /// This is the set of all operations that are registered with the system.
187 OperationSet operationSet;
188
Chris Lattner95865062018-08-01 10:18:59 -0700189 /// This is the handler to use to report issues, or null if not registered.
190 std::function<void(Attribute *location, StringRef message, bool isError)>
191 issueHandler;
192
Chris Lattnered65a732018-06-28 20:45:33 -0700193 /// These are identifiers uniqued into this MLIRContext.
James Molloy87d81022018-07-23 11:44:40 -0700194 llvm::StringMap<char, llvm::BumpPtrAllocator &> identifiers;
Chris Lattnered65a732018-06-28 20:45:33 -0700195
Chris Lattnerc3251192018-07-27 13:09:58 -0700196 // Uniquing table for 'other' types.
197 OtherType *otherTypes[int(Type::Kind::LAST_OTHER_TYPE) -
198 int(Type::Kind::FIRST_OTHER_TYPE) + 1] = {nullptr};
199
200 // Uniquing table for 'float' types.
201 FloatType *floatTypes[int(Type::Kind::LAST_FLOATING_POINT_TYPE) -
202 int(Type::Kind::FIRST_FLOATING_POINT_TYPE) + 1] = {
James Molloy87d81022018-07-23 11:44:40 -0700203 nullptr};
Chris Lattnerf7e22732018-06-22 22:03:48 -0700204
Uday Bondhugulafaf37dd2018-06-29 18:09:29 -0700205 // Affine map uniquing.
206 using AffineMapSet = DenseSet<AffineMap *, AffineMapKeyInfo>;
207 AffineMapSet affineMaps;
208
Uday Bondhugula0b80a162018-07-03 21:34:58 -0700209 // Affine binary op expression uniquing. Figure out uniquing of dimensional
Uday Bondhugula015cbb12018-07-03 20:16:08 -0700210 // or symbolic identifiers.
Uday Bondhugula3934d4d2018-07-09 09:00:25 -0700211 DenseMap<std::tuple<unsigned, AffineExpr *, AffineExpr *>, AffineExpr *>
Uday Bondhugula015cbb12018-07-03 20:16:08 -0700212 affineExprs;
213
Uday Bondhugula4e5078b2018-07-24 22:34:09 -0700214 // Uniqui'ing of AffineDimExpr, AffineSymbolExpr's by their position.
215 std::vector<AffineDimExpr *> dimExprs;
216 std::vector<AffineSymbolExpr *> symbolExprs;
217
218 // Uniqui'ing of AffineConstantExpr using constant value as key.
219 DenseMap<int64_t, AffineConstantExpr *> constExprs;
220
Chris Lattnerf958bbe2018-06-29 22:08:05 -0700221 /// Integer type uniquing.
James Molloy87d81022018-07-23 11:44:40 -0700222 DenseMap<unsigned, IntegerType *> integers;
Chris Lattnerf958bbe2018-06-29 22:08:05 -0700223
Chris Lattnerf7e22732018-06-22 22:03:48 -0700224 /// Function type uniquing.
James Molloy87d81022018-07-23 11:44:40 -0700225 using FunctionTypeSet = DenseSet<FunctionType *, FunctionTypeKeyInfo>;
Chris Lattnerf7e22732018-06-22 22:03:48 -0700226 FunctionTypeSet functions;
227
228 /// Vector type uniquing.
James Molloy87d81022018-07-23 11:44:40 -0700229 using VectorTypeSet = DenseSet<VectorType *, VectorTypeKeyInfo>;
Chris Lattnerf7e22732018-06-22 22:03:48 -0700230 VectorTypeSet vectors;
231
MLIR Team355ec862018-06-23 18:09:09 -0700232 /// Ranked tensor type uniquing.
James Molloy87d81022018-07-23 11:44:40 -0700233 using RankedTensorTypeSet =
234 DenseSet<RankedTensorType *, RankedTensorTypeKeyInfo>;
MLIR Team355ec862018-06-23 18:09:09 -0700235 RankedTensorTypeSet rankedTensors;
236
237 /// Unranked tensor type uniquing.
James Molloy87d81022018-07-23 11:44:40 -0700238 DenseMap<Type *, UnrankedTensorType *> unrankedTensors;
MLIR Team355ec862018-06-23 18:09:09 -0700239
MLIR Team718c82f2018-07-16 09:45:22 -0700240 /// MemRef type uniquing.
James Molloy87d81022018-07-23 11:44:40 -0700241 using MemRefTypeSet = DenseSet<MemRefType *, MemRefTypeKeyInfo>;
MLIR Team718c82f2018-07-16 09:45:22 -0700242 MemRefTypeSet memrefs;
243
Chris Lattner36b4ed12018-07-04 10:43:29 -0700244 // Attribute uniquing.
James Molloy87d81022018-07-23 11:44:40 -0700245 BoolAttr *boolAttrs[2] = {nullptr};
246 DenseMap<int64_t, IntegerAttr *> integerAttrs;
247 DenseMap<int64_t, FloatAttr *> floatAttrs;
248 StringMap<StringAttr *> stringAttrs;
249 using ArrayAttrSet = DenseSet<ArrayAttr *, ArrayAttrKeyInfo>;
Chris Lattner36b4ed12018-07-04 10:43:29 -0700250 ArrayAttrSet arrayAttrs;
James Molloy87d81022018-07-23 11:44:40 -0700251 DenseMap<AffineMap *, AffineMapAttr *> affineMapAttrs;
James Molloyf0d2f442018-08-03 01:54:46 -0700252 DenseMap<Type *, TypeAttr *> typeAttrs;
Chris Lattnerdf1a2fc2018-07-05 21:20:59 -0700253 using AttributeListSet =
254 DenseSet<AttributeListStorage *, AttributeListKeyInfo>;
255 AttributeListSet attributeLists;
Chris Lattnerf7e22732018-06-22 22:03:48 -0700256
257public:
Chris Lattnerff0d5902018-07-05 09:12:11 -0700258 MLIRContextImpl() : identifiers(allocator) {
259 registerStandardOperations(operationSet);
260 }
Chris Lattnered65a732018-06-28 20:45:33 -0700261
Chris Lattnerf7e22732018-06-22 22:03:48 -0700262 /// Copy the specified array of elements into memory managed by our bump
263 /// pointer allocator. This assumes the elements are all PODs.
James Molloy72b0cbe2018-08-01 12:55:27 -0700264 template <typename T>
265 ArrayRef<T> copyInto(ArrayRef<T> elements) {
Chris Lattnerf7e22732018-06-22 22:03:48 -0700266 auto result = allocator.Allocate<T>(elements.size());
267 std::uninitialized_copy(elements.begin(), elements.end(), result);
268 return ArrayRef<T>(result, elements.size());
269 }
270};
271} // end namespace mlir
272
James Molloy87d81022018-07-23 11:44:40 -0700273MLIRContext::MLIRContext() : impl(new MLIRContextImpl()) {}
Chris Lattnerf7e22732018-06-22 22:03:48 -0700274
James Molloy87d81022018-07-23 11:44:40 -0700275MLIRContext::~MLIRContext() {}
Chris Lattnerf7e22732018-06-22 22:03:48 -0700276
Chris Lattner95865062018-08-01 10:18:59 -0700277/// Register an issue handler with this LLVM context. The issue handler is
278/// passed location information if present (nullptr if not) along with a
279/// message and a boolean that indicates whether this is an error or warning.
280void MLIRContext::registerDiagnosticHandler(
281 const std::function<void(Attribute *location, StringRef message,
282 bool isError)> &handler) {
283 getImpl().issueHandler = handler;
284}
285
286/// This emits a diagnostic using the registered issue handle if present, or
287/// with the default behavior if not. The MLIR compiler should not generally
288/// interact with this, it should use methods on Operation instead.
289void MLIRContext::emitDiagnostic(Attribute *location,
290 const llvm::Twine &message,
291 bool isError) const {
292 // If we had a handler registered, emit the diagnostic using it.
293 auto handler = getImpl().issueHandler;
294 if (handler)
295 return handler(location, message.str(), isError);
296
297 // The default behavior for warnings is to ignore them.
298 if (!isError)
299 return;
300
301 // The default behavior for errors is to emit them to stderr and exit.
302 llvm::errs() << message.str() << "\n";
303 llvm::errs().flush();
304 exit(1);
305}
306
Chris Lattnerff0d5902018-07-05 09:12:11 -0700307/// Return the operation set associated with the specified MLIRContext object.
308OperationSet &OperationSet::get(MLIRContext *context) {
309 return context->getImpl().operationSet;
310}
Chris Lattnerf7e22732018-06-22 22:03:48 -0700311
Chris Lattner21e67f62018-07-06 10:46:19 -0700312/// If this operation has a registered operation description in the
313/// OperationSet, return it. Otherwise return null.
Chris Lattner95865062018-08-01 10:18:59 -0700314const AbstractOperation *Operation::getAbstractOperation() const {
315 return OperationSet::get(getContext()).lookup(getName().str());
Chris Lattner21e67f62018-07-06 10:46:19 -0700316}
317
Chris Lattnered65a732018-06-28 20:45:33 -0700318//===----------------------------------------------------------------------===//
Chris Lattner36b4ed12018-07-04 10:43:29 -0700319// Identifier uniquing
Chris Lattnered65a732018-06-28 20:45:33 -0700320//===----------------------------------------------------------------------===//
321
322/// Return an identifier for the specified string.
323Identifier Identifier::get(StringRef str, const MLIRContext *context) {
324 assert(!str.empty() && "Cannot create an empty identifier");
325 assert(str.find('\0') == StringRef::npos &&
326 "Cannot create an identifier with a nul character");
327
328 auto &impl = context->getImpl();
329 auto it = impl.identifiers.insert({str, char()}).first;
330 return Identifier(it->getKeyData());
331}
332
Chris Lattnered65a732018-06-28 20:45:33 -0700333//===----------------------------------------------------------------------===//
Chris Lattner36b4ed12018-07-04 10:43:29 -0700334// Type uniquing
Chris Lattnered65a732018-06-28 20:45:33 -0700335//===----------------------------------------------------------------------===//
336
Chris Lattnerf958bbe2018-06-29 22:08:05 -0700337IntegerType *IntegerType::get(unsigned width, MLIRContext *context) {
338 auto &impl = context->getImpl();
339
340 auto *&result = impl.integers[width];
341 if (!result) {
342 result = impl.allocator.Allocate<IntegerType>();
343 new (result) IntegerType(width, context);
344 }
345
346 return result;
Chris Lattnerf7e22732018-06-22 22:03:48 -0700347}
348
Chris Lattnerc3251192018-07-27 13:09:58 -0700349FloatType *FloatType::get(Kind kind, MLIRContext *context) {
350 assert(kind >= Kind::FIRST_FLOATING_POINT_TYPE &&
351 kind <= Kind::LAST_FLOATING_POINT_TYPE && "Not an FP type kind");
352 auto &impl = context->getImpl();
353
354 // We normally have these types.
355 auto *&entry =
356 impl.floatTypes[(int)kind - int(Kind::FIRST_FLOATING_POINT_TYPE)];
357 if (entry)
358 return entry;
359
360 // On the first use, we allocate them into the bump pointer.
361 auto *ptr = impl.allocator.Allocate<FloatType>();
362
363 // Initialize the memory using placement new.
364 new (ptr) FloatType(kind, context);
365
366 // Cache and return it.
367 return entry = ptr;
368}
369
370OtherType *OtherType::get(Kind kind, MLIRContext *context) {
371 assert(kind >= Kind::FIRST_OTHER_TYPE && kind <= Kind::LAST_OTHER_TYPE &&
372 "Not an 'other' type kind");
373 auto &impl = context->getImpl();
374
375 // We normally have these types.
376 auto *&entry = impl.otherTypes[(int)kind - int(Kind::FIRST_OTHER_TYPE)];
377 if (entry)
378 return entry;
379
380 // On the first use, we allocate them into the bump pointer.
381 auto *ptr = impl.allocator.Allocate<OtherType>();
382
383 // Initialize the memory using placement new.
384 new (ptr) OtherType(kind, context);
385
386 // Cache and return it.
387 return entry = ptr;
388}
389
James Molloy87d81022018-07-23 11:44:40 -0700390FunctionType *FunctionType::get(ArrayRef<Type *> inputs,
391 ArrayRef<Type *> results,
Chris Lattnerf7e22732018-06-22 22:03:48 -0700392 MLIRContext *context) {
393 auto &impl = context->getImpl();
394
395 // Look to see if we already have this function type.
396 FunctionTypeKeyInfo::KeyTy key(inputs, results);
397 auto existing = impl.functions.insert_as(nullptr, key);
398
399 // If we already have it, return that value.
400 if (!existing.second)
401 return *existing.first;
402
403 // On the first use, we allocate them into the bump pointer.
404 auto *result = impl.allocator.Allocate<FunctionType>();
405
406 // Copy the inputs and results into the bump pointer.
James Molloy87d81022018-07-23 11:44:40 -0700407 SmallVector<Type *, 16> types;
408 types.reserve(inputs.size() + results.size());
Chris Lattnerf7e22732018-06-22 22:03:48 -0700409 types.append(inputs.begin(), inputs.end());
410 types.append(results.begin(), results.end());
James Molloy87d81022018-07-23 11:44:40 -0700411 auto typesList = impl.copyInto(ArrayRef<Type *>(types));
Chris Lattnerf7e22732018-06-22 22:03:48 -0700412
413 // Initialize the memory using placement new.
James Molloy87d81022018-07-23 11:44:40 -0700414 new (result)
415 FunctionType(typesList.data(), inputs.size(), results.size(), context);
Chris Lattnerf7e22732018-06-22 22:03:48 -0700416
417 // Cache and return it.
418 return *existing.first = result;
419}
420
Chris Lattnerf7e22732018-06-22 22:03:48 -0700421VectorType *VectorType::get(ArrayRef<unsigned> shape, Type *elementType) {
422 assert(!shape.empty() && "vector types must have at least one dimension");
Chris Lattnerc3251192018-07-27 13:09:58 -0700423 assert((isa<FloatType>(elementType) || isa<IntegerType>(elementType)) &&
Chris Lattnerf7e22732018-06-22 22:03:48 -0700424 "vectors elements must be primitives");
425
426 auto *context = elementType->getContext();
427 auto &impl = context->getImpl();
428
429 // Look to see if we already have this vector type.
430 VectorTypeKeyInfo::KeyTy key(elementType, shape);
431 auto existing = impl.vectors.insert_as(nullptr, key);
432
433 // If we already have it, return that value.
434 if (!existing.second)
435 return *existing.first;
436
437 // On the first use, we allocate them into the bump pointer.
438 auto *result = impl.allocator.Allocate<VectorType>();
439
440 // Copy the shape into the bump pointer.
441 shape = impl.copyInto(shape);
442
443 // Initialize the memory using placement new.
Jacques Pienaar3cdb8542018-07-23 11:48:22 -0700444 new (result) VectorType(shape, elementType, context);
Chris Lattnerf7e22732018-06-22 22:03:48 -0700445
446 // Cache and return it.
447 return *existing.first = result;
448}
MLIR Team355ec862018-06-23 18:09:09 -0700449
James Molloy72b0cbe2018-08-01 12:55:27 -0700450static bool isValidTensorElementType(Type *type, MLIRContext *context) {
451 return isa<FloatType>(type) || isa<VectorType>(type) ||
452 isa<IntegerType>(type) || type == Type::getTFString(context);
453}
454
Chris Lattnereee1a2d2018-07-04 09:13:39 -0700455TensorType::TensorType(Kind kind, Type *elementType, MLIRContext *context)
James Molloy87d81022018-07-23 11:44:40 -0700456 : Type(kind, context), elementType(elementType) {
James Molloy72b0cbe2018-08-01 12:55:27 -0700457 assert(isValidTensorElementType(elementType, context));
MLIR Team355ec862018-06-23 18:09:09 -0700458 assert(isa<TensorType>(this));
459}
460
MLIR Team355ec862018-06-23 18:09:09 -0700461RankedTensorType *RankedTensorType::get(ArrayRef<int> shape,
462 Type *elementType) {
463 auto *context = elementType->getContext();
464 auto &impl = context->getImpl();
465
466 // Look to see if we already have this ranked tensor type.
467 RankedTensorTypeKeyInfo::KeyTy key(elementType, shape);
468 auto existing = impl.rankedTensors.insert_as(nullptr, key);
469
470 // If we already have it, return that value.
471 if (!existing.second)
472 return *existing.first;
473
474 // On the first use, we allocate them into the bump pointer.
475 auto *result = impl.allocator.Allocate<RankedTensorType>();
476
477 // Copy the shape into the bump pointer.
478 shape = impl.copyInto(shape);
479
480 // Initialize the memory using placement new.
481 new (result) RankedTensorType(shape, elementType, context);
482
483 // Cache and return it.
484 return *existing.first = result;
485}
486
487UnrankedTensorType *UnrankedTensorType::get(Type *elementType) {
488 auto *context = elementType->getContext();
489 auto &impl = context->getImpl();
490
491 // Look to see if we already have this unranked tensor type.
Chris Lattner36b4ed12018-07-04 10:43:29 -0700492 auto *&result = impl.unrankedTensors[elementType];
MLIR Team355ec862018-06-23 18:09:09 -0700493
494 // If we already have it, return that value.
Chris Lattner36b4ed12018-07-04 10:43:29 -0700495 if (result)
496 return result;
MLIR Team355ec862018-06-23 18:09:09 -0700497
498 // On the first use, we allocate them into the bump pointer.
Chris Lattner36b4ed12018-07-04 10:43:29 -0700499 result = impl.allocator.Allocate<UnrankedTensorType>();
MLIR Team355ec862018-06-23 18:09:09 -0700500
501 // Initialize the memory using placement new.
502 new (result) UnrankedTensorType(elementType, context);
Chris Lattner36b4ed12018-07-04 10:43:29 -0700503 return result;
504}
505
MLIR Team718c82f2018-07-16 09:45:22 -0700506MemRefType *MemRefType::get(ArrayRef<int> shape, Type *elementType,
James Molloy87d81022018-07-23 11:44:40 -0700507 ArrayRef<AffineMap *> affineMapComposition,
MLIR Team718c82f2018-07-16 09:45:22 -0700508 unsigned memorySpace) {
509 auto *context = elementType->getContext();
510 auto &impl = context->getImpl();
511
512 // Look to see if we already have this memref type.
James Molloy87d81022018-07-23 11:44:40 -0700513 auto key =
514 std::make_tuple(elementType, shape, affineMapComposition, memorySpace);
MLIR Team718c82f2018-07-16 09:45:22 -0700515 auto existing = impl.memrefs.insert_as(nullptr, key);
516
517 // If we already have it, return that value.
518 if (!existing.second)
519 return *existing.first;
520
521 // On the first use, we allocate them into the bump pointer.
522 auto *result = impl.allocator.Allocate<MemRefType>();
523
524 // Copy the shape into the bump pointer.
525 shape = impl.copyInto(shape);
526
527 // Copy the affine map composition into the bump pointer.
528 // TODO(andydavis) Assert that the structure of the composition is valid.
James Molloy87d81022018-07-23 11:44:40 -0700529 affineMapComposition =
530 impl.copyInto(ArrayRef<AffineMap *>(affineMapComposition));
MLIR Team718c82f2018-07-16 09:45:22 -0700531
532 // Initialize the memory using placement new.
533 new (result) MemRefType(shape, elementType, affineMapComposition, memorySpace,
534 context);
535 // Cache and return it.
536 return *existing.first = result;
537}
538
Chris Lattner36b4ed12018-07-04 10:43:29 -0700539//===----------------------------------------------------------------------===//
540// Attribute uniquing
541//===----------------------------------------------------------------------===//
542
543BoolAttr *BoolAttr::get(bool value, MLIRContext *context) {
544 auto *&result = context->getImpl().boolAttrs[value];
545 if (result)
546 return result;
547
548 result = context->getImpl().allocator.Allocate<BoolAttr>();
549 new (result) BoolAttr(value);
550 return result;
551}
552
553IntegerAttr *IntegerAttr::get(int64_t value, MLIRContext *context) {
554 auto *&result = context->getImpl().integerAttrs[value];
555 if (result)
556 return result;
557
558 result = context->getImpl().allocator.Allocate<IntegerAttr>();
559 new (result) IntegerAttr(value);
560 return result;
561}
562
563FloatAttr *FloatAttr::get(double value, MLIRContext *context) {
564 // We hash based on the bit representation of the double to ensure we don't
565 // merge things like -0.0 and 0.0 in the hash comparison.
566 union {
567 double floatValue;
568 int64_t intValue;
569 };
570 floatValue = value;
571
572 auto *&result = context->getImpl().floatAttrs[intValue];
573 if (result)
574 return result;
575
576 result = context->getImpl().allocator.Allocate<FloatAttr>();
577 new (result) FloatAttr(value);
578 return result;
579}
580
581StringAttr *StringAttr::get(StringRef bytes, MLIRContext *context) {
582 auto it = context->getImpl().stringAttrs.insert({bytes, nullptr}).first;
583
584 if (it->second)
585 return it->second;
586
587 auto result = context->getImpl().allocator.Allocate<StringAttr>();
588 new (result) StringAttr(it->first());
589 it->second = result;
590 return result;
591}
592
James Molloy87d81022018-07-23 11:44:40 -0700593ArrayAttr *ArrayAttr::get(ArrayRef<Attribute *> value, MLIRContext *context) {
Chris Lattner36b4ed12018-07-04 10:43:29 -0700594 auto &impl = context->getImpl();
595
596 // Look to see if we already have this.
597 auto existing = impl.arrayAttrs.insert_as(nullptr, value);
598
599 // If we already have it, return that value.
600 if (!existing.second)
601 return *existing.first;
602
603 // On the first use, we allocate them into the bump pointer.
604 auto *result = impl.allocator.Allocate<ArrayAttr>();
605
606 // Copy the elements into the bump pointer.
607 value = impl.copyInto(value);
608
609 // Initialize the memory using placement new.
610 new (result) ArrayAttr(value);
MLIR Team355ec862018-06-23 18:09:09 -0700611
612 // Cache and return it.
Chris Lattner36b4ed12018-07-04 10:43:29 -0700613 return *existing.first = result;
MLIR Team355ec862018-06-23 18:09:09 -0700614}
Uday Bondhugulafaf37dd2018-06-29 18:09:29 -0700615
James Molloy87d81022018-07-23 11:44:40 -0700616AffineMapAttr *AffineMapAttr::get(AffineMap *value, MLIRContext *context) {
MLIR Teamb61885d2018-07-18 16:29:21 -0700617 auto *&result = context->getImpl().affineMapAttrs[value];
618 if (result)
619 return result;
620
621 result = context->getImpl().allocator.Allocate<AffineMapAttr>();
622 new (result) AffineMapAttr(value);
623 return result;
624}
625
James Molloyf0d2f442018-08-03 01:54:46 -0700626TypeAttr *TypeAttr::get(Type *type, MLIRContext *context) {
627 auto *&result = context->getImpl().typeAttrs[type];
628 if (result)
629 return result;
630
631 result = context->getImpl().allocator.Allocate<TypeAttr>();
632 new (result) TypeAttr(type);
633 return result;
634}
635
Chris Lattnerdf1a2fc2018-07-05 21:20:59 -0700636/// Perform a three-way comparison between the names of the specified
637/// NamedAttributes.
638static int compareNamedAttributes(const NamedAttribute *lhs,
639 const NamedAttribute *rhs) {
640 return lhs->first.str().compare(rhs->first.str());
641}
642
643/// Given a list of NamedAttribute's, canonicalize the list (sorting
644/// by name) and return the unique'd result. Note that the empty list is
645/// represented with a null pointer.
646AttributeListStorage *AttributeListStorage::get(ArrayRef<NamedAttribute> attrs,
647 MLIRContext *context) {
648 // We need to sort the element list to canonicalize it, but we also don't want
649 // to do a ton of work in the super common case where the element list is
650 // already sorted.
651 SmallVector<NamedAttribute, 8> storage;
652 switch (attrs.size()) {
653 case 0:
654 // An empty list is represented with a null pointer.
655 return nullptr;
656 case 1:
657 // A single element is already sorted.
658 break;
659 case 2:
660 // Don't invoke a general sort for two element case.
661 if (attrs[0].first.str() > attrs[1].first.str()) {
662 storage.push_back(attrs[1]);
663 storage.push_back(attrs[0]);
664 attrs = storage;
665 }
666 break;
667 default:
668 // Check to see they are sorted already.
669 bool isSorted = true;
670 for (unsigned i = 0, e = attrs.size() - 1; i != e; ++i) {
671 if (attrs[i].first.str() > attrs[i + 1].first.str()) {
672 isSorted = false;
673 break;
674 }
675 }
676 // If not, do a general sort.
677 if (!isSorted) {
678 storage.append(attrs.begin(), attrs.end());
679 llvm::array_pod_sort(storage.begin(), storage.end(),
680 compareNamedAttributes);
681 attrs = storage;
682 }
683 }
684
685 // Ok, now that we've canonicalized our attributes, unique them.
686 auto &impl = context->getImpl();
687
688 // Look to see if we already have this.
689 auto existing = impl.attributeLists.insert_as(nullptr, attrs);
690
691 // If we already have it, return that value.
692 if (!existing.second)
693 return *existing.first;
694
695 // Otherwise, allocate a new AttributeListStorage, unique it and return it.
696 auto byteSize =
697 AttributeListStorage::totalSizeToAlloc<NamedAttribute>(attrs.size());
698 auto rawMem = impl.allocator.Allocate(byteSize, alignof(NamedAttribute));
699
700 // Placement initialize the AggregateSymbolicValue.
701 auto result = ::new (rawMem) AttributeListStorage(attrs.size());
702 std::uninitialized_copy(attrs.begin(), attrs.end(),
703 result->getTrailingObjects<NamedAttribute>());
704 return *existing.first = result;
705}
706
Chris Lattner36b4ed12018-07-04 10:43:29 -0700707//===----------------------------------------------------------------------===//
708// AffineMap and AffineExpr uniquing
709//===----------------------------------------------------------------------===//
710
Uday Bondhugula015cbb12018-07-03 20:16:08 -0700711AffineMap *AffineMap::get(unsigned dimCount, unsigned symbolCount,
712 ArrayRef<AffineExpr *> results,
Uday Bondhugula0115dbb2018-07-11 21:31:07 -0700713 ArrayRef<AffineExpr *> rangeSizes,
Uday Bondhugulafaf37dd2018-06-29 18:09:29 -0700714 MLIRContext *context) {
Uday Bondhugula015cbb12018-07-03 20:16:08 -0700715 // The number of results can't be zero.
716 assert(!results.empty());
717
Uday Bondhugula0115dbb2018-07-11 21:31:07 -0700718 assert(rangeSizes.empty() || results.size() == rangeSizes.size());
719
Uday Bondhugula015cbb12018-07-03 20:16:08 -0700720 auto &impl = context->getImpl();
721
722 // Check if we already have this affine map.
Uday Bondhugula0115dbb2018-07-11 21:31:07 -0700723 auto key = std::make_tuple(dimCount, symbolCount, results, rangeSizes);
Uday Bondhugula015cbb12018-07-03 20:16:08 -0700724 auto existing = impl.affineMaps.insert_as(nullptr, key);
725
726 // If we already have it, return that value.
727 if (!existing.second)
728 return *existing.first;
729
730 // On the first use, we allocate them into the bump pointer.
731 auto *res = impl.allocator.Allocate<AffineMap>();
732
Uday Bondhugula1e500b42018-07-12 18:04:04 -0700733 // Copy the results and range sizes into the bump pointer.
Uday Bondhugula015cbb12018-07-03 20:16:08 -0700734 results = impl.copyInto(ArrayRef<AffineExpr *>(results));
Uday Bondhugula0115dbb2018-07-11 21:31:07 -0700735 rangeSizes = impl.copyInto(ArrayRef<AffineExpr *>(rangeSizes));
736
Uday Bondhugula015cbb12018-07-03 20:16:08 -0700737 // Initialize the memory using placement new.
Uday Bondhugula0115dbb2018-07-11 21:31:07 -0700738 new (res) AffineMap(dimCount, symbolCount, results.size(), results.data(),
739 rangeSizes.empty() ? nullptr : rangeSizes.data());
Uday Bondhugula015cbb12018-07-03 20:16:08 -0700740
741 // Cache and return it.
742 return *existing.first = res;
Uday Bondhugulafaf37dd2018-06-29 18:09:29 -0700743}
744
Uday Bondhugulae082aad2018-07-11 21:19:31 -0700745/// Return a binary affine op expression with the specified op type and
746/// operands: if it doesn't exist, create it and store it; if it is already
747/// present, return from the list. The stored expressions are unique: they are
748/// constructed and stored in a simplified/canonicalized form. The result after
749/// simplification could be any form of affine expression.
750AffineExpr *AffineBinaryOpExpr::get(AffineExpr::Kind kind, AffineExpr *lhs,
751 AffineExpr *rhs, MLIRContext *context) {
Uday Bondhugula015cbb12018-07-03 20:16:08 -0700752 auto &impl = context->getImpl();
753
Uday Bondhugula0dd940c2018-07-26 00:19:21 -0700754 // Check if we already have this affine expression, and return it if we do.
Uday Bondhugulae082aad2018-07-11 21:19:31 -0700755 auto keyValue = std::make_tuple((unsigned)kind, lhs, rhs);
Uday Bondhugula0dd940c2018-07-26 00:19:21 -0700756 auto cached = impl.affineExprs.find(keyValue);
757 if (cached != impl.affineExprs.end())
758 return cached->second;
Uday Bondhugula3934d4d2018-07-09 09:00:25 -0700759
Uday Bondhugulae082aad2018-07-11 21:19:31 -0700760 // Simplify the expression if possible.
761 AffineExpr *simplified;
762 switch (kind) {
763 case Kind::Add:
764 simplified = AffineBinaryOpExpr::simplifyAdd(lhs, rhs, context);
765 break;
Uday Bondhugulae082aad2018-07-11 21:19:31 -0700766 case Kind::Mul:
767 simplified = AffineBinaryOpExpr::simplifyMul(lhs, rhs, context);
768 break;
769 case Kind::FloorDiv:
770 simplified = AffineBinaryOpExpr::simplifyFloorDiv(lhs, rhs, context);
771 break;
772 case Kind::CeilDiv:
773 simplified = AffineBinaryOpExpr::simplifyCeilDiv(lhs, rhs, context);
774 break;
775 case Kind::Mod:
776 simplified = AffineBinaryOpExpr::simplifyMod(lhs, rhs, context);
777 break;
778 default:
779 llvm_unreachable("unexpected binary affine expr");
Uday Bondhugula015cbb12018-07-03 20:16:08 -0700780 }
Uday Bondhugulae082aad2018-07-11 21:19:31 -0700781
Uday Bondhugula0dd940c2018-07-26 00:19:21 -0700782 // The simplified one would have already been cached; just return it.
Uday Bondhugulae082aad2018-07-11 21:19:31 -0700783 if (simplified)
Uday Bondhugula0dd940c2018-07-26 00:19:21 -0700784 return simplified;
Uday Bondhugulae082aad2018-07-11 21:19:31 -0700785
Uday Bondhugula0dd940c2018-07-26 00:19:21 -0700786 // An expression with these operands will already be in the
787 // simplified/canonical form. Create and store it.
788 auto *result = impl.allocator.Allocate<AffineBinaryOpExpr>();
Uday Bondhugulae082aad2018-07-11 21:19:31 -0700789 // Initialize the memory using placement new.
Uday Bondhugula0dd940c2018-07-26 00:19:21 -0700790 new (result) AffineBinaryOpExpr(kind, lhs, rhs);
791 bool inserted = impl.affineExprs.insert({keyValue, result}).second;
792 assert(inserted && "the expression shouldn't already exist in the map");
793 (void)inserted;
794 return result;
Uday Bondhugulafaf37dd2018-06-29 18:09:29 -0700795}
796
Uday Bondhugulafaf37dd2018-06-29 18:09:29 -0700797AffineDimExpr *AffineDimExpr::get(unsigned position, MLIRContext *context) {
Uday Bondhugula4e5078b2018-07-24 22:34:09 -0700798 auto &impl = context->getImpl();
799
800 // Check if we need to resize.
801 if (position >= impl.dimExprs.size())
802 impl.dimExprs.resize(position + 1, nullptr);
803
804 auto *&result = impl.dimExprs[position];
805 if (result)
806 return result;
807
808 result = impl.allocator.Allocate<AffineDimExpr>();
809 // Initialize the memory using placement new.
810 new (result) AffineDimExpr(position);
811 return result;
Uday Bondhugulafaf37dd2018-06-29 18:09:29 -0700812}
813
814AffineSymbolExpr *AffineSymbolExpr::get(unsigned position,
815 MLIRContext *context) {
Uday Bondhugula4e5078b2018-07-24 22:34:09 -0700816 auto &impl = context->getImpl();
817
818 // Check if we need to resize.
819 if (position >= impl.symbolExprs.size())
820 impl.symbolExprs.resize(position + 1, nullptr);
821
822 auto *&result = impl.symbolExprs[position];
823 if (result)
824 return result;
825
826 result = impl.allocator.Allocate<AffineSymbolExpr>();
827 // Initialize the memory using placement new.
828 new (result) AffineSymbolExpr(position);
829 return result;
Uday Bondhugulafaf37dd2018-06-29 18:09:29 -0700830}
831
832AffineConstantExpr *AffineConstantExpr::get(int64_t constant,
833 MLIRContext *context) {
Uday Bondhugula4e5078b2018-07-24 22:34:09 -0700834 auto &impl = context->getImpl();
835 auto *&result = impl.constExprs[constant];
836
837 if (result)
838 return result;
839
840 result = impl.allocator.Allocate<AffineConstantExpr>();
841 // Initialize the memory using placement new.
842 new (result) AffineConstantExpr(constant);
843 return result;
Uday Bondhugulafaf37dd2018-06-29 18:09:29 -0700844}