blob: 9e5dc52f8a176da4b6c18704cfd7b1a066396391 [file] [log] [blame]
Randall Spanglerd1836442010-06-10 09:59:04 -07001/* Copyright (c) 2010 The Chromium OS Authors. All rights reserved.
2 * Use of this source code is governed by a BSD-style license that can be
3 * found in the LICENSE file.
4 *
5 * Functions for loading a kernel from disk.
6 * (Firmware portion)
7 */
8
9#include "vboot_kernel.h"
10
11#include "boot_device.h"
12#include "cgptlib.h"
13#include "load_kernel_fw.h"
14#include "rollback_index.h"
15#include "utility.h"
Randall Spangler83c88cf2010-06-11 16:14:18 -070016#include "vboot_common.h"
17
Randall Spanglerd1836442010-06-10 09:59:04 -070018
19#define KBUF_SIZE 65536 /* Bytes to read at start of kernel partition */
20
Randall Spangler83c88cf2010-06-11 16:14:18 -070021
22/* Allocates and reads GPT data from the drive. The sector_bytes and
23 * drive_sectors fields should be filled on input. The primary and
24 * secondary header and entries are filled on output.
25 *
26 * Returns 0 if successful, 1 if error. */
27int AllocAndReadGptData(GptData* gptdata) {
28
29 uint64_t entries_sectors = TOTAL_ENTRIES_SIZE / gptdata->sector_bytes;
30
31 /* No data to be written yet */
32 gptdata->modified = 0;
33
34 /* Allocate all buffers */
35 gptdata->primary_header = (uint8_t*)Malloc(gptdata->sector_bytes);
36 gptdata->secondary_header = (uint8_t*)Malloc(gptdata->sector_bytes);
37 gptdata->primary_entries = (uint8_t*)Malloc(TOTAL_ENTRIES_SIZE);
38 gptdata->secondary_entries = (uint8_t*)Malloc(TOTAL_ENTRIES_SIZE);
39
40 if (gptdata->primary_header == NULL || gptdata->secondary_header == NULL ||
41 gptdata->primary_entries == NULL || gptdata->secondary_entries == NULL)
42 return 1;
43
44 /* Read data from the drive, skipping the protective MBR */
45 if (0 != BootDeviceReadLBA(1, 1, gptdata->primary_header))
46 return 1;
47 if (0 != BootDeviceReadLBA(2, entries_sectors, gptdata->primary_entries))
48 return 1;
49 if (0 != BootDeviceReadLBA(gptdata->drive_sectors - entries_sectors - 1,
50 entries_sectors, gptdata->secondary_entries))
51 return 1;
52 if (0 != BootDeviceReadLBA(gptdata->drive_sectors - 1,
53 1, gptdata->secondary_header))
54 return 1;
55
56 return 0;
57}
58
59
60/* Writes any changes for the GPT data back to the drive, then frees
61 * the buffers.
62 *
63 * Returns 0 if successful, 1 if error. */
64int WriteAndFreeGptData(GptData* gptdata) {
65
66 uint64_t entries_sectors = TOTAL_ENTRIES_SIZE / gptdata->sector_bytes;
67
68 if (gptdata->primary_header) {
69 if (gptdata->modified & GPT_MODIFIED_HEADER1) {
70 if (0 != BootDeviceWriteLBA(1, 1, gptdata->primary_header))
71 return 1;
72 }
73 Free(gptdata->primary_header);
74 }
75
76 if (gptdata->primary_entries) {
77 if (gptdata->modified & GPT_MODIFIED_ENTRIES1) {
78 if (0 != BootDeviceWriteLBA(2, entries_sectors,
79 gptdata->primary_entries))
80 return 1;
81 }
82 Free(gptdata->primary_entries);
83 }
84
85 if (gptdata->secondary_entries) {
86 if (gptdata->modified & GPT_MODIFIED_ENTRIES2) {
87 if (0 != BootDeviceWriteLBA(gptdata->drive_sectors - entries_sectors - 1,
88 entries_sectors, gptdata->secondary_entries))
89 return 1;
90 }
91 Free(gptdata->secondary_entries);
92 }
93
94 if (gptdata->secondary_header) {
95 if (gptdata->modified & GPT_MODIFIED_HEADER2) {
96 if (0 != BootDeviceWriteLBA(gptdata->drive_sectors - 1, 1,
97 gptdata->secondary_header))
98 return 1;
99 }
100 Free(gptdata->secondary_header);
101 }
102
103 /* Success */
104 return 0;
105}
106
107
Randall Spanglerd1836442010-06-10 09:59:04 -0700108int LoadKernel2(LoadKernelParams* params) {
109
110 VbPublicKey* kernel_subkey = (VbPublicKey*)params->header_sign_key_blob;
111
112 GptData gpt;
113 uint64_t part_start, part_size;
114 uint64_t blba = params->bytes_per_lba;
115 uint64_t kbuf_sectors = KBUF_SIZE / blba;
116 uint8_t* kbuf = NULL;
117 int found_partitions = 0;
118 int good_partition = -1;
119 uint16_t tpm_key_version = 0;
120 uint16_t tpm_kernel_version = 0;
121 uint64_t lowest_key_version = 0xFFFF;
122 uint64_t lowest_kernel_version = 0xFFFF;
123 int is_dev = ((BOOT_FLAG_DEVELOPER & params->boot_flags) &&
124 !(BOOT_FLAG_RECOVERY & params->boot_flags));
125 int is_normal = (!(BOOT_FLAG_DEVELOPER & params->boot_flags) &&
126 !(BOOT_FLAG_RECOVERY & params->boot_flags));
127
128 /* Clear output params in case we fail */
129 params->partition_number = 0;
130 params->bootloader_address = 0;
131 params->bootloader_size = 0;
132
133 if (is_normal) {
134 /* Read current kernel key index from TPM. Assumes TPM is already
135 * initialized. */
136 if (0 != GetStoredVersions(KERNEL_VERSIONS,
137 &tpm_key_version,
138 &tpm_kernel_version))
139 return LOAD_KERNEL_RECOVERY;
140 } else if (is_dev) {
141 /* In developer mode, we ignore the kernel subkey, and just use
142 * the SHA-512 hash to verify the key block. */
143 kernel_subkey = NULL;
144 }
145
146 do {
147 /* Read GPT data */
148 gpt.sector_bytes = blba;
149 gpt.drive_sectors = params->ending_lba + 1;
150 if (0 != AllocAndReadGptData(&gpt))
151 break;
152
153 /* Initialize GPT library */
154 if (GPT_SUCCESS != GptInit(&gpt))
155 break;
156
Randall Spanglerd1836442010-06-10 09:59:04 -0700157 /* Allocate kernel header buffers */
158 kbuf = (uint8_t*)Malloc(KBUF_SIZE);
159 if (!kbuf)
160 break;
161
162 /* Loop over candidate kernel partitions */
163 while (GPT_SUCCESS == GptNextKernelEntry(&gpt, &part_start, &part_size)) {
164 VbKeyBlockHeader* key_block;
165 VbKernelPreambleHeader* preamble;
166 RSAPublicKey* data_key;
167 uint64_t key_version;
168 uint64_t body_offset;
169
170 /* Found at least one kernel partition. */
171 found_partitions++;
172
173 /* Read the first part of the kernel partition */
174 if (part_size < kbuf_sectors)
175 continue;
176 if (0 != BootDeviceReadLBA(part_start, kbuf_sectors, kbuf))
177 continue;
178
179 /* Verify the key block */
180 key_block = (VbKeyBlockHeader*)kbuf;
Randall Spangler729b8722010-06-11 11:16:20 -0700181 if ((0 != KeyBlockVerify(key_block, KBUF_SIZE, kernel_subkey)))
Randall Spanglerd1836442010-06-10 09:59:04 -0700182 continue;
183
184 /* Check the key block flags against the current boot mode */
185 if (!(key_block->key_block_flags &&
186 ((BOOT_FLAG_DEVELOPER & params->boot_flags) ?
187 KEY_BLOCK_FLAG_DEVELOPER_1 : KEY_BLOCK_FLAG_DEVELOPER_0)))
188 continue;
189 if (!(key_block->key_block_flags &&
190 ((BOOT_FLAG_RECOVERY & params->boot_flags) ?
191 KEY_BLOCK_FLAG_RECOVERY_1 : KEY_BLOCK_FLAG_RECOVERY_0)))
192 continue;
193
194 /* Check for rollback of key version. Note this is implicitly
195 * skipped in recovery and developer modes because those set
196 * key_version=0 above. */
197 key_version = key_block->data_key.key_version;
198 if (key_version < tpm_key_version)
199 continue;
200
201 /* Get the key for preamble/data verification from the key block */
202 data_key = PublicKeyToRSA(&key_block->data_key);
203 if (!data_key)
204 continue;
205
206 /* Verify the preamble, which follows the key block */
207 preamble = (VbKernelPreambleHeader*)(kbuf + key_block->key_block_size);
208 if ((0 != VerifyKernelPreamble2(preamble,
209 KBUF_SIZE - key_block->key_block_size,
210 data_key))) {
211 RSAPublicKeyFree(data_key);
212 continue;
213 }
214
215 /* Check for rollback of kernel version. Note this is implicitly
216 * skipped in recovery and developer modes because those set
217 * key_version=0 and kernel_version=0 above. */
218 if (key_version == tpm_key_version &&
219 preamble->kernel_version < tpm_kernel_version) {
220 RSAPublicKeyFree(data_key);
221 continue;
222 }
223
224 /* Check for lowest key version from a valid header. */
225 if (lowest_key_version > key_version) {
226 lowest_key_version = key_version;
227 lowest_kernel_version = preamble->kernel_version;
228 }
229 else if (lowest_key_version == key_version &&
230 lowest_kernel_version > preamble->kernel_version) {
231 lowest_kernel_version = preamble->kernel_version;
232 }
233
234 /* If we already have a good kernel, no need to read another
235 * one; we only needed to look at the versions to check for
236 * rollback. */
237 if (-1 != good_partition)
238 continue;
239
240 /* Verify body load address matches what we expect */
241 if (preamble->body_load_address != (size_t)params->kernel_buffer) {
242 RSAPublicKeyFree(data_key);
243 continue;
244 }
245
246 /* Verify kernel body starts at a multiple of the sector size. */
247 body_offset = key_block->key_block_size + preamble->preamble_size;
248 if (0 != body_offset % blba) {
249 RSAPublicKeyFree(data_key);
250 continue;
251 }
252
253 /* Verify kernel body fits in the partition */
254 if (body_offset + preamble->body_signature.data_size >
255 part_size * blba) {
256 RSAPublicKeyFree(data_key);
257 continue;
258 }
259
260 /* Read the kernel data */
261 if (0 != BootDeviceReadLBA(
262 part_start + (body_offset / blba),
263 (preamble->body_signature.data_size + blba - 1) / blba,
264 params->kernel_buffer)) {
265 RSAPublicKeyFree(data_key);
266 continue;
267 }
268
269 /* Verify kernel data */
270 if (0 != VerifyData((const uint8_t*)params->kernel_buffer,
271 &preamble->body_signature, data_key)) {
272 RSAPublicKeyFree(data_key);
273 continue;
274 }
275
276 /* Done with the kernel signing key, so can free it now */
277 RSAPublicKeyFree(data_key);
278
279 /* If we're still here, the kernel is valid. */
280 /* Save the first good partition we find; that's the one we'll boot */
281 if (-1 == good_partition) {
282 good_partition = gpt.current_kernel;
283 params->partition_number = gpt.current_kernel;
284 params->bootloader_address = preamble->bootloader_address;
285 params->bootloader_size = preamble->bootloader_size;
286 /* If we're in developer or recovery mode, there's no rollback
287 * protection, so we can stop at the first valid kernel. */
288 if (!is_normal)
289 break;
290
291 /* Otherwise, we're in normal boot mode, so we do care about
292 * the key index in the TPM. If the good partition's key
293 * version is the same as the tpm, then the TPM doesn't need
294 * updating; we can stop now. Otherwise, we'll check all the
295 * other headers to see if they contain a newer key. */
296 if (key_version == tpm_key_version &&
297 preamble->kernel_version == tpm_kernel_version)
298 break;
299 }
300 } /* while(GptNextKernelEntry) */
301 } while(0);
302
303 /* Free kernel buffer */
304 if (kbuf)
305 Free(kbuf);
306
307 /* Write and free GPT data */
308 WriteAndFreeGptData(&gpt);
309
310 /* Handle finding a good partition */
311 if (good_partition >= 0) {
312
313 /* See if we need to update the TPM */
314 if (is_normal) {
315 /* We only update the TPM in normal boot mode. In developer
316 * mode, the kernel is self-signed by the developer, so we can't
317 * trust the key version and wouldn't want to roll the TPM
318 * forward. In recovery mode, the TPM stays PP-unlocked, so
319 * anything we write gets blown away by the firmware when we go
320 * back to normal mode. */
321 if ((lowest_key_version > tpm_key_version) ||
322 (lowest_key_version == tpm_key_version &&
323 lowest_kernel_version > tpm_kernel_version)) {
324 if (0 != WriteStoredVersions(KERNEL_VERSIONS,
325 lowest_key_version,
326 lowest_kernel_version))
327 return LOAD_KERNEL_RECOVERY;
328 }
329 }
330
331 if (!(BOOT_FLAG_RECOVERY & params->boot_flags)) {
332 /* We can lock the TPM now, since we've decided which kernel we
333 * like. If we don't find a good kernel, we leave the TPM
334 * unlocked so we can try again on the next boot device. If no
335 * kernels are good, we'll reboot to recovery mode, so it's ok to
336 * leave the TPM unlocked in that case too.
337 *
338 * If we're already in recovery mode, we need to leave PP unlocked,
339 * so don't lock the kernel versions. */
340 if (0 != LockKernelVersionsByLockingPP())
341 return LOAD_KERNEL_RECOVERY;
342 }
343
344 /* Success! */
345 return LOAD_KERNEL_SUCCESS;
346 }
347
348 // Handle error cases
349 if (found_partitions)
350 return LOAD_KERNEL_INVALID;
351 else
352 return LOAD_KERNEL_NOT_FOUND;
353}