| /* |
| * Copyright (C) 2007 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <math.h> |
| |
| #include <android-base/stringprintf.h> |
| #include <cutils/compiler.h> |
| #include <ui/Region.h> |
| #include <ui/Transform.h> |
| #include <utils/String8.h> |
| |
| namespace android { |
| namespace ui { |
| |
| Transform::Transform() { |
| reset(); |
| } |
| |
| Transform::Transform(const Transform& other) |
| : mMatrix(other.mMatrix), mType(other.mType) { |
| } |
| |
| Transform::Transform(uint32_t orientation) { |
| set(orientation, 0, 0); |
| } |
| |
| Transform::~Transform() = default; |
| |
| static const float EPSILON = 0.0f; |
| |
| bool Transform::isZero(float f) { |
| return fabs(f) <= EPSILON; |
| } |
| |
| bool Transform::absIsOne(float f) { |
| return isZero(fabs(f) - 1.0f); |
| } |
| |
| Transform Transform::operator * (const Transform& rhs) const |
| { |
| if (CC_LIKELY(mType == IDENTITY)) |
| return rhs; |
| |
| Transform r(*this); |
| if (rhs.mType == IDENTITY) |
| return r; |
| |
| // TODO: we could use mType to optimize the matrix multiply |
| const mat33& A(mMatrix); |
| const mat33& B(rhs.mMatrix); |
| mat33& D(r.mMatrix); |
| for (size_t i = 0; i < 3; i++) { |
| const float v0 = A[0][i]; |
| const float v1 = A[1][i]; |
| const float v2 = A[2][i]; |
| D[0][i] = v0*B[0][0] + v1*B[0][1] + v2*B[0][2]; |
| D[1][i] = v0*B[1][0] + v1*B[1][1] + v2*B[1][2]; |
| D[2][i] = v0*B[2][0] + v1*B[2][1] + v2*B[2][2]; |
| } |
| r.mType |= rhs.mType; |
| |
| // TODO: we could recompute this value from r and rhs |
| r.mType &= 0xFF; |
| r.mType |= UNKNOWN_TYPE; |
| return r; |
| } |
| |
| Transform& Transform::operator=(const Transform& other) { |
| mMatrix = other.mMatrix; |
| mType = other.mType; |
| return *this; |
| } |
| |
| const vec3& Transform::operator [] (size_t i) const { |
| return mMatrix[i]; |
| } |
| |
| float Transform::tx() const { |
| return mMatrix[2][0]; |
| } |
| |
| float Transform::ty() const { |
| return mMatrix[2][1]; |
| } |
| |
| float Transform::sx() const { |
| return mMatrix[0][0]; |
| } |
| |
| float Transform::sy() const { |
| return mMatrix[1][1]; |
| } |
| |
| void Transform::reset() { |
| mType = IDENTITY; |
| for(size_t i = 0; i < 3; i++) { |
| vec3& v(mMatrix[i]); |
| for (size_t j = 0; j < 3; j++) |
| v[j] = ((i == j) ? 1.0f : 0.0f); |
| } |
| } |
| |
| void Transform::set(float tx, float ty) |
| { |
| mMatrix[2][0] = tx; |
| mMatrix[2][1] = ty; |
| mMatrix[2][2] = 1.0f; |
| |
| if (isZero(tx) && isZero(ty)) { |
| mType &= ~TRANSLATE; |
| } else { |
| mType |= TRANSLATE; |
| } |
| } |
| |
| void Transform::set(float a, float b, float c, float d) |
| { |
| mat33& M(mMatrix); |
| M[0][0] = a; M[1][0] = b; |
| M[0][1] = c; M[1][1] = d; |
| M[0][2] = 0; M[1][2] = 0; |
| mType = UNKNOWN_TYPE; |
| } |
| |
| status_t Transform::set(uint32_t flags, float w, float h) |
| { |
| if (flags & ROT_INVALID) { |
| // that's not allowed! |
| reset(); |
| return BAD_VALUE; |
| } |
| |
| Transform H, V, R; |
| if (flags & ROT_90) { |
| // w & h are inverted when rotating by 90 degrees |
| std::swap(w, h); |
| } |
| |
| if (flags & FLIP_H) { |
| H.mType = (FLIP_H << 8) | SCALE; |
| H.mType |= isZero(w) ? IDENTITY : TRANSLATE; |
| mat33& M(H.mMatrix); |
| M[0][0] = -1; |
| M[2][0] = w; |
| } |
| |
| if (flags & FLIP_V) { |
| V.mType = (FLIP_V << 8) | SCALE; |
| V.mType |= isZero(h) ? IDENTITY : TRANSLATE; |
| mat33& M(V.mMatrix); |
| M[1][1] = -1; |
| M[2][1] = h; |
| } |
| |
| if (flags & ROT_90) { |
| const float original_w = h; |
| R.mType = (ROT_90 << 8) | ROTATE; |
| R.mType |= isZero(original_w) ? IDENTITY : TRANSLATE; |
| mat33& M(R.mMatrix); |
| M[0][0] = 0; M[1][0] =-1; M[2][0] = original_w; |
| M[0][1] = 1; M[1][1] = 0; |
| } |
| |
| *this = (R*(H*V)); |
| return NO_ERROR; |
| } |
| |
| vec2 Transform::transform(const vec2& v) const { |
| vec2 r; |
| const mat33& M(mMatrix); |
| r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0]; |
| r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1]; |
| return r; |
| } |
| |
| vec3 Transform::transform(const vec3& v) const { |
| vec3 r; |
| const mat33& M(mMatrix); |
| r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0]*v[2]; |
| r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1]*v[2]; |
| r[2] = M[0][2]*v[0] + M[1][2]*v[1] + M[2][2]*v[2]; |
| return r; |
| } |
| |
| vec2 Transform::transform(int x, int y) const |
| { |
| return transform(vec2(x,y)); |
| } |
| |
| Rect Transform::makeBounds(int w, int h) const |
| { |
| return transform( Rect(w, h) ); |
| } |
| |
| Rect Transform::transform(const Rect& bounds, bool roundOutwards) const |
| { |
| Rect r; |
| vec2 lt( bounds.left, bounds.top ); |
| vec2 rt( bounds.right, bounds.top ); |
| vec2 lb( bounds.left, bounds.bottom ); |
| vec2 rb( bounds.right, bounds.bottom ); |
| |
| lt = transform(lt); |
| rt = transform(rt); |
| lb = transform(lb); |
| rb = transform(rb); |
| |
| if (roundOutwards) { |
| r.left = static_cast<int32_t>(floorf(std::min({lt[0], rt[0], lb[0], rb[0]}))); |
| r.top = static_cast<int32_t>(floorf(std::min({lt[1], rt[1], lb[1], rb[1]}))); |
| r.right = static_cast<int32_t>(ceilf(std::max({lt[0], rt[0], lb[0], rb[0]}))); |
| r.bottom = static_cast<int32_t>(ceilf(std::max({lt[1], rt[1], lb[1], rb[1]}))); |
| } else { |
| r.left = static_cast<int32_t>(floorf(std::min({lt[0], rt[0], lb[0], rb[0]}) + 0.5f)); |
| r.top = static_cast<int32_t>(floorf(std::min({lt[1], rt[1], lb[1], rb[1]}) + 0.5f)); |
| r.right = static_cast<int32_t>(floorf(std::max({lt[0], rt[0], lb[0], rb[0]}) + 0.5f)); |
| r.bottom = static_cast<int32_t>(floorf(std::max({lt[1], rt[1], lb[1], rb[1]}) + 0.5f)); |
| } |
| |
| return r; |
| } |
| |
| FloatRect Transform::transform(const FloatRect& bounds) const |
| { |
| vec2 lt(bounds.left, bounds.top); |
| vec2 rt(bounds.right, bounds.top); |
| vec2 lb(bounds.left, bounds.bottom); |
| vec2 rb(bounds.right, bounds.bottom); |
| |
| lt = transform(lt); |
| rt = transform(rt); |
| lb = transform(lb); |
| rb = transform(rb); |
| |
| FloatRect r; |
| r.left = std::min({lt[0], rt[0], lb[0], rb[0]}); |
| r.top = std::min({lt[1], rt[1], lb[1], rb[1]}); |
| r.right = std::max({lt[0], rt[0], lb[0], rb[0]}); |
| r.bottom = std::max({lt[1], rt[1], lb[1], rb[1]}); |
| |
| return r; |
| } |
| |
| Region Transform::transform(const Region& reg) const |
| { |
| Region out; |
| if (CC_UNLIKELY(type() > TRANSLATE)) { |
| if (CC_LIKELY(preserveRects())) { |
| Region::const_iterator it = reg.begin(); |
| Region::const_iterator const end = reg.end(); |
| while (it != end) { |
| out.orSelf(transform(*it++)); |
| } |
| } else { |
| out.set(transform(reg.bounds())); |
| } |
| } else { |
| int xpos = static_cast<int>(floorf(tx() + 0.5f)); |
| int ypos = static_cast<int>(floorf(ty() + 0.5f)); |
| out = reg.translate(xpos, ypos); |
| } |
| return out; |
| } |
| |
| uint32_t Transform::type() const |
| { |
| if (mType & UNKNOWN_TYPE) { |
| // recompute what this transform is |
| |
| const mat33& M(mMatrix); |
| const float a = M[0][0]; |
| const float b = M[1][0]; |
| const float c = M[0][1]; |
| const float d = M[1][1]; |
| const float x = M[2][0]; |
| const float y = M[2][1]; |
| |
| bool scale = false; |
| uint32_t flags = ROT_0; |
| if (isZero(b) && isZero(c)) { |
| if (a<0) flags |= FLIP_H; |
| if (d<0) flags |= FLIP_V; |
| if (!absIsOne(a) || !absIsOne(d)) { |
| scale = true; |
| } |
| } else if (isZero(a) && isZero(d)) { |
| flags |= ROT_90; |
| if (b>0) flags |= FLIP_V; |
| if (c<0) flags |= FLIP_H; |
| if (!absIsOne(b) || !absIsOne(c)) { |
| scale = true; |
| } |
| } else { |
| // there is a skew component and/or a non 90 degrees rotation |
| flags = ROT_INVALID; |
| } |
| |
| mType = flags << 8; |
| if (flags & ROT_INVALID) { |
| mType |= UNKNOWN; |
| } else { |
| if ((flags & ROT_90) || ((flags & ROT_180) == ROT_180)) |
| mType |= ROTATE; |
| if (flags & FLIP_H) |
| mType ^= SCALE; |
| if (flags & FLIP_V) |
| mType ^= SCALE; |
| if (scale) |
| mType |= SCALE; |
| } |
| |
| if (!isZero(x) || !isZero(y)) |
| mType |= TRANSLATE; |
| } |
| return mType; |
| } |
| |
| Transform Transform::inverse() const { |
| // our 3x3 matrix is always of the form of a 2x2 transformation |
| // followed by a translation: T*M, therefore: |
| // (T*M)^-1 = M^-1 * T^-1 |
| Transform result; |
| if (mType <= TRANSLATE) { |
| // 1 0 0 |
| // 0 1 0 |
| // x y 1 |
| result = *this; |
| result.mMatrix[2][0] = -result.mMatrix[2][0]; |
| result.mMatrix[2][1] = -result.mMatrix[2][1]; |
| } else { |
| // a c 0 |
| // b d 0 |
| // x y 1 |
| const mat33& M(mMatrix); |
| const float a = M[0][0]; |
| const float b = M[1][0]; |
| const float c = M[0][1]; |
| const float d = M[1][1]; |
| const float x = M[2][0]; |
| const float y = M[2][1]; |
| |
| const float idet = 1.0f / (a*d - b*c); |
| result.mMatrix[0][0] = d*idet; |
| result.mMatrix[0][1] = -c*idet; |
| result.mMatrix[1][0] = -b*idet; |
| result.mMatrix[1][1] = a*idet; |
| result.mType = mType; |
| |
| vec2 T(-x, -y); |
| T = result.transform(T); |
| result.mMatrix[2][0] = T[0]; |
| result.mMatrix[2][1] = T[1]; |
| } |
| return result; |
| } |
| |
| uint32_t Transform::getType() const { |
| return type() & 0xFF; |
| } |
| |
| uint32_t Transform::getOrientation() const |
| { |
| return (type() >> 8) & 0xFF; |
| } |
| |
| bool Transform::preserveRects() const |
| { |
| return (getOrientation() & ROT_INVALID) ? false : true; |
| } |
| |
| mat4 Transform::asMatrix4() const { |
| // Internally Transform uses a 3x3 matrix since the transform is meant for |
| // two-dimensional values. An equivalent 4x4 matrix means inserting an extra |
| // row and column which adds as an identity transform on the third |
| // dimension. |
| |
| mat4 m = mat4{mat4::NO_INIT}; // NO_INIT since we explicitly set every element |
| |
| m[0][0] = mMatrix[0][0]; |
| m[0][1] = mMatrix[0][1]; |
| m[0][2] = 0.f; |
| m[0][3] = mMatrix[0][2]; |
| |
| m[1][0] = mMatrix[1][0]; |
| m[1][1] = mMatrix[1][1]; |
| m[1][2] = 0.f; |
| m[1][3] = mMatrix[1][2]; |
| |
| m[2][0] = 0.f; |
| m[2][1] = 0.f; |
| m[2][2] = 1.f; |
| m[2][3] = 0.f; |
| |
| m[3][0] = mMatrix[2][0]; |
| m[3][1] = mMatrix[2][1]; |
| m[3][2] = 0.f; |
| m[3][3] = mMatrix[2][2]; |
| |
| return m; |
| } |
| |
| void Transform::dump(std::string& out, const char* name) const { |
| using android::base::StringAppendF; |
| |
| type(); // Ensure the information in mType is up to date |
| |
| const uint32_t type = mType; |
| const uint32_t orient = type >> 8; |
| |
| StringAppendF(&out, "%s 0x%08x (", name, orient); |
| |
| if (orient & ROT_INVALID) { |
| out.append("ROT_INVALID "); |
| } else { |
| if (orient & ROT_90) { |
| out.append("ROT_90 "); |
| } else { |
| out.append("ROT_0 "); |
| } |
| if (orient & FLIP_V) out.append("FLIP_V "); |
| if (orient & FLIP_H) out.append("FLIP_H "); |
| } |
| |
| StringAppendF(&out, ") 0x%02x (", type); |
| |
| if (!(type & (SCALE | ROTATE | TRANSLATE))) out.append("IDENTITY "); |
| if (type & SCALE) out.append("SCALE "); |
| if (type & ROTATE) out.append("ROTATE "); |
| if (type & TRANSLATE) out.append("TRANSLATE "); |
| |
| out.append(")\n"); |
| |
| for (size_t i = 0; i < 3; i++) { |
| StringAppendF(&out, " %.4f %.4f %.4f\n", static_cast<double>(mMatrix[0][i]), |
| static_cast<double>(mMatrix[1][i]), static_cast<double>(mMatrix[2][i])); |
| } |
| } |
| |
| void Transform::dump(const char* name) const { |
| std::string out; |
| dump(out, name); |
| ALOGD("%s", out.c_str()); |
| } |
| |
| } // namespace ui |
| } // namespace android |