blob: cb20a0b2a53fd756dbad2c0170fc710615d553a3 [file] [log] [blame]
ztenghui7b4516e2014-01-07 10:42:55 -08001/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "OpenGLRenderer"
18
19#define SHADOW_SHRINK_SCALE 0.1f
ztenghuic50a03d2014-08-21 13:47:54 -070020#define CASTER_Z_CAP_RATIO 0.95f
21#define FAKE_UMBRA_SIZE_RATIO 0.01f
22#define OCLLUDED_UMBRA_SHRINK_FACTOR 0.95f
ztenghui7b4516e2014-01-07 10:42:55 -080023
24#include <math.h>
ztenghuif5ca8b42014-01-27 15:53:28 -080025#include <stdlib.h>
ztenghui7b4516e2014-01-07 10:42:55 -080026#include <utils/Log.h>
27
ztenghui63d41ab2014-02-14 13:13:41 -080028#include "ShadowTessellator.h"
ztenghui7b4516e2014-01-07 10:42:55 -080029#include "SpotShadow.h"
30#include "Vertex.h"
ztenghuic50a03d2014-08-21 13:47:54 -070031#include "utils/MathUtils.h"
ztenghui7b4516e2014-01-07 10:42:55 -080032
ztenghuic50a03d2014-08-21 13:47:54 -070033// TODO: After we settle down the new algorithm, we can remove the old one and
34// its utility functions.
35// Right now, we still need to keep it for comparison purpose and future expansion.
ztenghui7b4516e2014-01-07 10:42:55 -080036namespace android {
37namespace uirenderer {
38
Chris Craik726118b2014-03-07 18:27:49 -080039static const double EPSILON = 1e-7;
40
ztenghui7b4516e2014-01-07 10:42:55 -080041/**
ztenghuic50a03d2014-08-21 13:47:54 -070042 * For each polygon's vertex, the light center will project it to the receiver
43 * as one of the outline vertex.
44 * For each outline vertex, we need to store the position and normal.
45 * Normal here is defined against the edge by the current vertex and the next vertex.
46 */
47struct OutlineData {
48 Vector2 position;
49 Vector2 normal;
50 float radius;
51};
52
53/**
Chris Craik726118b2014-03-07 18:27:49 -080054 * Calculate the angle between and x and a y coordinate.
55 * The atan2 range from -PI to PI.
ztenghui7b4516e2014-01-07 10:42:55 -080056 */
Chris Craikb79a3e32014-03-11 12:20:17 -070057static float angle(const Vector2& point, const Vector2& center) {
Chris Craik726118b2014-03-07 18:27:49 -080058 return atan2(point.y - center.y, point.x - center.x);
59}
60
61/**
62 * Calculate the intersection of a ray with the line segment defined by two points.
63 *
64 * Returns a negative value in error conditions.
65
66 * @param rayOrigin The start of the ray
67 * @param dx The x vector of the ray
68 * @param dy The y vector of the ray
69 * @param p1 The first point defining the line segment
70 * @param p2 The second point defining the line segment
71 * @return The distance along the ray if it intersects with the line segment, negative if otherwise
72 */
Chris Craikb79a3e32014-03-11 12:20:17 -070073static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy,
Chris Craik726118b2014-03-07 18:27:49 -080074 const Vector2& p1, const Vector2& p2) {
75 // The math below is derived from solving this formula, basically the
76 // intersection point should stay on both the ray and the edge of (p1, p2).
77 // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
78
79 double divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x);
80 if (divisor == 0) return -1.0f; // error, invalid divisor
81
82#if DEBUG_SHADOW
83 double interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor;
ztenghui99af9422014-03-14 14:35:54 -070084 if (interpVal < 0 || interpVal > 1) {
85 ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal);
86 }
Chris Craik726118b2014-03-07 18:27:49 -080087#endif
88
89 double distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) +
90 rayOrigin.x * (p2.y - p1.y)) / divisor;
91
92 return distance; // may be negative in error cases
ztenghui7b4516e2014-01-07 10:42:55 -080093}
94
95/**
ztenghui7b4516e2014-01-07 10:42:55 -080096 * Sort points by their X coordinates
97 *
98 * @param points the points as a Vector2 array.
99 * @param pointsLength the number of vertices of the polygon.
100 */
101void SpotShadow::xsort(Vector2* points, int pointsLength) {
102 quicksortX(points, 0, pointsLength - 1);
103}
104
105/**
106 * compute the convex hull of a collection of Points
107 *
108 * @param points the points as a Vector2 array.
109 * @param pointsLength the number of vertices of the polygon.
110 * @param retPoly pre allocated array of floats to put the vertices
111 * @return the number of points in the polygon 0 if no intersection
112 */
113int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
114 xsort(points, pointsLength);
115 int n = pointsLength;
116 Vector2 lUpper[n];
117 lUpper[0] = points[0];
118 lUpper[1] = points[1];
119
120 int lUpperSize = 2;
121
122 for (int i = 2; i < n; i++) {
123 lUpper[lUpperSize] = points[i];
124 lUpperSize++;
125
ztenghuif5ca8b42014-01-27 15:53:28 -0800126 while (lUpperSize > 2 && !ccw(
127 lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y,
128 lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y,
129 lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
ztenghui7b4516e2014-01-07 10:42:55 -0800130 // Remove the middle point of the three last
131 lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
132 lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
133 lUpperSize--;
134 }
135 }
136
137 Vector2 lLower[n];
138 lLower[0] = points[n - 1];
139 lLower[1] = points[n - 2];
140
141 int lLowerSize = 2;
142
143 for (int i = n - 3; i >= 0; i--) {
144 lLower[lLowerSize] = points[i];
145 lLowerSize++;
146
ztenghuif5ca8b42014-01-27 15:53:28 -0800147 while (lLowerSize > 2 && !ccw(
148 lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y,
149 lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y,
150 lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
ztenghui7b4516e2014-01-07 10:42:55 -0800151 // Remove the middle point of the three last
152 lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
153 lLowerSize--;
154 }
155 }
ztenghui7b4516e2014-01-07 10:42:55 -0800156
Chris Craik726118b2014-03-07 18:27:49 -0800157 // output points in CW ordering
158 const int total = lUpperSize + lLowerSize - 2;
159 int outIndex = total - 1;
ztenghui7b4516e2014-01-07 10:42:55 -0800160 for (int i = 0; i < lUpperSize; i++) {
Chris Craik726118b2014-03-07 18:27:49 -0800161 retPoly[outIndex] = lUpper[i];
162 outIndex--;
ztenghui7b4516e2014-01-07 10:42:55 -0800163 }
164
165 for (int i = 1; i < lLowerSize - 1; i++) {
Chris Craik726118b2014-03-07 18:27:49 -0800166 retPoly[outIndex] = lLower[i];
167 outIndex--;
ztenghui7b4516e2014-01-07 10:42:55 -0800168 }
169 // TODO: Add test harness which verify that all the points are inside the hull.
Chris Craik726118b2014-03-07 18:27:49 -0800170 return total;
ztenghui7b4516e2014-01-07 10:42:55 -0800171}
172
173/**
ztenghuif5ca8b42014-01-27 15:53:28 -0800174 * Test whether the 3 points form a counter clockwise turn.
ztenghui7b4516e2014-01-07 10:42:55 -0800175 *
ztenghui7b4516e2014-01-07 10:42:55 -0800176 * @return true if a right hand turn
177 */
ztenghuif5ca8b42014-01-27 15:53:28 -0800178bool SpotShadow::ccw(double ax, double ay, double bx, double by,
ztenghui7b4516e2014-01-07 10:42:55 -0800179 double cx, double cy) {
180 return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
181}
182
183/**
184 * Calculates the intersection of poly1 with poly2 and put in poly2.
ztenghui50ecf842014-03-11 16:52:30 -0700185 * Note that both poly1 and poly2 must be in CW order already!
ztenghui7b4516e2014-01-07 10:42:55 -0800186 *
187 * @param poly1 The 1st polygon, as a Vector2 array.
188 * @param poly1Length The number of vertices of 1st polygon.
189 * @param poly2 The 2nd and output polygon, as a Vector2 array.
190 * @param poly2Length The number of vertices of 2nd polygon.
191 * @return number of vertices in output polygon as poly2.
192 */
ztenghui50ecf842014-03-11 16:52:30 -0700193int SpotShadow::intersection(const Vector2* poly1, int poly1Length,
ztenghui7b4516e2014-01-07 10:42:55 -0800194 Vector2* poly2, int poly2Length) {
ztenghui50ecf842014-03-11 16:52:30 -0700195#if DEBUG_SHADOW
ztenghui2e023f32014-04-28 16:43:13 -0700196 if (!ShadowTessellator::isClockwise(poly1, poly1Length)) {
ztenghui50ecf842014-03-11 16:52:30 -0700197 ALOGW("Poly1 is not clockwise! Intersection is wrong!");
198 }
ztenghui2e023f32014-04-28 16:43:13 -0700199 if (!ShadowTessellator::isClockwise(poly2, poly2Length)) {
ztenghui50ecf842014-03-11 16:52:30 -0700200 ALOGW("Poly2 is not clockwise! Intersection is wrong!");
201 }
202#endif
ztenghui7b4516e2014-01-07 10:42:55 -0800203 Vector2 poly[poly1Length * poly2Length + 2];
204 int count = 0;
205 int pcount = 0;
206
207 // If one vertex from one polygon sits inside another polygon, add it and
208 // count them.
209 for (int i = 0; i < poly1Length; i++) {
210 if (testPointInsidePolygon(poly1[i], poly2, poly2Length)) {
211 poly[count] = poly1[i];
212 count++;
213 pcount++;
214
215 }
216 }
217
218 int insidePoly2 = pcount;
219 for (int i = 0; i < poly2Length; i++) {
220 if (testPointInsidePolygon(poly2[i], poly1, poly1Length)) {
221 poly[count] = poly2[i];
222 count++;
223 }
224 }
225
226 int insidePoly1 = count - insidePoly2;
227 // If all vertices from poly1 are inside poly2, then just return poly1.
228 if (insidePoly2 == poly1Length) {
229 memcpy(poly2, poly1, poly1Length * sizeof(Vector2));
230 return poly1Length;
231 }
232
233 // If all vertices from poly2 are inside poly1, then just return poly2.
234 if (insidePoly1 == poly2Length) {
235 return poly2Length;
236 }
237
238 // Since neither polygon fully contain the other one, we need to add all the
239 // intersection points.
John Reck1aa5d2d2014-07-24 13:38:28 -0700240 Vector2 intersection = {0, 0};
ztenghui7b4516e2014-01-07 10:42:55 -0800241 for (int i = 0; i < poly2Length; i++) {
242 for (int j = 0; j < poly1Length; j++) {
243 int poly2LineStart = i;
244 int poly2LineEnd = ((i + 1) % poly2Length);
245 int poly1LineStart = j;
246 int poly1LineEnd = ((j + 1) % poly1Length);
247 bool found = lineIntersection(
248 poly2[poly2LineStart].x, poly2[poly2LineStart].y,
249 poly2[poly2LineEnd].x, poly2[poly2LineEnd].y,
250 poly1[poly1LineStart].x, poly1[poly1LineStart].y,
251 poly1[poly1LineEnd].x, poly1[poly1LineEnd].y,
252 intersection);
253 if (found) {
254 poly[count].x = intersection.x;
255 poly[count].y = intersection.y;
256 count++;
257 } else {
258 Vector2 delta = poly2[i] - poly1[j];
ztenghuif5ca8b42014-01-27 15:53:28 -0800259 if (delta.lengthSquared() < EPSILON) {
ztenghui7b4516e2014-01-07 10:42:55 -0800260 poly[count] = poly2[i];
261 count++;
262 }
263 }
264 }
265 }
266
267 if (count == 0) {
268 return 0;
269 }
270
271 // Sort the result polygon around the center.
John Reck1aa5d2d2014-07-24 13:38:28 -0700272 Vector2 center = {0.0f, 0.0f};
ztenghui7b4516e2014-01-07 10:42:55 -0800273 for (int i = 0; i < count; i++) {
274 center += poly[i];
275 }
276 center /= count;
277 sort(poly, count, center);
278
ztenghuif5ca8b42014-01-27 15:53:28 -0800279#if DEBUG_SHADOW
280 // Since poly2 is overwritten as the result, we need to save a copy to do
281 // our verification.
282 Vector2 oldPoly2[poly2Length];
283 int oldPoly2Length = poly2Length;
284 memcpy(oldPoly2, poly2, sizeof(Vector2) * poly2Length);
285#endif
ztenghui7b4516e2014-01-07 10:42:55 -0800286
ztenghuif5ca8b42014-01-27 15:53:28 -0800287 // Filter the result out from poly and put it into poly2.
ztenghui7b4516e2014-01-07 10:42:55 -0800288 poly2[0] = poly[0];
ztenghuif5ca8b42014-01-27 15:53:28 -0800289 int lastOutputIndex = 0;
ztenghui7b4516e2014-01-07 10:42:55 -0800290 for (int i = 1; i < count; i++) {
ztenghuif5ca8b42014-01-27 15:53:28 -0800291 Vector2 delta = poly[i] - poly2[lastOutputIndex];
292 if (delta.lengthSquared() >= EPSILON) {
293 poly2[++lastOutputIndex] = poly[i];
294 } else {
295 // If the vertices are too close, pick the inner one, because the
296 // inner one is more likely to be an intersection point.
297 Vector2 delta1 = poly[i] - center;
298 Vector2 delta2 = poly2[lastOutputIndex] - center;
299 if (delta1.lengthSquared() < delta2.lengthSquared()) {
300 poly2[lastOutputIndex] = poly[i];
301 }
ztenghui7b4516e2014-01-07 10:42:55 -0800302 }
303 }
ztenghuif5ca8b42014-01-27 15:53:28 -0800304 int resultLength = lastOutputIndex + 1;
305
306#if DEBUG_SHADOW
307 testConvex(poly2, resultLength, "intersection");
308 testConvex(poly1, poly1Length, "input poly1");
309 testConvex(oldPoly2, oldPoly2Length, "input poly2");
310
311 testIntersection(poly1, poly1Length, oldPoly2, oldPoly2Length, poly2, resultLength);
312#endif
ztenghui7b4516e2014-01-07 10:42:55 -0800313
314 return resultLength;
315}
316
317/**
318 * Sort points about a center point
319 *
320 * @param poly The in and out polyogon as a Vector2 array.
321 * @param polyLength The number of vertices of the polygon.
322 * @param center the center ctr[0] = x , ctr[1] = y to sort around.
323 */
324void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
325 quicksortCirc(poly, 0, polyLength - 1, center);
326}
327
328/**
ztenghui7b4516e2014-01-07 10:42:55 -0800329 * Swap points pointed to by i and j
330 */
331void SpotShadow::swap(Vector2* points, int i, int j) {
332 Vector2 temp = points[i];
333 points[i] = points[j];
334 points[j] = temp;
335}
336
337/**
338 * quick sort implementation about the center.
339 */
340void SpotShadow::quicksortCirc(Vector2* points, int low, int high,
341 const Vector2& center) {
342 int i = low, j = high;
343 int p = low + (high - low) / 2;
344 float pivot = angle(points[p], center);
345 while (i <= j) {
Chris Craik726118b2014-03-07 18:27:49 -0800346 while (angle(points[i], center) > pivot) {
ztenghui7b4516e2014-01-07 10:42:55 -0800347 i++;
348 }
Chris Craik726118b2014-03-07 18:27:49 -0800349 while (angle(points[j], center) < pivot) {
ztenghui7b4516e2014-01-07 10:42:55 -0800350 j--;
351 }
352
353 if (i <= j) {
354 swap(points, i, j);
355 i++;
356 j--;
357 }
358 }
359 if (low < j) quicksortCirc(points, low, j, center);
360 if (i < high) quicksortCirc(points, i, high, center);
361}
362
363/**
364 * Sort points by x axis
365 *
366 * @param points points to sort
367 * @param low start index
368 * @param high end index
369 */
370void SpotShadow::quicksortX(Vector2* points, int low, int high) {
371 int i = low, j = high;
372 int p = low + (high - low) / 2;
373 float pivot = points[p].x;
374 while (i <= j) {
375 while (points[i].x < pivot) {
376 i++;
377 }
378 while (points[j].x > pivot) {
379 j--;
380 }
381
382 if (i <= j) {
383 swap(points, i, j);
384 i++;
385 j--;
386 }
387 }
388 if (low < j) quicksortX(points, low, j);
389 if (i < high) quicksortX(points, i, high);
390}
391
392/**
393 * Test whether a point is inside the polygon.
394 *
395 * @param testPoint the point to test
396 * @param poly the polygon
397 * @return true if the testPoint is inside the poly.
398 */
399bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint,
400 const Vector2* poly, int len) {
401 bool c = false;
402 double testx = testPoint.x;
403 double testy = testPoint.y;
404 for (int i = 0, j = len - 1; i < len; j = i++) {
405 double startX = poly[j].x;
406 double startY = poly[j].y;
407 double endX = poly[i].x;
408 double endY = poly[i].y;
409
410 if (((endY > testy) != (startY > testy)) &&
411 (testx < (startX - endX) * (testy - endY)
412 / (startY - endY) + endX)) {
413 c = !c;
414 }
415 }
416 return c;
417}
418
419/**
420 * Make the polygon turn clockwise.
421 *
422 * @param polygon the polygon as a Vector2 array.
423 * @param len the number of points of the polygon
424 */
425void SpotShadow::makeClockwise(Vector2* polygon, int len) {
426 if (polygon == 0 || len == 0) {
427 return;
428 }
ztenghui2e023f32014-04-28 16:43:13 -0700429 if (!ShadowTessellator::isClockwise(polygon, len)) {
ztenghui7b4516e2014-01-07 10:42:55 -0800430 reverse(polygon, len);
431 }
432}
433
434/**
ztenghui7b4516e2014-01-07 10:42:55 -0800435 * Reverse the polygon
436 *
437 * @param polygon the polygon as a Vector2 array
438 * @param len the number of points of the polygon
439 */
440void SpotShadow::reverse(Vector2* polygon, int len) {
441 int n = len / 2;
442 for (int i = 0; i < n; i++) {
443 Vector2 tmp = polygon[i];
444 int k = len - 1 - i;
445 polygon[i] = polygon[k];
446 polygon[k] = tmp;
447 }
448}
449
450/**
451 * Intersects two lines in parametric form. This function is called in a tight
452 * loop, and we need double precision to get things right.
453 *
454 * @param x1 the x coordinate point 1 of line 1
455 * @param y1 the y coordinate point 1 of line 1
456 * @param x2 the x coordinate point 2 of line 1
457 * @param y2 the y coordinate point 2 of line 1
458 * @param x3 the x coordinate point 1 of line 2
459 * @param y3 the y coordinate point 1 of line 2
460 * @param x4 the x coordinate point 2 of line 2
461 * @param y4 the y coordinate point 2 of line 2
462 * @param ret the x,y location of the intersection
463 * @return true if it found an intersection
464 */
465inline bool SpotShadow::lineIntersection(double x1, double y1, double x2, double y2,
466 double x3, double y3, double x4, double y4, Vector2& ret) {
467 double d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4);
468 if (d == 0.0) return false;
469
470 double dx = (x1 * y2 - y1 * x2);
471 double dy = (x3 * y4 - y3 * x4);
472 double x = (dx * (x3 - x4) - (x1 - x2) * dy) / d;
473 double y = (dx * (y3 - y4) - (y1 - y2) * dy) / d;
474
475 // The intersection should be in the middle of the point 1 and point 2,
476 // likewise point 3 and point 4.
477 if (((x - x1) * (x - x2) > EPSILON)
478 || ((x - x3) * (x - x4) > EPSILON)
479 || ((y - y1) * (y - y2) > EPSILON)
480 || ((y - y3) * (y - y4) > EPSILON)) {
481 // Not interesected
482 return false;
483 }
484 ret.x = x;
485 ret.y = y;
486 return true;
487
488}
489
490/**
491 * Compute a horizontal circular polygon about point (x , y , height) of radius
492 * (size)
493 *
494 * @param points number of the points of the output polygon.
495 * @param lightCenter the center of the light.
496 * @param size the light size.
497 * @param ret result polygon.
498 */
499void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter,
500 float size, Vector3* ret) {
501 // TODO: Caching all the sin / cos values and store them in a look up table.
502 for (int i = 0; i < points; i++) {
503 double angle = 2 * i * M_PI / points;
Chris Craik726118b2014-03-07 18:27:49 -0800504 ret[i].x = cosf(angle) * size + lightCenter.x;
505 ret[i].y = sinf(angle) * size + lightCenter.y;
ztenghui7b4516e2014-01-07 10:42:55 -0800506 ret[i].z = lightCenter.z;
507 }
508}
509
510/**
511* Generate the shadow from a spot light.
512*
513* @param poly x,y,z vertexes of a convex polygon that occludes the light source
514* @param polyLength number of vertexes of the occluding polygon
515* @param lightCenter the center of the light
516* @param lightSize the radius of the light source
517* @param lightVertexCount the vertex counter for the light polygon
ztenghui7b4516e2014-01-07 10:42:55 -0800518* @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
519* empty strip if error.
520*
521*/
ztenghuic50a03d2014-08-21 13:47:54 -0700522
523void SpotShadow::createSpotShadow_old(bool isCasterOpaque, const Vector3* poly,
ztenghui50ecf842014-03-11 16:52:30 -0700524 int polyLength, const Vector3& lightCenter, float lightSize,
525 int lightVertexCount, VertexBuffer& retStrips) {
ztenghui7b4516e2014-01-07 10:42:55 -0800526 Vector3 light[lightVertexCount * 3];
527 computeLightPolygon(lightVertexCount, lightCenter, lightSize, light);
ztenghuic50a03d2014-08-21 13:47:54 -0700528 computeSpotShadow_old(isCasterOpaque, light, lightVertexCount, lightCenter, poly,
ztenghui50ecf842014-03-11 16:52:30 -0700529 polyLength, retStrips);
ztenghui7b4516e2014-01-07 10:42:55 -0800530}
531
532/**
533 * Generate the shadow spot light of shape lightPoly and a object poly
534 *
535 * @param lightPoly x,y,z vertex of a convex polygon that is the light source
536 * @param lightPolyLength number of vertexes of the light source polygon
537 * @param poly x,y,z vertexes of a convex polygon that occludes the light source
538 * @param polyLength number of vertexes of the occluding polygon
ztenghui7b4516e2014-01-07 10:42:55 -0800539 * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
540 * empty strip if error.
541 */
ztenghuic50a03d2014-08-21 13:47:54 -0700542void SpotShadow::computeSpotShadow_old(bool isCasterOpaque, const Vector3* lightPoly,
543 int lightPolyLength, const Vector3& lightCenter, const Vector3* poly, int polyLength,
544 VertexBuffer& shadowTriangleStrip) {
ztenghui7b4516e2014-01-07 10:42:55 -0800545 // Point clouds for all the shadowed vertices
546 Vector2 shadowRegion[lightPolyLength * polyLength];
547 // Shadow polygon from one point light.
548 Vector2 outline[polyLength];
549 Vector2 umbraMem[polyLength * lightPolyLength];
550 Vector2* umbra = umbraMem;
551
552 int umbraLength = 0;
553
554 // Validate input, receiver is always at z = 0 plane.
555 bool inputPolyPositionValid = true;
556 for (int i = 0; i < polyLength; i++) {
ztenghui7b4516e2014-01-07 10:42:55 -0800557 if (poly[i].z >= lightPoly[0].z) {
558 inputPolyPositionValid = false;
Chris Craikb79a3e32014-03-11 12:20:17 -0700559 ALOGW("polygon above the light");
ztenghui7b4516e2014-01-07 10:42:55 -0800560 break;
561 }
562 }
563
564 // If the caster's position is invalid, don't draw anything.
565 if (!inputPolyPositionValid) {
566 return;
567 }
568
569 // Calculate the umbra polygon based on intersections of all outlines
570 int k = 0;
571 for (int j = 0; j < lightPolyLength; j++) {
572 int m = 0;
573 for (int i = 0; i < polyLength; i++) {
ztenghui28c3ea02014-03-18 15:58:57 -0700574 // After validating the input, deltaZ is guaranteed to be positive.
ztenghui50ecf842014-03-11 16:52:30 -0700575 float deltaZ = lightPoly[j].z - poly[i].z;
ztenghui50ecf842014-03-11 16:52:30 -0700576 float ratioZ = lightPoly[j].z / deltaZ;
577 float x = lightPoly[j].x - ratioZ * (lightPoly[j].x - poly[i].x);
578 float y = lightPoly[j].y - ratioZ * (lightPoly[j].y - poly[i].y);
ztenghui7b4516e2014-01-07 10:42:55 -0800579
John Reck1aa5d2d2014-07-24 13:38:28 -0700580 Vector2 newPoint = {x, y};
ztenghui7b4516e2014-01-07 10:42:55 -0800581 shadowRegion[k] = newPoint;
582 outline[m] = newPoint;
583
584 k++;
585 m++;
586 }
587
588 // For the first light polygon's vertex, use the outline as the umbra.
589 // Later on, use the intersection of the outline and existing umbra.
590 if (umbraLength == 0) {
591 for (int i = 0; i < polyLength; i++) {
592 umbra[i] = outline[i];
593 }
594 umbraLength = polyLength;
595 } else {
596 int col = ((j * 255) / lightPolyLength);
597 umbraLength = intersection(outline, polyLength, umbra, umbraLength);
598 if (umbraLength == 0) {
599 break;
600 }
601 }
602 }
603
604 // Generate the penumbra area using the hull of all shadow regions.
605 int shadowRegionLength = k;
606 Vector2 penumbra[k];
607 int penumbraLength = hull(shadowRegion, shadowRegionLength, penumbra);
608
ztenghui5176c972014-01-31 17:17:55 -0800609 Vector2 fakeUmbra[polyLength];
ztenghui7b4516e2014-01-07 10:42:55 -0800610 if (umbraLength < 3) {
ztenghui5176c972014-01-31 17:17:55 -0800611 // If there is no real umbra, make a fake one.
ztenghui7b4516e2014-01-07 10:42:55 -0800612 for (int i = 0; i < polyLength; i++) {
ztenghui50ecf842014-03-11 16:52:30 -0700613 float deltaZ = lightCenter.z - poly[i].z;
ztenghui50ecf842014-03-11 16:52:30 -0700614 float ratioZ = lightCenter.z / deltaZ;
615 float x = lightCenter.x - ratioZ * (lightCenter.x - poly[i].x);
616 float y = lightCenter.y - ratioZ * (lightCenter.y - poly[i].y);
ztenghui7b4516e2014-01-07 10:42:55 -0800617
ztenghui5176c972014-01-31 17:17:55 -0800618 fakeUmbra[i].x = x;
619 fakeUmbra[i].y = y;
ztenghui7b4516e2014-01-07 10:42:55 -0800620 }
621
622 // Shrink the centroid's shadow by 10%.
623 // TODO: Study the magic number of 10%.
ztenghui63d41ab2014-02-14 13:13:41 -0800624 Vector2 shadowCentroid =
625 ShadowTessellator::centroid2d(fakeUmbra, polyLength);
ztenghui7b4516e2014-01-07 10:42:55 -0800626 for (int i = 0; i < polyLength; i++) {
ztenghui5176c972014-01-31 17:17:55 -0800627 fakeUmbra[i] = shadowCentroid * (1.0f - SHADOW_SHRINK_SCALE) +
628 fakeUmbra[i] * SHADOW_SHRINK_SCALE;
ztenghui7b4516e2014-01-07 10:42:55 -0800629 }
630#if DEBUG_SHADOW
631 ALOGD("No real umbra make a fake one, centroid2d = %f , %f",
632 shadowCentroid.x, shadowCentroid.y);
633#endif
634 // Set the fake umbra, whose size is the same as the original polygon.
ztenghui5176c972014-01-31 17:17:55 -0800635 umbra = fakeUmbra;
ztenghui7b4516e2014-01-07 10:42:55 -0800636 umbraLength = polyLength;
637 }
638
ztenghuic50a03d2014-08-21 13:47:54 -0700639 generateTriangleStrip(isCasterOpaque, 1.0, penumbra, penumbraLength, umbra,
ztenghui50ecf842014-03-11 16:52:30 -0700640 umbraLength, poly, polyLength, shadowTriangleStrip);
ztenghui7b4516e2014-01-07 10:42:55 -0800641}
642
ztenghuic50a03d2014-08-21 13:47:54 -0700643float SpotShadow::projectCasterToOutline(Vector2& outline,
644 const Vector3& lightCenter, const Vector3& polyVertex) {
645 float lightToPolyZ = lightCenter.z - polyVertex.z;
646 float ratioZ = CASTER_Z_CAP_RATIO;
647 if (lightToPolyZ != 0) {
648 // If any caster's vertex is almost above the light, we just keep it as 95%
649 // of the height of the light.
650 ratioZ = MathUtils::min(polyVertex.z / lightToPolyZ, CASTER_Z_CAP_RATIO);
651 }
652
653 outline.x = polyVertex.x - ratioZ * (lightCenter.x - polyVertex.x);
654 outline.y = polyVertex.y - ratioZ * (lightCenter.y - polyVertex.y);
655 return ratioZ;
656}
657
658/**
659 * Generate the shadow spot light of shape lightPoly and a object poly
660 *
661 * @param isCasterOpaque whether the caster is opaque
662 * @param lightCenter the center of the light
663 * @param lightSize the radius of the light
664 * @param poly x,y,z vertexes of a convex polygon that occludes the light source
665 * @param polyLength number of vertexes of the occluding polygon
666 * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
667 * empty strip if error.
668 */
669void SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3& lightCenter,
670 float lightSize, const Vector3* poly, int polyLength, const Vector3& polyCentroid,
671 VertexBuffer& shadowTriangleStrip) {
672 OutlineData outlineData[polyLength];
673 Vector2 outlineCentroid;
674 // Calculate the projected outline for each polygon's vertices from the light center.
675 //
676 // O Light
677 // /
678 // /
679 // . Polygon vertex
680 // /
681 // /
682 // O Outline vertices
683 //
684 // Ratio = (Poly - Outline) / (Light - Poly)
685 // Outline.x = Poly.x - Ratio * (Light.x - Poly.x)
686 // Outline's radius / Light's radius = Ratio
687
688 // Compute the last outline vertex to make sure we can get the normal and outline
689 // in one single loop.
690 projectCasterToOutline(outlineData[polyLength - 1].position, lightCenter,
691 poly[polyLength - 1]);
692
693 // Take the outline's polygon, calculate the normal for each outline edge.
694 int currentNormalIndex = polyLength - 1;
695 int nextNormalIndex = 0;
696
697 for (int i = 0; i < polyLength; i++) {
698 float ratioZ = projectCasterToOutline(outlineData[i].position,
699 lightCenter, poly[i]);
700 outlineData[i].radius = ratioZ * lightSize;
701
702 outlineData[currentNormalIndex].normal = ShadowTessellator::calculateNormal(
703 outlineData[currentNormalIndex].position,
704 outlineData[nextNormalIndex].position);
705 currentNormalIndex = (currentNormalIndex + 1) % polyLength;
706 nextNormalIndex++;
707 }
708
709 projectCasterToOutline(outlineCentroid, lightCenter, polyCentroid);
710
711 int penumbraIndex = 0;
712 int penumbraLength = polyLength * 3;
713 Vector2 penumbra[penumbraLength];
714
715 Vector2 umbra[polyLength];
716 float distOutline = 0;
717 float ratioVI = 0;
718
719 bool hasValidUmbra = true;
720 // We need the maxRatioVI to decrease the spot shadow strength accordingly.
721 float maxRaitoVI = 1.0;
722
723 for (int i = 0; i < polyLength; i++) {
724 // Generate all the penumbra's vertices only using the (outline vertex + normal * radius)
725 // There is no guarantee that the penumbra is still convex, but for
726 // each outline vertex, it will connect to all its corresponding penumbra vertices as
727 // triangle fans. And for neighber penumbra vertex, it will be a trapezoid.
728 //
729 // Penumbra Vertices marked as Pi
730 // Outline Vertices marked as Vi
731 // (P3)
732 // (P2) | ' (P4)
733 // (P1)' | | '
734 // ' | | '
735 // (P0) ------------------------------------------------(P5)
736 // | (V0) |(V1)
737 // | |
738 // | |
739 // | |
740 // | |
741 // | |
742 // | |
743 // | |
744 // | |
745 // (V3)-----------------------------------(V2)
746 int preNormalIndex = (i + polyLength - 1) % polyLength;
747 penumbra[penumbraIndex++] = outlineData[i].position +
748 outlineData[preNormalIndex].normal * outlineData[i].radius;
749
750 int currentNormalIndex = i;
751 // (TODO) Depending on how roundness we want for each corner, we can subdivide
752 // further here and/or introduce some heuristic to decide how much the
753 // subdivision should be.
754 Vector2 avgNormal =
755 (outlineData[preNormalIndex].normal + outlineData[currentNormalIndex].normal) / 2;
756
757 penumbra[penumbraIndex++] = outlineData[i].position +
758 avgNormal * outlineData[i].radius;
759
760 penumbra[penumbraIndex++] = outlineData[i].position +
761 outlineData[currentNormalIndex].normal * outlineData[i].radius;
762
763 // Compute the umbra by the intersection from the outline's centroid!
764 //
765 // (V) ------------------------------------
766 // | ' |
767 // | ' |
768 // | ' (I) |
769 // | ' |
770 // | ' (C) |
771 // | |
772 // | |
773 // | |
774 // | |
775 // ------------------------------------
776 //
777 // Connect a line b/t the outline vertex (V) and the centroid (C), it will
778 // intersect with the outline vertex's circle at point (I).
779 // Now, ratioVI = VI / VC, ratioIC = IC / VC
780 // Then the intersetion point can be computed as Ixy = Vxy * ratioIC + Cxy * ratioVI;
781 //
782 // When one of the outline circle cover the the outline centroid, (like I is
783 // on the other side of C), there is no real umbra any more, so we just fake
784 // a small area around the centroid as the umbra, and tune down the spot
785 // shadow's umbra strength to simulate the effect the whole shadow will
786 // become lighter in this case.
787 // The ratio can be simulated by using the inverse of maximum of ratioVI for
788 // all (V).
789 distOutline = (outlineData[i].position - outlineCentroid).length();
790 if (distOutline == 0) {
791 // If the outline has 0 area, then there is no spot shadow anyway.
792 ALOGW("Outline has 0 area, no spot shadow!");
793 return;
794 }
795 ratioVI = outlineData[i].radius / distOutline;
796 if (ratioVI >= 1.0) {
797 maxRaitoVI = ratioVI;
798 hasValidUmbra = false;
799 }
800 // When we know we don't have valid umbra, don't bother to compute the
801 // values below. But we can't skip the loop yet since we want to know the
802 // maximum ratio.
803 if (hasValidUmbra) {
804 float ratioIC = (distOutline - outlineData[i].radius) / distOutline;
805 umbra[i] = outlineData[i].position * ratioIC + outlineCentroid * ratioVI;
806 }
807 }
808
809 float shadowStrengthScale = 1.0;
810 if (!hasValidUmbra) {
811 ALOGW("The object is too close to the light or too small, no real umbra!");
812 for (int i = 0; i < polyLength; i++) {
813 umbra[i] = outlineData[i].position * FAKE_UMBRA_SIZE_RATIO +
814 outlineCentroid * (1 - FAKE_UMBRA_SIZE_RATIO);
815 }
816 shadowStrengthScale = 1.0 / maxRaitoVI;
817 }
818
819#if DEBUG_SHADOW
820 dumpPolygon(poly, polyLength, "input poly");
821 dumpPolygon(outline, polyLength, "outline");
822 dumpPolygon(penumbra, penumbraLength, "penumbra");
823 dumpPolygon(umbra, polyLength, "umbra");
824 ALOGD("hasValidUmbra is %d and shadowStrengthScale is %f", hasValidUmbra, shadowStrengthScale);
825#endif
826
827 generateTriangleStrip(isCasterOpaque, shadowStrengthScale, penumbra,
828 penumbraLength, umbra, polyLength, poly, polyLength, shadowTriangleStrip);
829}
830
ztenghui7b4516e2014-01-07 10:42:55 -0800831/**
Chris Craik726118b2014-03-07 18:27:49 -0800832 * Converts a polygon specified with CW vertices into an array of distance-from-centroid values.
833 *
834 * Returns false in error conditions
835 *
836 * @param poly Array of vertices. Note that these *must* be CW.
837 * @param polyLength The number of vertices in the polygon.
838 * @param polyCentroid The centroid of the polygon, from which rays will be cast
839 * @param rayDist The output array for the calculated distances, must be SHADOW_RAY_COUNT in size
840 */
841bool convertPolyToRayDist(const Vector2* poly, int polyLength, const Vector2& polyCentroid,
842 float* rayDist) {
843 const int rays = SHADOW_RAY_COUNT;
844 const float step = M_PI * 2 / rays;
845
846 const Vector2* lastVertex = &(poly[polyLength - 1]);
847 float startAngle = angle(*lastVertex, polyCentroid);
848
849 // Start with the ray that's closest to and less than startAngle
850 int rayIndex = floor((startAngle - EPSILON) / step);
851 rayIndex = (rayIndex + rays) % rays; // ensure positive
852
853 for (int polyIndex = 0; polyIndex < polyLength; polyIndex++) {
854 /*
855 * For a given pair of vertices on the polygon, poly[i-1] and poly[i], the rays that
856 * intersect these will be those that are between the two angles from the centroid that the
857 * vertices define.
858 *
859 * Because the polygon vertices are stored clockwise, the closest ray with an angle
860 * *smaller* than that defined by angle(poly[i], centroid) will be the first ray that does
861 * not intersect with poly[i-1], poly[i].
862 */
863 float currentAngle = angle(poly[polyIndex], polyCentroid);
864
865 // find first ray that will not intersect the line segment poly[i-1] & poly[i]
866 int firstRayIndexOnNextSegment = floor((currentAngle - EPSILON) / step);
867 firstRayIndexOnNextSegment = (firstRayIndexOnNextSegment + rays) % rays; // ensure positive
868
869 // Iterate through all rays that intersect with poly[i-1], poly[i] line segment.
870 // This may be 0 rays.
871 while (rayIndex != firstRayIndexOnNextSegment) {
872 float distanceToIntersect = rayIntersectPoints(polyCentroid,
873 cos(rayIndex * step),
874 sin(rayIndex * step),
875 *lastVertex, poly[polyIndex]);
ztenghui50ecf842014-03-11 16:52:30 -0700876 if (distanceToIntersect < 0) {
877#if DEBUG_SHADOW
878 ALOGW("ERROR: convertPolyToRayDist failed");
879#endif
880 return false; // error case, abort
881 }
Chris Craik726118b2014-03-07 18:27:49 -0800882
883 rayDist[rayIndex] = distanceToIntersect;
884
885 rayIndex = (rayIndex - 1 + rays) % rays;
886 }
887 lastVertex = &poly[polyIndex];
888 }
889
890 return true;
891}
892
ztenghui50ecf842014-03-11 16:52:30 -0700893int SpotShadow::calculateOccludedUmbra(const Vector2* umbra, int umbraLength,
894 const Vector3* poly, int polyLength, Vector2* occludedUmbra) {
895 // Occluded umbra area is computed as the intersection of the projected 2D
896 // poly and umbra.
897 for (int i = 0; i < polyLength; i++) {
898 occludedUmbra[i].x = poly[i].x;
899 occludedUmbra[i].y = poly[i].y;
900 }
901
902 // Both umbra and incoming polygon are guaranteed to be CW, so we can call
903 // intersection() directly.
904 return intersection(umbra, umbraLength,
905 occludedUmbra, polyLength);
906}
907
Chris Craik726118b2014-03-07 18:27:49 -0800908/**
ztenghui7b4516e2014-01-07 10:42:55 -0800909 * Generate a triangle strip given two convex polygons
910 *
911 * @param penumbra The outer polygon x,y vertexes
912 * @param penumbraLength The number of vertexes in the outer polygon
913 * @param umbra The inner outer polygon x,y vertexes
914 * @param umbraLength The number of vertexes in the inner polygon
ztenghui7b4516e2014-01-07 10:42:55 -0800915 * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
916 * empty strip if error.
917**/
ztenghuic50a03d2014-08-21 13:47:54 -0700918void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrengthScale,
919 const Vector2* penumbra, int penumbraLength, const Vector2* umbra, int umbraLength,
ztenghui50ecf842014-03-11 16:52:30 -0700920 const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip) {
ztenghui63d41ab2014-02-14 13:13:41 -0800921 const int rays = SHADOW_RAY_COUNT;
Chris Craik726118b2014-03-07 18:27:49 -0800922 const int size = 2 * rays;
923 const float step = M_PI * 2 / rays;
ztenghui7b4516e2014-01-07 10:42:55 -0800924 // Centroid of the umbra.
ztenghui63d41ab2014-02-14 13:13:41 -0800925 Vector2 centroid = ShadowTessellator::centroid2d(umbra, umbraLength);
ztenghui7b4516e2014-01-07 10:42:55 -0800926#if DEBUG_SHADOW
927 ALOGD("centroid2d = %f , %f", centroid.x, centroid.y);
928#endif
929 // Intersection to the penumbra.
930 float penumbraDistPerRay[rays];
931 // Intersection to the umbra.
932 float umbraDistPerRay[rays];
ztenghui50ecf842014-03-11 16:52:30 -0700933 // Intersection to the occluded umbra area.
934 float occludedUmbraDistPerRay[rays];
ztenghui7b4516e2014-01-07 10:42:55 -0800935
Chris Craik726118b2014-03-07 18:27:49 -0800936 // convert CW polygons to ray distance encoding, aborting on conversion failure
937 if (!convertPolyToRayDist(umbra, umbraLength, centroid, umbraDistPerRay)) return;
938 if (!convertPolyToRayDist(penumbra, penumbraLength, centroid, penumbraDistPerRay)) return;
ztenghui7b4516e2014-01-07 10:42:55 -0800939
ztenghui50ecf842014-03-11 16:52:30 -0700940 bool hasOccludedUmbraArea = false;
941 if (isCasterOpaque) {
942 Vector2 occludedUmbra[polyLength + umbraLength];
943 int occludedUmbraLength = calculateOccludedUmbra(umbra, umbraLength, poly, polyLength,
944 occludedUmbra);
945 // Make sure the centroid is inside the umbra, otherwise, fall back to the
946 // approach as if there is no occluded umbra area.
947 if (testPointInsidePolygon(centroid, occludedUmbra, occludedUmbraLength)) {
948 hasOccludedUmbraArea = true;
949 // Shrink the occluded umbra area to avoid pixel level artifacts.
950 for (int i = 0; i < occludedUmbraLength; i ++) {
951 occludedUmbra[i] = centroid + (occludedUmbra[i] - centroid) *
952 OCLLUDED_UMBRA_SHRINK_FACTOR;
953 }
954 if (!convertPolyToRayDist(occludedUmbra, occludedUmbraLength, centroid,
955 occludedUmbraDistPerRay)) {
956 return;
957 }
958 }
959 }
ztenghui50ecf842014-03-11 16:52:30 -0700960 AlphaVertex* shadowVertices =
961 shadowTriangleStrip.alloc<AlphaVertex>(SHADOW_VERTEX_COUNT);
ztenghui7b4516e2014-01-07 10:42:55 -0800962
Chris Craik91a8c7c2014-08-12 14:31:35 -0700963 // NOTE: Shadow alpha values are transformed when stored in alphavertices,
964 // so that they can be consumed directly by gFS_Main_ApplyVertexAlphaShadowInterp
ztenghuic50a03d2014-08-21 13:47:54 -0700965 float transformedMaxAlpha = M_PI * shadowStrengthScale;
Chris Craik91a8c7c2014-08-12 14:31:35 -0700966
ztenghui63d41ab2014-02-14 13:13:41 -0800967 // Calculate the vertices (x, y, alpha) in the shadow area.
ztenghui50ecf842014-03-11 16:52:30 -0700968 AlphaVertex centroidXYA;
Chris Craik91a8c7c2014-08-12 14:31:35 -0700969 AlphaVertex::set(&centroidXYA, centroid.x, centroid.y, transformedMaxAlpha);
Chris Craik726118b2014-03-07 18:27:49 -0800970 for (int rayIndex = 0; rayIndex < rays; rayIndex++) {
971 float dx = cosf(step * rayIndex);
972 float dy = sinf(step * rayIndex);
973
ztenghui50ecf842014-03-11 16:52:30 -0700974 // penumbra ring
975 float penumbraDistance = penumbraDistPerRay[rayIndex];
Chris Craik726118b2014-03-07 18:27:49 -0800976 AlphaVertex::set(&shadowVertices[rayIndex],
ztenghui50ecf842014-03-11 16:52:30 -0700977 dx * penumbraDistance + centroid.x,
978 dy * penumbraDistance + centroid.y, 0.0f);
Chris Craik726118b2014-03-07 18:27:49 -0800979
ztenghui50ecf842014-03-11 16:52:30 -0700980 // umbra ring
981 float umbraDistance = umbraDistPerRay[rayIndex];
Chris Craik726118b2014-03-07 18:27:49 -0800982 AlphaVertex::set(&shadowVertices[rays + rayIndex],
Chris Craik91a8c7c2014-08-12 14:31:35 -0700983 dx * umbraDistance + centroid.x,
984 dy * umbraDistance + centroid.y,
985 transformedMaxAlpha);
ztenghui50ecf842014-03-11 16:52:30 -0700986
987 // occluded umbra ring
988 if (hasOccludedUmbraArea) {
989 float occludedUmbraDistance = occludedUmbraDistPerRay[rayIndex];
990 AlphaVertex::set(&shadowVertices[2 * rays + rayIndex],
991 dx * occludedUmbraDistance + centroid.x,
Chris Craik91a8c7c2014-08-12 14:31:35 -0700992 dy * occludedUmbraDistance + centroid.y, transformedMaxAlpha);
ztenghui50ecf842014-03-11 16:52:30 -0700993 } else {
994 // Put all vertices of the occluded umbra ring at the centroid.
995 shadowVertices[2 * rays + rayIndex] = centroidXYA;
996 }
ztenghui7b4516e2014-01-07 10:42:55 -0800997 }
Chris Craik9a89bc62014-07-23 17:21:25 -0700998 shadowTriangleStrip.setMode(VertexBuffer::kTwoPolyRingShadow);
999 shadowTriangleStrip.computeBounds<AlphaVertex>();
ztenghui7b4516e2014-01-07 10:42:55 -08001000}
1001
1002/**
1003 * This is only for experimental purpose.
1004 * After intersections are calculated, we could smooth the polygon if needed.
1005 * So far, we don't think it is more appealing yet.
1006 *
1007 * @param level The level of smoothness.
1008 * @param rays The total number of rays.
1009 * @param rayDist (In and Out) The distance for each ray.
1010 *
1011 */
1012void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
1013 for (int k = 0; k < level; k++) {
1014 for (int i = 0; i < rays; i++) {
1015 float p1 = rayDist[(rays - 1 + i) % rays];
1016 float p2 = rayDist[i];
1017 float p3 = rayDist[(i + 1) % rays];
1018 rayDist[i] = (p1 + p2 * 2 + p3) / 4;
1019 }
1020 }
1021}
1022
ztenghuif5ca8b42014-01-27 15:53:28 -08001023#if DEBUG_SHADOW
1024
1025#define TEST_POINT_NUMBER 128
1026
1027/**
1028 * Calculate the bounds for generating random test points.
1029 */
1030void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound,
1031 Vector2& upperBound ) {
1032 if (inVector.x < lowerBound.x) {
1033 lowerBound.x = inVector.x;
1034 }
1035
1036 if (inVector.y < lowerBound.y) {
1037 lowerBound.y = inVector.y;
1038 }
1039
1040 if (inVector.x > upperBound.x) {
1041 upperBound.x = inVector.x;
1042 }
1043
1044 if (inVector.y > upperBound.y) {
1045 upperBound.y = inVector.y;
1046 }
1047}
1048
1049/**
1050 * For debug purpose, when things go wrong, dump the whole polygon data.
1051 */
ztenghuic50a03d2014-08-21 13:47:54 -07001052void SpotShadow::dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
1053 for (int i = 0; i < polyLength; i++) {
1054 ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
1055 }
1056}
1057
1058/**
1059 * For debug purpose, when things go wrong, dump the whole polygon data.
1060 */
1061void SpotShadow::dumpPolygon(const Vector3* poly, int polyLength, const char* polyName) {
ztenghuif5ca8b42014-01-27 15:53:28 -08001062 for (int i = 0; i < polyLength; i++) {
1063 ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
1064 }
1065}
1066
1067/**
1068 * Test whether the polygon is convex.
1069 */
1070bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength,
1071 const char* name) {
1072 bool isConvex = true;
1073 for (int i = 0; i < polygonLength; i++) {
1074 Vector2 start = polygon[i];
1075 Vector2 middle = polygon[(i + 1) % polygonLength];
1076 Vector2 end = polygon[(i + 2) % polygonLength];
1077
1078 double delta = (double(middle.x) - start.x) * (double(end.y) - start.y) -
1079 (double(middle.y) - start.y) * (double(end.x) - start.x);
1080 bool isCCWOrCoLinear = (delta >= EPSILON);
1081
1082 if (isCCWOrCoLinear) {
ztenghui50ecf842014-03-11 16:52:30 -07001083 ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
ztenghuif5ca8b42014-01-27 15:53:28 -08001084 "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
1085 name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
1086 isConvex = false;
1087 break;
1088 }
1089 }
1090 return isConvex;
1091}
1092
1093/**
1094 * Test whether or not the polygon (intersection) is within the 2 input polygons.
1095 * Using Marte Carlo method, we generate a random point, and if it is inside the
1096 * intersection, then it must be inside both source polygons.
1097 */
1098void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length,
1099 const Vector2* poly2, int poly2Length,
1100 const Vector2* intersection, int intersectionLength) {
1101 // Find the min and max of x and y.
ztenghuic50a03d2014-08-21 13:47:54 -07001102 Vector2 lowerBound = {FLT_MAX, FLT_MAX};
1103 Vector2 upperBound = {-FLT_MAX, -FLT_MAX};
ztenghuif5ca8b42014-01-27 15:53:28 -08001104 for (int i = 0; i < poly1Length; i++) {
1105 updateBound(poly1[i], lowerBound, upperBound);
1106 }
1107 for (int i = 0; i < poly2Length; i++) {
1108 updateBound(poly2[i], lowerBound, upperBound);
1109 }
1110
1111 bool dumpPoly = false;
1112 for (int k = 0; k < TEST_POINT_NUMBER; k++) {
1113 // Generate a random point between minX, minY and maxX, maxY.
1114 double randomX = rand() / double(RAND_MAX);
1115 double randomY = rand() / double(RAND_MAX);
1116
1117 Vector2 testPoint;
1118 testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
1119 testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
1120
1121 // If the random point is in both poly 1 and 2, then it must be intersection.
1122 if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
1123 if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
1124 dumpPoly = true;
ztenghui50ecf842014-03-11 16:52:30 -07001125 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
ztenghuif5ca8b42014-01-27 15:53:28 -08001126 " not in the poly1",
1127 testPoint.x, testPoint.y);
1128 }
1129
1130 if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
1131 dumpPoly = true;
ztenghui50ecf842014-03-11 16:52:30 -07001132 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
ztenghuif5ca8b42014-01-27 15:53:28 -08001133 " not in the poly2",
1134 testPoint.x, testPoint.y);
1135 }
1136 }
1137 }
1138
1139 if (dumpPoly) {
1140 dumpPolygon(intersection, intersectionLength, "intersection");
1141 for (int i = 1; i < intersectionLength; i++) {
1142 Vector2 delta = intersection[i] - intersection[i - 1];
1143 ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
1144 }
1145
1146 dumpPolygon(poly1, poly1Length, "poly 1");
1147 dumpPolygon(poly2, poly2Length, "poly 2");
1148 }
1149}
1150#endif
1151
ztenghui7b4516e2014-01-07 10:42:55 -08001152}; // namespace uirenderer
1153}; // namespace android