blob: bbfde23c236b39711d5a6c72b8850292af47165b [file] [log] [blame]
/*
* Copyright (c) 2015 The Linux Foundation. All rights reserved.
*
* Previously licensed under the ISC license by Qualcomm Atheros, Inc.
*
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
/*
* This file was originally distributed by Qualcomm Atheros, Inc.
* under proprietary terms before Copyright ownership was assigned
* to the Linux Foundation.
*/
#include <osdep.h>
#include "a_types.h"
#include "athdefs.h"
#include "osapi_linux.h"
#include "targcfg.h"
#include "cdf_lock.h"
#include "cdf_status.h"
#include <cdf_atomic.h> /* cdf_atomic_read */
#include <targaddrs.h>
#include <bmi_msg.h>
#include "hif_io32.h"
#include <hif.h>
#include <htc_services.h>
#include "regtable.h"
#define ATH_MODULE_NAME hif
#include <a_debug.h>
#include "hif_main.h"
#include "hif_hw_version.h"
#include "ce_api.h"
#include "ce_tasklet.h"
#include "cdf_trace.h"
#include "cdf_status.h"
#include "cds_api.h"
#ifdef CONFIG_CNSS
#include <net/cnss.h>
#endif
#include <cds_get_bin.h>
#include "epping_main.h"
#include "hif_debug.h"
#include "mp_dev.h"
#ifdef HIF_PCI
#include "icnss_stub.h"
#else
#include <soc/qcom/icnss.h>
#endif
#ifndef REMOVE_PKT_LOG
#include "pktlog_ac.h"
#endif
#define AGC_DUMP 1
#define CHANINFO_DUMP 2
#define BB_WATCHDOG_DUMP 3
#ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG
#define PCIE_ACCESS_DUMP 4
#endif
void hif_dump(struct ol_softc *scn, uint8_t cmd_id, bool start)
{
switch (cmd_id) {
case AGC_DUMP:
if (start)
priv_start_agc(scn);
else
priv_dump_agc(scn);
break;
case CHANINFO_DUMP:
if (start)
priv_start_cap_chaninfo(scn);
else
priv_dump_chaninfo(scn);
break;
case BB_WATCHDOG_DUMP:
priv_dump_bbwatchdog(scn);
break;
#ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG
case PCIE_ACCESS_DUMP:
hif_target_dump_access_log();
break;
#endif
default:
HIF_ERROR("%s: Invalid htc dump command", __func__);
break;
}
}
/**
* hif_shut_down_device() - hif_shut_down_device
*
* SThis fucntion shuts down the device
*
* @scn: ol_softc
*
* Return: void
*/
void hif_shut_down_device(struct ol_softc *scn)
{
if (scn && scn->hif_hdl) {
struct HIF_CE_state *hif_state =
(struct HIF_CE_state *)scn->hif_hdl;
hif_stop(scn);
cdf_mem_free(hif_state);
scn->hif_hdl = NULL;
}
}
/**
* hif_cancel_deferred_target_sleep() - cancel deferred target sleep
*
* This function cancels the defered target sleep
*
* @scn: ol_softc
*
* Return: void
*/
void hif_cancel_deferred_target_sleep(struct ol_softc *scn)
{
hif_pci_cancel_deferred_target_sleep(scn);
}
/**
* hif_get_target_id(): hif_get_target_id
*
* Return the virtual memory base address to the caller
*
* @scn: ol_softc
*
* Return: A_target_id_t
*/
A_target_id_t hif_get_target_id(struct ol_softc *scn)
{
return scn->mem;
}
/**
* hif_set_target_sleep(): hif_set_target_sleep
* @scn: scn
* @sleep_ok: sleep_ok
* @wait_for_it: wait
*
* Return: void
*/
void hif_set_target_sleep(struct ol_softc *scn,
bool sleep_ok, bool wait_for_it)
{
hif_target_sleep_state_adjust(scn,
sleep_ok, wait_for_it);
}
/**
* hif_target_forced_awake(): hif_target_forced_awake
* @scn: scn
*
* Return: bool
*/
bool hif_target_forced_awake(struct ol_softc *scn)
{
A_target_id_t addr = scn->mem;
bool awake;
bool forced_awake;
awake = hif_targ_is_awake(scn, addr);
forced_awake =
!!(hif_read32_mb
(addr + PCIE_LOCAL_BASE_ADDRESS +
PCIE_SOC_WAKE_ADDRESS) & PCIE_SOC_WAKE_V_MASK);
return awake && forced_awake;
}
/**
* hif_fw_interrupt_handler(): FW interrupt handler
*
* This function is the FW interrupt handlder
*
* @irq: irq number
* @arg: the user pointer
*
* Return: bool
*/
#ifndef QCA_WIFI_3_0
irqreturn_t hif_fw_interrupt_handler(int irq, void *arg)
{
struct ol_softc *scn = arg;
struct HIF_CE_state *hif_state = (struct HIF_CE_state *)scn->hif_hdl;
uint32_t fw_indicator_address, fw_indicator;
A_TARGET_ACCESS_BEGIN_RET(scn);
fw_indicator_address = hif_state->fw_indicator_address;
/* For sudden unplug this will return ~0 */
fw_indicator = A_TARGET_READ(scn, fw_indicator_address);
if ((fw_indicator != ~0) && (fw_indicator & FW_IND_EVENT_PENDING)) {
/* ACK: clear Target-side pending event */
A_TARGET_WRITE(scn, fw_indicator_address,
fw_indicator & ~FW_IND_EVENT_PENDING);
A_TARGET_ACCESS_END_RET(scn);
if (hif_state->started) {
/* Alert the Host-side service thread */
atomic_set(&hif_state->fw_event_pending, 1);
hif_completion_thread(hif_state);
} else {
/*
* Probable Target failure before we're prepared
* to handle it. Generally unexpected.
*/
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,
("%s: Early firmware event indicated\n",
__func__));
}
} else {
A_TARGET_ACCESS_END_RET(scn);
}
return ATH_ISR_SCHED;
}
#else
irqreturn_t hif_fw_interrupt_handler(int irq, void *arg)
{
return ATH_ISR_SCHED;
}
#endif /* #ifdef QCA_WIFI_3_0 */
/**
* hif_get_targetdef(): hif_get_targetdef
* @scn: scn
*
* Return: void *
*/
void *hif_get_targetdef(struct ol_softc *scn)
{
return scn->targetdef;
}
/**
* hif_vote_link_down(): unvote for link up
*
* Call hif_vote_link_down to release a previous request made using
* hif_vote_link_up. A hif_vote_link_down call should only be made
* after a corresponding hif_vote_link_up, otherwise you could be
* negating a vote from another source. When no votes are present
* hif will not guarantee the linkstate after hif_bus_suspend.
*
* SYNCHRONIZE WITH hif_vote_link_up by only calling in MC thread
* and initialization deinitialization sequencences.
*
* Return: n/a
*/
void hif_vote_link_down(void)
{
struct ol_softc *scn = cds_get_context(CDF_MODULE_ID_HIF);
CDF_BUG(scn);
scn->linkstate_vote--;
if (scn->linkstate_vote == 0)
hif_bus_prevent_linkdown(false);
}
/**
* hif_vote_link_up(): vote to prevent bus from suspending
*
* Makes hif guarantee that fw can message the host normally
* durring suspend.
*
* SYNCHRONIZE WITH hif_vote_link_up by only calling in MC thread
* and initialization deinitialization sequencences.
*
* Return: n/a
*/
void hif_vote_link_up(void)
{
struct ol_softc *scn = cds_get_context(CDF_MODULE_ID_HIF);
CDF_BUG(scn);
scn->linkstate_vote++;
if (scn->linkstate_vote == 1)
hif_bus_prevent_linkdown(true);
}
/**
* hif_can_suspend_link(): query if hif is permitted to suspend the link
*
* Hif will ensure that the link won't be suspended if the upperlayers
* don't want it to.
*
* SYNCHRONIZATION: MC thread is stopped before bus suspend thus
* we don't need extra locking to ensure votes dont change while
* we are in the process of suspending or resuming.
*
* Return: false if hif will guarantee link up durring suspend.
*/
bool hif_can_suspend_link(void)
{
struct ol_softc *scn = cds_get_context(CDF_MODULE_ID_HIF);
CDF_BUG(scn);
return scn->linkstate_vote == 0;
}
/**
* hif_hia_item_address(): hif_hia_item_address
* @target_type: target_type
* @item_offset: item_offset
*
* Return: n/a
*/
uint32_t hif_hia_item_address(uint32_t target_type, uint32_t item_offset)
{
switch (target_type) {
case TARGET_TYPE_AR6002:
return AR6002_HOST_INTEREST_ADDRESS + item_offset;
case TARGET_TYPE_AR6003:
return AR6003_HOST_INTEREST_ADDRESS + item_offset;
case TARGET_TYPE_AR6004:
return AR6004_HOST_INTEREST_ADDRESS + item_offset;
case TARGET_TYPE_AR6006:
return AR6006_HOST_INTEREST_ADDRESS + item_offset;
case TARGET_TYPE_AR9888:
return AR9888_HOST_INTEREST_ADDRESS + item_offset;
case TARGET_TYPE_AR6320:
case TARGET_TYPE_AR6320V2:
return AR6320_HOST_INTEREST_ADDRESS + item_offset;
case TARGET_TYPE_QCA6180:
return QCA6180_HOST_INTEREST_ADDRESS + item_offset;
case TARGET_TYPE_ADRASTEA:
/* ADRASTEA doesn't have a host interest address */
ASSERT(0);
return 0;
default:
ASSERT(0);
return 0;
}
}
/**
* hif_max_num_receives_reached() - check max receive is reached
* @count: unsigned int.
*
* Output check status as bool
*
* Return: bool
*/
bool hif_max_num_receives_reached(unsigned int count)
{
if (WLAN_IS_EPPING_ENABLED(cds_get_conparam()))
return count > 120;
else
return count > MAX_NUM_OF_RECEIVES;
}
/**
* init_buffer_count() - initial buffer count
* @maxSize: cdf_size_t
*
* routine to modify the initial buffer count to be allocated on an os
* platform basis. Platform owner will need to modify this as needed
*
* Return: cdf_size_t
*/
cdf_size_t init_buffer_count(cdf_size_t maxSize)
{
return maxSize;
}
/**
* hif_init_cdf_ctx(): hif_init_cdf_ctx
* @hif_ctx: hif_ctx
*
* Return: int
*/
int hif_init_cdf_ctx(void *hif_ctx)
{
cdf_device_t cdf_ctx;
struct ol_softc *scn = (struct ol_softc *)hif_ctx;
cdf_ctx = cds_get_context(CDF_MODULE_ID_CDF_DEVICE);
if (!cdf_ctx) {
HIF_ERROR("%s: CDF is NULL", __func__);
return -ENOMEM;
}
cdf_ctx->drv = &scn->aps_osdev;
cdf_ctx->drv_hdl = scn->aps_osdev.bdev;
cdf_ctx->dev = scn->aps_osdev.device;
scn->cdf_dev = cdf_ctx;
return 0;
}
/**
* hif_deinit_cdf_ctx(): hif_deinit_cdf_ctx
* @hif_ctx: hif_ctx
*
* Return: void
*/
void hif_deinit_cdf_ctx(void *hif_ctx)
{
struct ol_softc *scn = (struct ol_softc *)hif_ctx;
if (scn == NULL || !scn->cdf_dev)
return;
scn->cdf_dev = NULL;
}
/**
* hif_save_htc_htt_config_endpoint():
* hif_save_htc_htt_config_endpoint
* @htc_endpoint: htc_endpoint
*
* Return: void
*/
void hif_save_htc_htt_config_endpoint(int htc_endpoint)
{
struct ol_softc *scn = cds_get_context(CDF_MODULE_ID_HIF);
if (!scn) {
HIF_ERROR("%s: error: scn or scn->hif_sc is NULL!",
__func__);
return;
}
scn->htc_endpoint = htc_endpoint;
}
/**
* hif_get_hw_name(): get a human readable name for the hardware
*
* Return: human readible name for the underlying wifi hardware.
*/
const char *hif_get_hw_name(struct ol_softc *scn)
{
int i;
for (i = 0; i < ARRAY_SIZE(qwlan_hw_list); i++) {
if (scn->target_version == qwlan_hw_list[i].id &&
scn->target_revision == qwlan_hw_list[i].subid) {
return qwlan_hw_list[i].name;
}
}
return "Unknown Device";
}
/**
* hif_get_hw_info(): hif_get_hw_info
* @scn: scn
* @version: version
* @revision: revision
*
* Return: n/a
*/
void hif_get_hw_info(void *scn, u32 *version, u32 *revision,
const char **target_name)
{
*version = ((struct ol_softc *)scn)->target_version;
*revision = ((struct ol_softc *)scn)->target_revision;
*target_name = hif_get_hw_name((struct ol_softc *)scn);
}
/**
* hif_set_fw_info(): set the target_fw_version
* @scn: scn
* @target_fw_version: target_fw_version
*
* Return: n/a
*/
void hif_set_fw_info(void *scn, uint32_t target_fw_version)
{
((struct ol_softc *)scn)->target_fw_version = target_fw_version;
}
/**
* hif_open(): hif_open
*
* Return: scn
*/
CDF_STATUS hif_open(void)
{
struct ol_softc *scn;
v_CONTEXT_t cds_context;
CDF_STATUS status = CDF_STATUS_SUCCESS;
cds_context = cds_get_global_context();
status = cds_alloc_context(cds_context, CDF_MODULE_ID_HIF,
(void **)&scn, sizeof(*scn));
if (status != CDF_STATUS_SUCCESS) {
HIF_ERROR("%s: cannot alloc ol_sc", __func__);
return status;
}
cdf_mem_zero(scn, sizeof(*scn));
scn->enableuartprint = 0;
scn->enablefwlog = 0;
scn->max_no_of_peers = 1;
scn->pkt_log_init = false;
cdf_atomic_init(&scn->wow_done);
cdf_atomic_init(&scn->active_tasklet_cnt);
cdf_atomic_init(&scn->link_suspended);
cdf_atomic_init(&scn->tasklet_from_intr);
init_waitqueue_head(&scn->aps_osdev.event_queue);
cdf_spinlock_init(&scn->target_lock);
scn->linkstate_vote = 0;
return status;
}
/**
* hif_close(): hif_close
* @hif_ctx: hif_ctx
*
* Return: n/a
*/
void hif_close(void *hif_ctx)
{
struct ol_softc *scn = hif_ctx;
if (scn == NULL) {
HIF_ERROR("%s: ol_softc is NULL", __func__);
return;
}
if (scn->athdiag_procfs_inited) {
athdiag_procfs_remove();
scn->athdiag_procfs_inited = false;
}
if (scn->hif_hdl) {
cdf_mem_free(scn->hif_hdl);
scn->hif_hdl = NULL;
}
hif_bus_close(scn);
cds_free_context(cds_get_global_context(),
CDF_MODULE_ID_HIF, hif_ctx);
}
/**
* hif_enable(): hif_enable
* @hif_ctx: hif_ctx
* @dev: dev
* @bdev: bus dev
* @bid: bus ID
* @bus_type: bus type
* @type: enable type
*
* Return: CDF_STATUS
*/
CDF_STATUS hif_enable(void *hif_ctx, struct device *dev,
void *bdev, const hif_bus_id *bid,
enum ath_hal_bus_type bus_type,
enum hif_enable_type type)
{
CDF_STATUS status;
struct ol_softc *scn = hif_ctx;
if (scn == NULL) {
HIF_ERROR("%s: hif_ctx = NULL", __func__);
return CDF_STATUS_E_NULL_VALUE;
}
status = hif_bus_open(scn, bus_type);
if (status != CDF_STATUS_SUCCESS) {
HIF_ERROR("%s: hif_bus_open error = %d, bus_type = %d",
__func__, status, bus_type);
return status;
}
status = hif_enable_bus(scn, dev, bdev, bid, type);
if (status != CDF_STATUS_SUCCESS) {
hif_bus_close(scn);
HIF_ERROR("%s: hif_enable_bus error = %d",
__func__, status);
return status;
}
if (ADRASTEA_BU)
hif_vote_link_up();
if (hif_config_ce(scn)) {
HIF_ERROR("%s: Target probe failed.", __func__);
hif_disable_bus(scn->aps_osdev.bdev);
hif_bus_close(scn);
status = CDF_STATUS_E_FAILURE;
return status;
}
/*
* Flag to avoid potential unallocated memory access from MSI
* interrupt handler which could get scheduled as soon as MSI
* is enabled, i.e to take care of the race due to the order
* in where MSI is enabled before the memory, that will be
* in interrupt handlers, is allocated.
*/
#ifdef HIF_PCI
status = hif_configure_irq(scn->hif_sc);
if (status < 0) {
HIF_ERROR("%s: ERROR - configure_IRQ_and_CE failed, status = %d",
__func__, status);
return CDF_STATUS_E_FAILURE;
}
#endif
scn->hif_init_done = true;
HIF_TRACE("%s: X OK", __func__);
return CDF_STATUS_SUCCESS;
}
/**
* hif_pktlogmod_exit(): hif_pktlogmod_exit
* @scn: scn
*
* Return: n/a
*/
#ifndef REMOVE_PKT_LOG
void hif_pktlogmod_exit(void *hif_ctx)
{
struct ol_softc *scn = hif_ctx;
if (scn && cds_get_conparam() != CDF_FTM_MODE &&
!WLAN_IS_EPPING_ENABLED(cds_get_conparam()) && scn->pkt_log_init) {
pktlogmod_exit(scn);
scn->pkt_log_init = false;
}
}
#else
void hif_pktlogmod_exit(void *hif_ctx)
{
}
#endif
#if ((!defined(QCA_WIFI_3_0_IHELIUM) && !defined(QCA_WIFI_3_0_ADRASTEA)) || defined(CONFIG_ICNSS))
static inline void cnss_pcie_notify_q6(void)
{
return;
}
#endif
/**
* hif_wlan_disable(): call the platform driver to disable wlan
*
* This function passes the con_mode to platform driver to disable
* wlan.
*
* Return: void
*/
void hif_wlan_disable(void)
{
enum icnss_driver_mode mode;
uint32_t con_mode = cds_get_conparam();
switch (con_mode) {
case CDF_FTM_MODE:
mode = ICNSS_FTM;
break;
case CDF_EPPING_MODE:
mode = ICNSS_EPPING;
break;
default:
mode = ICNSS_MISSION;
break;
}
icnss_wlan_disable(mode);
}
void hif_disable(void *hif_ctx, enum hif_disable_type type)
{
struct ol_softc *scn = hif_ctx;
if (!scn)
return;
hif_nointrs(scn);
if (scn->hif_init_done == false)
hif_shut_down_device(scn);
else
hif_stop(scn);
if (ADRASTEA_BU)
hif_vote_link_down();
if (scn->aps_osdev.bdev)
hif_disable_bus(scn->aps_osdev.bdev);
if (IHELIUM_BU) {
cnss_pcie_notify_q6();
HIF_TRACE("%s: cnss_pcie_notify_q6 done, notice_send= %d",
__func__, scn->notice_send);
}
hif_wlan_disable();
scn->notice_send = false;
HIF_INFO("%s: X", __func__);
}
/**
* hif_crash_shutdown_dump_ce_register():
* hif_crash_shutdown_dump_ce_register
* @hif_ctx: hif_ctx
*
* Return: n/a
*/
#if defined(TARGET_RAMDUMP_AFTER_KERNEL_PANIC) \
&& defined(HIF_PCI) && defined(DEBUG)
static void hif_crash_shutdown_dump_ce_register(void *hif_ctx)
{
struct ol_softc *scn = hif_ctx;
if (hif_check_soc_status(scn)
|| dump_ce_register(scn)) {
return;
}
dump_ce_debug_register(scn);
}
/**
* hif_crash_shutdown(): hif_crash_shutdown
*
* This function is called by the platform driver to dump CE registers
*
* @hif_ctx: hif_ctx
*
* Return: n/a
*/
void hif_crash_shutdown(void *hif_ctx)
{
struct ol_softc *scn = hif_ctx;
struct HIF_CE_state *hif_state;
if (!scn)
return;
hif_state = (struct HIF_CE_state *)scn->hif_hdl;
if (!hif_state)
return;
if (OL_TRGET_STATUS_RESET == scn->target_status) {
HIF_INFO_MED("%s: Target is already asserted, ignore!",
__func__);
return;
}
if (cds_is_load_unload_in_progress()) {
HIF_ERROR("%s: Load/unload is in progress, ignore!", __func__);
return;
}
cdf_spin_lock_irqsave(&scn->target_lock);
hif_crash_shutdown_dump_ce_register(hif_ctx);
if (ol_copy_ramdump(scn))
goto out;
HIF_INFO_MED("%s: RAM dump collecting completed!", __func__);
out:
cdf_spin_unlock_irqrestore(&scn->target_lock);
return;
}
#else
void hif_crash_shutdown(void *hif_ctx)
{
HIF_INFO_MED("%s: Collecting target RAM dump disabled",
__func__);
return;
}
#endif /* TARGET_RAMDUMP_AFTER_KERNEL_PANIC */
#ifdef QCA_WIFI_3_0
/**
* hif_check_fw_reg(): hif_check_fw_reg
* @scn: scn
* @state:
*
* Return: int
*/
int hif_check_fw_reg(struct ol_softc *scn)
{
return 0;
}
#endif
#ifdef IPA_OFFLOAD
/**
* hif_read_phy_mem_base(): hif_read_phy_mem_base
* @scn: scn
* @phy_mem_base: physical mem base
*
* Return: n/a
*/
void hif_read_phy_mem_base(struct ol_softc *scn, cdf_dma_addr_t *phy_mem_base)
{
*phy_mem_base = scn->mem_pa;
}
#endif /* IPA_OFFLOAD */
/**
* hif_get_device_type(): hif_get_device_type
* @device_id: device_id
* @revision_id: revision_id
* @hif_type: returned hif_type
* @target_type: returned target_type
*
* Return: int
*/
int hif_get_device_type(uint32_t device_id,
uint32_t revision_id,
uint32_t *hif_type, uint32_t *target_type)
{
int ret = 0;
switch (device_id) {
#ifdef QCA_WIFI_3_0_ADRASTEA
case ADRASTEA_DEVICE_ID:
case ADRASTEA_DEVICE_ID_P2_E12:
*hif_type = HIF_TYPE_ADRASTEA;
*target_type = TARGET_TYPE_ADRASTEA;
break;
#else
case QCA6180_DEVICE_ID:
*hif_type = HIF_TYPE_QCA6180;
*target_type = TARGET_TYPE_QCA6180;
break;
#endif
case AR9888_DEVICE_ID:
*hif_type = HIF_TYPE_AR9888;
*target_type = TARGET_TYPE_AR9888;
break;
case AR6320_DEVICE_ID:
switch (revision_id) {
case AR6320_FW_1_1:
case AR6320_FW_1_3:
*hif_type = HIF_TYPE_AR6320;
*target_type = TARGET_TYPE_AR6320;
break;
case AR6320_FW_2_0:
case AR6320_FW_3_0:
case AR6320_FW_3_2:
*hif_type = HIF_TYPE_AR6320V2;
*target_type = TARGET_TYPE_AR6320V2;
break;
default:
HIF_ERROR("%s: error - dev_id = 0x%x, rev_id = 0x%x",
__func__, device_id, revision_id);
ret = -ENODEV;
goto end;
}
break;
default:
HIF_ERROR("%s: Unsupported device ID!", __func__);
ret = -ENODEV;
break;
}
end:
return ret;
}