blob: 7c97e76227525a76957da48e22d57b66483edd78 [file] [log] [blame]
/*---------------------------------------------------------------*/
/*--- ---*/
/*--- This file (main/vex_main.c) is ---*/
/*--- Copyright (C) OpenWorks LLP. All rights reserved. ---*/
/*--- ---*/
/*---------------------------------------------------------------*/
/*
This file is part of LibVEX, a library for dynamic binary
instrumentation and translation.
Copyright (C) 2004-2005 OpenWorks LLP. All rights reserved.
This library is made available under a dual licensing scheme.
If you link LibVEX against other code all of which is itself
licensed under the GNU General Public License, version 2 dated June
1991 ("GPL v2"), then you may use LibVEX under the terms of the GPL
v2, as appearing in the file LICENSE.GPL. If the file LICENSE.GPL
is missing, you can obtain a copy of the GPL v2 from the Free
Software Foundation Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301, USA.
For any other uses of LibVEX, you must first obtain a commercial
license from OpenWorks LLP. Please contact info@open-works.co.uk
for information about commercial licensing.
This software is provided by OpenWorks LLP "as is" and any express
or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose
are disclaimed. In no event shall OpenWorks LLP be liable for any
direct, indirect, incidental, special, exemplary, or consequential
damages (including, but not limited to, procurement of substitute
goods or services; loss of use, data, or profits; or business
interruption) however caused and on any theory of liability,
whether in contract, strict liability, or tort (including
negligence or otherwise) arising in any way out of the use of this
software, even if advised of the possibility of such damage.
Neither the names of the U.S. Department of Energy nor the
University of California nor the names of its contributors may be
used to endorse or promote products derived from this software
without prior written permission.
*/
#include "libvex.h"
#include "libvex_emwarn.h"
#include "libvex_guest_x86.h"
#include "libvex_guest_amd64.h"
#include "libvex_guest_arm.h"
#include "libvex_guest_ppc32.h"
#include "main/vex_globals.h"
#include "main/vex_util.h"
#include "host-generic/h_generic_regs.h"
#include "ir/iropt.h"
#include "host-x86/hdefs.h"
#include "host-amd64/hdefs.h"
#include "host-ppc32/hdefs.h"
#include "guest-generic/bb_to_IR.h"
#include "guest-x86/gdefs.h"
#include "guest-amd64/gdefs.h"
#include "guest-arm/gdefs.h"
#include "guest-ppc32/gdefs.h"
/* This file contains the top level interface to the library. */
/* --------- Initialise the library. --------- */
/* Exported to library client. */
const HChar* LibVEX_Version ( void )
{
return
#include "main/vex_svnversion.h"
;
}
/* Exported to library client. */
void LibVEX_default_VexControl ( /*OUT*/ VexControl* vcon )
{
vcon->iropt_verbosity = 0;
vcon->iropt_level = 2;
vcon->iropt_precise_memory_exns = False;
vcon->iropt_unroll_thresh = 120;
vcon->guest_max_insns = 60;
vcon->guest_chase_thresh = 10;
}
/* Exported to library client. */
void LibVEX_Init (
/* failure exit function */
__attribute__ ((noreturn))
void (*failure_exit) ( void ),
/* logging output function */
void (*log_bytes) ( HChar*, Int nbytes ),
/* debug paranoia level */
Int debuglevel,
/* Are we supporting valgrind checking? */
Bool valgrind_support,
/* Control ... */
/*READONLY*/VexControl* vcon
)
{
/* First off, do enough minimal setup so that the following
assertions can fail in a sane fashion, if need be. */
vex_failure_exit = failure_exit;
vex_log_bytes = log_bytes;
/* Now it's safe to check parameters for sanity. */
vassert(!vex_initdone);
vassert(failure_exit);
vassert(log_bytes);
vassert(debuglevel >= 0);
vassert(vcon->iropt_verbosity >= 0);
vassert(vcon->iropt_level >= 0);
vassert(vcon->iropt_level <= 2);
vassert(vcon->iropt_unroll_thresh >= 0);
vassert(vcon->iropt_unroll_thresh <= 400);
vassert(vcon->guest_max_insns >= 1);
vassert(vcon->guest_max_insns <= 100);
vassert(vcon->guest_chase_thresh >= 0);
vassert(vcon->guest_chase_thresh < vcon->guest_max_insns);
/* Check that Vex has been built with sizes of basic types as
stated in priv/libvex_basictypes.h. Failure of any of these is
a serious configuration error and should be corrected
immediately. If any of these assertions fail you can fully
expect Vex not to work properly, if at all. */
vassert(1 == sizeof(UChar));
vassert(1 == sizeof(Char));
vassert(2 == sizeof(UShort));
vassert(2 == sizeof(Short));
vassert(4 == sizeof(UInt));
vassert(4 == sizeof(Int));
vassert(8 == sizeof(ULong));
vassert(8 == sizeof(Long));
vassert(4 == sizeof(Float));
vassert(8 == sizeof(Double));
vassert(1 == sizeof(Bool));
vassert(4 == sizeof(Addr32));
vassert(8 == sizeof(Addr64));
vassert(16 == sizeof(U128));
vassert(sizeof(void*) == 4 || sizeof(void*) == 8);
vassert(sizeof(void*) == sizeof(int*));
vassert(sizeof(void*) == sizeof(HWord));
vassert(VEX_HOST_WORDSIZE == sizeof(void*));
vassert(VEX_HOST_WORDSIZE == sizeof(HWord));
/* Really start up .. */
vex_debuglevel = debuglevel;
vex_valgrind_support = valgrind_support;
vex_control = *vcon;
vex_initdone = True;
vexSetAllocMode ( VexAllocModeTEMP );
}
/* --------- Make a translation. --------- */
/* Exported to library client. */
VexTranslateResult LibVEX_Translate (
/* The instruction sets we are translating from and to. */
VexArch arch_guest,
VexArchInfo* archinfo_guest,
VexArch arch_host,
VexArchInfo* archinfo_host,
/* IN: the block to translate, and its guest address. */
/* where are the actual bytes in the host's address space? */
UChar* guest_bytes,
/* where do the bytes came from in the guest's aspace? */
Addr64 guest_bytes_addr,
/* what guest entry point address do they correspond to? */
Addr64 guest_bytes_addr_noredir,
/* Is it OK to chase into this guest address? */
Bool (*chase_into_ok) ( Addr64 ),
/* OUT: which bits of guest code actually got translated */
VexGuestExtents* guest_extents,
/* IN: a place to put the resulting code, and its size */
UChar* host_bytes,
Int host_bytes_size,
/* OUT: how much of the output area is used. */
Int* host_bytes_used,
/* IN: optionally, two instrumentation functions. */
IRBB* (*instrument1) ( IRBB*, VexGuestLayout*,
Addr64, VexGuestExtents*,
IRType gWordTy, IRType hWordTy ),
IRBB* (*instrument2) ( IRBB*, VexGuestLayout*,
Addr64, VexGuestExtents*,
IRType gWordTy, IRType hWordTy ),
Bool cleanup_after_instrumentation,
/* IN: should this translation be self-checking? */
Bool do_self_check,
/* IN: optionally, an access check function for guest code. */
Bool (*byte_accessible) ( Addr64 ),
/* IN: debug: trace vex activity at various points */
Int traceflags
)
{
/* This the bundle of functions we need to do the back-end stuff
(insn selection, reg-alloc, assembly) whilst being insulated
from the target instruction set. */
HReg* available_real_regs;
Int n_available_real_regs;
Bool (*isMove) (HInstr*, HReg*, HReg*);
void (*getRegUsage) (HRegUsage*, HInstr*);
void (*mapRegs) (HRegRemap*, HInstr*);
HInstr* (*genSpill) ( HReg, Int );
HInstr* (*genReload) ( HReg, Int );
void (*ppInstr) ( HInstr* );
void (*ppReg) ( HReg );
HInstrArray* (*iselBB) ( IRBB*, VexArchInfo* );
Int (*emit) ( UChar*, Int, HInstr* );
IRExpr* (*specHelper) ( HChar*, IRExpr** );
Bool (*preciseMemExnsFn) ( Int, Int );
DisOneInstrFn disInstrFn;
VexGuestLayout* guest_layout;
Bool host_is_bigendian = False;
IRBB* irbb;
HInstrArray* vcode;
HInstrArray* rcode;
Int i, j, k, out_used, guest_sizeB;
Int offB_TISTART, offB_TILEN;
UChar insn_bytes[32];
IRType guest_word_type;
IRType host_word_type;
guest_layout = NULL;
available_real_regs = NULL;
n_available_real_regs = 0;
isMove = NULL;
getRegUsage = NULL;
mapRegs = NULL;
genSpill = NULL;
genReload = NULL;
ppInstr = NULL;
ppReg = NULL;
iselBB = NULL;
emit = NULL;
specHelper = NULL;
preciseMemExnsFn = NULL;
disInstrFn = NULL;
guest_word_type = Ity_INVALID;
host_word_type = Ity_INVALID;
offB_TISTART = 0;
offB_TILEN = 0;
vex_traceflags = traceflags;
vassert(vex_initdone);
vexClearTEMP();
/* First off, check that the guest and host insn sets
are supported. */
switch (arch_host) {
case VexArchX86:
getAllocableRegs_X86 ( &n_available_real_regs,
&available_real_regs );
isMove = (Bool(*)(HInstr*,HReg*,HReg*)) isMove_X86Instr;
getRegUsage = (void(*)(HRegUsage*,HInstr*)) getRegUsage_X86Instr;
mapRegs = (void(*)(HRegRemap*,HInstr*)) mapRegs_X86Instr;
genSpill = (HInstr*(*)(HReg,Int)) genSpill_X86;
genReload = (HInstr*(*)(HReg,Int)) genReload_X86;
ppInstr = (void(*)(HInstr*)) ppX86Instr;
ppReg = (void(*)(HReg)) ppHRegX86;
iselBB = iselBB_X86;
emit = (Int(*)(UChar*,Int,HInstr*)) emit_X86Instr;
host_is_bigendian = False;
host_word_type = Ity_I32;
vassert(archinfo_host->subarch == VexSubArchX86_sse0
|| archinfo_host->subarch == VexSubArchX86_sse1
|| archinfo_host->subarch == VexSubArchX86_sse2);
break;
case VexArchAMD64:
getAllocableRegs_AMD64 ( &n_available_real_regs,
&available_real_regs );
isMove = (Bool(*)(HInstr*,HReg*,HReg*)) isMove_AMD64Instr;
getRegUsage = (void(*)(HRegUsage*,HInstr*)) getRegUsage_AMD64Instr;
mapRegs = (void(*)(HRegRemap*,HInstr*)) mapRegs_AMD64Instr;
genSpill = (HInstr*(*)(HReg,Int)) genSpill_AMD64;
genReload = (HInstr*(*)(HReg,Int)) genReload_AMD64;
ppInstr = (void(*)(HInstr*)) ppAMD64Instr;
ppReg = (void(*)(HReg)) ppHRegAMD64;
iselBB = iselBB_AMD64;
emit = (Int(*)(UChar*,Int,HInstr*)) emit_AMD64Instr;
host_is_bigendian = False;
host_word_type = Ity_I64;
vassert(archinfo_host->subarch == VexSubArch_NONE);
break;
case VexArchPPC32:
getAllocableRegs_PPC32 ( &n_available_real_regs,
&available_real_regs );
isMove = (Bool(*)(HInstr*,HReg*,HReg*)) isMove_PPC32Instr;
getRegUsage = (void(*)(HRegUsage*,HInstr*)) getRegUsage_PPC32Instr;
mapRegs = (void(*)(HRegRemap*,HInstr*)) mapRegs_PPC32Instr;
genSpill = (HInstr*(*)(HReg,Int)) genSpill_PPC32;
genReload = (HInstr*(*)(HReg,Int)) genReload_PPC32;
ppInstr = (void(*)(HInstr*)) ppPPC32Instr;
ppReg = (void(*)(HReg)) ppHRegPPC32;
iselBB = iselBB_PPC32;
emit = (Int(*)(UChar*,Int,HInstr*)) emit_PPC32Instr;
host_is_bigendian = True;
host_word_type = Ity_I32;
vassert(archinfo_guest->subarch == VexSubArchPPC32_noAV
|| archinfo_guest->subarch == VexSubArchPPC32_AV);
break;
default:
vpanic("LibVEX_Translate: unsupported target insn set");
}
switch (arch_guest) {
case VexArchX86:
preciseMemExnsFn = guest_x86_state_requires_precise_mem_exns;
disInstrFn = disInstr_X86;
specHelper = guest_x86_spechelper;
guest_sizeB = sizeof(VexGuestX86State);
guest_word_type = Ity_I32;
guest_layout = &x86guest_layout;
offB_TISTART = offsetof(VexGuestX86State,guest_TISTART);
offB_TILEN = offsetof(VexGuestX86State,guest_TILEN);
vassert(archinfo_guest->subarch == VexSubArchX86_sse0
|| archinfo_guest->subarch == VexSubArchX86_sse1
|| archinfo_guest->subarch == VexSubArchX86_sse2);
vassert(0 == sizeof(VexGuestX86State) % 8);
vassert(sizeof( ((VexGuestX86State*)0)->guest_TISTART ) == 4);
vassert(sizeof( ((VexGuestX86State*)0)->guest_TILEN ) == 4);
break;
case VexArchAMD64:
preciseMemExnsFn = guest_amd64_state_requires_precise_mem_exns;
disInstrFn = disInstr_AMD64;
specHelper = guest_amd64_spechelper;
guest_sizeB = sizeof(VexGuestAMD64State);
guest_word_type = Ity_I64;
guest_layout = &amd64guest_layout;
offB_TISTART = offsetof(VexGuestAMD64State,guest_TISTART);
offB_TILEN = offsetof(VexGuestAMD64State,guest_TILEN);
vassert(archinfo_guest->subarch == VexSubArch_NONE);
vassert(0 == sizeof(VexGuestAMD64State) % 8);
vassert(sizeof( ((VexGuestAMD64State*)0)->guest_TISTART ) == 8);
vassert(sizeof( ((VexGuestAMD64State*)0)->guest_TILEN ) == 8);
break;
case VexArchARM:
preciseMemExnsFn = guest_arm_state_requires_precise_mem_exns;
disInstrFn = NULL; /* HACK */
specHelper = guest_arm_spechelper;
guest_sizeB = sizeof(VexGuestARMState);
guest_word_type = Ity_I32;
guest_layout = &armGuest_layout;
offB_TISTART = 0; /* hack ... arm has bitrot */
offB_TILEN = 0; /* hack ... arm has bitrot */
vassert(archinfo_guest->subarch == VexSubArchARM_v4);
break;
case VexArchPPC32:
preciseMemExnsFn = guest_ppc32_state_requires_precise_mem_exns;
disInstrFn = disInstr_PPC32;
specHelper = guest_ppc32_spechelper;
guest_sizeB = sizeof(VexGuestPPC32State);
guest_word_type = Ity_I32;
guest_layout = &ppc32Guest_layout;
offB_TISTART = offsetof(VexGuestPPC32State,guest_TISTART);
offB_TILEN = offsetof(VexGuestPPC32State,guest_TILEN);
vassert(archinfo_guest->subarch == VexSubArchPPC32_noAV
|| archinfo_guest->subarch == VexSubArchPPC32_AV);
vassert(0 == sizeof(VexGuestPPC32State) % 8);
vassert(sizeof( ((VexGuestPPC32State*)0)->guest_TISTART ) == 4);
vassert(sizeof( ((VexGuestPPC32State*)0)->guest_TILEN ) == 4);
break;
default:
vpanic("LibVEX_Translate: unsupported guest insn set");
}
/* yet more sanity checks ... */
if (arch_guest == arch_host) {
/* doesn't necessarily have to be true, but if it isn't it means
we are simulating one flavour of an architecture a different
flavour of the same architecture, which is pretty strange. */
vassert(archinfo_guest->subarch == archinfo_host->subarch);
}
if (vex_traceflags & VEX_TRACE_FE)
vex_printf("\n------------------------"
" Front end "
"------------------------\n\n");
irbb = bb_to_IR ( guest_extents,
disInstrFn,
guest_bytes,
guest_bytes_addr,
chase_into_ok,
host_is_bigendian,
archinfo_guest,
guest_word_type,
do_self_check,
offB_TISTART,
offB_TILEN );
if (irbb == NULL) {
/* Access failure. */
vexClearTEMP();
vex_traceflags = 0;
return VexTransAccessFail;
}
vassert(guest_extents->n_used >= 1 && guest_extents->n_used <= 3);
vassert(guest_extents->base[0] == guest_bytes_addr);
for (i = 0; i < guest_extents->n_used; i++) {
vassert(guest_extents->len[i] < 10000); /* sanity */
}
/* If debugging, show the raw guest bytes for this bb. */
if (0 || (vex_traceflags & VEX_TRACE_FE)) {
if (guest_extents->n_used > 1) {
vex_printf("can't show code due to extents > 1\n");
} else {
/* HACK */
UChar* p = (UChar*)guest_bytes;
UInt guest_bytes_read = (UInt)guest_extents->len[0];
vex_printf(". 0 %llx %u\n.", guest_bytes_addr, guest_bytes_read );
for (i = 0; i < guest_bytes_read; i++)
vex_printf(" %02x", (Int)p[i] );
vex_printf("\n\n");
}
}
/* Sanity check the initial IR. */
sanityCheckIRBB( irbb, "initial IR",
False/*can be non-flat*/, guest_word_type );
/* Clean it up, hopefully a lot. */
irbb = do_iropt_BB ( irbb, specHelper, preciseMemExnsFn,
guest_bytes_addr );
sanityCheckIRBB( irbb, "after initial iropt",
True/*must be flat*/, guest_word_type );
if (vex_traceflags & VEX_TRACE_OPT1) {
vex_printf("\n------------------------"
" After pre-instr IR optimisation "
"------------------------\n\n");
ppIRBB ( irbb );
vex_printf("\n");
}
/* Get the thing instrumented. */
if (instrument1)
irbb = (*instrument1)(irbb, guest_layout,
guest_bytes_addr_noredir, guest_extents,
guest_word_type, host_word_type);
if (instrument2)
irbb = (*instrument2)(irbb, guest_layout,
guest_bytes_addr_noredir, guest_extents,
guest_word_type, host_word_type);
if (vex_traceflags & VEX_TRACE_INST) {
vex_printf("\n------------------------"
" After instrumentation "
"------------------------\n\n");
ppIRBB ( irbb );
vex_printf("\n");
}
if (instrument1 || instrument2)
sanityCheckIRBB( irbb, "after instrumentation",
True/*must be flat*/, guest_word_type );
/* Do a post-instrumentation cleanup pass. */
if (cleanup_after_instrumentation) {
do_deadcode_BB( irbb );
irbb = cprop_BB( irbb );
do_deadcode_BB( irbb );
sanityCheckIRBB( irbb, "after post-instrumentation cleanup",
True/*must be flat*/, guest_word_type );
}
if (vex_traceflags & VEX_TRACE_OPT2) {
vex_printf("\n------------------------"
" After post-instr IR optimisation "
"------------------------\n\n");
ppIRBB ( irbb );
vex_printf("\n");
}
/* Turn it into virtual-registerised code. */
do_deadcode_BB( irbb );
do_treebuild_BB( irbb );
if (vex_traceflags & VEX_TRACE_TREES) {
vex_printf("\n------------------------"
" After tree-building "
"------------------------\n\n");
ppIRBB ( irbb );
vex_printf("\n");
}
/* HACK */
if (0) { *host_bytes_used = 0; return VexTransOK; }
/* end HACK */
if (vex_traceflags & VEX_TRACE_VCODE)
vex_printf("\n------------------------"
" Instruction selection "
"------------------------\n");
vcode = iselBB ( irbb, archinfo_host );
if (vex_traceflags & VEX_TRACE_VCODE)
vex_printf("\n");
if (vex_traceflags & VEX_TRACE_VCODE) {
for (i = 0; i < vcode->arr_used; i++) {
vex_printf("%3d ", i);
ppInstr(vcode->arr[i]);
vex_printf("\n");
}
vex_printf("\n");
}
/* Register allocate. */
rcode = doRegisterAllocation ( vcode, available_real_regs,
n_available_real_regs,
isMove, getRegUsage, mapRegs,
genSpill, genReload, guest_sizeB,
ppInstr, ppReg );
if (vex_traceflags & VEX_TRACE_RCODE) {
vex_printf("\n------------------------"
" Register-allocated code "
"------------------------\n\n");
for (i = 0; i < rcode->arr_used; i++) {
vex_printf("%3d ", i);
ppInstr(rcode->arr[i]);
vex_printf("\n");
}
vex_printf("\n");
}
/* HACK */
if (0) { *host_bytes_used = 0; return VexTransOK; }
/* end HACK */
/* Assemble */
if (vex_traceflags & VEX_TRACE_ASM) {
vex_printf("\n------------------------"
" Assembly "
"------------------------\n\n");
}
out_used = 0; /* tracks along the host_bytes array */
for (i = 0; i < rcode->arr_used; i++) {
if (vex_traceflags & VEX_TRACE_ASM) {
ppInstr(rcode->arr[i]);
vex_printf("\n");
}
j = (*emit)( insn_bytes, 32, rcode->arr[i] );
if (vex_traceflags & VEX_TRACE_ASM) {
for (k = 0; k < j; k++)
if (insn_bytes[k] < 16)
vex_printf("0%x ", (UInt)insn_bytes[k]);
else
vex_printf("%x ", (UInt)insn_bytes[k]);
vex_printf("\n\n");
}
if (out_used + j > host_bytes_size) {
vexClearTEMP();
vex_traceflags = 0;
return VexTransOutputFull;
}
for (k = 0; k < j; k++) {
host_bytes[out_used] = insn_bytes[k];
out_used++;
}
vassert(out_used <= host_bytes_size);
}
*host_bytes_used = out_used;
vexClearTEMP();
vex_traceflags = 0;
return VexTransOK;
}
/* --------- Emulation warnings. --------- */
HChar* LibVEX_EmWarn_string ( VexEmWarn ew )
{
switch (ew) {
case EmWarn_NONE:
return "none";
case EmWarn_X86_x87exns:
return "Unmasking x87 FP exceptions";
case EmWarn_X86_x87precision:
return "Selection of non-80-bit x87 FP precision";
case EmWarn_X86_sseExns:
return "Unmasking SSE FP exceptions";
case EmWarn_X86_fz:
return "Setting %mxcsr.fz (SSE flush-underflows-to-zero mode)";
case EmWarn_X86_daz:
return "Setting %mxcsr.daz (SSE treat-denormals-as-zero mode)";
case EmWarn_X86_acFlag:
return "Setting %eflags.ac (setting noted but ignored)";
case EmWarn_PPC32exns:
return "Unmasking PPC32 FP exceptions";
default:
vpanic("LibVEX_EmWarn_string: unknown warning");
}
}
/* --------- Arch/Subarch stuff. --------- */
const HChar* LibVEX_ppVexArch ( VexArch arch )
{
switch (arch) {
case VexArch_INVALID: return "INVALID";
case VexArchX86: return "X86";
case VexArchAMD64: return "AMD64";
case VexArchARM: return "ARM";
case VexArchPPC32: return "PPC32";
default: return "VexArch???";
}
}
const HChar* LibVEX_ppVexSubArch ( VexSubArch subarch )
{
switch (subarch) {
case VexSubArch_INVALID: return "INVALID";
case VexSubArch_NONE: return "NONE";
case VexSubArchX86_sse0: return "x86-sse0";
case VexSubArchX86_sse1: return "x86-sse1";
case VexSubArchX86_sse2: return "x86-sse2";
case VexSubArchARM_v4: return "arm-v4";
case VexSubArchPPC32_noAV: return "ppc32-noAltivec";
case VexSubArchPPC32_AV: return "ppc32-Altivec";
default: return "VexSubArch???";
}
}
/* Write default settings info *vai. */
void LibVEX_default_VexArchInfo ( /*OUT*/VexArchInfo* vai )
{
vai->subarch = VexSubArch_INVALID;
vai->ppc32_cache_line_szB = 0;
}
/*---------------------------------------------------------------*/
/*--- end main/vex_main.c ---*/
/*---------------------------------------------------------------*/