| /* |
| * Copyright (C) 2019, The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "aidl_language.h" |
| #include "aidl_typenames.h" |
| #include "logging.h" |
| |
| #include <stdlib.h> |
| #include <algorithm> |
| #include <iostream> |
| #include <limits> |
| #include <memory> |
| |
| #include <android-base/parsedouble.h> |
| #include <android-base/parseint.h> |
| #include <android-base/strings.h> |
| |
| using android::base::ConsumeSuffix; |
| using android::base::EndsWith; |
| using android::base::Join; |
| using android::base::StartsWith; |
| using std::string; |
| using std::unique_ptr; |
| using std::vector; |
| |
| template <typename T> |
| constexpr int CLZ(T x) { |
| // __builtin_clz(0) is undefined |
| if (x == 0) return sizeof(T) * 8; |
| return (sizeof(T) == sizeof(uint64_t)) ? __builtin_clzl(x) : __builtin_clz(x); |
| } |
| |
| template <typename T> |
| class OverflowGuard { |
| public: |
| OverflowGuard(T value) : mValue(value) {} |
| bool Overflowed() const { return mOverflowed; } |
| |
| T operator+() { return +mValue; } |
| T operator-() { |
| if (isMin()) { |
| mOverflowed = true; |
| return 0; |
| } |
| return -mValue; |
| } |
| T operator!() { return !mValue; } |
| T operator~() { return ~mValue; } |
| |
| T operator+(T o) { |
| T out; |
| mOverflowed = __builtin_add_overflow(mValue, o, &out); |
| return out; |
| } |
| T operator-(T o) { |
| T out; |
| mOverflowed = __builtin_sub_overflow(mValue, o, &out); |
| return out; |
| } |
| T operator*(T o) { |
| T out; |
| #ifdef _WIN32 |
| // ___mulodi4 not on windows https://bugs.llvm.org/show_bug.cgi?id=46669 |
| // we should still get an error here from ubsan, but the nice error |
| // is needed on linux for aidl_parser_fuzzer, where we are more |
| // concerned about overflows elsewhere in the compiler in addition to |
| // those in interfaces. |
| out = mValue * o; |
| #else |
| mOverflowed = __builtin_mul_overflow(mValue, o, &out); |
| #endif |
| return out; |
| } |
| T operator/(T o) { |
| if (o == 0 || (isMin() && o == -1)) { |
| mOverflowed = true; |
| return 0; |
| } |
| return mValue / o; |
| } |
| T operator%(T o) { |
| if (o == 0 || (isMin() && o == -1)) { |
| mOverflowed = true; |
| return 0; |
| } |
| return mValue % o; |
| } |
| T operator|(T o) { return mValue | o; } |
| T operator^(T o) { return mValue ^ o; } |
| T operator&(T o) { return mValue & o; } |
| T operator<(T o) { return mValue < o; } |
| T operator>(T o) { return mValue > o; } |
| T operator<=(T o) { return mValue <= o; } |
| T operator>=(T o) { return mValue >= o; } |
| T operator==(T o) { return mValue == o; } |
| T operator!=(T o) { return mValue != o; } |
| T operator>>(T o) { |
| if (o < 0 || o >= static_cast<T>(sizeof(T) * 8) || mValue < 0) { |
| mOverflowed = true; |
| return 0; |
| } |
| return mValue >> o; |
| } |
| T operator<<(T o) { |
| if (o < 0 || mValue < 0 || o > CLZ(mValue) || o >= static_cast<T>(sizeof(T) * 8)) { |
| mOverflowed = true; |
| return 0; |
| } |
| return mValue << o; |
| } |
| T operator||(T o) { return mValue || o; } |
| T operator&&(T o) { return mValue && o; } |
| |
| private: |
| bool isMin() { return mValue == std::numeric_limits<T>::min(); } |
| |
| T mValue; |
| bool mOverflowed = false; |
| }; |
| |
| template <typename T> |
| bool processGuard(const OverflowGuard<T>& guard, const AidlConstantValue& context) { |
| if (guard.Overflowed()) { |
| AIDL_ERROR(context) << "Constant expression computation overflows."; |
| return false; |
| } |
| return true; |
| } |
| |
| // TODO: factor out all these macros |
| #define SHOULD_NOT_REACH() AIDL_FATAL(AIDL_LOCATION_HERE) << "Should not reach." |
| #define OPEQ(__y__) (string(op_) == string(__y__)) |
| #define COMPUTE_UNARY(T, __op__) \ |
| if (op == string(#__op__)) { \ |
| OverflowGuard<T> guard(val); \ |
| *out = __op__ guard; \ |
| return processGuard(guard, context); \ |
| } |
| #define COMPUTE_BINARY(T, __op__) \ |
| if (op == string(#__op__)) { \ |
| OverflowGuard<T> guard(lval); \ |
| *out = guard __op__ rval; \ |
| return processGuard(guard, context); \ |
| } |
| #define OP_IS_BIN_ARITHMETIC (OPEQ("+") || OPEQ("-") || OPEQ("*") || OPEQ("/") || OPEQ("%")) |
| #define OP_IS_BIN_BITFLIP (OPEQ("|") || OPEQ("^") || OPEQ("&")) |
| #define OP_IS_BIN_COMP \ |
| (OPEQ("<") || OPEQ(">") || OPEQ("<=") || OPEQ(">=") || OPEQ("==") || OPEQ("!=")) |
| #define OP_IS_BIN_SHIFT (OPEQ(">>") || OPEQ("<<")) |
| #define OP_IS_BIN_LOGICAL (OPEQ("||") || OPEQ("&&")) |
| |
| // NOLINT to suppress missing parentheses warnings about __def__. |
| #define SWITCH_KIND(__cond__, __action__, __def__) \ |
| switch (__cond__) { \ |
| case Type::BOOLEAN: \ |
| __action__(bool); \ |
| case Type::INT8: \ |
| __action__(int8_t); \ |
| case Type::INT32: \ |
| __action__(int32_t); \ |
| case Type::INT64: \ |
| __action__(int64_t); \ |
| default: \ |
| __def__; /* NOLINT */ \ |
| } |
| |
| template <class T> |
| bool handleUnary(const AidlConstantValue& context, const string& op, T val, int64_t* out) { |
| COMPUTE_UNARY(T, +) |
| COMPUTE_UNARY(T, -) |
| COMPUTE_UNARY(T, !) |
| COMPUTE_UNARY(T, ~) |
| AIDL_FATAL(context) << "Could not handleUnary for " << op << " " << val; |
| return false; |
| } |
| template <> |
| bool handleUnary<bool>(const AidlConstantValue& context, const string& op, bool val, int64_t* out) { |
| COMPUTE_UNARY(bool, +) |
| COMPUTE_UNARY(bool, -) |
| COMPUTE_UNARY(bool, !) |
| |
| if (op == "~") { |
| AIDL_ERROR(context) << "Bitwise negation of a boolean expression is always true."; |
| return false; |
| } |
| AIDL_FATAL(context) << "Could not handleUnary for " << op << " " << val; |
| return false; |
| } |
| |
| template <class T> |
| bool handleBinaryCommon(const AidlConstantValue& context, T lval, const string& op, T rval, |
| int64_t* out) { |
| COMPUTE_BINARY(T, +) |
| COMPUTE_BINARY(T, -) |
| COMPUTE_BINARY(T, *) |
| COMPUTE_BINARY(T, /) |
| COMPUTE_BINARY(T, %) |
| COMPUTE_BINARY(T, |) |
| COMPUTE_BINARY(T, ^) |
| COMPUTE_BINARY(T, &) |
| // comparison operators: return 0 or 1 by nature. |
| COMPUTE_BINARY(T, ==) |
| COMPUTE_BINARY(T, !=) |
| COMPUTE_BINARY(T, <) |
| COMPUTE_BINARY(T, >) |
| COMPUTE_BINARY(T, <=) |
| COMPUTE_BINARY(T, >=) |
| |
| AIDL_FATAL(context) << "Could not handleBinaryCommon for " << lval << " " << op << " " << rval; |
| return false; |
| } |
| |
| template <class T> |
| bool handleShift(const AidlConstantValue& context, T lval, const string& op, T rval, int64_t* out) { |
| // just cast rval to int64_t and it should fit. |
| COMPUTE_BINARY(T, >>) |
| COMPUTE_BINARY(T, <<) |
| |
| AIDL_FATAL(context) << "Could not handleShift for " << lval << " " << op << " " << rval; |
| return false; |
| } |
| |
| bool handleLogical(const AidlConstantValue& context, bool lval, const string& op, bool rval, |
| int64_t* out) { |
| COMPUTE_BINARY(bool, ||); |
| COMPUTE_BINARY(bool, &&); |
| |
| AIDL_FATAL(context) << "Could not handleLogical for " << lval << " " << op << " " << rval; |
| return false; |
| } |
| |
| static bool isValidLiteralChar(char c) { |
| return !(c <= 0x1f || // control characters are < 0x20 |
| c >= 0x7f || // DEL is 0x7f |
| c == '\\'); // Disallow backslashes for future proofing. |
| } |
| |
| bool ParseFloating(std::string_view sv, double* parsed) { |
| // float literal should be parsed successfully. |
| android::base::ConsumeSuffix(&sv, "f"); |
| return android::base::ParseDouble(std::string(sv).data(), parsed); |
| } |
| |
| bool ParseFloating(std::string_view sv, float* parsed) { |
| // we only care about float literal (with suffix "f"). |
| if (!android::base::ConsumeSuffix(&sv, "f")) { |
| return false; |
| } |
| return android::base::ParseFloat(std::string(sv).data(), parsed); |
| } |
| |
| bool AidlUnaryConstExpression::IsCompatibleType(Type type, const string& op) { |
| // Verify the unary type here |
| switch (type) { |
| case Type::BOOLEAN: // fall-through |
| case Type::INT8: // fall-through |
| case Type::INT32: // fall-through |
| case Type::INT64: |
| return true; |
| case Type::FLOATING: |
| return (op == "+" || op == "-"); |
| default: |
| return false; |
| } |
| } |
| |
| bool AidlBinaryConstExpression::AreCompatibleTypes(Type t1, Type t2) { |
| switch (t1) { |
| case Type::STRING: |
| if (t2 == Type::STRING) { |
| return true; |
| } |
| break; |
| case Type::BOOLEAN: // fall-through |
| case Type::INT8: // fall-through |
| case Type::INT32: // fall-through |
| case Type::INT64: |
| switch (t2) { |
| case Type::BOOLEAN: // fall-through |
| case Type::INT8: // fall-through |
| case Type::INT32: // fall-through |
| case Type::INT64: |
| return true; |
| break; |
| default: |
| break; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| // Returns the promoted kind for both operands |
| AidlConstantValue::Type AidlBinaryConstExpression::UsualArithmeticConversion(Type left, |
| Type right) { |
| // These are handled as special cases |
| AIDL_FATAL_IF(left == Type::STRING || right == Type::STRING, AIDL_LOCATION_HERE); |
| AIDL_FATAL_IF(left == Type::FLOATING || right == Type::FLOATING, AIDL_LOCATION_HERE); |
| |
| // Kinds in concern: bool, (u)int[8|32|64] |
| if (left == right) return left; // easy case |
| if (left == Type::BOOLEAN) return right; |
| if (right == Type::BOOLEAN) return left; |
| |
| return left < right ? right : left; |
| } |
| |
| // Returns the promoted integral type where INT32 is the smallest type |
| AidlConstantValue::Type AidlBinaryConstExpression::IntegralPromotion(Type in) { |
| return (Type::INT32 < in) ? in : Type::INT32; |
| } |
| |
| AidlConstantValue* AidlConstantValue::Default(const AidlTypeSpecifier& specifier) { |
| AidlLocation location = specifier.GetLocation(); |
| |
| // allocation of int[0] is a bit wasteful in Java |
| if (specifier.IsArray()) { |
| return nullptr; |
| } |
| |
| const std::string name = specifier.GetName(); |
| if (name == "boolean") { |
| return Boolean(location, false); |
| } |
| if (name == "byte" || name == "int" || name == "long") { |
| return Integral(location, "0"); |
| } |
| if (name == "float") { |
| return Floating(location, "0.0f"); |
| } |
| if (name == "double") { |
| return Floating(location, "0.0"); |
| } |
| return nullptr; |
| } |
| |
| AidlConstantValue* AidlConstantValue::Boolean(const AidlLocation& location, bool value) { |
| return new AidlConstantValue(location, Type::BOOLEAN, value ? "true" : "false"); |
| } |
| |
| AidlConstantValue* AidlConstantValue::Character(const AidlLocation& location, char value) { |
| const std::string explicit_value = string("'") + value + "'"; |
| if (!isValidLiteralChar(value)) { |
| AIDL_ERROR(location) << "Invalid character literal " << value; |
| return new AidlConstantValue(location, Type::ERROR, explicit_value); |
| } |
| return new AidlConstantValue(location, Type::CHARACTER, explicit_value); |
| } |
| |
| AidlConstantValue* AidlConstantValue::Floating(const AidlLocation& location, |
| const std::string& value) { |
| return new AidlConstantValue(location, Type::FLOATING, value); |
| } |
| |
| bool AidlConstantValue::IsHex(const string& value) { |
| return StartsWith(value, "0x") || StartsWith(value, "0X"); |
| } |
| |
| bool AidlConstantValue::ParseIntegral(const string& value, int64_t* parsed_value, |
| Type* parsed_type) { |
| if (parsed_value == nullptr || parsed_type == nullptr) { |
| return false; |
| } |
| |
| const bool isLong = EndsWith(value, 'l') || EndsWith(value, 'L'); |
| const std::string value_substr = isLong ? value.substr(0, value.size() - 1) : value; |
| |
| if (IsHex(value)) { |
| // AIDL considers 'const int foo = 0xffffffff' as -1, but if we want to |
| // handle that when computing constant expressions, then we need to |
| // represent 0xffffffff as a uint32_t. However, AIDL only has signed types; |
| // so we parse as an unsigned int when possible and then cast to a signed |
| // int. One example of this is in ICameraService.aidl where a constant int |
| // is used for bit manipulations which ideally should be handled with an |
| // unsigned int. |
| // |
| // Note, for historical consistency, we need to consider small hex values |
| // as an integral type. Recognizing them as INT8 could break some files, |
| // even though it would simplify this code. |
| if (uint32_t rawValue32; |
| !isLong && android::base::ParseUint<uint32_t>(value_substr, &rawValue32)) { |
| *parsed_value = static_cast<int32_t>(rawValue32); |
| *parsed_type = Type::INT32; |
| } else if (uint64_t rawValue64; android::base::ParseUint<uint64_t>(value_substr, &rawValue64)) { |
| *parsed_value = static_cast<int64_t>(rawValue64); |
| *parsed_type = Type::INT64; |
| } else { |
| *parsed_value = 0; |
| *parsed_type = Type::ERROR; |
| return false; |
| } |
| return true; |
| } |
| |
| if (!android::base::ParseInt<int64_t>(value_substr, parsed_value)) { |
| *parsed_value = 0; |
| *parsed_type = Type::ERROR; |
| return false; |
| } |
| |
| if (isLong) { |
| *parsed_type = Type::INT64; |
| } else { |
| // guess literal type. |
| if (*parsed_value <= INT8_MAX && *parsed_value >= INT8_MIN) { |
| *parsed_type = Type::INT8; |
| } else if (*parsed_value <= INT32_MAX && *parsed_value >= INT32_MIN) { |
| *parsed_type = Type::INT32; |
| } else { |
| *parsed_type = Type::INT64; |
| } |
| } |
| return true; |
| } |
| |
| AidlConstantValue* AidlConstantValue::Integral(const AidlLocation& location, const string& value) { |
| AIDL_FATAL_IF(value.empty(), location); |
| |
| Type parsed_type; |
| int64_t parsed_value = 0; |
| bool success = ParseIntegral(value, &parsed_value, &parsed_type); |
| if (!success) { |
| return nullptr; |
| } |
| |
| return new AidlConstantValue(location, parsed_type, parsed_value, value); |
| } |
| |
| AidlConstantValue* AidlConstantValue::Array( |
| const AidlLocation& location, std::unique_ptr<vector<unique_ptr<AidlConstantValue>>> values) { |
| AIDL_FATAL_IF(values == nullptr, location); |
| std::vector<std::string> str_values; |
| for (const auto& v : *values) { |
| str_values.push_back(v->value_); |
| } |
| return new AidlConstantValue(location, Type::ARRAY, std::move(values), Join(str_values, ", ")); |
| } |
| |
| AidlConstantValue* AidlConstantValue::String(const AidlLocation& location, const string& value) { |
| for (size_t i = 0; i < value.length(); ++i) { |
| if (!isValidLiteralChar(value[i])) { |
| AIDL_ERROR(location) << "Found invalid character at index " << i << " in string constant '" |
| << value << "'"; |
| return new AidlConstantValue(location, Type::ERROR, value); |
| } |
| } |
| |
| return new AidlConstantValue(location, Type::STRING, value); |
| } |
| |
| string AidlConstantValue::ValueString(const AidlTypeSpecifier& type, |
| const ConstantValueDecorator& decorator) const { |
| if (type.IsGeneric()) { |
| AIDL_ERROR(type) << "Generic type cannot be specified with a constant literal."; |
| return ""; |
| } |
| if (!is_evaluated_) { |
| // TODO(b/142722772) CheckValid() should be called before ValueString() |
| bool success = CheckValid(); |
| success &= evaluate(); |
| if (!success) { |
| // the detailed error message shall be printed in evaluate |
| return ""; |
| } |
| } |
| if (!is_valid_) { |
| AIDL_ERROR(this) << "Invalid constant value: " + value_; |
| return ""; |
| } |
| |
| const AidlDefinedType* defined_type = type.GetDefinedType(); |
| if (defined_type && !type.IsArray()) { |
| const AidlEnumDeclaration* enum_type = defined_type->AsEnumDeclaration(); |
| if (!enum_type) { |
| AIDL_ERROR(this) << "Invalid type (" << defined_type->GetCanonicalName() |
| << ") for a const value (" << value_ << ")"; |
| return ""; |
| } |
| if (type_ != Type::REF) { |
| AIDL_ERROR(this) << "Invalid value (" << value_ << ") for enum " |
| << enum_type->GetCanonicalName(); |
| return ""; |
| } |
| return decorator(type, value_); |
| } |
| |
| const string& type_string = type.GetName(); |
| int err = 0; |
| |
| switch (final_type_) { |
| case Type::CHARACTER: |
| if (type_string == "char") { |
| return decorator(type, final_string_value_); |
| } |
| err = -1; |
| break; |
| case Type::STRING: |
| if (type_string == "String") { |
| return decorator(type, final_string_value_); |
| } |
| err = -1; |
| break; |
| case Type::BOOLEAN: // fall-through |
| case Type::INT8: // fall-through |
| case Type::INT32: // fall-through |
| case Type::INT64: |
| if (type_string == "byte") { |
| if (final_value_ > INT8_MAX || final_value_ < INT8_MIN) { |
| err = -1; |
| break; |
| } |
| return decorator(type, std::to_string(static_cast<int8_t>(final_value_))); |
| } else if (type_string == "int") { |
| if (final_value_ > INT32_MAX || final_value_ < INT32_MIN) { |
| err = -1; |
| break; |
| } |
| return decorator(type, std::to_string(static_cast<int32_t>(final_value_))); |
| } else if (type_string == "long") { |
| return decorator(type, std::to_string(final_value_)); |
| } else if (type_string == "boolean") { |
| return decorator(type, final_value_ ? "true" : "false"); |
| } |
| err = -1; |
| break; |
| case Type::ARRAY: { |
| if (!type.IsArray()) { |
| err = -1; |
| break; |
| } |
| vector<string> value_strings; |
| value_strings.reserve(values_.size()); |
| bool success = true; |
| |
| for (const auto& value : values_) { |
| const AidlTypeSpecifier& array_base = type.ArrayBase(); |
| const string value_string = value->ValueString(array_base, decorator); |
| if (value_string.empty()) { |
| success = false; |
| break; |
| } |
| value_strings.push_back(value_string); |
| } |
| if (!success) { |
| err = -1; |
| break; |
| } |
| |
| return decorator(type, "{" + Join(value_strings, ", ") + "}"); |
| } |
| case Type::FLOATING: { |
| if (type_string == "double") { |
| double parsed_value; |
| if (!ParseFloating(value_, &parsed_value)) { |
| AIDL_ERROR(this) << "Could not parse " << value_; |
| err = -1; |
| break; |
| } |
| return decorator(type, std::to_string(parsed_value)); |
| } |
| if (type_string == "float") { |
| float parsed_value; |
| if (!ParseFloating(value_, &parsed_value)) { |
| AIDL_ERROR(this) << "Could not parse " << value_; |
| err = -1; |
| break; |
| } |
| return decorator(type, std::to_string(parsed_value) + "f"); |
| } |
| err = -1; |
| break; |
| } |
| default: |
| err = -1; |
| break; |
| } |
| |
| AIDL_FATAL_IF(err == 0, this); |
| AIDL_ERROR(this) << "Invalid type specifier for " << ToString(final_type_) << ": " << type_string; |
| return ""; |
| } |
| |
| bool AidlConstantValue::CheckValid() const { |
| // Nothing needs to be checked here. The constant value will be validated in |
| // the constructor or in the evaluate() function. |
| if (is_evaluated_) return is_valid_; |
| |
| switch (type_) { |
| case Type::BOOLEAN: // fall-through |
| case Type::INT8: // fall-through |
| case Type::INT32: // fall-through |
| case Type::INT64: // fall-through |
| case Type::CHARACTER: // fall-through |
| case Type::STRING: // fall-through |
| case Type::REF: // fall-through |
| case Type::FLOATING: // fall-through |
| case Type::UNARY: // fall-through |
| case Type::BINARY: |
| is_valid_ = true; |
| break; |
| case Type::ARRAY: |
| is_valid_ = true; |
| for (const auto& v : values_) is_valid_ &= v->CheckValid(); |
| break; |
| case Type::ERROR: |
| return false; |
| default: |
| AIDL_FATAL(this) << "Unrecognized constant value type: " << ToString(type_); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool AidlConstantValue::evaluate() const { |
| if (is_evaluated_) { |
| return is_valid_; |
| } |
| int err = 0; |
| is_evaluated_ = true; |
| |
| switch (type_) { |
| case Type::ARRAY: { |
| Type array_type = Type::ERROR; |
| bool success = true; |
| for (const auto& value : values_) { |
| success = value->CheckValid(); |
| if (success) { |
| success = value->evaluate(); |
| if (!success) { |
| AIDL_ERROR(this) << "Invalid array element: " << value->value_; |
| break; |
| } |
| if (array_type == Type::ERROR) { |
| array_type = value->final_type_; |
| } else if (!AidlBinaryConstExpression::AreCompatibleTypes(array_type, |
| value->final_type_)) { |
| AIDL_ERROR(this) << "Incompatible array element type: " << ToString(value->final_type_) |
| << ". Expecting type compatible with " << ToString(array_type); |
| success = false; |
| break; |
| } |
| } else { |
| break; |
| } |
| } |
| if (!success) { |
| err = -1; |
| break; |
| } |
| final_type_ = type_; |
| break; |
| } |
| case Type::BOOLEAN: |
| if ((value_ != "true") && (value_ != "false")) { |
| AIDL_ERROR(this) << "Invalid constant boolean value: " << value_; |
| err = -1; |
| break; |
| } |
| final_value_ = (value_ == "true") ? 1 : 0; |
| final_type_ = type_; |
| break; |
| case Type::INT8: // fall-through |
| case Type::INT32: // fall-through |
| case Type::INT64: |
| // Parsing happens in the constructor |
| final_type_ = type_; |
| break; |
| case Type::CHARACTER: // fall-through |
| case Type::STRING: |
| final_string_value_ = value_; |
| final_type_ = type_; |
| break; |
| case Type::FLOATING: |
| // Just parse on the fly in ValueString |
| final_type_ = type_; |
| break; |
| default: |
| AIDL_FATAL(this) << "Unrecognized constant value type: " << ToString(type_); |
| err = -1; |
| } |
| |
| return (err == 0) ? true : false; |
| } |
| |
| string AidlConstantValue::ToString(Type type) { |
| switch (type) { |
| case Type::BOOLEAN: |
| return "a literal boolean"; |
| case Type::INT8: |
| return "an int8 literal"; |
| case Type::INT32: |
| return "an int32 literal"; |
| case Type::INT64: |
| return "an int64 literal"; |
| case Type::ARRAY: |
| return "a literal array"; |
| case Type::CHARACTER: |
| return "a literal char"; |
| case Type::STRING: |
| return "a literal string"; |
| case Type::REF: |
| return "a reference"; |
| case Type::FLOATING: |
| return "a literal float"; |
| case Type::UNARY: |
| return "a unary expression"; |
| case Type::BINARY: |
| return "a binary expression"; |
| case Type::ERROR: |
| AIDL_FATAL(AIDL_LOCATION_HERE) << "aidl internal error: error type failed to halt program"; |
| return ""; |
| default: |
| AIDL_FATAL(AIDL_LOCATION_HERE) |
| << "aidl internal error: unknown constant type: " << static_cast<int>(type); |
| return ""; // not reached |
| } |
| } |
| |
| AidlConstantReference::AidlConstantReference(const AidlLocation& location, const std::string& value, |
| const std::string& comments) |
| : AidlConstantValue(location, Type::REF, value), comments_(comments) { |
| const auto pos = value.find_last_of('.'); |
| if (pos == string::npos) { |
| field_name_ = value; |
| } else { |
| ref_type_ = |
| std::make_unique<AidlTypeSpecifier>(location, value.substr(0, pos), false, nullptr, ""); |
| field_name_ = value.substr(pos + 1); |
| } |
| } |
| |
| const AidlConstantValue* AidlConstantReference::Resolve(const AidlDefinedType* scope) const { |
| if (resolved_) return resolved_; |
| |
| const AidlDefinedType* defined_type; |
| if (ref_type_) { |
| defined_type = ref_type_->GetDefinedType(); |
| } else { |
| defined_type = scope; |
| } |
| |
| if (!defined_type) { |
| // This can happen when "const reference" is used in an unsupported way, |
| // but missed in checks there. It works as a safety net. |
| AIDL_ERROR(*this) << "Can't resolve the reference (" << value_ << ")"; |
| return nullptr; |
| } |
| |
| if (auto enum_decl = defined_type->AsEnumDeclaration(); enum_decl) { |
| for (const auto& e : enum_decl->GetEnumerators()) { |
| if (e->GetName() == field_name_) { |
| return resolved_ = e->GetValue(); |
| } |
| } |
| } else { |
| for (const auto& c : defined_type->GetConstantDeclarations()) { |
| if (c->GetName() == field_name_) { |
| return resolved_ = &c->GetValue(); |
| } |
| } |
| } |
| AIDL_ERROR(*this) << "Can't find " << field_name_ << " in " << ref_type_->GetName(); |
| return nullptr; |
| } |
| |
| bool AidlConstantReference::CheckValid() const { |
| if (is_evaluated_) return is_valid_; |
| AIDL_FATAL_IF(!resolved_, this) << "Should be resolved first: " << value_; |
| is_valid_ = resolved_->CheckValid(); |
| return is_valid_; |
| } |
| |
| bool AidlConstantReference::evaluate() const { |
| if (is_evaluated_) return is_valid_; |
| AIDL_FATAL_IF(!resolved_, this) << "Should be resolved first: " << value_; |
| is_evaluated_ = true; |
| |
| resolved_->evaluate(); |
| is_valid_ = resolved_->is_valid_; |
| final_type_ = resolved_->final_type_; |
| if (is_valid_) { |
| if (final_type_ == Type::STRING) { |
| final_string_value_ = resolved_->final_string_value_; |
| } else { |
| final_value_ = resolved_->final_value_; |
| } |
| } |
| return is_valid_; |
| } |
| |
| bool AidlUnaryConstExpression::CheckValid() const { |
| if (is_evaluated_) return is_valid_; |
| AIDL_FATAL_IF(unary_ == nullptr, this); |
| |
| is_valid_ = unary_->CheckValid(); |
| if (!is_valid_) { |
| final_type_ = Type::ERROR; |
| return false; |
| } |
| |
| return AidlConstantValue::CheckValid(); |
| } |
| |
| bool AidlUnaryConstExpression::evaluate() const { |
| if (is_evaluated_) { |
| return is_valid_; |
| } |
| is_evaluated_ = true; |
| |
| // Recursively evaluate the expression tree |
| if (!unary_->is_evaluated_) { |
| // TODO(b/142722772) CheckValid() should be called before ValueString() |
| bool success = CheckValid(); |
| success &= unary_->evaluate(); |
| if (!success) { |
| is_valid_ = false; |
| return false; |
| } |
| } |
| if (!IsCompatibleType(unary_->final_type_, op_)) { |
| AIDL_ERROR(unary_) << "'" << op_ << "'" |
| << " is not compatible with " << ToString(unary_->final_type_) |
| << ": " + value_; |
| is_valid_ = false; |
| return false; |
| } |
| if (!unary_->is_valid_) { |
| AIDL_ERROR(unary_) << "Invalid constant unary expression: " + value_; |
| is_valid_ = false; |
| return false; |
| } |
| final_type_ = unary_->final_type_; |
| |
| if (final_type_ == Type::FLOATING) { |
| // don't do anything here. ValueString() will handle everything. |
| is_valid_ = true; |
| return true; |
| } |
| |
| #define CASE_UNARY(__type__) \ |
| return is_valid_ = \ |
| handleUnary(*this, op_, static_cast<__type__>(unary_->final_value_), &final_value_); |
| |
| SWITCH_KIND(final_type_, CASE_UNARY, SHOULD_NOT_REACH(); final_type_ = Type::ERROR; |
| is_valid_ = false; return false;) |
| } |
| |
| bool AidlBinaryConstExpression::CheckValid() const { |
| bool success = false; |
| if (is_evaluated_) return is_valid_; |
| AIDL_FATAL_IF(left_val_ == nullptr, this); |
| AIDL_FATAL_IF(right_val_ == nullptr, this); |
| |
| success = left_val_->CheckValid(); |
| if (!success) { |
| final_type_ = Type::ERROR; |
| AIDL_ERROR(this) << "Invalid left operand in binary expression: " + value_; |
| } |
| |
| success = right_val_->CheckValid(); |
| if (!success) { |
| AIDL_ERROR(this) << "Invalid right operand in binary expression: " + value_; |
| final_type_ = Type::ERROR; |
| } |
| |
| if (final_type_ == Type::ERROR) { |
| is_valid_ = false; |
| return false; |
| } |
| |
| is_valid_ = true; |
| return AidlConstantValue::CheckValid(); |
| } |
| |
| bool AidlBinaryConstExpression::evaluate() const { |
| if (is_evaluated_) { |
| return is_valid_; |
| } |
| is_evaluated_ = true; |
| AIDL_FATAL_IF(left_val_ == nullptr, this); |
| AIDL_FATAL_IF(right_val_ == nullptr, this); |
| |
| // Recursively evaluate the binary expression tree |
| if (!left_val_->is_evaluated_ || !right_val_->is_evaluated_) { |
| // TODO(b/142722772) CheckValid() should be called before ValueString() |
| bool success = CheckValid(); |
| success &= left_val_->evaluate(); |
| success &= right_val_->evaluate(); |
| if (!success) { |
| is_valid_ = false; |
| return false; |
| } |
| } |
| if (!left_val_->is_valid_ || !right_val_->is_valid_) { |
| is_valid_ = false; |
| return false; |
| } |
| is_valid_ = AreCompatibleTypes(left_val_->final_type_, right_val_->final_type_); |
| if (!is_valid_) { |
| AIDL_ERROR(this) << "Cannot perform operation '" << op_ << "' on " |
| << ToString(right_val_->GetType()) << " and " << ToString(left_val_->GetType()) |
| << "."; |
| return false; |
| } |
| |
| bool isArithmeticOrBitflip = OP_IS_BIN_ARITHMETIC || OP_IS_BIN_BITFLIP; |
| |
| // Handle String case first |
| if (left_val_->final_type_ == Type::STRING) { |
| AIDL_FATAL_IF(right_val_->final_type_ != Type::STRING, this); |
| if (!OPEQ("+")) { |
| AIDL_ERROR(this) << "Only '+' is supported for strings, not '" << op_ << "'."; |
| final_type_ = Type::ERROR; |
| is_valid_ = false; |
| return false; |
| } |
| |
| // Remove trailing " from lhs |
| const string& lhs = left_val_->final_string_value_; |
| if (lhs.back() != '"') { |
| AIDL_ERROR(this) << "'" << lhs << "' is missing a trailing quote."; |
| final_type_ = Type::ERROR; |
| is_valid_ = false; |
| return false; |
| } |
| const string& rhs = right_val_->final_string_value_; |
| // Remove starting " from rhs |
| if (rhs.front() != '"') { |
| AIDL_ERROR(this) << "'" << rhs << "' is missing a leading quote."; |
| final_type_ = Type::ERROR; |
| is_valid_ = false; |
| return false; |
| } |
| |
| final_string_value_ = string(lhs.begin(), lhs.end() - 1).append(rhs.begin() + 1, rhs.end()); |
| final_type_ = Type::STRING; |
| return true; |
| } |
| |
| // CASE: + - * / % | ^ & < > <= >= == != |
| if (isArithmeticOrBitflip || OP_IS_BIN_COMP) { |
| // promoted kind for both operands. |
| Type promoted = UsualArithmeticConversion(IntegralPromotion(left_val_->final_type_), |
| IntegralPromotion(right_val_->final_type_)); |
| // result kind. |
| final_type_ = isArithmeticOrBitflip |
| ? promoted // arithmetic or bitflip operators generates promoted type |
| : Type::BOOLEAN; // comparison operators generates bool |
| |
| #define CASE_BINARY_COMMON(__type__) \ |
| return is_valid_ = \ |
| handleBinaryCommon(*this, static_cast<__type__>(left_val_->final_value_), op_, \ |
| static_cast<__type__>(right_val_->final_value_), &final_value_); |
| |
| SWITCH_KIND(promoted, CASE_BINARY_COMMON, SHOULD_NOT_REACH(); final_type_ = Type::ERROR; |
| is_valid_ = false; return false;) |
| } |
| |
| // CASE: << >> |
| string newOp = op_; |
| if (OP_IS_BIN_SHIFT) { |
| // promoted kind for both operands. |
| final_type_ = UsualArithmeticConversion(IntegralPromotion(left_val_->final_type_), |
| IntegralPromotion(right_val_->final_type_)); |
| auto numBits = right_val_->final_value_; |
| if (numBits < 0) { |
| // shifting with negative number of bits is undefined in C. In AIDL it |
| // is defined as shifting into the other direction. |
| newOp = OPEQ("<<") ? ">>" : "<<"; |
| numBits = -numBits; |
| } |
| |
| #define CASE_SHIFT(__type__) \ |
| return is_valid_ = handleShift(*this, static_cast<__type__>(left_val_->final_value_), newOp, \ |
| static_cast<__type__>(numBits), &final_value_); |
| |
| SWITCH_KIND(final_type_, CASE_SHIFT, SHOULD_NOT_REACH(); final_type_ = Type::ERROR; |
| is_valid_ = false; return false;) |
| } |
| |
| // CASE: && || |
| if (OP_IS_BIN_LOGICAL) { |
| final_type_ = Type::BOOLEAN; |
| // easy; everything is bool. |
| return handleLogical(*this, left_val_->final_value_, op_, right_val_->final_value_, |
| &final_value_); |
| } |
| |
| SHOULD_NOT_REACH(); |
| is_valid_ = false; |
| return false; |
| } |
| |
| AidlConstantValue::AidlConstantValue(const AidlLocation& location, Type parsed_type, |
| int64_t parsed_value, const string& checked_value) |
| : AidlNode(location), |
| type_(parsed_type), |
| value_(checked_value), |
| final_type_(parsed_type), |
| final_value_(parsed_value) { |
| AIDL_FATAL_IF(value_.empty() && type_ != Type::ERROR, location); |
| AIDL_FATAL_IF(type_ != Type::INT8 && type_ != Type::INT32 && type_ != Type::INT64, location); |
| } |
| |
| AidlConstantValue::AidlConstantValue(const AidlLocation& location, Type type, |
| const string& checked_value) |
| : AidlNode(location), |
| type_(type), |
| value_(checked_value), |
| final_type_(type) { |
| AIDL_FATAL_IF(value_.empty() && type_ != Type::ERROR, location); |
| switch (type_) { |
| case Type::INT8: |
| case Type::INT32: |
| case Type::INT64: |
| case Type::ARRAY: |
| AIDL_FATAL(this) << "Invalid type: " << ToString(type_); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| AidlConstantValue::AidlConstantValue(const AidlLocation& location, Type type, |
| std::unique_ptr<vector<unique_ptr<AidlConstantValue>>> values, |
| const std::string& value) |
| : AidlNode(location), |
| type_(type), |
| values_(std::move(*values)), |
| value_(value), |
| is_valid_(false), |
| is_evaluated_(false), |
| final_type_(type) { |
| AIDL_FATAL_IF(type_ != Type::ARRAY, location); |
| } |
| |
| AidlUnaryConstExpression::AidlUnaryConstExpression(const AidlLocation& location, const string& op, |
| std::unique_ptr<AidlConstantValue> rval) |
| : AidlConstantValue(location, Type::UNARY, op + rval->value_), |
| unary_(std::move(rval)), |
| op_(op) { |
| final_type_ = Type::UNARY; |
| } |
| |
| AidlBinaryConstExpression::AidlBinaryConstExpression(const AidlLocation& location, |
| std::unique_ptr<AidlConstantValue> lval, |
| const string& op, |
| std::unique_ptr<AidlConstantValue> rval) |
| : AidlConstantValue(location, Type::BINARY, lval->value_ + op + rval->value_), |
| left_val_(std::move(lval)), |
| right_val_(std::move(rval)), |
| op_(op) { |
| final_type_ = Type::BINARY; |
| } |