blob: dd62bbbdc84f72e5b88bfc60ed4e7d2e58a45ba9 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "VectorDrawable.h"
#include <utils/Log.h>
#include "PathParser.h"
#include "SkColorFilter.h"
#include "SkImageInfo.h"
#include "SkShader.h"
#include "utils/Macros.h"
#include "utils/TraceUtils.h"
#include "utils/VectorDrawableUtils.h"
#include <math.h>
#include <string.h>
namespace android {
namespace uirenderer {
namespace VectorDrawable {
const int Tree::MAX_CACHED_BITMAP_SIZE = 2048;
void Path::dump() {
ALOGD("Path: %s has %zu points", mName.c_str(), mProperties.getData().points.size());
}
// Called from UI thread during the initial setup/theme change.
Path::Path(const char* pathStr, size_t strLength) {
PathParser::ParseResult result;
Data data;
PathParser::getPathDataFromAsciiString(&data, &result, pathStr, strLength);
mStagingProperties.setData(data);
}
Path::Path(const Path& path) : Node(path) {
mStagingProperties.syncProperties(path.mStagingProperties);
}
const SkPath& Path::getUpdatedPath(bool useStagingData, SkPath* tempStagingPath) {
if (useStagingData) {
tempStagingPath->reset();
VectorDrawableUtils::verbsToPath(tempStagingPath, mStagingProperties.getData());
return *tempStagingPath;
} else {
if (mSkPathDirty) {
mSkPath.reset();
VectorDrawableUtils::verbsToPath(&mSkPath, mProperties.getData());
mSkPathDirty = false;
}
return mSkPath;
}
}
void Path::syncProperties() {
if (mStagingPropertiesDirty) {
mProperties.syncProperties(mStagingProperties);
} else {
mStagingProperties.syncProperties(mProperties);
}
mStagingPropertiesDirty = false;
}
FullPath::FullPath(const FullPath& path) : Path(path) {
mStagingProperties.syncProperties(path.mStagingProperties);
}
static void applyTrim(SkPath* outPath, const SkPath& inPath, float trimPathStart, float trimPathEnd,
float trimPathOffset) {
if (trimPathStart == 0.0f && trimPathEnd == 1.0f) {
*outPath = inPath;
return;
}
outPath->reset();
if (trimPathStart == trimPathEnd) {
// Trimmed path should be empty.
return;
}
SkPathMeasure measure(inPath, false);
float len = SkScalarToFloat(measure.getLength());
float start = len * fmod((trimPathStart + trimPathOffset), 1.0f);
float end = len * fmod((trimPathEnd + trimPathOffset), 1.0f);
if (start > end) {
measure.getSegment(start, len, outPath, true);
if (end > 0) {
measure.getSegment(0, end, outPath, true);
}
} else {
measure.getSegment(start, end, outPath, true);
}
}
const SkPath& FullPath::getUpdatedPath(bool useStagingData, SkPath* tempStagingPath) {
if (!useStagingData && !mSkPathDirty && !mProperties.mTrimDirty) {
return mTrimmedSkPath;
}
Path::getUpdatedPath(useStagingData, tempStagingPath);
SkPath* outPath;
if (useStagingData) {
SkPath inPath = *tempStagingPath;
applyTrim(tempStagingPath, inPath, mStagingProperties.getTrimPathStart(),
mStagingProperties.getTrimPathEnd(), mStagingProperties.getTrimPathOffset());
outPath = tempStagingPath;
} else {
if (mProperties.getTrimPathStart() != 0.0f || mProperties.getTrimPathEnd() != 1.0f) {
mProperties.mTrimDirty = false;
applyTrim(&mTrimmedSkPath, mSkPath, mProperties.getTrimPathStart(),
mProperties.getTrimPathEnd(), mProperties.getTrimPathOffset());
outPath = &mTrimmedSkPath;
} else {
outPath = &mSkPath;
}
}
const FullPathProperties& properties = useStagingData ? mStagingProperties : mProperties;
bool setFillPath = properties.getFillGradient() != nullptr ||
properties.getFillColor() != SK_ColorTRANSPARENT;
if (setFillPath) {
SkPath::FillType ft = static_cast<SkPath::FillType>(properties.getFillType());
outPath->setFillType(ft);
}
return *outPath;
}
void FullPath::dump() {
Path::dump();
ALOGD("stroke width, color, alpha: %f, %d, %f, fill color, alpha: %d, %f",
mProperties.getStrokeWidth(), mProperties.getStrokeColor(), mProperties.getStrokeAlpha(),
mProperties.getFillColor(), mProperties.getFillAlpha());
}
inline SkColor applyAlpha(SkColor color, float alpha) {
int alphaBytes = SkColorGetA(color);
return SkColorSetA(color, alphaBytes * alpha);
}
void FullPath::draw(SkCanvas* outCanvas, bool useStagingData) {
const FullPathProperties& properties = useStagingData ? mStagingProperties : mProperties;
SkPath tempStagingPath;
const SkPath& renderPath = getUpdatedPath(useStagingData, &tempStagingPath);
// Draw path's fill, if fill color or gradient is valid
bool needsFill = false;
SkPaint paint;
if (properties.getFillGradient() != nullptr) {
paint.setColor(applyAlpha(SK_ColorBLACK, properties.getFillAlpha()));
paint.setShader(sk_sp<SkShader>(SkSafeRef(properties.getFillGradient())));
needsFill = true;
} else if (properties.getFillColor() != SK_ColorTRANSPARENT) {
paint.setColor(applyAlpha(properties.getFillColor(), properties.getFillAlpha()));
needsFill = true;
}
if (needsFill) {
paint.setStyle(SkPaint::Style::kFill_Style);
paint.setAntiAlias(mAntiAlias);
outCanvas->drawPath(renderPath, paint);
}
// Draw path's stroke, if stroke color or Gradient is valid
bool needsStroke = false;
if (properties.getStrokeGradient() != nullptr) {
paint.setColor(applyAlpha(SK_ColorBLACK, properties.getStrokeAlpha()));
paint.setShader(sk_sp<SkShader>(SkSafeRef(properties.getStrokeGradient())));
needsStroke = true;
} else if (properties.getStrokeColor() != SK_ColorTRANSPARENT) {
paint.setColor(applyAlpha(properties.getStrokeColor(), properties.getStrokeAlpha()));
needsStroke = true;
}
if (needsStroke) {
paint.setStyle(SkPaint::Style::kStroke_Style);
paint.setAntiAlias(mAntiAlias);
paint.setStrokeJoin(SkPaint::Join(properties.getStrokeLineJoin()));
paint.setStrokeCap(SkPaint::Cap(properties.getStrokeLineCap()));
paint.setStrokeMiter(properties.getStrokeMiterLimit());
paint.setStrokeWidth(properties.getStrokeWidth());
outCanvas->drawPath(renderPath, paint);
}
}
void FullPath::syncProperties() {
Path::syncProperties();
if (mStagingPropertiesDirty) {
mProperties.syncProperties(mStagingProperties);
} else {
// Update staging property with property values from animation.
mStagingProperties.syncProperties(mProperties);
}
mStagingPropertiesDirty = false;
}
REQUIRE_COMPATIBLE_LAYOUT(FullPath::FullPathProperties::PrimitiveFields);
static_assert(sizeof(float) == sizeof(int32_t), "float is not the same size as int32_t");
static_assert(sizeof(SkColor) == sizeof(int32_t), "SkColor is not the same size as int32_t");
bool FullPath::FullPathProperties::copyProperties(int8_t* outProperties, int length) const {
int propertyDataSize = sizeof(FullPathProperties::PrimitiveFields);
if (length != propertyDataSize) {
LOG_ALWAYS_FATAL("Properties needs exactly %d bytes, a byte array of size %d is provided",
propertyDataSize, length);
return false;
}
PrimitiveFields* out = reinterpret_cast<PrimitiveFields*>(outProperties);
*out = mPrimitiveFields;
return true;
}
void FullPath::FullPathProperties::setColorPropertyValue(int propertyId, int32_t value) {
Property currentProperty = static_cast<Property>(propertyId);
if (currentProperty == Property::strokeColor) {
setStrokeColor(value);
} else if (currentProperty == Property::fillColor) {
setFillColor(value);
} else {
LOG_ALWAYS_FATAL(
"Error setting color property on FullPath: No valid property"
" with id: %d",
propertyId);
}
}
void FullPath::FullPathProperties::setPropertyValue(int propertyId, float value) {
Property property = static_cast<Property>(propertyId);
switch (property) {
case Property::strokeWidth:
setStrokeWidth(value);
break;
case Property::strokeAlpha:
setStrokeAlpha(value);
break;
case Property::fillAlpha:
setFillAlpha(value);
break;
case Property::trimPathStart:
setTrimPathStart(value);
break;
case Property::trimPathEnd:
setTrimPathEnd(value);
break;
case Property::trimPathOffset:
setTrimPathOffset(value);
break;
default:
LOG_ALWAYS_FATAL("Invalid property id: %d for animation", propertyId);
break;
}
}
void ClipPath::draw(SkCanvas* outCanvas, bool useStagingData) {
SkPath tempStagingPath;
outCanvas->clipPath(getUpdatedPath(useStagingData, &tempStagingPath));
}
Group::Group(const Group& group) : Node(group) {
mStagingProperties.syncProperties(group.mStagingProperties);
}
void Group::draw(SkCanvas* outCanvas, bool useStagingData) {
// Save the current clip and matrix information, which is local to this group.
SkAutoCanvasRestore saver(outCanvas, true);
// apply the current group's matrix to the canvas
SkMatrix stackedMatrix;
const GroupProperties& prop = useStagingData ? mStagingProperties : mProperties;
getLocalMatrix(&stackedMatrix, prop);
outCanvas->concat(stackedMatrix);
// Draw the group tree in the same order as the XML file.
for (auto& child : mChildren) {
child->draw(outCanvas, useStagingData);
}
// Restore the previous clip and matrix information.
}
void Group::dump() {
ALOGD("Group %s has %zu children: ", mName.c_str(), mChildren.size());
ALOGD("Group translateX, Y : %f, %f, scaleX, Y: %f, %f", mProperties.getTranslateX(),
mProperties.getTranslateY(), mProperties.getScaleX(), mProperties.getScaleY());
for (size_t i = 0; i < mChildren.size(); i++) {
mChildren[i]->dump();
}
}
void Group::syncProperties() {
// Copy over the dirty staging properties
if (mStagingPropertiesDirty) {
mProperties.syncProperties(mStagingProperties);
} else {
mStagingProperties.syncProperties(mProperties);
}
mStagingPropertiesDirty = false;
for (auto& child : mChildren) {
child->syncProperties();
}
}
void Group::getLocalMatrix(SkMatrix* outMatrix, const GroupProperties& properties) {
outMatrix->reset();
// TODO: use rotate(mRotate, mPivotX, mPivotY) and scale with pivot point, instead of
// translating to pivot for rotating and scaling, then translating back.
outMatrix->postTranslate(-properties.getPivotX(), -properties.getPivotY());
outMatrix->postScale(properties.getScaleX(), properties.getScaleY());
outMatrix->postRotate(properties.getRotation(), 0, 0);
outMatrix->postTranslate(properties.getTranslateX() + properties.getPivotX(),
properties.getTranslateY() + properties.getPivotY());
}
void Group::addChild(Node* child) {
mChildren.emplace_back(child);
if (mPropertyChangedListener != nullptr) {
child->setPropertyChangedListener(mPropertyChangedListener);
}
}
bool Group::GroupProperties::copyProperties(float* outProperties, int length) const {
int propertyCount = static_cast<int>(Property::count);
if (length != propertyCount) {
LOG_ALWAYS_FATAL("Properties needs exactly %d bytes, a byte array of size %d is provided",
propertyCount, length);
return false;
}
PrimitiveFields* out = reinterpret_cast<PrimitiveFields*>(outProperties);
*out = mPrimitiveFields;
return true;
}
// TODO: Consider animating the properties as float pointers
// Called on render thread
float Group::GroupProperties::getPropertyValue(int propertyId) const {
Property currentProperty = static_cast<Property>(propertyId);
switch (currentProperty) {
case Property::rotate:
return getRotation();
case Property::pivotX:
return getPivotX();
case Property::pivotY:
return getPivotY();
case Property::scaleX:
return getScaleX();
case Property::scaleY:
return getScaleY();
case Property::translateX:
return getTranslateX();
case Property::translateY:
return getTranslateY();
default:
LOG_ALWAYS_FATAL("Invalid property index: %d", propertyId);
return 0;
}
}
// Called on render thread
void Group::GroupProperties::setPropertyValue(int propertyId, float value) {
Property currentProperty = static_cast<Property>(propertyId);
switch (currentProperty) {
case Property::rotate:
setRotation(value);
break;
case Property::pivotX:
setPivotX(value);
break;
case Property::pivotY:
setPivotY(value);
break;
case Property::scaleX:
setScaleX(value);
break;
case Property::scaleY:
setScaleY(value);
break;
case Property::translateX:
setTranslateX(value);
break;
case Property::translateY:
setTranslateY(value);
break;
default:
LOG_ALWAYS_FATAL("Invalid property index: %d", propertyId);
}
}
bool Group::isValidProperty(int propertyId) {
return GroupProperties::isValidProperty(propertyId);
}
bool Group::GroupProperties::isValidProperty(int propertyId) {
return propertyId >= 0 && propertyId < static_cast<int>(Property::count);
}
int Tree::draw(Canvas* outCanvas, SkColorFilter* colorFilter, const SkRect& bounds,
bool needsMirroring, bool canReuseCache) {
// The imageView can scale the canvas in different ways, in order to
// avoid blurry scaling, we have to draw into a bitmap with exact pixel
// size first. This bitmap size is determined by the bounds and the
// canvas scale.
SkMatrix canvasMatrix;
outCanvas->getMatrix(&canvasMatrix);
float canvasScaleX = 1.0f;
float canvasScaleY = 1.0f;
if (canvasMatrix.getSkewX() == 0 && canvasMatrix.getSkewY() == 0) {
// Only use the scale value when there's no skew or rotation in the canvas matrix.
// TODO: Add a cts test for drawing VD on a canvas with negative scaling factors.
canvasScaleX = fabs(canvasMatrix.getScaleX());
canvasScaleY = fabs(canvasMatrix.getScaleY());
}
int scaledWidth = (int)(bounds.width() * canvasScaleX);
int scaledHeight = (int)(bounds.height() * canvasScaleY);
scaledWidth = std::min(Tree::MAX_CACHED_BITMAP_SIZE, scaledWidth);
scaledHeight = std::min(Tree::MAX_CACHED_BITMAP_SIZE, scaledHeight);
if (scaledWidth <= 0 || scaledHeight <= 0) {
return 0;
}
mStagingProperties.setScaledSize(scaledWidth, scaledHeight);
int saveCount = outCanvas->save(SaveFlags::MatrixClip);
outCanvas->translate(bounds.fLeft, bounds.fTop);
// Handle RTL mirroring.
if (needsMirroring) {
outCanvas->translate(bounds.width(), 0);
outCanvas->scale(-1.0f, 1.0f);
}
mStagingProperties.setColorFilter(colorFilter);
// At this point, canvas has been translated to the right position.
// And we use this bound for the destination rect for the drawBitmap, so
// we offset to (0, 0);
SkRect tmpBounds = bounds;
tmpBounds.offsetTo(0, 0);
mStagingProperties.setBounds(tmpBounds);
outCanvas->drawVectorDrawable(this);
outCanvas->restoreToCount(saveCount);
return scaledWidth * scaledHeight;
}
void Tree::drawStaging(Canvas* outCanvas) {
bool redrawNeeded = allocateBitmapIfNeeded(mStagingCache, mStagingProperties.getScaledWidth(),
mStagingProperties.getScaledHeight());
// draw bitmap cache
if (redrawNeeded || mStagingCache.dirty) {
updateBitmapCache(*mStagingCache.bitmap, true);
mStagingCache.dirty = false;
}
SkPaint paint;
getPaintFor(&paint, mStagingProperties);
outCanvas->drawBitmap(*mStagingCache.bitmap, 0, 0, mStagingCache.bitmap->width(),
mStagingCache.bitmap->height(), mStagingProperties.getBounds().left(),
mStagingProperties.getBounds().top(),
mStagingProperties.getBounds().right(),
mStagingProperties.getBounds().bottom(), &paint);
}
void Tree::getPaintFor(SkPaint* outPaint, const TreeProperties &prop) const {
// HWUI always draws VD with bilinear filtering.
outPaint->setFilterQuality(kLow_SkFilterQuality);
if (prop.getColorFilter() != nullptr) {
outPaint->setColorFilter(sk_ref_sp(prop.getColorFilter()));
}
outPaint->setAlpha(prop.getRootAlpha() * 255);
}
Bitmap& Tree::getBitmapUpdateIfDirty() {
bool redrawNeeded = allocateBitmapIfNeeded(mCache, mProperties.getScaledWidth(),
mProperties.getScaledHeight());
if (redrawNeeded || mCache.dirty) {
updateBitmapCache(*mCache.bitmap, false);
mCache.dirty = false;
}
return *mCache.bitmap;
}
void Tree::updateCache(sp<skiapipeline::VectorDrawableAtlas>& atlas, GrContext* context) {
SkRect dst;
sk_sp<SkSurface> surface = mCache.getSurface(&dst);
bool canReuseSurface = surface && dst.width() >= mProperties.getScaledWidth() &&
dst.height() >= mProperties.getScaledHeight();
if (!canReuseSurface) {
int scaledWidth = SkScalarCeilToInt(mProperties.getScaledWidth());
int scaledHeight = SkScalarCeilToInt(mProperties.getScaledHeight());
auto atlasEntry = atlas->requestNewEntry(scaledWidth, scaledHeight, context);
if (INVALID_ATLAS_KEY != atlasEntry.key) {
dst = atlasEntry.rect;
surface = atlasEntry.surface;
mCache.setAtlas(atlas, atlasEntry.key);
} else {
// don't draw, if we failed to allocate an offscreen buffer
mCache.clear();
surface.reset();
}
}
if (!canReuseSurface || mCache.dirty) {
if (surface) {
Bitmap& bitmap = getBitmapUpdateIfDirty();
SkBitmap skiaBitmap;
bitmap.getSkBitmap(&skiaBitmap);
surface->writePixels(skiaBitmap, dst.fLeft, dst.fTop);
}
mCache.dirty = false;
}
}
void Tree::Cache::setAtlas(sp<skiapipeline::VectorDrawableAtlas> newAtlas,
skiapipeline::AtlasKey newAtlasKey) {
LOG_ALWAYS_FATAL_IF(newAtlasKey == INVALID_ATLAS_KEY);
clear();
mAtlas = newAtlas;
mAtlasKey = newAtlasKey;
}
sk_sp<SkSurface> Tree::Cache::getSurface(SkRect* bounds) {
sk_sp<SkSurface> surface;
sp<skiapipeline::VectorDrawableAtlas> atlas = mAtlas.promote();
if (atlas.get() && mAtlasKey != INVALID_ATLAS_KEY) {
auto atlasEntry = atlas->getEntry(mAtlasKey);
*bounds = atlasEntry.rect;
surface = atlasEntry.surface;
mAtlasKey = atlasEntry.key;
}
return surface;
}
void Tree::Cache::clear() {
sp<skiapipeline::VectorDrawableAtlas> lockAtlas = mAtlas.promote();
if (lockAtlas.get()) {
lockAtlas->releaseEntry(mAtlasKey);
}
mAtlas = nullptr;
mAtlasKey = INVALID_ATLAS_KEY;
}
void Tree::draw(SkCanvas* canvas, const SkRect& bounds, const SkPaint& inPaint) {
// Update the paint for any animatable properties
SkPaint paint = inPaint;
paint.setAlpha(mProperties.getRootAlpha() * 255);
SkRect src;
sk_sp<SkSurface> vdSurface = mCache.getSurface(&src);
if (vdSurface) {
canvas->drawImageRect(vdSurface->makeImageSnapshot().get(), src, bounds, &paint,
SkCanvas::kFast_SrcRectConstraint);
} else {
// Handle the case when VectorDrawableAtlas has been destroyed, because of memory pressure.
// We render the VD into a temporary standalone buffer and mark the frame as dirty. Next
// frame will be cached into the atlas.
Bitmap& bitmap = getBitmapUpdateIfDirty();
SkBitmap skiaBitmap;
bitmap.getSkBitmap(&skiaBitmap);
int scaledWidth = SkScalarCeilToInt(mProperties.getScaledWidth());
int scaledHeight = SkScalarCeilToInt(mProperties.getScaledHeight());
canvas->drawBitmapRect(skiaBitmap, SkRect::MakeWH(scaledWidth, scaledHeight), bounds,
&paint, SkCanvas::kFast_SrcRectConstraint);
mCache.clear();
markDirty();
}
}
void Tree::updateBitmapCache(Bitmap& bitmap, bool useStagingData) {
SkBitmap outCache;
bitmap.getSkBitmap(&outCache);
int cacheWidth = outCache.width();
int cacheHeight = outCache.height();
ATRACE_FORMAT("VectorDrawable repaint %dx%d", cacheWidth, cacheHeight);
outCache.eraseColor(SK_ColorTRANSPARENT);
SkCanvas outCanvas(outCache);
float viewportWidth =
useStagingData ? mStagingProperties.getViewportWidth() : mProperties.getViewportWidth();
float viewportHeight = useStagingData ? mStagingProperties.getViewportHeight()
: mProperties.getViewportHeight();
float scaleX = cacheWidth / viewportWidth;
float scaleY = cacheHeight / viewportHeight;
outCanvas.scale(scaleX, scaleY);
mRootNode->draw(&outCanvas, useStagingData);
}
bool Tree::allocateBitmapIfNeeded(Cache& cache, int width, int height) {
if (!canReuseBitmap(cache.bitmap.get(), width, height)) {
#ifndef ANDROID_ENABLE_LINEAR_BLENDING
sk_sp<SkColorSpace> colorSpace = nullptr;
#else
sk_sp<SkColorSpace> colorSpace = SkColorSpace::MakeSRGB();
#endif
SkImageInfo info = SkImageInfo::MakeN32(width, height, kPremul_SkAlphaType, colorSpace);
cache.bitmap = Bitmap::allocateHeapBitmap(info);
return true;
}
return false;
}
bool Tree::canReuseBitmap(Bitmap* bitmap, int width, int height) {
return bitmap && width <= bitmap->width() && height <= bitmap->height();
}
void Tree::onPropertyChanged(TreeProperties* prop) {
if (prop == &mStagingProperties) {
mStagingCache.dirty = true;
} else {
mCache.dirty = true;
}
}
class MinMaxAverage {
public:
void add(float sample) {
if (mCount == 0) {
mMin = sample;
mMax = sample;
} else {
mMin = std::min(mMin, sample);
mMax = std::max(mMax, sample);
}
mTotal += sample;
mCount++;
}
float average() { return mTotal / mCount; }
float min() { return mMin; }
float max() { return mMax; }
float delta() { return mMax - mMin; }
private:
float mMin = 0.0f;
float mMax = 0.0f;
float mTotal = 0.0f;
int mCount = 0;
};
BitmapPalette Tree::computePalette() {
// TODO Cache this and share the code with Bitmap.cpp
ATRACE_CALL();
// TODO: This calculation of converting to HSV & tracking min/max is probably overkill
// Experiment with something simpler since we just want to figure out if it's "color-ful"
// and then the average perceptual lightness.
MinMaxAverage hue, saturation, value;
int sampledCount = 0;
// Sample a grid of 100 pixels to get an overall estimation of the colors in play
mRootNode->forEachFillColor([&](SkColor color) {
if (SkColorGetA(color) < 75) {
return;
}
sampledCount++;
float hsv[3];
SkColorToHSV(color, hsv);
hue.add(hsv[0]);
saturation.add(hsv[1]);
value.add(hsv[2]);
});
if (sampledCount == 0) {
ALOGV("VectorDrawable is mostly translucent");
return BitmapPalette::Unknown;
}
ALOGV("samples = %d, hue [min = %f, max = %f, avg = %f]; saturation [min = %f, max = %f, avg = "
"%f]; value [min = %f, max = %f, avg = %f]",
sampledCount, hue.min(), hue.max(), hue.average(), saturation.min(), saturation.max(),
saturation.average(), value.min(), value.max(), value.average());
if (hue.delta() <= 20 && saturation.delta() <= .1f) {
if (value.average() >= .5f) {
return BitmapPalette::Light;
} else {
return BitmapPalette::Dark;
}
}
return BitmapPalette::Unknown;
}
} // namespace VectorDrawable
} // namespace uirenderer
} // namespace android