| /* |
| * Copyright (C) 2013 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "OpenGLRenderer" |
| |
| #include <math.h> |
| #include <utils/Log.h> |
| #include <utils/Vector.h> |
| |
| #include "AmbientShadow.h" |
| #include "ShadowTessellator.h" |
| #include "Vertex.h" |
| |
| namespace android { |
| namespace uirenderer { |
| |
| /** |
| * Calculate the shadows as a triangle strips while alpha value as the |
| * shadow values. |
| * |
| * @param isCasterOpaque Whether the caster is opaque. |
| * @param vertices The shadow caster's polygon, which is represented in a Vector3 |
| * array. |
| * @param vertexCount The length of caster's polygon in terms of number of |
| * vertices. |
| * @param centroid3d The centroid of the shadow caster. |
| * @param heightFactor The factor showing the higher the object, the lighter the |
| * shadow. |
| * @param geomFactor The factor scaling the geometry expansion along the normal. |
| * |
| * @param shadowVertexBuffer Return an floating point array of (x, y, a) |
| * triangle strips mode. |
| */ |
| void AmbientShadow::createAmbientShadow(bool isCasterOpaque, |
| const Vector3* vertices, int vertexCount, const Vector3& centroid3d, |
| float heightFactor, float geomFactor, VertexBuffer& shadowVertexBuffer) { |
| const int rays = SHADOW_RAY_COUNT; |
| // Validate the inputs. |
| if (vertexCount < 3 || heightFactor <= 0 || rays <= 0 |
| || geomFactor <= 0) { |
| #if DEBUG_SHADOW |
| ALOGW("Invalid input for createAmbientShadow(), early return!"); |
| #endif |
| return; |
| } |
| |
| Vector<Vector2> dir; // TODO: use C++11 unique_ptr |
| dir.setCapacity(rays); |
| float rayDist[rays]; |
| float rayHeight[rays]; |
| calculateRayDirections(rays, vertices, vertexCount, centroid3d, dir.editArray()); |
| |
| // Calculate the length and height of the points along the edge. |
| // |
| // The math here is: |
| // Intersect each ray (starting from the centroid) with the polygon. |
| for (int i = 0; i < rays; i++) { |
| int edgeIndex; |
| float edgeFraction; |
| float rayDistance; |
| calculateIntersection(vertices, vertexCount, centroid3d, dir[i], edgeIndex, |
| edgeFraction, rayDistance); |
| rayDist[i] = rayDistance; |
| if (edgeIndex < 0 || edgeIndex >= vertexCount) { |
| #if DEBUG_SHADOW |
| ALOGW("Invalid edgeIndex!"); |
| #endif |
| edgeIndex = 0; |
| } |
| float h1 = vertices[edgeIndex].z; |
| float h2 = vertices[((edgeIndex + 1) % vertexCount)].z; |
| rayHeight[i] = h1 + edgeFraction * (h2 - h1); |
| } |
| |
| // The output buffer length basically is roughly rays * layers, but since we |
| // need triangle strips, so we need to duplicate vertices to accomplish that. |
| AlphaVertex* shadowVertices = |
| shadowVertexBuffer.alloc<AlphaVertex>(SHADOW_VERTEX_COUNT); |
| |
| // Calculate the vertex of the shadows. |
| // |
| // The math here is: |
| // Along the edges of the polygon, for each intersection point P (generated above), |
| // calculate the normal N, which should be perpendicular to the edge of the |
| // polygon (represented by the neighbor intersection points) . |
| // Shadow's vertices will be generated as : P + N * scale. |
| const Vector2 centroid2d = {centroid3d.x, centroid3d.y}; |
| for (int rayIndex = 0; rayIndex < rays; rayIndex++) { |
| Vector2 normal = {1.0f, 0.0f}; |
| calculateNormal(rays, rayIndex, dir.array(), rayDist, normal); |
| |
| // The vertex should be start from rayDist[i] then scale the |
| // normalizeNormal! |
| Vector2 intersection = dir[rayIndex] * rayDist[rayIndex] + |
| centroid2d; |
| |
| // outer ring of points, expanded based upon height of each ray intersection |
| float expansionDist = rayHeight[rayIndex] * heightFactor * |
| geomFactor; |
| AlphaVertex::set(&shadowVertices[rayIndex], |
| intersection.x + normal.x * expansionDist, |
| intersection.y + normal.y * expansionDist, |
| 0.0f); |
| |
| // inner ring of points |
| float opacity = 1.0 / (1 + rayHeight[rayIndex] * heightFactor); |
| // NOTE: Shadow alpha values are transformed when stored in alphavertices, |
| // so that they can be consumed directly by gFS_Main_ApplyVertexAlphaShadowInterp |
| float transformedOpacity = acos(1.0f - 2.0f * opacity); |
| AlphaVertex::set(&shadowVertices[rays + rayIndex], |
| intersection.x, |
| intersection.y, |
| transformedOpacity); |
| } |
| |
| if (isCasterOpaque) { |
| // skip inner ring, calc bounds over filled portion of buffer |
| shadowVertexBuffer.computeBounds<AlphaVertex>(2 * rays); |
| shadowVertexBuffer.setMode(VertexBuffer::kOnePolyRingShadow); |
| } else { |
| // If caster isn't opaque, we need to to fill the umbra by storing the umbra's |
| // centroid in the innermost ring of vertices. |
| float centroidAlpha = 1.0 / (1 + centroid3d.z * heightFactor); |
| AlphaVertex centroidXYA; |
| AlphaVertex::set(¢roidXYA, centroid2d.x, centroid2d.y, centroidAlpha); |
| for (int rayIndex = 0; rayIndex < rays; rayIndex++) { |
| shadowVertices[2 * rays + rayIndex] = centroidXYA; |
| } |
| // calc bounds over entire buffer |
| shadowVertexBuffer.computeBounds<AlphaVertex>(); |
| shadowVertexBuffer.setMode(VertexBuffer::kTwoPolyRingShadow); |
| } |
| |
| #if DEBUG_SHADOW |
| for (int i = 0; i < SHADOW_VERTEX_COUNT; i++) { |
| ALOGD("ambient shadow value: i %d, (x:%f, y:%f, a:%f)", i, shadowVertices[i].x, |
| shadowVertices[i].y, shadowVertices[i].alpha); |
| } |
| #endif |
| } |
| |
| /** |
| * Generate an array of rays' direction vectors. |
| * To make sure the vertices generated are clockwise, the directions are from PI |
| * to -PI. |
| * |
| * @param rays The number of rays shooting out from the centroid. |
| * @param vertices Vertices of the polygon. |
| * @param vertexCount The number of vertices. |
| * @param centroid3d The centroid of the polygon. |
| * @param dir Return the array of ray vectors. |
| */ |
| void AmbientShadow::calculateRayDirections(const int rays, const Vector3* vertices, |
| const int vertexCount, const Vector3& centroid3d, Vector2* dir) { |
| // If we don't have enough rays, then fall back to the uniform distribution. |
| if (vertexCount * 2 > rays) { |
| float deltaAngle = 2 * M_PI / rays; |
| for (int i = 0; i < rays; i++) { |
| dir[i].x = cosf(M_PI - deltaAngle * i); |
| dir[i].y = sinf(M_PI - deltaAngle * i); |
| } |
| return; |
| } |
| |
| // If we have enough rays, then we assign each vertices a ray, and distribute |
| // the rest uniformly. |
| float rayThetas[rays]; |
| |
| const int uniformRayCount = rays - vertexCount; |
| const float deltaAngle = 2 * M_PI / uniformRayCount; |
| |
| // We have to generate all the vertices' theta anyway and we also need to |
| // find the minimal, so let's precompute it first. |
| // Since the incoming polygon is clockwise, we can find the dip to identify |
| // the minimal theta. |
| float polyThetas[vertexCount]; |
| int maxPolyThetaIndex = 0; |
| for (int i = 0; i < vertexCount; i++) { |
| polyThetas[i] = atan2(vertices[i].y - centroid3d.y, |
| vertices[i].x - centroid3d.x); |
| if (i > 0 && polyThetas[i] > polyThetas[i - 1]) { |
| maxPolyThetaIndex = i; |
| } |
| } |
| |
| // Both poly's thetas and uniform thetas are in decrease order(clockwise) |
| // from PI to -PI. |
| int polyThetaIndex = maxPolyThetaIndex; |
| float polyTheta = polyThetas[maxPolyThetaIndex]; |
| int uniformThetaIndex = 0; |
| float uniformTheta = M_PI; |
| for (int i = 0; i < rays; i++) { |
| // Compare both thetas and pick the smaller one and move on. |
| bool hasThetaCollision = abs(polyTheta - uniformTheta) < MINIMAL_DELTA_THETA; |
| if (polyTheta > uniformTheta || hasThetaCollision) { |
| if (hasThetaCollision) { |
| // Shift the uniformTheta to middle way between current polyTheta |
| // and next uniform theta. The next uniform theta can wrap around |
| // to exactly PI safely here. |
| // Note that neither polyTheta nor uniformTheta can be FLT_MAX |
| // due to the hasThetaCollision is true. |
| uniformTheta = (polyTheta + M_PI - deltaAngle * (uniformThetaIndex + 1)) / 2; |
| #if DEBUG_SHADOW |
| ALOGD("Shifted uniformTheta to %f", uniformTheta); |
| #endif |
| } |
| rayThetas[i] = polyTheta; |
| polyThetaIndex = (polyThetaIndex + 1) % vertexCount; |
| if (polyThetaIndex != maxPolyThetaIndex) { |
| polyTheta = polyThetas[polyThetaIndex]; |
| } else { |
| // out of poly points. |
| polyTheta = - FLT_MAX; |
| } |
| } else { |
| rayThetas[i] = uniformTheta; |
| uniformThetaIndex++; |
| if (uniformThetaIndex < uniformRayCount) { |
| uniformTheta = M_PI - deltaAngle * uniformThetaIndex; |
| } else { |
| // out of uniform points. |
| uniformTheta = - FLT_MAX; |
| } |
| } |
| } |
| |
| for (int i = 0; i < rays; i++) { |
| #if DEBUG_SHADOW |
| ALOGD("No. %d : %f", i, rayThetas[i] * 180 / M_PI); |
| #endif |
| // TODO: Fix the intersection precision problem and remvoe the delta added |
| // here. |
| dir[i].x = cosf(rayThetas[i] + MINIMAL_DELTA_THETA); |
| dir[i].y = sinf(rayThetas[i] + MINIMAL_DELTA_THETA); |
| } |
| } |
| |
| /** |
| * Calculate the intersection of a ray hitting the polygon. |
| * |
| * @param vertices The shadow caster's polygon, which is represented in a |
| * Vector3 array. |
| * @param vertexCount The length of caster's polygon in terms of number of vertices. |
| * @param start The starting point of the ray. |
| * @param dir The direction vector of the ray. |
| * |
| * @param outEdgeIndex Return the index of the segment (or index of the starting |
| * vertex) that ray intersect with. |
| * @param outEdgeFraction Return the fraction offset from the segment starting |
| * index. |
| * @param outRayDist Return the ray distance from centroid to the intersection. |
| */ |
| void AmbientShadow::calculateIntersection(const Vector3* vertices, int vertexCount, |
| const Vector3& start, const Vector2& dir, int& outEdgeIndex, |
| float& outEdgeFraction, float& outRayDist) { |
| float startX = start.x; |
| float startY = start.y; |
| float dirX = dir.x; |
| float dirY = dir.y; |
| // Start the search from the last edge from poly[len-1] to poly[0]. |
| int p1 = vertexCount - 1; |
| |
| for (int p2 = 0; p2 < vertexCount; p2++) { |
| float p1x = vertices[p1].x; |
| float p1y = vertices[p1].y; |
| float p2x = vertices[p2].x; |
| float p2y = vertices[p2].y; |
| |
| // The math here is derived from: |
| // f(t, v) = p1x * (1 - t) + p2x * t - (startX + dirX * v) = 0; |
| // g(t, v) = p1y * (1 - t) + p2y * t - (startY + dirY * v) = 0; |
| float div = (dirX * (p1y - p2y) + dirY * p2x - dirY * p1x); |
| if (div != 0) { |
| float t = (dirX * (p1y - startY) + dirY * startX - dirY * p1x) / (div); |
| if (t > 0 && t <= 1) { |
| float t2 = (p1x * (startY - p2y) |
| + p2x * (p1y - startY) |
| + startX * (p2y - p1y)) / div; |
| if (t2 > 0) { |
| outEdgeIndex = p1; |
| outRayDist = t2; |
| outEdgeFraction = t; |
| return; |
| } |
| } |
| } |
| p1 = p2; |
| } |
| return; |
| }; |
| |
| /** |
| * Calculate the normal at the intersection point between a ray and the polygon. |
| * |
| * @param rays The total number of rays. |
| * @param currentRayIndex The index of the ray which the normal is based on. |
| * @param dir The array of the all the rays directions. |
| * @param rayDist The pre-computed ray distances array. |
| * |
| * @param normal Return the normal. |
| */ |
| void AmbientShadow::calculateNormal(int rays, int currentRayIndex, |
| const Vector2* dir, const float* rayDist, Vector2& normal) { |
| int preIndex = (currentRayIndex - 1 + rays) % rays; |
| int postIndex = (currentRayIndex + 1) % rays; |
| Vector2 p1 = dir[preIndex] * rayDist[preIndex]; |
| Vector2 p2 = dir[postIndex] * rayDist[postIndex]; |
| |
| // Now the rays are going CW around the poly. |
| Vector2 delta = p2 - p1; |
| if (delta.length() != 0) { |
| delta.normalize(); |
| // Calculate the normal , which is CCW 90 rotate to the delta. |
| normal.x = - delta.y; |
| normal.y = delta.x; |
| } |
| } |
| |
| }; // namespace uirenderer |
| }; // namespace android |