blob: 9cc83ed68755fb81a7655ee8e36ce4fcc1c83682 [file] [log] [blame]
ztenghui55bfb4e2013-12-03 10:38:55 -08001/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "OpenGLRenderer"
18
19#include <math.h>
20#include <utils/Log.h>
Chris Craik564acf72014-01-02 16:46:18 -080021#include <utils/Vector.h>
ztenghui55bfb4e2013-12-03 10:38:55 -080022
23#include "AmbientShadow.h"
ztenghui63d41ab2014-02-14 13:13:41 -080024#include "ShadowTessellator.h"
ztenghui55bfb4e2013-12-03 10:38:55 -080025#include "Vertex.h"
26
27namespace android {
28namespace uirenderer {
29
30/**
31 * Calculate the shadows as a triangle strips while alpha value as the
32 * shadow values.
33 *
ztenghui50ecf842014-03-11 16:52:30 -070034 * @param isCasterOpaque Whether the caster is opaque.
ztenghui55bfb4e2013-12-03 10:38:55 -080035 * @param vertices The shadow caster's polygon, which is represented in a Vector3
36 * array.
37 * @param vertexCount The length of caster's polygon in terms of number of
38 * vertices.
ztenghui63d41ab2014-02-14 13:13:41 -080039 * @param centroid3d The centroid of the shadow caster.
ztenghui55bfb4e2013-12-03 10:38:55 -080040 * @param heightFactor The factor showing the higher the object, the lighter the
41 * shadow.
42 * @param geomFactor The factor scaling the geometry expansion along the normal.
43 *
44 * @param shadowVertexBuffer Return an floating point array of (x, y, a)
45 * triangle strips mode.
46 */
Chris Craik05f3d6e2014-06-02 16:27:04 -070047void AmbientShadow::createAmbientShadow(bool isCasterOpaque,
ztenghui50ecf842014-03-11 16:52:30 -070048 const Vector3* vertices, int vertexCount, const Vector3& centroid3d,
49 float heightFactor, float geomFactor, VertexBuffer& shadowVertexBuffer) {
ztenghui63d41ab2014-02-14 13:13:41 -080050 const int rays = SHADOW_RAY_COUNT;
ztenghui55bfb4e2013-12-03 10:38:55 -080051 // Validate the inputs.
Chris Craik726118b2014-03-07 18:27:49 -080052 if (vertexCount < 3 || heightFactor <= 0 || rays <= 0
ztenghui55bfb4e2013-12-03 10:38:55 -080053 || geomFactor <= 0) {
54#if DEBUG_SHADOW
ztenghui50ecf842014-03-11 16:52:30 -070055 ALOGW("Invalid input for createAmbientShadow(), early return!");
ztenghui55bfb4e2013-12-03 10:38:55 -080056#endif
Chris Craik05f3d6e2014-06-02 16:27:04 -070057 return;
ztenghui55bfb4e2013-12-03 10:38:55 -080058 }
ztenghui55bfb4e2013-12-03 10:38:55 -080059
Chris Craik564acf72014-01-02 16:46:18 -080060 Vector<Vector2> dir; // TODO: use C++11 unique_ptr
61 dir.setCapacity(rays);
ztenghui55bfb4e2013-12-03 10:38:55 -080062 float rayDist[rays];
63 float rayHeight[rays];
ztenghui7940dc52014-04-22 11:21:49 -070064 calculateRayDirections(rays, vertices, vertexCount, centroid3d, dir.editArray());
ztenghui55bfb4e2013-12-03 10:38:55 -080065
66 // Calculate the length and height of the points along the edge.
67 //
68 // The math here is:
69 // Intersect each ray (starting from the centroid) with the polygon.
70 for (int i = 0; i < rays; i++) {
71 int edgeIndex;
72 float edgeFraction;
73 float rayDistance;
ztenghui63d41ab2014-02-14 13:13:41 -080074 calculateIntersection(vertices, vertexCount, centroid3d, dir[i], edgeIndex,
ztenghui55bfb4e2013-12-03 10:38:55 -080075 edgeFraction, rayDistance);
76 rayDist[i] = rayDistance;
77 if (edgeIndex < 0 || edgeIndex >= vertexCount) {
78#if DEBUG_SHADOW
ztenghui50ecf842014-03-11 16:52:30 -070079 ALOGW("Invalid edgeIndex!");
ztenghui55bfb4e2013-12-03 10:38:55 -080080#endif
81 edgeIndex = 0;
82 }
83 float h1 = vertices[edgeIndex].z;
84 float h2 = vertices[((edgeIndex + 1) % vertexCount)].z;
85 rayHeight[i] = h1 + edgeFraction * (h2 - h1);
86 }
87
88 // The output buffer length basically is roughly rays * layers, but since we
89 // need triangle strips, so we need to duplicate vertices to accomplish that.
ztenghui50ecf842014-03-11 16:52:30 -070090 AlphaVertex* shadowVertices =
91 shadowVertexBuffer.alloc<AlphaVertex>(SHADOW_VERTEX_COUNT);
ztenghui55bfb4e2013-12-03 10:38:55 -080092
93 // Calculate the vertex of the shadows.
94 //
95 // The math here is:
96 // Along the edges of the polygon, for each intersection point P (generated above),
97 // calculate the normal N, which should be perpendicular to the edge of the
98 // polygon (represented by the neighbor intersection points) .
99 // Shadow's vertices will be generated as : P + N * scale.
John Reck1aa5d2d2014-07-24 13:38:28 -0700100 const Vector2 centroid2d = {centroid3d.x, centroid3d.y};
Chris Craik726118b2014-03-07 18:27:49 -0800101 for (int rayIndex = 0; rayIndex < rays; rayIndex++) {
John Reck1aa5d2d2014-07-24 13:38:28 -0700102 Vector2 normal = {1.0f, 0.0f};
Chris Craik726118b2014-03-07 18:27:49 -0800103 calculateNormal(rays, rayIndex, dir.array(), rayDist, normal);
ztenghui55bfb4e2013-12-03 10:38:55 -0800104
Chris Craik726118b2014-03-07 18:27:49 -0800105 // The vertex should be start from rayDist[i] then scale the
106 // normalizeNormal!
107 Vector2 intersection = dir[rayIndex] * rayDist[rayIndex] +
ztenghui50ecf842014-03-11 16:52:30 -0700108 centroid2d;
ztenghui55bfb4e2013-12-03 10:38:55 -0800109
Chris Craik726118b2014-03-07 18:27:49 -0800110 // outer ring of points, expanded based upon height of each ray intersection
111 float expansionDist = rayHeight[rayIndex] * heightFactor *
112 geomFactor;
113 AlphaVertex::set(&shadowVertices[rayIndex],
114 intersection.x + normal.x * expansionDist,
115 intersection.y + normal.y * expansionDist,
116 0.0f);
ztenghui55bfb4e2013-12-03 10:38:55 -0800117
Chris Craik726118b2014-03-07 18:27:49 -0800118 // inner ring of points
119 float opacity = 1.0 / (1 + rayHeight[rayIndex] * heightFactor);
Chris Craik91a8c7c2014-08-12 14:31:35 -0700120 // NOTE: Shadow alpha values are transformed when stored in alphavertices,
121 // so that they can be consumed directly by gFS_Main_ApplyVertexAlphaShadowInterp
122 float transformedOpacity = acos(1.0f - 2.0f * opacity);
ztenghui50ecf842014-03-11 16:52:30 -0700123 AlphaVertex::set(&shadowVertices[rays + rayIndex],
Chris Craik726118b2014-03-07 18:27:49 -0800124 intersection.x,
125 intersection.y,
Chris Craik91a8c7c2014-08-12 14:31:35 -0700126 transformedOpacity);
ztenghui55bfb4e2013-12-03 10:38:55 -0800127 }
ztenghui50ecf842014-03-11 16:52:30 -0700128
Chris Craik9a89bc62014-07-23 17:21:25 -0700129 if (isCasterOpaque) {
130 // skip inner ring, calc bounds over filled portion of buffer
131 shadowVertexBuffer.computeBounds<AlphaVertex>(2 * rays);
132 shadowVertexBuffer.setMode(VertexBuffer::kOnePolyRingShadow);
133 } else {
134 // If caster isn't opaque, we need to to fill the umbra by storing the umbra's
135 // centroid in the innermost ring of vertices.
ztenghui50ecf842014-03-11 16:52:30 -0700136 float centroidAlpha = 1.0 / (1 + centroid3d.z * heightFactor);
137 AlphaVertex centroidXYA;
138 AlphaVertex::set(&centroidXYA, centroid2d.x, centroid2d.y, centroidAlpha);
139 for (int rayIndex = 0; rayIndex < rays; rayIndex++) {
140 shadowVertices[2 * rays + rayIndex] = centroidXYA;
141 }
Chris Craik9a89bc62014-07-23 17:21:25 -0700142 // calc bounds over entire buffer
143 shadowVertexBuffer.computeBounds<AlphaVertex>();
144 shadowVertexBuffer.setMode(VertexBuffer::kTwoPolyRingShadow);
ztenghui50ecf842014-03-11 16:52:30 -0700145 }
ztenghui55bfb4e2013-12-03 10:38:55 -0800146
ztenghui55bfb4e2013-12-03 10:38:55 -0800147#if DEBUG_SHADOW
ztenghui63d41ab2014-02-14 13:13:41 -0800148 for (int i = 0; i < SHADOW_VERTEX_COUNT; i++) {
149 ALOGD("ambient shadow value: i %d, (x:%f, y:%f, a:%f)", i, shadowVertices[i].x,
150 shadowVertices[i].y, shadowVertices[i].alpha);
151 }
152#endif
ztenghui55bfb4e2013-12-03 10:38:55 -0800153}
154
155/**
156 * Generate an array of rays' direction vectors.
ztenghui2e023f32014-04-28 16:43:13 -0700157 * To make sure the vertices generated are clockwise, the directions are from PI
158 * to -PI.
ztenghui55bfb4e2013-12-03 10:38:55 -0800159 *
160 * @param rays The number of rays shooting out from the centroid.
ztenghui7940dc52014-04-22 11:21:49 -0700161 * @param vertices Vertices of the polygon.
162 * @param vertexCount The number of vertices.
163 * @param centroid3d The centroid of the polygon.
ztenghui55bfb4e2013-12-03 10:38:55 -0800164 * @param dir Return the array of ray vectors.
165 */
ztenghui7940dc52014-04-22 11:21:49 -0700166void AmbientShadow::calculateRayDirections(const int rays, const Vector3* vertices,
167 const int vertexCount, const Vector3& centroid3d, Vector2* dir) {
168 // If we don't have enough rays, then fall back to the uniform distribution.
169 if (vertexCount * 2 > rays) {
170 float deltaAngle = 2 * M_PI / rays;
171 for (int i = 0; i < rays; i++) {
ztenghui2e023f32014-04-28 16:43:13 -0700172 dir[i].x = cosf(M_PI - deltaAngle * i);
173 dir[i].y = sinf(M_PI - deltaAngle * i);
ztenghui7940dc52014-04-22 11:21:49 -0700174 }
175 return;
176 }
177
178 // If we have enough rays, then we assign each vertices a ray, and distribute
179 // the rest uniformly.
180 float rayThetas[rays];
181
182 const int uniformRayCount = rays - vertexCount;
183 const float deltaAngle = 2 * M_PI / uniformRayCount;
184
185 // We have to generate all the vertices' theta anyway and we also need to
186 // find the minimal, so let's precompute it first.
187 // Since the incoming polygon is clockwise, we can find the dip to identify
188 // the minimal theta.
189 float polyThetas[vertexCount];
ztenghui2e023f32014-04-28 16:43:13 -0700190 int maxPolyThetaIndex = 0;
ztenghui7940dc52014-04-22 11:21:49 -0700191 for (int i = 0; i < vertexCount; i++) {
192 polyThetas[i] = atan2(vertices[i].y - centroid3d.y,
193 vertices[i].x - centroid3d.x);
ztenghui2e023f32014-04-28 16:43:13 -0700194 if (i > 0 && polyThetas[i] > polyThetas[i - 1]) {
195 maxPolyThetaIndex = i;
ztenghui7940dc52014-04-22 11:21:49 -0700196 }
197 }
198
ztenghui2e023f32014-04-28 16:43:13 -0700199 // Both poly's thetas and uniform thetas are in decrease order(clockwise)
200 // from PI to -PI.
201 int polyThetaIndex = maxPolyThetaIndex;
202 float polyTheta = polyThetas[maxPolyThetaIndex];
ztenghui7940dc52014-04-22 11:21:49 -0700203 int uniformThetaIndex = 0;
ztenghui2e023f32014-04-28 16:43:13 -0700204 float uniformTheta = M_PI;
ztenghui7940dc52014-04-22 11:21:49 -0700205 for (int i = 0; i < rays; i++) {
206 // Compare both thetas and pick the smaller one and move on.
207 bool hasThetaCollision = abs(polyTheta - uniformTheta) < MINIMAL_DELTA_THETA;
ztenghui2e023f32014-04-28 16:43:13 -0700208 if (polyTheta > uniformTheta || hasThetaCollision) {
ztenghui7940dc52014-04-22 11:21:49 -0700209 if (hasThetaCollision) {
210 // Shift the uniformTheta to middle way between current polyTheta
211 // and next uniform theta. The next uniform theta can wrap around
212 // to exactly PI safely here.
213 // Note that neither polyTheta nor uniformTheta can be FLT_MAX
214 // due to the hasThetaCollision is true.
ztenghui2e023f32014-04-28 16:43:13 -0700215 uniformTheta = (polyTheta + M_PI - deltaAngle * (uniformThetaIndex + 1)) / 2;
ztenghui7940dc52014-04-22 11:21:49 -0700216#if DEBUG_SHADOW
217 ALOGD("Shifted uniformTheta to %f", uniformTheta);
218#endif
219 }
220 rayThetas[i] = polyTheta;
221 polyThetaIndex = (polyThetaIndex + 1) % vertexCount;
ztenghui2e023f32014-04-28 16:43:13 -0700222 if (polyThetaIndex != maxPolyThetaIndex) {
ztenghui7940dc52014-04-22 11:21:49 -0700223 polyTheta = polyThetas[polyThetaIndex];
224 } else {
225 // out of poly points.
ztenghui2e023f32014-04-28 16:43:13 -0700226 polyTheta = - FLT_MAX;
ztenghui7940dc52014-04-22 11:21:49 -0700227 }
228 } else {
229 rayThetas[i] = uniformTheta;
230 uniformThetaIndex++;
231 if (uniformThetaIndex < uniformRayCount) {
ztenghui2e023f32014-04-28 16:43:13 -0700232 uniformTheta = M_PI - deltaAngle * uniformThetaIndex;
ztenghui7940dc52014-04-22 11:21:49 -0700233 } else {
234 // out of uniform points.
ztenghui2e023f32014-04-28 16:43:13 -0700235 uniformTheta = - FLT_MAX;
ztenghui7940dc52014-04-22 11:21:49 -0700236 }
237 }
238 }
ztenghui55bfb4e2013-12-03 10:38:55 -0800239
240 for (int i = 0; i < rays; i++) {
ztenghui7940dc52014-04-22 11:21:49 -0700241#if DEBUG_SHADOW
242 ALOGD("No. %d : %f", i, rayThetas[i] * 180 / M_PI);
243#endif
244 // TODO: Fix the intersection precision problem and remvoe the delta added
245 // here.
ztenghui2e023f32014-04-28 16:43:13 -0700246 dir[i].x = cosf(rayThetas[i] + MINIMAL_DELTA_THETA);
247 dir[i].y = sinf(rayThetas[i] + MINIMAL_DELTA_THETA);
ztenghui55bfb4e2013-12-03 10:38:55 -0800248 }
249}
250
251/**
252 * Calculate the intersection of a ray hitting the polygon.
253 *
254 * @param vertices The shadow caster's polygon, which is represented in a
255 * Vector3 array.
256 * @param vertexCount The length of caster's polygon in terms of number of vertices.
257 * @param start The starting point of the ray.
258 * @param dir The direction vector of the ray.
259 *
260 * @param outEdgeIndex Return the index of the segment (or index of the starting
261 * vertex) that ray intersect with.
262 * @param outEdgeFraction Return the fraction offset from the segment starting
263 * index.
264 * @param outRayDist Return the ray distance from centroid to the intersection.
265 */
266void AmbientShadow::calculateIntersection(const Vector3* vertices, int vertexCount,
ztenghui63d41ab2014-02-14 13:13:41 -0800267 const Vector3& start, const Vector2& dir, int& outEdgeIndex,
ztenghui55bfb4e2013-12-03 10:38:55 -0800268 float& outEdgeFraction, float& outRayDist) {
269 float startX = start.x;
270 float startY = start.y;
271 float dirX = dir.x;
272 float dirY = dir.y;
273 // Start the search from the last edge from poly[len-1] to poly[0].
274 int p1 = vertexCount - 1;
275
276 for (int p2 = 0; p2 < vertexCount; p2++) {
277 float p1x = vertices[p1].x;
278 float p1y = vertices[p1].y;
279 float p2x = vertices[p2].x;
280 float p2y = vertices[p2].y;
281
282 // The math here is derived from:
283 // f(t, v) = p1x * (1 - t) + p2x * t - (startX + dirX * v) = 0;
284 // g(t, v) = p1y * (1 - t) + p2y * t - (startY + dirY * v) = 0;
285 float div = (dirX * (p1y - p2y) + dirY * p2x - dirY * p1x);
286 if (div != 0) {
287 float t = (dirX * (p1y - startY) + dirY * startX - dirY * p1x) / (div);
288 if (t > 0 && t <= 1) {
289 float t2 = (p1x * (startY - p2y)
290 + p2x * (p1y - startY)
291 + startX * (p2y - p1y)) / div;
292 if (t2 > 0) {
293 outEdgeIndex = p1;
294 outRayDist = t2;
295 outEdgeFraction = t;
296 return;
297 }
298 }
299 }
300 p1 = p2;
301 }
302 return;
303};
304
305/**
306 * Calculate the normal at the intersection point between a ray and the polygon.
307 *
308 * @param rays The total number of rays.
309 * @param currentRayIndex The index of the ray which the normal is based on.
310 * @param dir The array of the all the rays directions.
311 * @param rayDist The pre-computed ray distances array.
312 *
313 * @param normal Return the normal.
314 */
315void AmbientShadow::calculateNormal(int rays, int currentRayIndex,
316 const Vector2* dir, const float* rayDist, Vector2& normal) {
317 int preIndex = (currentRayIndex - 1 + rays) % rays;
318 int postIndex = (currentRayIndex + 1) % rays;
319 Vector2 p1 = dir[preIndex] * rayDist[preIndex];
320 Vector2 p2 = dir[postIndex] * rayDist[postIndex];
321
ztenghui2e023f32014-04-28 16:43:13 -0700322 // Now the rays are going CW around the poly.
ztenghui55bfb4e2013-12-03 10:38:55 -0800323 Vector2 delta = p2 - p1;
324 if (delta.length() != 0) {
325 delta.normalize();
ztenghui2e023f32014-04-28 16:43:13 -0700326 // Calculate the normal , which is CCW 90 rotate to the delta.
327 normal.x = - delta.y;
ztenghui55bfb4e2013-12-03 10:38:55 -0800328 normal.y = delta.x;
329 }
330}
331
332}; // namespace uirenderer
333}; // namespace android