|  | //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines a pattern matching instruction selector for PowerPC, | 
|  | // converting from a legalized dag to a PPC dag. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "PPC.h" | 
|  | #include "MCTargetDesc/PPCPredicates.h" | 
|  | #include "PPCMachineFunctionInfo.h" | 
|  | #include "PPCTargetMachine.h" | 
|  | #include "llvm/Analysis/BranchProbabilityInfo.h" | 
|  | #include "llvm/CodeGen/FunctionLoweringInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/SelectionDAGISel.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalAlias.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "ppc-codegen" | 
|  |  | 
|  | // FIXME: Remove this once the bug has been fixed! | 
|  | cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug", | 
|  | cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true), | 
|  | cl::desc("use aggressive ppc isel for bit permutations"), | 
|  | cl::Hidden); | 
|  | static cl::opt<bool> BPermRewriterNoMasking( | 
|  | "ppc-bit-perm-rewriter-stress-rotates", | 
|  | cl::desc("stress rotate selection in aggressive ppc isel for " | 
|  | "bit permutations"), | 
|  | cl::Hidden); | 
|  |  | 
|  | static cl::opt<bool> EnableBranchHint( | 
|  | "ppc-use-branch-hint", cl::init(true), | 
|  | cl::desc("Enable static hinting of branches on ppc"), | 
|  | cl::Hidden); | 
|  |  | 
|  | namespace { | 
|  | //===--------------------------------------------------------------------===// | 
|  | /// PPCDAGToDAGISel - PPC specific code to select PPC machine | 
|  | /// instructions for SelectionDAG operations. | 
|  | /// | 
|  | class PPCDAGToDAGISel : public SelectionDAGISel { | 
|  | const PPCTargetMachine &TM; | 
|  | const PPCSubtarget *PPCSubTarget; | 
|  | const PPCTargetLowering *PPCLowering; | 
|  | unsigned GlobalBaseReg; | 
|  | public: | 
|  | explicit PPCDAGToDAGISel(PPCTargetMachine &tm) | 
|  | : SelectionDAGISel(tm), TM(tm) {} | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF) override { | 
|  | // Make sure we re-emit a set of the global base reg if necessary | 
|  | GlobalBaseReg = 0; | 
|  | PPCSubTarget = &MF.getSubtarget<PPCSubtarget>(); | 
|  | PPCLowering = PPCSubTarget->getTargetLowering(); | 
|  | SelectionDAGISel::runOnMachineFunction(MF); | 
|  |  | 
|  | if (!PPCSubTarget->isSVR4ABI()) | 
|  | InsertVRSaveCode(MF); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void PreprocessISelDAG() override; | 
|  | void PostprocessISelDAG() override; | 
|  |  | 
|  | /// getI32Imm - Return a target constant with the specified value, of type | 
|  | /// i32. | 
|  | inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { | 
|  | return CurDAG->getTargetConstant(Imm, dl, MVT::i32); | 
|  | } | 
|  |  | 
|  | /// getI64Imm - Return a target constant with the specified value, of type | 
|  | /// i64. | 
|  | inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) { | 
|  | return CurDAG->getTargetConstant(Imm, dl, MVT::i64); | 
|  | } | 
|  |  | 
|  | /// getSmallIPtrImm - Return a target constant of pointer type. | 
|  | inline SDValue getSmallIPtrImm(unsigned Imm, const SDLoc &dl) { | 
|  | return CurDAG->getTargetConstant( | 
|  | Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout())); | 
|  | } | 
|  |  | 
|  | /// isRotateAndMask - Returns true if Mask and Shift can be folded into a | 
|  | /// rotate and mask opcode and mask operation. | 
|  | static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask, | 
|  | unsigned &SH, unsigned &MB, unsigned &ME); | 
|  |  | 
|  | /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC | 
|  | /// base register.  Return the virtual register that holds this value. | 
|  | SDNode *getGlobalBaseReg(); | 
|  |  | 
|  | void selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0); | 
|  |  | 
|  | // Select - Convert the specified operand from a target-independent to a | 
|  | // target-specific node if it hasn't already been changed. | 
|  | void Select(SDNode *N) override; | 
|  |  | 
|  | bool tryBitfieldInsert(SDNode *N); | 
|  | bool tryBitPermutation(SDNode *N); | 
|  |  | 
|  | /// SelectCC - Select a comparison of the specified values with the | 
|  | /// specified condition code, returning the CR# of the expression. | 
|  | SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, | 
|  | const SDLoc &dl); | 
|  |  | 
|  | /// SelectAddrImm - Returns true if the address N can be represented by | 
|  | /// a base register plus a signed 16-bit displacement [r+imm]. | 
|  | bool SelectAddrImm(SDValue N, SDValue &Disp, | 
|  | SDValue &Base) { | 
|  | return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, false); | 
|  | } | 
|  |  | 
|  | /// SelectAddrImmOffs - Return true if the operand is valid for a preinc | 
|  | /// immediate field.  Note that the operand at this point is already the | 
|  | /// result of a prior SelectAddressRegImm call. | 
|  | bool SelectAddrImmOffs(SDValue N, SDValue &Out) const { | 
|  | if (N.getOpcode() == ISD::TargetConstant || | 
|  | N.getOpcode() == ISD::TargetGlobalAddress) { | 
|  | Out = N; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SelectAddrIdx - Given the specified addressed, check to see if it can be | 
|  | /// represented as an indexed [r+r] operation.  Returns false if it can | 
|  | /// be represented by [r+imm], which are preferred. | 
|  | bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) { | 
|  | return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG); | 
|  | } | 
|  |  | 
|  | /// SelectAddrIdxOnly - Given the specified addressed, force it to be | 
|  | /// represented as an indexed [r+r] operation. | 
|  | bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) { | 
|  | return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG); | 
|  | } | 
|  |  | 
|  | /// SelectAddrImmX4 - Returns true if the address N can be represented by | 
|  | /// a base register plus a signed 16-bit displacement that is a multiple of 4. | 
|  | /// Suitable for use by STD and friends. | 
|  | bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) { | 
|  | return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, true); | 
|  | } | 
|  |  | 
|  | // Select an address into a single register. | 
|  | bool SelectAddr(SDValue N, SDValue &Base) { | 
|  | Base = N; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for | 
|  | /// inline asm expressions.  It is always correct to compute the value into | 
|  | /// a register.  The case of adding a (possibly relocatable) constant to a | 
|  | /// register can be improved, but it is wrong to substitute Reg+Reg for | 
|  | /// Reg in an asm, because the load or store opcode would have to change. | 
|  | bool SelectInlineAsmMemoryOperand(const SDValue &Op, | 
|  | unsigned ConstraintID, | 
|  | std::vector<SDValue> &OutOps) override { | 
|  |  | 
|  | switch(ConstraintID) { | 
|  | default: | 
|  | errs() << "ConstraintID: " << ConstraintID << "\n"; | 
|  | llvm_unreachable("Unexpected asm memory constraint"); | 
|  | case InlineAsm::Constraint_es: | 
|  | case InlineAsm::Constraint_i: | 
|  | case InlineAsm::Constraint_m: | 
|  | case InlineAsm::Constraint_o: | 
|  | case InlineAsm::Constraint_Q: | 
|  | case InlineAsm::Constraint_Z: | 
|  | case InlineAsm::Constraint_Zy: | 
|  | // We need to make sure that this one operand does not end up in r0 | 
|  | // (because we might end up lowering this as 0(%op)). | 
|  | const TargetRegisterInfo *TRI = PPCSubTarget->getRegisterInfo(); | 
|  | const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1); | 
|  | SDLoc dl(Op); | 
|  | SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32); | 
|  | SDValue NewOp = | 
|  | SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, | 
|  | dl, Op.getValueType(), | 
|  | Op, RC), 0); | 
|  |  | 
|  | OutOps.push_back(NewOp); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void InsertVRSaveCode(MachineFunction &MF); | 
|  |  | 
|  | StringRef getPassName() const override { | 
|  | return "PowerPC DAG->DAG Pattern Instruction Selection"; | 
|  | } | 
|  |  | 
|  | // Include the pieces autogenerated from the target description. | 
|  | #include "PPCGenDAGISel.inc" | 
|  |  | 
|  | private: | 
|  | bool trySETCC(SDNode *N); | 
|  |  | 
|  | void PeepholePPC64(); | 
|  | void PeepholePPC64ZExt(); | 
|  | void PeepholeCROps(); | 
|  |  | 
|  | SDValue combineToCMPB(SDNode *N); | 
|  | void foldBoolExts(SDValue &Res, SDNode *&N); | 
|  |  | 
|  | bool AllUsersSelectZero(SDNode *N); | 
|  | void SwapAllSelectUsers(SDNode *N); | 
|  |  | 
|  | void transferMemOperands(SDNode *N, SDNode *Result); | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// InsertVRSaveCode - Once the entire function has been instruction selected, | 
|  | /// all virtual registers are created and all machine instructions are built, | 
|  | /// check to see if we need to save/restore VRSAVE.  If so, do it. | 
|  | void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) { | 
|  | // Check to see if this function uses vector registers, which means we have to | 
|  | // save and restore the VRSAVE register and update it with the regs we use. | 
|  | // | 
|  | // In this case, there will be virtual registers of vector type created | 
|  | // by the scheduler.  Detect them now. | 
|  | bool HasVectorVReg = false; | 
|  | for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) { | 
|  | unsigned Reg = TargetRegisterInfo::index2VirtReg(i); | 
|  | if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) { | 
|  | HasVectorVReg = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!HasVectorVReg) return;  // nothing to do. | 
|  |  | 
|  | // If we have a vector register, we want to emit code into the entry and exit | 
|  | // blocks to save and restore the VRSAVE register.  We do this here (instead | 
|  | // of marking all vector instructions as clobbering VRSAVE) for two reasons: | 
|  | // | 
|  | // 1. This (trivially) reduces the load on the register allocator, by not | 
|  | //    having to represent the live range of the VRSAVE register. | 
|  | // 2. This (more significantly) allows us to create a temporary virtual | 
|  | //    register to hold the saved VRSAVE value, allowing this temporary to be | 
|  | //    register allocated, instead of forcing it to be spilled to the stack. | 
|  |  | 
|  | // Create two vregs - one to hold the VRSAVE register that is live-in to the | 
|  | // function and one for the value after having bits or'd into it. | 
|  | unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); | 
|  | unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); | 
|  |  | 
|  | const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo(); | 
|  | MachineBasicBlock &EntryBB = *Fn.begin(); | 
|  | DebugLoc dl; | 
|  | // Emit the following code into the entry block: | 
|  | // InVRSAVE = MFVRSAVE | 
|  | // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE | 
|  | // MTVRSAVE UpdatedVRSAVE | 
|  | MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point | 
|  | BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE); | 
|  | BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE), | 
|  | UpdatedVRSAVE).addReg(InVRSAVE); | 
|  | BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE); | 
|  |  | 
|  | // Find all return blocks, outputting a restore in each epilog. | 
|  | for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { | 
|  | if (BB->isReturnBlock()) { | 
|  | IP = BB->end(); --IP; | 
|  |  | 
|  | // Skip over all terminator instructions, which are part of the return | 
|  | // sequence. | 
|  | MachineBasicBlock::iterator I2 = IP; | 
|  | while (I2 != BB->begin() && (--I2)->isTerminator()) | 
|  | IP = I2; | 
|  |  | 
|  | // Emit: MTVRSAVE InVRSave | 
|  | BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getGlobalBaseReg - Output the instructions required to put the | 
|  | /// base address to use for accessing globals into a register. | 
|  | /// | 
|  | SDNode *PPCDAGToDAGISel::getGlobalBaseReg() { | 
|  | if (!GlobalBaseReg) { | 
|  | const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo(); | 
|  | // Insert the set of GlobalBaseReg into the first MBB of the function | 
|  | MachineBasicBlock &FirstMBB = MF->front(); | 
|  | MachineBasicBlock::iterator MBBI = FirstMBB.begin(); | 
|  | const Module *M = MF->getFunction()->getParent(); | 
|  | DebugLoc dl; | 
|  |  | 
|  | if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) { | 
|  | if (PPCSubTarget->isTargetELF()) { | 
|  | GlobalBaseReg = PPC::R30; | 
|  | if (M->getPICLevel() == PICLevel::SmallPIC) { | 
|  | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR)); | 
|  | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); | 
|  | MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); | 
|  | } else { | 
|  | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); | 
|  | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); | 
|  | unsigned TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); | 
|  | BuildMI(FirstMBB, MBBI, dl, | 
|  | TII.get(PPC::UpdateGBR), GlobalBaseReg) | 
|  | .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg); | 
|  | MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); | 
|  | } | 
|  | } else { | 
|  | GlobalBaseReg = | 
|  | RegInfo->createVirtualRegister(&PPC::GPRC_NOR0RegClass); | 
|  | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); | 
|  | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); | 
|  | } | 
|  | } else { | 
|  | GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_NOX0RegClass); | 
|  | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8)); | 
|  | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg); | 
|  | } | 
|  | } | 
|  | return CurDAG->getRegister(GlobalBaseReg, | 
|  | PPCLowering->getPointerTy(CurDAG->getDataLayout())) | 
|  | .getNode(); | 
|  | } | 
|  |  | 
|  | /// isIntS16Immediate - This method tests to see if the node is either a 32-bit | 
|  | /// or 64-bit immediate, and if the value can be accurately represented as a | 
|  | /// sign extension from a 16-bit value.  If so, this returns true and the | 
|  | /// immediate. | 
|  | static bool isIntS16Immediate(SDNode *N, short &Imm) { | 
|  | if (N->getOpcode() != ISD::Constant) | 
|  | return false; | 
|  |  | 
|  | Imm = (short)cast<ConstantSDNode>(N)->getZExtValue(); | 
|  | if (N->getValueType(0) == MVT::i32) | 
|  | return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); | 
|  | else | 
|  | return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); | 
|  | } | 
|  |  | 
|  | static bool isIntS16Immediate(SDValue Op, short &Imm) { | 
|  | return isIntS16Immediate(Op.getNode(), Imm); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// isInt32Immediate - This method tests to see if the node is a 32-bit constant | 
|  | /// operand. If so Imm will receive the 32-bit value. | 
|  | static bool isInt32Immediate(SDNode *N, unsigned &Imm) { | 
|  | if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { | 
|  | Imm = cast<ConstantSDNode>(N)->getZExtValue(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isInt64Immediate - This method tests to see if the node is a 64-bit constant | 
|  | /// operand.  If so Imm will receive the 64-bit value. | 
|  | static bool isInt64Immediate(SDNode *N, uint64_t &Imm) { | 
|  | if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) { | 
|  | Imm = cast<ConstantSDNode>(N)->getZExtValue(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // isInt32Immediate - This method tests to see if a constant operand. | 
|  | // If so Imm will receive the 32 bit value. | 
|  | static bool isInt32Immediate(SDValue N, unsigned &Imm) { | 
|  | return isInt32Immediate(N.getNode(), Imm); | 
|  | } | 
|  |  | 
|  | static unsigned getBranchHint(unsigned PCC, FunctionLoweringInfo *FuncInfo, | 
|  | const SDValue &DestMBB) { | 
|  | assert(isa<BasicBlockSDNode>(DestMBB)); | 
|  |  | 
|  | if (!FuncInfo->BPI) return PPC::BR_NO_HINT; | 
|  |  | 
|  | const BasicBlock *BB = FuncInfo->MBB->getBasicBlock(); | 
|  | const TerminatorInst *BBTerm = BB->getTerminator(); | 
|  |  | 
|  | if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT; | 
|  |  | 
|  | const BasicBlock *TBB = BBTerm->getSuccessor(0); | 
|  | const BasicBlock *FBB = BBTerm->getSuccessor(1); | 
|  |  | 
|  | auto TProb = FuncInfo->BPI->getEdgeProbability(BB, TBB); | 
|  | auto FProb = FuncInfo->BPI->getEdgeProbability(BB, FBB); | 
|  |  | 
|  | // We only want to handle cases which are easy to predict at static time, e.g. | 
|  | // C++ throw statement, that is very likely not taken, or calling never | 
|  | // returned function, e.g. stdlib exit(). So we set Threshold to filter | 
|  | // unwanted cases. | 
|  | // | 
|  | // Below is LLVM branch weight table, we only want to handle case 1, 2 | 
|  | // | 
|  | // Case                  Taken:Nontaken  Example | 
|  | // 1. Unreachable        1048575:1       C++ throw, stdlib exit(), | 
|  | // 2. Invoke-terminating 1:1048575 | 
|  | // 3. Coldblock          4:64            __builtin_expect | 
|  | // 4. Loop Branch        124:4           For loop | 
|  | // 5. PH/ZH/FPH          20:12 | 
|  | const uint32_t Threshold = 10000; | 
|  |  | 
|  | if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb)) | 
|  | return PPC::BR_NO_HINT; | 
|  |  | 
|  | DEBUG(dbgs() << "Use branch hint for '" << FuncInfo->Fn->getName() << "::" | 
|  | << BB->getName() << "'\n" | 
|  | << " -> " << TBB->getName() << ": " << TProb << "\n" | 
|  | << " -> " << FBB->getName() << ": " << FProb << "\n"); | 
|  |  | 
|  | const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB); | 
|  |  | 
|  | // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities, | 
|  | // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock | 
|  | if (BBDN->getBasicBlock()->getBasicBlock() != TBB) | 
|  | std::swap(TProb, FProb); | 
|  |  | 
|  | return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT; | 
|  | } | 
|  |  | 
|  | // isOpcWithIntImmediate - This method tests to see if the node is a specific | 
|  | // opcode and that it has a immediate integer right operand. | 
|  | // If so Imm will receive the 32 bit value. | 
|  | static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { | 
|  | return N->getOpcode() == Opc | 
|  | && isInt32Immediate(N->getOperand(1).getNode(), Imm); | 
|  | } | 
|  |  | 
|  | void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) { | 
|  | SDLoc dl(SN); | 
|  | int FI = cast<FrameIndexSDNode>(N)->getIndex(); | 
|  | SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0)); | 
|  | unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8; | 
|  | if (SN->hasOneUse()) | 
|  | CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI, | 
|  | getSmallIPtrImm(Offset, dl)); | 
|  | else | 
|  | ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI, | 
|  | getSmallIPtrImm(Offset, dl))); | 
|  | } | 
|  |  | 
|  | bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, | 
|  | bool isShiftMask, unsigned &SH, | 
|  | unsigned &MB, unsigned &ME) { | 
|  | // Don't even go down this path for i64, since different logic will be | 
|  | // necessary for rldicl/rldicr/rldimi. | 
|  | if (N->getValueType(0) != MVT::i32) | 
|  | return false; | 
|  |  | 
|  | unsigned Shift  = 32; | 
|  | unsigned Indeterminant = ~0;  // bit mask marking indeterminant results | 
|  | unsigned Opcode = N->getOpcode(); | 
|  | if (N->getNumOperands() != 2 || | 
|  | !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31)) | 
|  | return false; | 
|  |  | 
|  | if (Opcode == ISD::SHL) { | 
|  | // apply shift left to mask if it comes first | 
|  | if (isShiftMask) Mask = Mask << Shift; | 
|  | // determine which bits are made indeterminant by shift | 
|  | Indeterminant = ~(0xFFFFFFFFu << Shift); | 
|  | } else if (Opcode == ISD::SRL) { | 
|  | // apply shift right to mask if it comes first | 
|  | if (isShiftMask) Mask = Mask >> Shift; | 
|  | // determine which bits are made indeterminant by shift | 
|  | Indeterminant = ~(0xFFFFFFFFu >> Shift); | 
|  | // adjust for the left rotate | 
|  | Shift = 32 - Shift; | 
|  | } else if (Opcode == ISD::ROTL) { | 
|  | Indeterminant = 0; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // if the mask doesn't intersect any Indeterminant bits | 
|  | if (Mask && !(Mask & Indeterminant)) { | 
|  | SH = Shift & 31; | 
|  | // make sure the mask is still a mask (wrap arounds may not be) | 
|  | return isRunOfOnes(Mask, MB, ME); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Turn an or of two masked values into the rotate left word immediate then | 
|  | /// mask insert (rlwimi) instruction. | 
|  | bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) { | 
|  | SDValue Op0 = N->getOperand(0); | 
|  | SDValue Op1 = N->getOperand(1); | 
|  | SDLoc dl(N); | 
|  |  | 
|  | APInt LKZ, LKO, RKZ, RKO; | 
|  | CurDAG->computeKnownBits(Op0, LKZ, LKO); | 
|  | CurDAG->computeKnownBits(Op1, RKZ, RKO); | 
|  |  | 
|  | unsigned TargetMask = LKZ.getZExtValue(); | 
|  | unsigned InsertMask = RKZ.getZExtValue(); | 
|  |  | 
|  | if ((TargetMask | InsertMask) == 0xFFFFFFFF) { | 
|  | unsigned Op0Opc = Op0.getOpcode(); | 
|  | unsigned Op1Opc = Op1.getOpcode(); | 
|  | unsigned Value, SH = 0; | 
|  | TargetMask = ~TargetMask; | 
|  | InsertMask = ~InsertMask; | 
|  |  | 
|  | // If the LHS has a foldable shift and the RHS does not, then swap it to the | 
|  | // RHS so that we can fold the shift into the insert. | 
|  | if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { | 
|  | if (Op0.getOperand(0).getOpcode() == ISD::SHL || | 
|  | Op0.getOperand(0).getOpcode() == ISD::SRL) { | 
|  | if (Op1.getOperand(0).getOpcode() != ISD::SHL && | 
|  | Op1.getOperand(0).getOpcode() != ISD::SRL) { | 
|  | std::swap(Op0, Op1); | 
|  | std::swap(Op0Opc, Op1Opc); | 
|  | std::swap(TargetMask, InsertMask); | 
|  | } | 
|  | } | 
|  | } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) { | 
|  | if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL && | 
|  | Op1.getOperand(0).getOpcode() != ISD::SRL) { | 
|  | std::swap(Op0, Op1); | 
|  | std::swap(Op0Opc, Op1Opc); | 
|  | std::swap(TargetMask, InsertMask); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned MB, ME; | 
|  | if (isRunOfOnes(InsertMask, MB, ME)) { | 
|  | SDValue Tmp1, Tmp2; | 
|  |  | 
|  | if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) && | 
|  | isInt32Immediate(Op1.getOperand(1), Value)) { | 
|  | Op1 = Op1.getOperand(0); | 
|  | SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value; | 
|  | } | 
|  | if (Op1Opc == ISD::AND) { | 
|  | // The AND mask might not be a constant, and we need to make sure that | 
|  | // if we're going to fold the masking with the insert, all bits not | 
|  | // know to be zero in the mask are known to be one. | 
|  | APInt MKZ, MKO; | 
|  | CurDAG->computeKnownBits(Op1.getOperand(1), MKZ, MKO); | 
|  | bool CanFoldMask = InsertMask == MKO.getZExtValue(); | 
|  |  | 
|  | unsigned SHOpc = Op1.getOperand(0).getOpcode(); | 
|  | if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask && | 
|  | isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) { | 
|  | // Note that Value must be in range here (less than 32) because | 
|  | // otherwise there would not be any bits set in InsertMask. | 
|  | Op1 = Op1.getOperand(0).getOperand(0); | 
|  | SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value; | 
|  | } | 
|  | } | 
|  |  | 
|  | SH &= 31; | 
|  | SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl), | 
|  | getI32Imm(ME, dl) }; | 
|  | ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Predict the number of instructions that would be generated by calling | 
|  | // getInt64(N). | 
|  | static unsigned getInt64CountDirect(int64_t Imm) { | 
|  | // Assume no remaining bits. | 
|  | unsigned Remainder = 0; | 
|  | // Assume no shift required. | 
|  | unsigned Shift = 0; | 
|  |  | 
|  | // If it can't be represented as a 32 bit value. | 
|  | if (!isInt<32>(Imm)) { | 
|  | Shift = countTrailingZeros<uint64_t>(Imm); | 
|  | int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; | 
|  |  | 
|  | // If the shifted value fits 32 bits. | 
|  | if (isInt<32>(ImmSh)) { | 
|  | // Go with the shifted value. | 
|  | Imm = ImmSh; | 
|  | } else { | 
|  | // Still stuck with a 64 bit value. | 
|  | Remainder = Imm; | 
|  | Shift = 32; | 
|  | Imm >>= 32; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Intermediate operand. | 
|  | unsigned Result = 0; | 
|  |  | 
|  | // Handle first 32 bits. | 
|  | unsigned Lo = Imm & 0xFFFF; | 
|  |  | 
|  | // Simple value. | 
|  | if (isInt<16>(Imm)) { | 
|  | // Just the Lo bits. | 
|  | ++Result; | 
|  | } else if (Lo) { | 
|  | // Handle the Hi bits and Lo bits. | 
|  | Result += 2; | 
|  | } else { | 
|  | // Just the Hi bits. | 
|  | ++Result; | 
|  | } | 
|  |  | 
|  | // If no shift, we're done. | 
|  | if (!Shift) return Result; | 
|  |  | 
|  | // If Hi word == Lo word, | 
|  | // we can use rldimi to insert the Lo word into Hi word. | 
|  | if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) { | 
|  | ++Result; | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // Shift for next step if the upper 32-bits were not zero. | 
|  | if (Imm) | 
|  | ++Result; | 
|  |  | 
|  | // Add in the last bits as required. | 
|  | if ((Remainder >> 16) & 0xFFFF) | 
|  | ++Result; | 
|  | if (Remainder & 0xFFFF) | 
|  | ++Result; | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | static uint64_t Rot64(uint64_t Imm, unsigned R) { | 
|  | return (Imm << R) | (Imm >> (64 - R)); | 
|  | } | 
|  |  | 
|  | static unsigned getInt64Count(int64_t Imm) { | 
|  | unsigned Count = getInt64CountDirect(Imm); | 
|  | if (Count == 1) | 
|  | return Count; | 
|  |  | 
|  | for (unsigned r = 1; r < 63; ++r) { | 
|  | uint64_t RImm = Rot64(Imm, r); | 
|  | unsigned RCount = getInt64CountDirect(RImm) + 1; | 
|  | Count = std::min(Count, RCount); | 
|  |  | 
|  | // See comments in getInt64 for an explanation of the logic below. | 
|  | unsigned LS = findLastSet(RImm); | 
|  | if (LS != r-1) | 
|  | continue; | 
|  |  | 
|  | uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1)); | 
|  | uint64_t RImmWithOnes = RImm | OnesMask; | 
|  |  | 
|  | RCount = getInt64CountDirect(RImmWithOnes) + 1; | 
|  | Count = std::min(Count, RCount); | 
|  | } | 
|  |  | 
|  | return Count; | 
|  | } | 
|  |  | 
|  | // Select a 64-bit constant. For cost-modeling purposes, getInt64Count | 
|  | // (above) needs to be kept in sync with this function. | 
|  | static SDNode *getInt64Direct(SelectionDAG *CurDAG, const SDLoc &dl, | 
|  | int64_t Imm) { | 
|  | // Assume no remaining bits. | 
|  | unsigned Remainder = 0; | 
|  | // Assume no shift required. | 
|  | unsigned Shift = 0; | 
|  |  | 
|  | // If it can't be represented as a 32 bit value. | 
|  | if (!isInt<32>(Imm)) { | 
|  | Shift = countTrailingZeros<uint64_t>(Imm); | 
|  | int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; | 
|  |  | 
|  | // If the shifted value fits 32 bits. | 
|  | if (isInt<32>(ImmSh)) { | 
|  | // Go with the shifted value. | 
|  | Imm = ImmSh; | 
|  | } else { | 
|  | // Still stuck with a 64 bit value. | 
|  | Remainder = Imm; | 
|  | Shift = 32; | 
|  | Imm >>= 32; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Intermediate operand. | 
|  | SDNode *Result; | 
|  |  | 
|  | // Handle first 32 bits. | 
|  | unsigned Lo = Imm & 0xFFFF; | 
|  | unsigned Hi = (Imm >> 16) & 0xFFFF; | 
|  |  | 
|  | auto getI32Imm = [CurDAG, dl](unsigned Imm) { | 
|  | return CurDAG->getTargetConstant(Imm, dl, MVT::i32); | 
|  | }; | 
|  |  | 
|  | // Simple value. | 
|  | if (isInt<16>(Imm)) { | 
|  | // Just the Lo bits. | 
|  | Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo)); | 
|  | } else if (Lo) { | 
|  | // Handle the Hi bits. | 
|  | unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8; | 
|  | Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi)); | 
|  | // And Lo bits. | 
|  | Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, | 
|  | SDValue(Result, 0), getI32Imm(Lo)); | 
|  | } else { | 
|  | // Just the Hi bits. | 
|  | Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi)); | 
|  | } | 
|  |  | 
|  | // If no shift, we're done. | 
|  | if (!Shift) return Result; | 
|  |  | 
|  | // If Hi word == Lo word, | 
|  | // we can use rldimi to insert the Lo word into Hi word. | 
|  | if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) { | 
|  | SDValue Ops[] = | 
|  | { SDValue(Result, 0), SDValue(Result, 0), getI32Imm(Shift), getI32Imm(0)}; | 
|  | return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); | 
|  | } | 
|  |  | 
|  | // Shift for next step if the upper 32-bits were not zero. | 
|  | if (Imm) { | 
|  | Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, | 
|  | SDValue(Result, 0), | 
|  | getI32Imm(Shift), | 
|  | getI32Imm(63 - Shift)); | 
|  | } | 
|  |  | 
|  | // Add in the last bits as required. | 
|  | if ((Hi = (Remainder >> 16) & 0xFFFF)) { | 
|  | Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, | 
|  | SDValue(Result, 0), getI32Imm(Hi)); | 
|  | } | 
|  | if ((Lo = Remainder & 0xFFFF)) { | 
|  | Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, | 
|  | SDValue(Result, 0), getI32Imm(Lo)); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | static SDNode *getInt64(SelectionDAG *CurDAG, const SDLoc &dl, int64_t Imm) { | 
|  | unsigned Count = getInt64CountDirect(Imm); | 
|  | if (Count == 1) | 
|  | return getInt64Direct(CurDAG, dl, Imm); | 
|  |  | 
|  | unsigned RMin = 0; | 
|  |  | 
|  | int64_t MatImm; | 
|  | unsigned MaskEnd; | 
|  |  | 
|  | for (unsigned r = 1; r < 63; ++r) { | 
|  | uint64_t RImm = Rot64(Imm, r); | 
|  | unsigned RCount = getInt64CountDirect(RImm) + 1; | 
|  | if (RCount < Count) { | 
|  | Count = RCount; | 
|  | RMin = r; | 
|  | MatImm = RImm; | 
|  | MaskEnd = 63; | 
|  | } | 
|  |  | 
|  | // If the immediate to generate has many trailing zeros, it might be | 
|  | // worthwhile to generate a rotated value with too many leading ones | 
|  | // (because that's free with li/lis's sign-extension semantics), and then | 
|  | // mask them off after rotation. | 
|  |  | 
|  | unsigned LS = findLastSet(RImm); | 
|  | // We're adding (63-LS) higher-order ones, and we expect to mask them off | 
|  | // after performing the inverse rotation by (64-r). So we need that: | 
|  | //   63-LS == 64-r => LS == r-1 | 
|  | if (LS != r-1) | 
|  | continue; | 
|  |  | 
|  | uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1)); | 
|  | uint64_t RImmWithOnes = RImm | OnesMask; | 
|  |  | 
|  | RCount = getInt64CountDirect(RImmWithOnes) + 1; | 
|  | if (RCount < Count) { | 
|  | Count = RCount; | 
|  | RMin = r; | 
|  | MatImm = RImmWithOnes; | 
|  | MaskEnd = LS; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!RMin) | 
|  | return getInt64Direct(CurDAG, dl, Imm); | 
|  |  | 
|  | auto getI32Imm = [CurDAG, dl](unsigned Imm) { | 
|  | return CurDAG->getTargetConstant(Imm, dl, MVT::i32); | 
|  | }; | 
|  |  | 
|  | SDValue Val = SDValue(getInt64Direct(CurDAG, dl, MatImm), 0); | 
|  | return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val, | 
|  | getI32Imm(64 - RMin), getI32Imm(MaskEnd)); | 
|  | } | 
|  |  | 
|  | // Select a 64-bit constant. | 
|  | static SDNode *getInt64(SelectionDAG *CurDAG, SDNode *N) { | 
|  | SDLoc dl(N); | 
|  |  | 
|  | // Get 64 bit value. | 
|  | int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue(); | 
|  | return getInt64(CurDAG, dl, Imm); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class BitPermutationSelector { | 
|  | struct ValueBit { | 
|  | SDValue V; | 
|  |  | 
|  | // The bit number in the value, using a convention where bit 0 is the | 
|  | // lowest-order bit. | 
|  | unsigned Idx; | 
|  |  | 
|  | enum Kind { | 
|  | ConstZero, | 
|  | Variable | 
|  | } K; | 
|  |  | 
|  | ValueBit(SDValue V, unsigned I, Kind K = Variable) | 
|  | : V(V), Idx(I), K(K) {} | 
|  | ValueBit(Kind K = Variable) | 
|  | : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {} | 
|  |  | 
|  | bool isZero() const { | 
|  | return K == ConstZero; | 
|  | } | 
|  |  | 
|  | bool hasValue() const { | 
|  | return K == Variable; | 
|  | } | 
|  |  | 
|  | SDValue getValue() const { | 
|  | assert(hasValue() && "Cannot get the value of a constant bit"); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | unsigned getValueBitIndex() const { | 
|  | assert(hasValue() && "Cannot get the value bit index of a constant bit"); | 
|  | return Idx; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // A bit group has the same underlying value and the same rotate factor. | 
|  | struct BitGroup { | 
|  | SDValue V; | 
|  | unsigned RLAmt; | 
|  | unsigned StartIdx, EndIdx; | 
|  |  | 
|  | // This rotation amount assumes that the lower 32 bits of the quantity are | 
|  | // replicated in the high 32 bits by the rotation operator (which is done | 
|  | // by rlwinm and friends in 64-bit mode). | 
|  | bool Repl32; | 
|  | // Did converting to Repl32 == true change the rotation factor? If it did, | 
|  | // it decreased it by 32. | 
|  | bool Repl32CR; | 
|  | // Was this group coalesced after setting Repl32 to true? | 
|  | bool Repl32Coalesced; | 
|  |  | 
|  | BitGroup(SDValue V, unsigned R, unsigned S, unsigned E) | 
|  | : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false), | 
|  | Repl32Coalesced(false) { | 
|  | DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R << | 
|  | " [" << S << ", " << E << "]\n"); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Information on each (Value, RLAmt) pair (like the number of groups | 
|  | // associated with each) used to choose the lowering method. | 
|  | struct ValueRotInfo { | 
|  | SDValue V; | 
|  | unsigned RLAmt; | 
|  | unsigned NumGroups; | 
|  | unsigned FirstGroupStartIdx; | 
|  | bool Repl32; | 
|  |  | 
|  | ValueRotInfo() | 
|  | : RLAmt(UINT32_MAX), NumGroups(0), FirstGroupStartIdx(UINT32_MAX), | 
|  | Repl32(false) {} | 
|  |  | 
|  | // For sorting (in reverse order) by NumGroups, and then by | 
|  | // FirstGroupStartIdx. | 
|  | bool operator < (const ValueRotInfo &Other) const { | 
|  | // We need to sort so that the non-Repl32 come first because, when we're | 
|  | // doing masking, the Repl32 bit groups might be subsumed into the 64-bit | 
|  | // masking operation. | 
|  | if (Repl32 < Other.Repl32) | 
|  | return true; | 
|  | else if (Repl32 > Other.Repl32) | 
|  | return false; | 
|  | else if (NumGroups > Other.NumGroups) | 
|  | return true; | 
|  | else if (NumGroups < Other.NumGroups) | 
|  | return false; | 
|  | else if (FirstGroupStartIdx < Other.FirstGroupStartIdx) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  | }; | 
|  |  | 
|  | using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>; | 
|  | using ValueBitsMemoizer = | 
|  | DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>; | 
|  | ValueBitsMemoizer Memoizer; | 
|  |  | 
|  | // Return a pair of bool and a SmallVector pointer to a memoization entry. | 
|  | // The bool is true if something interesting was deduced, otherwise if we're | 
|  | // providing only a generic representation of V (or something else likewise | 
|  | // uninteresting for instruction selection) through the SmallVector. | 
|  | std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V, | 
|  | unsigned NumBits) { | 
|  | auto &ValueEntry = Memoizer[V]; | 
|  | if (ValueEntry) | 
|  | return std::make_pair(ValueEntry->first, &ValueEntry->second); | 
|  | ValueEntry.reset(new ValueBitsMemoizedValue()); | 
|  | bool &Interesting = ValueEntry->first; | 
|  | SmallVector<ValueBit, 64> &Bits = ValueEntry->second; | 
|  | Bits.resize(NumBits); | 
|  |  | 
|  | switch (V.getOpcode()) { | 
|  | default: break; | 
|  | case ISD::ROTL: | 
|  | if (isa<ConstantSDNode>(V.getOperand(1))) { | 
|  | unsigned RotAmt = V.getConstantOperandVal(1); | 
|  |  | 
|  | const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; | 
|  |  | 
|  | for (unsigned i = 0; i < NumBits; ++i) | 
|  | Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt]; | 
|  |  | 
|  | return std::make_pair(Interesting = true, &Bits); | 
|  | } | 
|  | break; | 
|  | case ISD::SHL: | 
|  | if (isa<ConstantSDNode>(V.getOperand(1))) { | 
|  | unsigned ShiftAmt = V.getConstantOperandVal(1); | 
|  |  | 
|  | const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; | 
|  |  | 
|  | for (unsigned i = ShiftAmt; i < NumBits; ++i) | 
|  | Bits[i] = LHSBits[i - ShiftAmt]; | 
|  |  | 
|  | for (unsigned i = 0; i < ShiftAmt; ++i) | 
|  | Bits[i] = ValueBit(ValueBit::ConstZero); | 
|  |  | 
|  | return std::make_pair(Interesting = true, &Bits); | 
|  | } | 
|  | break; | 
|  | case ISD::SRL: | 
|  | if (isa<ConstantSDNode>(V.getOperand(1))) { | 
|  | unsigned ShiftAmt = V.getConstantOperandVal(1); | 
|  |  | 
|  | const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; | 
|  |  | 
|  | for (unsigned i = 0; i < NumBits - ShiftAmt; ++i) | 
|  | Bits[i] = LHSBits[i + ShiftAmt]; | 
|  |  | 
|  | for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i) | 
|  | Bits[i] = ValueBit(ValueBit::ConstZero); | 
|  |  | 
|  | return std::make_pair(Interesting = true, &Bits); | 
|  | } | 
|  | break; | 
|  | case ISD::AND: | 
|  | if (isa<ConstantSDNode>(V.getOperand(1))) { | 
|  | uint64_t Mask = V.getConstantOperandVal(1); | 
|  |  | 
|  | const SmallVector<ValueBit, 64> *LHSBits; | 
|  | // Mark this as interesting, only if the LHS was also interesting. This | 
|  | // prevents the overall procedure from matching a single immediate 'and' | 
|  | // (which is non-optimal because such an and might be folded with other | 
|  | // things if we don't select it here). | 
|  | std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits); | 
|  |  | 
|  | for (unsigned i = 0; i < NumBits; ++i) | 
|  | if (((Mask >> i) & 1) == 1) | 
|  | Bits[i] = (*LHSBits)[i]; | 
|  | else | 
|  | Bits[i] = ValueBit(ValueBit::ConstZero); | 
|  |  | 
|  | return std::make_pair(Interesting, &Bits); | 
|  | } | 
|  | break; | 
|  | case ISD::OR: { | 
|  | const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; | 
|  | const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second; | 
|  |  | 
|  | bool AllDisjoint = true; | 
|  | for (unsigned i = 0; i < NumBits; ++i) | 
|  | if (LHSBits[i].isZero()) | 
|  | Bits[i] = RHSBits[i]; | 
|  | else if (RHSBits[i].isZero()) | 
|  | Bits[i] = LHSBits[i]; | 
|  | else { | 
|  | AllDisjoint = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!AllDisjoint) | 
|  | break; | 
|  |  | 
|  | return std::make_pair(Interesting = true, &Bits); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0; i < NumBits; ++i) | 
|  | Bits[i] = ValueBit(V, i); | 
|  |  | 
|  | return std::make_pair(Interesting = false, &Bits); | 
|  | } | 
|  |  | 
|  | // For each value (except the constant ones), compute the left-rotate amount | 
|  | // to get it from its original to final position. | 
|  | void computeRotationAmounts() { | 
|  | HasZeros = false; | 
|  | RLAmt.resize(Bits.size()); | 
|  | for (unsigned i = 0; i < Bits.size(); ++i) | 
|  | if (Bits[i].hasValue()) { | 
|  | unsigned VBI = Bits[i].getValueBitIndex(); | 
|  | if (i >= VBI) | 
|  | RLAmt[i] = i - VBI; | 
|  | else | 
|  | RLAmt[i] = Bits.size() - (VBI - i); | 
|  | } else if (Bits[i].isZero()) { | 
|  | HasZeros = true; | 
|  | RLAmt[i] = UINT32_MAX; | 
|  | } else { | 
|  | llvm_unreachable("Unknown value bit type"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Collect groups of consecutive bits with the same underlying value and | 
|  | // rotation factor. If we're doing late masking, we ignore zeros, otherwise | 
|  | // they break up groups. | 
|  | void collectBitGroups(bool LateMask) { | 
|  | BitGroups.clear(); | 
|  |  | 
|  | unsigned LastRLAmt = RLAmt[0]; | 
|  | SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue(); | 
|  | unsigned LastGroupStartIdx = 0; | 
|  | for (unsigned i = 1; i < Bits.size(); ++i) { | 
|  | unsigned ThisRLAmt = RLAmt[i]; | 
|  | SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue(); | 
|  | if (LateMask && !ThisValue) { | 
|  | ThisValue = LastValue; | 
|  | ThisRLAmt = LastRLAmt; | 
|  | // If we're doing late masking, then the first bit group always starts | 
|  | // at zero (even if the first bits were zero). | 
|  | if (BitGroups.empty()) | 
|  | LastGroupStartIdx = 0; | 
|  | } | 
|  |  | 
|  | // If this bit has the same underlying value and the same rotate factor as | 
|  | // the last one, then they're part of the same group. | 
|  | if (ThisRLAmt == LastRLAmt && ThisValue == LastValue) | 
|  | continue; | 
|  |  | 
|  | if (LastValue.getNode()) | 
|  | BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, | 
|  | i-1)); | 
|  | LastRLAmt = ThisRLAmt; | 
|  | LastValue = ThisValue; | 
|  | LastGroupStartIdx = i; | 
|  | } | 
|  | if (LastValue.getNode()) | 
|  | BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, | 
|  | Bits.size()-1)); | 
|  |  | 
|  | if (BitGroups.empty()) | 
|  | return; | 
|  |  | 
|  | // We might be able to combine the first and last groups. | 
|  | if (BitGroups.size() > 1) { | 
|  | // If the first and last groups are the same, then remove the first group | 
|  | // in favor of the last group, making the ending index of the last group | 
|  | // equal to the ending index of the to-be-removed first group. | 
|  | if (BitGroups[0].StartIdx == 0 && | 
|  | BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 && | 
|  | BitGroups[0].V == BitGroups[BitGroups.size()-1].V && | 
|  | BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) { | 
|  | DEBUG(dbgs() << "\tcombining final bit group with initial one\n"); | 
|  | BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx; | 
|  | BitGroups.erase(BitGroups.begin()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Take all (SDValue, RLAmt) pairs and sort them by the number of groups | 
|  | // associated with each. If there is a degeneracy, pick the one that occurs | 
|  | // first (in the final value). | 
|  | void collectValueRotInfo() { | 
|  | ValueRots.clear(); | 
|  |  | 
|  | for (auto &BG : BitGroups) { | 
|  | unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0); | 
|  | ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)]; | 
|  | VRI.V = BG.V; | 
|  | VRI.RLAmt = BG.RLAmt; | 
|  | VRI.Repl32 = BG.Repl32; | 
|  | VRI.NumGroups += 1; | 
|  | VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx); | 
|  | } | 
|  |  | 
|  | // Now that we've collected the various ValueRotInfo instances, we need to | 
|  | // sort them. | 
|  | ValueRotsVec.clear(); | 
|  | for (auto &I : ValueRots) { | 
|  | ValueRotsVec.push_back(I.second); | 
|  | } | 
|  | std::sort(ValueRotsVec.begin(), ValueRotsVec.end()); | 
|  | } | 
|  |  | 
|  | // In 64-bit mode, rlwinm and friends have a rotation operator that | 
|  | // replicates the low-order 32 bits into the high-order 32-bits. The mask | 
|  | // indices of these instructions can only be in the lower 32 bits, so they | 
|  | // can only represent some 64-bit bit groups. However, when they can be used, | 
|  | // the 32-bit replication can be used to represent, as a single bit group, | 
|  | // otherwise separate bit groups. We'll convert to replicated-32-bit bit | 
|  | // groups when possible. Returns true if any of the bit groups were | 
|  | // converted. | 
|  | void assignRepl32BitGroups() { | 
|  | // If we have bits like this: | 
|  | // | 
|  | // Indices:    15 14 13 12 11 10 9 8  7  6  5  4  3  2  1  0 | 
|  | // V bits: ... 7  6  5  4  3  2  1 0 31 30 29 28 27 26 25 24 | 
|  | // Groups:    |      RLAmt = 8      |      RLAmt = 40       | | 
|  | // | 
|  | // But, making use of a 32-bit operation that replicates the low-order 32 | 
|  | // bits into the high-order 32 bits, this can be one bit group with a RLAmt | 
|  | // of 8. | 
|  |  | 
|  | auto IsAllLow32 = [this](BitGroup & BG) { | 
|  | if (BG.StartIdx <= BG.EndIdx) { | 
|  | for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) { | 
|  | if (!Bits[i].hasValue()) | 
|  | continue; | 
|  | if (Bits[i].getValueBitIndex() >= 32) | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) { | 
|  | if (!Bits[i].hasValue()) | 
|  | continue; | 
|  | if (Bits[i].getValueBitIndex() >= 32) | 
|  | return false; | 
|  | } | 
|  | for (unsigned i = 0; i <= BG.EndIdx; ++i) { | 
|  | if (!Bits[i].hasValue()) | 
|  | continue; | 
|  | if (Bits[i].getValueBitIndex() >= 32) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | for (auto &BG : BitGroups) { | 
|  | if (BG.StartIdx < 32 && BG.EndIdx < 32) { | 
|  | if (IsAllLow32(BG)) { | 
|  | if (BG.RLAmt >= 32) { | 
|  | BG.RLAmt -= 32; | 
|  | BG.Repl32CR = true; | 
|  | } | 
|  |  | 
|  | BG.Repl32 = true; | 
|  |  | 
|  | DEBUG(dbgs() << "\t32-bit replicated bit group for " << | 
|  | BG.V.getNode() << " RLAmt = " << BG.RLAmt << | 
|  | " [" << BG.StartIdx << ", " << BG.EndIdx << "]\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now walk through the bit groups, consolidating where possible. | 
|  | for (auto I = BitGroups.begin(); I != BitGroups.end();) { | 
|  | // We might want to remove this bit group by merging it with the previous | 
|  | // group (which might be the ending group). | 
|  | auto IP = (I == BitGroups.begin()) ? | 
|  | std::prev(BitGroups.end()) : std::prev(I); | 
|  | if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt && | 
|  | I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) { | 
|  |  | 
|  | DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " << | 
|  | I->V.getNode() << " RLAmt = " << I->RLAmt << | 
|  | " [" << I->StartIdx << ", " << I->EndIdx << | 
|  | "] with group with range [" << | 
|  | IP->StartIdx << ", " << IP->EndIdx << "]\n"); | 
|  |  | 
|  | IP->EndIdx = I->EndIdx; | 
|  | IP->Repl32CR = IP->Repl32CR || I->Repl32CR; | 
|  | IP->Repl32Coalesced = true; | 
|  | I = BitGroups.erase(I); | 
|  | continue; | 
|  | } else { | 
|  | // There is a special case worth handling: If there is a single group | 
|  | // covering the entire upper 32 bits, and it can be merged with both | 
|  | // the next and previous groups (which might be the same group), then | 
|  | // do so. If it is the same group (so there will be only one group in | 
|  | // total), then we need to reverse the order of the range so that it | 
|  | // covers the entire 64 bits. | 
|  | if (I->StartIdx == 32 && I->EndIdx == 63) { | 
|  | assert(std::next(I) == BitGroups.end() && | 
|  | "bit group ends at index 63 but there is another?"); | 
|  | auto IN = BitGroups.begin(); | 
|  |  | 
|  | if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V && | 
|  | (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt && | 
|  | IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP && | 
|  | IsAllLow32(*I)) { | 
|  |  | 
|  | DEBUG(dbgs() << "\tcombining bit group for " << | 
|  | I->V.getNode() << " RLAmt = " << I->RLAmt << | 
|  | " [" << I->StartIdx << ", " << I->EndIdx << | 
|  | "] with 32-bit replicated groups with ranges [" << | 
|  | IP->StartIdx << ", " << IP->EndIdx << "] and [" << | 
|  | IN->StartIdx << ", " << IN->EndIdx << "]\n"); | 
|  |  | 
|  | if (IP == IN) { | 
|  | // There is only one other group; change it to cover the whole | 
|  | // range (backward, so that it can still be Repl32 but cover the | 
|  | // whole 64-bit range). | 
|  | IP->StartIdx = 31; | 
|  | IP->EndIdx = 30; | 
|  | IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32; | 
|  | IP->Repl32Coalesced = true; | 
|  | I = BitGroups.erase(I); | 
|  | } else { | 
|  | // There are two separate groups, one before this group and one | 
|  | // after us (at the beginning). We're going to remove this group, | 
|  | // but also the group at the very beginning. | 
|  | IP->EndIdx = IN->EndIdx; | 
|  | IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32; | 
|  | IP->Repl32Coalesced = true; | 
|  | I = BitGroups.erase(I); | 
|  | BitGroups.erase(BitGroups.begin()); | 
|  | } | 
|  |  | 
|  | // This must be the last group in the vector (and we might have | 
|  | // just invalidated the iterator above), so break here. | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ++I; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { | 
|  | return CurDAG->getTargetConstant(Imm, dl, MVT::i32); | 
|  | } | 
|  |  | 
|  | uint64_t getZerosMask() { | 
|  | uint64_t Mask = 0; | 
|  | for (unsigned i = 0; i < Bits.size(); ++i) { | 
|  | if (Bits[i].hasValue()) | 
|  | continue; | 
|  | Mask |= (UINT64_C(1) << i); | 
|  | } | 
|  |  | 
|  | return ~Mask; | 
|  | } | 
|  |  | 
|  | // Depending on the number of groups for a particular value, it might be | 
|  | // better to rotate, mask explicitly (using andi/andis), and then or the | 
|  | // result. Select this part of the result first. | 
|  | void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { | 
|  | if (BPermRewriterNoMasking) | 
|  | return; | 
|  |  | 
|  | for (ValueRotInfo &VRI : ValueRotsVec) { | 
|  | unsigned Mask = 0; | 
|  | for (unsigned i = 0; i < Bits.size(); ++i) { | 
|  | if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V) | 
|  | continue; | 
|  | if (RLAmt[i] != VRI.RLAmt) | 
|  | continue; | 
|  | Mask |= (1u << i); | 
|  | } | 
|  |  | 
|  | // Compute the masks for andi/andis that would be necessary. | 
|  | unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; | 
|  | assert((ANDIMask != 0 || ANDISMask != 0) && | 
|  | "No set bits in mask for value bit groups"); | 
|  | bool NeedsRotate = VRI.RLAmt != 0; | 
|  |  | 
|  | // We're trying to minimize the number of instructions. If we have one | 
|  | // group, using one of andi/andis can break even.  If we have three | 
|  | // groups, we can use both andi and andis and break even (to use both | 
|  | // andi and andis we also need to or the results together). We need four | 
|  | // groups if we also need to rotate. To use andi/andis we need to do more | 
|  | // than break even because rotate-and-mask instructions tend to be easier | 
|  | // to schedule. | 
|  |  | 
|  | // FIXME: We've biased here against using andi/andis, which is right for | 
|  | // POWER cores, but not optimal everywhere. For example, on the A2, | 
|  | // andi/andis have single-cycle latency whereas the rotate-and-mask | 
|  | // instructions take two cycles, and it would be better to bias toward | 
|  | // andi/andis in break-even cases. | 
|  |  | 
|  | unsigned NumAndInsts = (unsigned) NeedsRotate + | 
|  | (unsigned) (ANDIMask != 0) + | 
|  | (unsigned) (ANDISMask != 0) + | 
|  | (unsigned) (ANDIMask != 0 && ANDISMask != 0) + | 
|  | (unsigned) (bool) Res; | 
|  |  | 
|  | DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() << | 
|  | " RL: " << VRI.RLAmt << ":" << | 
|  | "\n\t\t\tisel using masking: " << NumAndInsts << | 
|  | " using rotates: " << VRI.NumGroups << "\n"); | 
|  |  | 
|  | if (NumAndInsts >= VRI.NumGroups) | 
|  | continue; | 
|  |  | 
|  | DEBUG(dbgs() << "\t\t\t\tusing masking\n"); | 
|  |  | 
|  | if (InstCnt) *InstCnt += NumAndInsts; | 
|  |  | 
|  | SDValue VRot; | 
|  | if (VRI.RLAmt) { | 
|  | SDValue Ops[] = | 
|  | { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl), | 
|  | getI32Imm(31, dl) }; | 
|  | VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, | 
|  | Ops), 0); | 
|  | } else { | 
|  | VRot = VRI.V; | 
|  | } | 
|  |  | 
|  | SDValue ANDIVal, ANDISVal; | 
|  | if (ANDIMask != 0) | 
|  | ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32, | 
|  | VRot, getI32Imm(ANDIMask, dl)), 0); | 
|  | if (ANDISMask != 0) | 
|  | ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32, | 
|  | VRot, getI32Imm(ANDISMask, dl)), 0); | 
|  |  | 
|  | SDValue TotalVal; | 
|  | if (!ANDIVal) | 
|  | TotalVal = ANDISVal; | 
|  | else if (!ANDISVal) | 
|  | TotalVal = ANDIVal; | 
|  | else | 
|  | TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, | 
|  | ANDIVal, ANDISVal), 0); | 
|  |  | 
|  | if (!Res) | 
|  | Res = TotalVal; | 
|  | else | 
|  | Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, | 
|  | Res, TotalVal), 0); | 
|  |  | 
|  | // Now, remove all groups with this underlying value and rotation | 
|  | // factor. | 
|  | eraseMatchingBitGroups([VRI](const BitGroup &BG) { | 
|  | return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; | 
|  | }); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Instruction selection for the 32-bit case. | 
|  | SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) { | 
|  | SDLoc dl(N); | 
|  | SDValue Res; | 
|  |  | 
|  | if (InstCnt) *InstCnt = 0; | 
|  |  | 
|  | // Take care of cases that should use andi/andis first. | 
|  | SelectAndParts32(dl, Res, InstCnt); | 
|  |  | 
|  | // If we've not yet selected a 'starting' instruction, and we have no zeros | 
|  | // to fill in, select the (Value, RLAmt) with the highest priority (largest | 
|  | // number of groups), and start with this rotated value. | 
|  | if ((!HasZeros || LateMask) && !Res) { | 
|  | ValueRotInfo &VRI = ValueRotsVec[0]; | 
|  | if (VRI.RLAmt) { | 
|  | if (InstCnt) *InstCnt += 1; | 
|  | SDValue Ops[] = | 
|  | { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl), | 
|  | getI32Imm(31, dl) }; | 
|  | Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), | 
|  | 0); | 
|  | } else { | 
|  | Res = VRI.V; | 
|  | } | 
|  |  | 
|  | // Now, remove all groups with this underlying value and rotation factor. | 
|  | eraseMatchingBitGroups([VRI](const BitGroup &BG) { | 
|  | return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; | 
|  | }); | 
|  | } | 
|  |  | 
|  | if (InstCnt) *InstCnt += BitGroups.size(); | 
|  |  | 
|  | // Insert the other groups (one at a time). | 
|  | for (auto &BG : BitGroups) { | 
|  | if (!Res) { | 
|  | SDValue Ops[] = | 
|  | { BG.V, getI32Imm(BG.RLAmt, dl), | 
|  | getI32Imm(Bits.size() - BG.EndIdx - 1, dl), | 
|  | getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; | 
|  | Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); | 
|  | } else { | 
|  | SDValue Ops[] = | 
|  | { Res, BG.V, getI32Imm(BG.RLAmt, dl), | 
|  | getI32Imm(Bits.size() - BG.EndIdx - 1, dl), | 
|  | getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; | 
|  | Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (LateMask) { | 
|  | unsigned Mask = (unsigned) getZerosMask(); | 
|  |  | 
|  | unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; | 
|  | assert((ANDIMask != 0 || ANDISMask != 0) && | 
|  | "No set bits in zeros mask?"); | 
|  |  | 
|  | if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + | 
|  | (unsigned) (ANDISMask != 0) + | 
|  | (unsigned) (ANDIMask != 0 && ANDISMask != 0); | 
|  |  | 
|  | SDValue ANDIVal, ANDISVal; | 
|  | if (ANDIMask != 0) | 
|  | ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32, | 
|  | Res, getI32Imm(ANDIMask, dl)), 0); | 
|  | if (ANDISMask != 0) | 
|  | ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32, | 
|  | Res, getI32Imm(ANDISMask, dl)), 0); | 
|  |  | 
|  | if (!ANDIVal) | 
|  | Res = ANDISVal; | 
|  | else if (!ANDISVal) | 
|  | Res = ANDIVal; | 
|  | else | 
|  | Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, | 
|  | ANDIVal, ANDISVal), 0); | 
|  | } | 
|  |  | 
|  | return Res.getNode(); | 
|  | } | 
|  |  | 
|  | unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32, | 
|  | unsigned MaskStart, unsigned MaskEnd, | 
|  | bool IsIns) { | 
|  | // In the notation used by the instructions, 'start' and 'end' are reversed | 
|  | // because bits are counted from high to low order. | 
|  | unsigned InstMaskStart = 64 - MaskEnd - 1, | 
|  | InstMaskEnd   = 64 - MaskStart - 1; | 
|  |  | 
|  | if (Repl32) | 
|  | return 1; | 
|  |  | 
|  | if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) || | 
|  | InstMaskEnd == 63 - RLAmt) | 
|  | return 1; | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | // For 64-bit values, not all combinations of rotates and masks are | 
|  | // available. Produce one if it is available. | 
|  | SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt, | 
|  | bool Repl32, unsigned MaskStart, unsigned MaskEnd, | 
|  | unsigned *InstCnt = nullptr) { | 
|  | // In the notation used by the instructions, 'start' and 'end' are reversed | 
|  | // because bits are counted from high to low order. | 
|  | unsigned InstMaskStart = 64 - MaskEnd - 1, | 
|  | InstMaskEnd   = 64 - MaskStart - 1; | 
|  |  | 
|  | if (InstCnt) *InstCnt += 1; | 
|  |  | 
|  | if (Repl32) { | 
|  | // This rotation amount assumes that the lower 32 bits of the quantity | 
|  | // are replicated in the high 32 bits by the rotation operator (which is | 
|  | // done by rlwinm and friends). | 
|  | assert(InstMaskStart >= 32 && "Mask cannot start out of range"); | 
|  | assert(InstMaskEnd   >= 32 && "Mask cannot end out of range"); | 
|  | SDValue Ops[] = | 
|  | { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart - 32, dl), | 
|  | getI32Imm(InstMaskEnd - 32, dl) }; | 
|  | return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64, | 
|  | Ops), 0); | 
|  | } | 
|  |  | 
|  | if (InstMaskEnd == 63) { | 
|  | SDValue Ops[] = | 
|  | { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) }; | 
|  | return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0); | 
|  | } | 
|  |  | 
|  | if (InstMaskStart == 0) { | 
|  | SDValue Ops[] = | 
|  | { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskEnd, dl) }; | 
|  | return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0); | 
|  | } | 
|  |  | 
|  | if (InstMaskEnd == 63 - RLAmt) { | 
|  | SDValue Ops[] = | 
|  | { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) }; | 
|  | return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0); | 
|  | } | 
|  |  | 
|  | // We cannot do this with a single instruction, so we'll use two. The | 
|  | // problem is that we're not free to choose both a rotation amount and mask | 
|  | // start and end independently. We can choose an arbitrary mask start and | 
|  | // end, but then the rotation amount is fixed. Rotation, however, can be | 
|  | // inverted, and so by applying an "inverse" rotation first, we can get the | 
|  | // desired result. | 
|  | if (InstCnt) *InstCnt += 1; | 
|  |  | 
|  | // The rotation mask for the second instruction must be MaskStart. | 
|  | unsigned RLAmt2 = MaskStart; | 
|  | // The first instruction must rotate V so that the overall rotation amount | 
|  | // is RLAmt. | 
|  | unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; | 
|  | if (RLAmt1) | 
|  | V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); | 
|  | return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd); | 
|  | } | 
|  |  | 
|  | // For 64-bit values, not all combinations of rotates and masks are | 
|  | // available. Produce a rotate-mask-and-insert if one is available. | 
|  | SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl, | 
|  | unsigned RLAmt, bool Repl32, unsigned MaskStart, | 
|  | unsigned MaskEnd, unsigned *InstCnt = nullptr) { | 
|  | // In the notation used by the instructions, 'start' and 'end' are reversed | 
|  | // because bits are counted from high to low order. | 
|  | unsigned InstMaskStart = 64 - MaskEnd - 1, | 
|  | InstMaskEnd   = 64 - MaskStart - 1; | 
|  |  | 
|  | if (InstCnt) *InstCnt += 1; | 
|  |  | 
|  | if (Repl32) { | 
|  | // This rotation amount assumes that the lower 32 bits of the quantity | 
|  | // are replicated in the high 32 bits by the rotation operator (which is | 
|  | // done by rlwinm and friends). | 
|  | assert(InstMaskStart >= 32 && "Mask cannot start out of range"); | 
|  | assert(InstMaskEnd   >= 32 && "Mask cannot end out of range"); | 
|  | SDValue Ops[] = | 
|  | { Base, V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart - 32, dl), | 
|  | getI32Imm(InstMaskEnd - 32, dl) }; | 
|  | return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, | 
|  | Ops), 0); | 
|  | } | 
|  |  | 
|  | if (InstMaskEnd == 63 - RLAmt) { | 
|  | SDValue Ops[] = | 
|  | { Base, V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) }; | 
|  | return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0); | 
|  | } | 
|  |  | 
|  | // We cannot do this with a single instruction, so we'll use two. The | 
|  | // problem is that we're not free to choose both a rotation amount and mask | 
|  | // start and end independently. We can choose an arbitrary mask start and | 
|  | // end, but then the rotation amount is fixed. Rotation, however, can be | 
|  | // inverted, and so by applying an "inverse" rotation first, we can get the | 
|  | // desired result. | 
|  | if (InstCnt) *InstCnt += 1; | 
|  |  | 
|  | // The rotation mask for the second instruction must be MaskStart. | 
|  | unsigned RLAmt2 = MaskStart; | 
|  | // The first instruction must rotate V so that the overall rotation amount | 
|  | // is RLAmt. | 
|  | unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; | 
|  | if (RLAmt1) | 
|  | V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); | 
|  | return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd); | 
|  | } | 
|  |  | 
|  | void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { | 
|  | if (BPermRewriterNoMasking) | 
|  | return; | 
|  |  | 
|  | // The idea here is the same as in the 32-bit version, but with additional | 
|  | // complications from the fact that Repl32 might be true. Because we | 
|  | // aggressively convert bit groups to Repl32 form (which, for small | 
|  | // rotation factors, involves no other change), and then coalesce, it might | 
|  | // be the case that a single 64-bit masking operation could handle both | 
|  | // some Repl32 groups and some non-Repl32 groups. If converting to Repl32 | 
|  | // form allowed coalescing, then we must use a 32-bit rotaton in order to | 
|  | // completely capture the new combined bit group. | 
|  |  | 
|  | for (ValueRotInfo &VRI : ValueRotsVec) { | 
|  | uint64_t Mask = 0; | 
|  |  | 
|  | // We need to add to the mask all bits from the associated bit groups. | 
|  | // If Repl32 is false, we need to add bits from bit groups that have | 
|  | // Repl32 true, but are trivially convertable to Repl32 false. Such a | 
|  | // group is trivially convertable if it overlaps only with the lower 32 | 
|  | // bits, and the group has not been coalesced. | 
|  | auto MatchingBG = [VRI](const BitGroup &BG) { | 
|  | if (VRI.V != BG.V) | 
|  | return false; | 
|  |  | 
|  | unsigned EffRLAmt = BG.RLAmt; | 
|  | if (!VRI.Repl32 && BG.Repl32) { | 
|  | if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx && | 
|  | !BG.Repl32Coalesced) { | 
|  | if (BG.Repl32CR) | 
|  | EffRLAmt += 32; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | } else if (VRI.Repl32 != BG.Repl32) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return VRI.RLAmt == EffRLAmt; | 
|  | }; | 
|  |  | 
|  | for (auto &BG : BitGroups) { | 
|  | if (!MatchingBG(BG)) | 
|  | continue; | 
|  |  | 
|  | if (BG.StartIdx <= BG.EndIdx) { | 
|  | for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) | 
|  | Mask |= (UINT64_C(1) << i); | 
|  | } else { | 
|  | for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) | 
|  | Mask |= (UINT64_C(1) << i); | 
|  | for (unsigned i = 0; i <= BG.EndIdx; ++i) | 
|  | Mask |= (UINT64_C(1) << i); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We can use the 32-bit andi/andis technique if the mask does not | 
|  | // require any higher-order bits. This can save an instruction compared | 
|  | // to always using the general 64-bit technique. | 
|  | bool Use32BitInsts = isUInt<32>(Mask); | 
|  | // Compute the masks for andi/andis that would be necessary. | 
|  | unsigned ANDIMask = (Mask & UINT16_MAX), | 
|  | ANDISMask = (Mask >> 16) & UINT16_MAX; | 
|  |  | 
|  | bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)); | 
|  |  | 
|  | unsigned NumAndInsts = (unsigned) NeedsRotate + | 
|  | (unsigned) (bool) Res; | 
|  | if (Use32BitInsts) | 
|  | NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) + | 
|  | (unsigned) (ANDIMask != 0 && ANDISMask != 0); | 
|  | else | 
|  | NumAndInsts += getInt64Count(Mask) + /* and */ 1; | 
|  |  | 
|  | unsigned NumRLInsts = 0; | 
|  | bool FirstBG = true; | 
|  | bool MoreBG = false; | 
|  | for (auto &BG : BitGroups) { | 
|  | if (!MatchingBG(BG)) { | 
|  | MoreBG = true; | 
|  | continue; | 
|  | } | 
|  | NumRLInsts += | 
|  | SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx, | 
|  | !FirstBG); | 
|  | FirstBG = false; | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() << | 
|  | " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") << | 
|  | "\n\t\t\tisel using masking: " << NumAndInsts << | 
|  | " using rotates: " << NumRLInsts << "\n"); | 
|  |  | 
|  | // When we'd use andi/andis, we bias toward using the rotates (andi only | 
|  | // has a record form, and is cracked on POWER cores). However, when using | 
|  | // general 64-bit constant formation, bias toward the constant form, | 
|  | // because that exposes more opportunities for CSE. | 
|  | if (NumAndInsts > NumRLInsts) | 
|  | continue; | 
|  | // When merging multiple bit groups, instruction or is used. | 
|  | // But when rotate is used, rldimi can inert the rotated value into any | 
|  | // register, so instruction or can be avoided. | 
|  | if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts) | 
|  | continue; | 
|  |  | 
|  | DEBUG(dbgs() << "\t\t\t\tusing masking\n"); | 
|  |  | 
|  | if (InstCnt) *InstCnt += NumAndInsts; | 
|  |  | 
|  | SDValue VRot; | 
|  | // We actually need to generate a rotation if we have a non-zero rotation | 
|  | // factor or, in the Repl32 case, if we care about any of the | 
|  | // higher-order replicated bits. In the latter case, we generate a mask | 
|  | // backward so that it actually includes the entire 64 bits. | 
|  | if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask))) | 
|  | VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, | 
|  | VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63); | 
|  | else | 
|  | VRot = VRI.V; | 
|  |  | 
|  | SDValue TotalVal; | 
|  | if (Use32BitInsts) { | 
|  | assert((ANDIMask != 0 || ANDISMask != 0) && | 
|  | "No set bits in mask when using 32-bit ands for 64-bit value"); | 
|  |  | 
|  | SDValue ANDIVal, ANDISVal; | 
|  | if (ANDIMask != 0) | 
|  | ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64, | 
|  | VRot, getI32Imm(ANDIMask, dl)), 0); | 
|  | if (ANDISMask != 0) | 
|  | ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64, | 
|  | VRot, getI32Imm(ANDISMask, dl)), 0); | 
|  |  | 
|  | if (!ANDIVal) | 
|  | TotalVal = ANDISVal; | 
|  | else if (!ANDISVal) | 
|  | TotalVal = ANDIVal; | 
|  | else | 
|  | TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, | 
|  | ANDIVal, ANDISVal), 0); | 
|  | } else { | 
|  | TotalVal = SDValue(getInt64(CurDAG, dl, Mask), 0); | 
|  | TotalVal = | 
|  | SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, | 
|  | VRot, TotalVal), 0); | 
|  | } | 
|  |  | 
|  | if (!Res) | 
|  | Res = TotalVal; | 
|  | else | 
|  | Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, | 
|  | Res, TotalVal), 0); | 
|  |  | 
|  | // Now, remove all groups with this underlying value and rotation | 
|  | // factor. | 
|  | eraseMatchingBitGroups(MatchingBG); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Instruction selection for the 64-bit case. | 
|  | SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) { | 
|  | SDLoc dl(N); | 
|  | SDValue Res; | 
|  |  | 
|  | if (InstCnt) *InstCnt = 0; | 
|  |  | 
|  | // Take care of cases that should use andi/andis first. | 
|  | SelectAndParts64(dl, Res, InstCnt); | 
|  |  | 
|  | // If we've not yet selected a 'starting' instruction, and we have no zeros | 
|  | // to fill in, select the (Value, RLAmt) with the highest priority (largest | 
|  | // number of groups), and start with this rotated value. | 
|  | if ((!HasZeros || LateMask) && !Res) { | 
|  | // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32 | 
|  | // groups will come first, and so the VRI representing the largest number | 
|  | // of groups might not be first (it might be the first Repl32 groups). | 
|  | unsigned MaxGroupsIdx = 0; | 
|  | if (!ValueRotsVec[0].Repl32) { | 
|  | for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i) | 
|  | if (ValueRotsVec[i].Repl32) { | 
|  | if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups) | 
|  | MaxGroupsIdx = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx]; | 
|  | bool NeedsRotate = false; | 
|  | if (VRI.RLAmt) { | 
|  | NeedsRotate = true; | 
|  | } else if (VRI.Repl32) { | 
|  | for (auto &BG : BitGroups) { | 
|  | if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt || | 
|  | BG.Repl32 != VRI.Repl32) | 
|  | continue; | 
|  |  | 
|  | // We don't need a rotate if the bit group is confined to the lower | 
|  | // 32 bits. | 
|  | if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx) | 
|  | continue; | 
|  |  | 
|  | NeedsRotate = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (NeedsRotate) | 
|  | Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, | 
|  | VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63, | 
|  | InstCnt); | 
|  | else | 
|  | Res = VRI.V; | 
|  |  | 
|  | // Now, remove all groups with this underlying value and rotation factor. | 
|  | if (Res) | 
|  | eraseMatchingBitGroups([VRI](const BitGroup &BG) { | 
|  | return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt && | 
|  | BG.Repl32 == VRI.Repl32; | 
|  | }); | 
|  | } | 
|  |  | 
|  | // Because 64-bit rotates are more flexible than inserts, we might have a | 
|  | // preference regarding which one we do first (to save one instruction). | 
|  | if (!Res) | 
|  | for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) { | 
|  | if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, | 
|  | false) < | 
|  | SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, | 
|  | true)) { | 
|  | if (I != BitGroups.begin()) { | 
|  | BitGroup BG = *I; | 
|  | BitGroups.erase(I); | 
|  | BitGroups.insert(BitGroups.begin(), BG); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Insert the other groups (one at a time). | 
|  | for (auto &BG : BitGroups) { | 
|  | if (!Res) | 
|  | Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx, | 
|  | BG.EndIdx, InstCnt); | 
|  | else | 
|  | Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32, | 
|  | BG.StartIdx, BG.EndIdx, InstCnt); | 
|  | } | 
|  |  | 
|  | if (LateMask) { | 
|  | uint64_t Mask = getZerosMask(); | 
|  |  | 
|  | // We can use the 32-bit andi/andis technique if the mask does not | 
|  | // require any higher-order bits. This can save an instruction compared | 
|  | // to always using the general 64-bit technique. | 
|  | bool Use32BitInsts = isUInt<32>(Mask); | 
|  | // Compute the masks for andi/andis that would be necessary. | 
|  | unsigned ANDIMask = (Mask & UINT16_MAX), | 
|  | ANDISMask = (Mask >> 16) & UINT16_MAX; | 
|  |  | 
|  | if (Use32BitInsts) { | 
|  | assert((ANDIMask != 0 || ANDISMask != 0) && | 
|  | "No set bits in mask when using 32-bit ands for 64-bit value"); | 
|  |  | 
|  | if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + | 
|  | (unsigned) (ANDISMask != 0) + | 
|  | (unsigned) (ANDIMask != 0 && ANDISMask != 0); | 
|  |  | 
|  | SDValue ANDIVal, ANDISVal; | 
|  | if (ANDIMask != 0) | 
|  | ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64, | 
|  | Res, getI32Imm(ANDIMask, dl)), 0); | 
|  | if (ANDISMask != 0) | 
|  | ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64, | 
|  | Res, getI32Imm(ANDISMask, dl)), 0); | 
|  |  | 
|  | if (!ANDIVal) | 
|  | Res = ANDISVal; | 
|  | else if (!ANDISVal) | 
|  | Res = ANDIVal; | 
|  | else | 
|  | Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, | 
|  | ANDIVal, ANDISVal), 0); | 
|  | } else { | 
|  | if (InstCnt) *InstCnt += getInt64Count(Mask) + /* and */ 1; | 
|  |  | 
|  | SDValue MaskVal = SDValue(getInt64(CurDAG, dl, Mask), 0); | 
|  | Res = | 
|  | SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, | 
|  | Res, MaskVal), 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Res.getNode(); | 
|  | } | 
|  |  | 
|  | SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) { | 
|  | // Fill in BitGroups. | 
|  | collectBitGroups(LateMask); | 
|  | if (BitGroups.empty()) | 
|  | return nullptr; | 
|  |  | 
|  | // For 64-bit values, figure out when we can use 32-bit instructions. | 
|  | if (Bits.size() == 64) | 
|  | assignRepl32BitGroups(); | 
|  |  | 
|  | // Fill in ValueRotsVec. | 
|  | collectValueRotInfo(); | 
|  |  | 
|  | if (Bits.size() == 32) { | 
|  | return Select32(N, LateMask, InstCnt); | 
|  | } else { | 
|  | assert(Bits.size() == 64 && "Not 64 bits here?"); | 
|  | return Select64(N, LateMask, InstCnt); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) { | 
|  | BitGroups.erase(remove_if(BitGroups, F), BitGroups.end()); | 
|  | } | 
|  |  | 
|  | SmallVector<ValueBit, 64> Bits; | 
|  |  | 
|  | bool HasZeros; | 
|  | SmallVector<unsigned, 64> RLAmt; | 
|  |  | 
|  | SmallVector<BitGroup, 16> BitGroups; | 
|  |  | 
|  | DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots; | 
|  | SmallVector<ValueRotInfo, 16> ValueRotsVec; | 
|  |  | 
|  | SelectionDAG *CurDAG; | 
|  |  | 
|  | public: | 
|  | BitPermutationSelector(SelectionDAG *DAG) | 
|  | : CurDAG(DAG) {} | 
|  |  | 
|  | // Here we try to match complex bit permutations into a set of | 
|  | // rotate-and-shift/shift/and/or instructions, using a set of heuristics | 
|  | // known to produce optimial code for common cases (like i32 byte swapping). | 
|  | SDNode *Select(SDNode *N) { | 
|  | Memoizer.clear(); | 
|  | auto Result = | 
|  | getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits()); | 
|  | if (!Result.first) | 
|  | return nullptr; | 
|  | Bits = std::move(*Result.second); | 
|  |  | 
|  | DEBUG(dbgs() << "Considering bit-permutation-based instruction" | 
|  | " selection for:    "); | 
|  | DEBUG(N->dump(CurDAG)); | 
|  |  | 
|  | // Fill it RLAmt and set HasZeros. | 
|  | computeRotationAmounts(); | 
|  |  | 
|  | if (!HasZeros) | 
|  | return Select(N, false); | 
|  |  | 
|  | // We currently have two techniques for handling results with zeros: early | 
|  | // masking (the default) and late masking. Late masking is sometimes more | 
|  | // efficient, but because the structure of the bit groups is different, it | 
|  | // is hard to tell without generating both and comparing the results. With | 
|  | // late masking, we ignore zeros in the resulting value when inserting each | 
|  | // set of bit groups, and then mask in the zeros at the end. With early | 
|  | // masking, we only insert the non-zero parts of the result at every step. | 
|  |  | 
|  | unsigned InstCnt, InstCntLateMask; | 
|  | DEBUG(dbgs() << "\tEarly masking:\n"); | 
|  | SDNode *RN = Select(N, false, &InstCnt); | 
|  | DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n"); | 
|  |  | 
|  | DEBUG(dbgs() << "\tLate masking:\n"); | 
|  | SDNode *RNLM = Select(N, true, &InstCntLateMask); | 
|  | DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask << | 
|  | " instructions\n"); | 
|  |  | 
|  | if (InstCnt <= InstCntLateMask) { | 
|  | DEBUG(dbgs() << "\tUsing early-masking for isel\n"); | 
|  | return RN; | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "\tUsing late-masking for isel\n"); | 
|  | return RNLM; | 
|  | } | 
|  | }; | 
|  | } // anonymous namespace | 
|  |  | 
|  | bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) { | 
|  | if (N->getValueType(0) != MVT::i32 && | 
|  | N->getValueType(0) != MVT::i64) | 
|  | return false; | 
|  |  | 
|  | if (!UseBitPermRewriter) | 
|  | return false; | 
|  |  | 
|  | switch (N->getOpcode()) { | 
|  | default: break; | 
|  | case ISD::ROTL: | 
|  | case ISD::SHL: | 
|  | case ISD::SRL: | 
|  | case ISD::AND: | 
|  | case ISD::OR: { | 
|  | BitPermutationSelector BPS(CurDAG); | 
|  | if (SDNode *New = BPS.Select(N)) { | 
|  | ReplaceNode(N, New); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SelectCC - Select a comparison of the specified values with the specified | 
|  | /// condition code, returning the CR# of the expression. | 
|  | SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, | 
|  | const SDLoc &dl) { | 
|  | // Always select the LHS. | 
|  | unsigned Opc; | 
|  |  | 
|  | if (LHS.getValueType() == MVT::i32) { | 
|  | unsigned Imm; | 
|  | if (CC == ISD::SETEQ || CC == ISD::SETNE) { | 
|  | if (isInt32Immediate(RHS, Imm)) { | 
|  | // SETEQ/SETNE comparison with 16-bit immediate, fold it. | 
|  | if (isUInt<16>(Imm)) | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, | 
|  | getI32Imm(Imm & 0xFFFF, dl)), | 
|  | 0); | 
|  | // If this is a 16-bit signed immediate, fold it. | 
|  | if (isInt<16>((int)Imm)) | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, | 
|  | getI32Imm(Imm & 0xFFFF, dl)), | 
|  | 0); | 
|  |  | 
|  | // For non-equality comparisons, the default code would materialize the | 
|  | // constant, then compare against it, like this: | 
|  | //   lis r2, 4660 | 
|  | //   ori r2, r2, 22136 | 
|  | //   cmpw cr0, r3, r2 | 
|  | // Since we are just comparing for equality, we can emit this instead: | 
|  | //   xoris r0,r3,0x1234 | 
|  | //   cmplwi cr0,r0,0x5678 | 
|  | //   beq cr0,L6 | 
|  | SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS, | 
|  | getI32Imm(Imm >> 16, dl)), 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor, | 
|  | getI32Imm(Imm & 0xFFFF, dl)), 0); | 
|  | } | 
|  | Opc = PPC::CMPLW; | 
|  | } else if (ISD::isUnsignedIntSetCC(CC)) { | 
|  | if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm)) | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, | 
|  | getI32Imm(Imm & 0xFFFF, dl)), 0); | 
|  | Opc = PPC::CMPLW; | 
|  | } else { | 
|  | short SImm; | 
|  | if (isIntS16Immediate(RHS, SImm)) | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, | 
|  | getI32Imm((int)SImm & 0xFFFF, | 
|  | dl)), | 
|  | 0); | 
|  | Opc = PPC::CMPW; | 
|  | } | 
|  | } else if (LHS.getValueType() == MVT::i64) { | 
|  | uint64_t Imm; | 
|  | if (CC == ISD::SETEQ || CC == ISD::SETNE) { | 
|  | if (isInt64Immediate(RHS.getNode(), Imm)) { | 
|  | // SETEQ/SETNE comparison with 16-bit immediate, fold it. | 
|  | if (isUInt<16>(Imm)) | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, | 
|  | getI32Imm(Imm & 0xFFFF, dl)), | 
|  | 0); | 
|  | // If this is a 16-bit signed immediate, fold it. | 
|  | if (isInt<16>(Imm)) | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, | 
|  | getI32Imm(Imm & 0xFFFF, dl)), | 
|  | 0); | 
|  |  | 
|  | // For non-equality comparisons, the default code would materialize the | 
|  | // constant, then compare against it, like this: | 
|  | //   lis r2, 4660 | 
|  | //   ori r2, r2, 22136 | 
|  | //   cmpd cr0, r3, r2 | 
|  | // Since we are just comparing for equality, we can emit this instead: | 
|  | //   xoris r0,r3,0x1234 | 
|  | //   cmpldi cr0,r0,0x5678 | 
|  | //   beq cr0,L6 | 
|  | if (isUInt<32>(Imm)) { | 
|  | SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS, | 
|  | getI64Imm(Imm >> 16, dl)), 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor, | 
|  | getI64Imm(Imm & 0xFFFF, dl)), | 
|  | 0); | 
|  | } | 
|  | } | 
|  | Opc = PPC::CMPLD; | 
|  | } else if (ISD::isUnsignedIntSetCC(CC)) { | 
|  | if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm)) | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, | 
|  | getI64Imm(Imm & 0xFFFF, dl)), 0); | 
|  | Opc = PPC::CMPLD; | 
|  | } else { | 
|  | short SImm; | 
|  | if (isIntS16Immediate(RHS, SImm)) | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, | 
|  | getI64Imm(SImm & 0xFFFF, dl)), | 
|  | 0); | 
|  | Opc = PPC::CMPD; | 
|  | } | 
|  | } else if (LHS.getValueType() == MVT::f32) { | 
|  | Opc = PPC::FCMPUS; | 
|  | } else { | 
|  | assert(LHS.getValueType() == MVT::f64 && "Unknown vt!"); | 
|  | Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD; | 
|  | } | 
|  | return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0); | 
|  | } | 
|  |  | 
|  | static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) { | 
|  | switch (CC) { | 
|  | case ISD::SETUEQ: | 
|  | case ISD::SETONE: | 
|  | case ISD::SETOLE: | 
|  | case ISD::SETOGE: | 
|  | llvm_unreachable("Should be lowered by legalize!"); | 
|  | default: llvm_unreachable("Unknown condition!"); | 
|  | case ISD::SETOEQ: | 
|  | case ISD::SETEQ:  return PPC::PRED_EQ; | 
|  | case ISD::SETUNE: | 
|  | case ISD::SETNE:  return PPC::PRED_NE; | 
|  | case ISD::SETOLT: | 
|  | case ISD::SETLT:  return PPC::PRED_LT; | 
|  | case ISD::SETULE: | 
|  | case ISD::SETLE:  return PPC::PRED_LE; | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETGT:  return PPC::PRED_GT; | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETGE:  return PPC::PRED_GE; | 
|  | case ISD::SETO:   return PPC::PRED_NU; | 
|  | case ISD::SETUO:  return PPC::PRED_UN; | 
|  | // These two are invalid for floating point.  Assume we have int. | 
|  | case ISD::SETULT: return PPC::PRED_LT; | 
|  | case ISD::SETUGT: return PPC::PRED_GT; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getCRIdxForSetCC - Return the index of the condition register field | 
|  | /// associated with the SetCC condition, and whether or not the field is | 
|  | /// treated as inverted.  That is, lt = 0; ge = 0 inverted. | 
|  | static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) { | 
|  | Invert = false; | 
|  | switch (CC) { | 
|  | default: llvm_unreachable("Unknown condition!"); | 
|  | case ISD::SETOLT: | 
|  | case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT | 
|  | case ISD::SETOEQ: | 
|  | case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ | 
|  | case ISD::SETUO:  return 3;                  // Bit #3 = SETUO | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE | 
|  | case ISD::SETULE: | 
|  | case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE | 
|  | case ISD::SETUNE: | 
|  | case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE | 
|  | case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO | 
|  | case ISD::SETUEQ: | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETOLE: | 
|  | case ISD::SETONE: | 
|  | llvm_unreachable("Invalid branch code: should be expanded by legalize"); | 
|  | // These are invalid for floating point.  Assume integer. | 
|  | case ISD::SETULT: return 0; | 
|  | case ISD::SETUGT: return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // getVCmpInst: return the vector compare instruction for the specified | 
|  | // vector type and condition code. Since this is for altivec specific code, | 
|  | // only support the altivec types (v16i8, v8i16, v4i32, v2i64, and v4f32). | 
|  | static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC, | 
|  | bool HasVSX, bool &Swap, bool &Negate) { | 
|  | Swap = false; | 
|  | Negate = false; | 
|  |  | 
|  | if (VecVT.isFloatingPoint()) { | 
|  | /* Handle some cases by swapping input operands.  */ | 
|  | switch (CC) { | 
|  | case ISD::SETLE: CC = ISD::SETGE; Swap = true; break; | 
|  | case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; | 
|  | case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break; | 
|  | case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break; | 
|  | case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; | 
|  | case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break; | 
|  | default: break; | 
|  | } | 
|  | /* Handle some cases by negating the result.  */ | 
|  | switch (CC) { | 
|  | case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; | 
|  | case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break; | 
|  | case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break; | 
|  | case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break; | 
|  | default: break; | 
|  | } | 
|  | /* We have instructions implementing the remaining cases.  */ | 
|  | switch (CC) { | 
|  | case ISD::SETEQ: | 
|  | case ISD::SETOEQ: | 
|  | if (VecVT == MVT::v4f32) | 
|  | return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP; | 
|  | else if (VecVT == MVT::v2f64) | 
|  | return PPC::XVCMPEQDP; | 
|  | break; | 
|  | case ISD::SETGT: | 
|  | case ISD::SETOGT: | 
|  | if (VecVT == MVT::v4f32) | 
|  | return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP; | 
|  | else if (VecVT == MVT::v2f64) | 
|  | return PPC::XVCMPGTDP; | 
|  | break; | 
|  | case ISD::SETGE: | 
|  | case ISD::SETOGE: | 
|  | if (VecVT == MVT::v4f32) | 
|  | return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP; | 
|  | else if (VecVT == MVT::v2f64) | 
|  | return PPC::XVCMPGEDP; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | llvm_unreachable("Invalid floating-point vector compare condition"); | 
|  | } else { | 
|  | /* Handle some cases by swapping input operands.  */ | 
|  | switch (CC) { | 
|  | case ISD::SETGE: CC = ISD::SETLE; Swap = true; break; | 
|  | case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; | 
|  | case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; | 
|  | case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break; | 
|  | default: break; | 
|  | } | 
|  | /* Handle some cases by negating the result.  */ | 
|  | switch (CC) { | 
|  | case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; | 
|  | case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break; | 
|  | case ISD::SETLE: CC = ISD::SETGT; Negate = true; break; | 
|  | case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break; | 
|  | default: break; | 
|  | } | 
|  | /* We have instructions implementing the remaining cases.  */ | 
|  | switch (CC) { | 
|  | case ISD::SETEQ: | 
|  | case ISD::SETUEQ: | 
|  | if (VecVT == MVT::v16i8) | 
|  | return PPC::VCMPEQUB; | 
|  | else if (VecVT == MVT::v8i16) | 
|  | return PPC::VCMPEQUH; | 
|  | else if (VecVT == MVT::v4i32) | 
|  | return PPC::VCMPEQUW; | 
|  | else if (VecVT == MVT::v2i64) | 
|  | return PPC::VCMPEQUD; | 
|  | break; | 
|  | case ISD::SETGT: | 
|  | if (VecVT == MVT::v16i8) | 
|  | return PPC::VCMPGTSB; | 
|  | else if (VecVT == MVT::v8i16) | 
|  | return PPC::VCMPGTSH; | 
|  | else if (VecVT == MVT::v4i32) | 
|  | return PPC::VCMPGTSW; | 
|  | else if (VecVT == MVT::v2i64) | 
|  | return PPC::VCMPGTSD; | 
|  | break; | 
|  | case ISD::SETUGT: | 
|  | if (VecVT == MVT::v16i8) | 
|  | return PPC::VCMPGTUB; | 
|  | else if (VecVT == MVT::v8i16) | 
|  | return PPC::VCMPGTUH; | 
|  | else if (VecVT == MVT::v4i32) | 
|  | return PPC::VCMPGTUW; | 
|  | else if (VecVT == MVT::v2i64) | 
|  | return PPC::VCMPGTUD; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | llvm_unreachable("Invalid integer vector compare condition"); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool PPCDAGToDAGISel::trySETCC(SDNode *N) { | 
|  | SDLoc dl(N); | 
|  | unsigned Imm; | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); | 
|  | EVT PtrVT = | 
|  | CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); | 
|  | bool isPPC64 = (PtrVT == MVT::i64); | 
|  |  | 
|  | if (!PPCSubTarget->useCRBits() && | 
|  | isInt32Immediate(N->getOperand(1), Imm)) { | 
|  | // We can codegen setcc op, imm very efficiently compared to a brcond. | 
|  | // Check for those cases here. | 
|  | // setcc op, 0 | 
|  | if (Imm == 0) { | 
|  | SDValue Op = N->getOperand(0); | 
|  | switch (CC) { | 
|  | default: break; | 
|  | case ISD::SETEQ: { | 
|  | Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0); | 
|  | SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl), | 
|  | getI32Imm(31, dl) }; | 
|  | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); | 
|  | return true; | 
|  | } | 
|  | case ISD::SETNE: { | 
|  | if (isPPC64) break; | 
|  | SDValue AD = | 
|  | SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, | 
|  | Op, getI32Imm(~0U, dl)), 0); | 
|  | CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1)); | 
|  | return true; | 
|  | } | 
|  | case ISD::SETLT: { | 
|  | SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), | 
|  | getI32Imm(31, dl) }; | 
|  | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); | 
|  | return true; | 
|  | } | 
|  | case ISD::SETGT: { | 
|  | SDValue T = | 
|  | SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0); | 
|  | T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0); | 
|  | SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl), | 
|  | getI32Imm(31, dl) }; | 
|  | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } else if (Imm == ~0U) {        // setcc op, -1 | 
|  | SDValue Op = N->getOperand(0); | 
|  | switch (CC) { | 
|  | default: break; | 
|  | case ISD::SETEQ: | 
|  | if (isPPC64) break; | 
|  | Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, | 
|  | Op, getI32Imm(1, dl)), 0); | 
|  | CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, | 
|  | SDValue(CurDAG->getMachineNode(PPC::LI, dl, | 
|  | MVT::i32, | 
|  | getI32Imm(0, dl)), | 
|  | 0), Op.getValue(1)); | 
|  | return true; | 
|  | case ISD::SETNE: { | 
|  | if (isPPC64) break; | 
|  | Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0); | 
|  | SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, | 
|  | Op, getI32Imm(~0U, dl)); | 
|  | CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op, | 
|  | SDValue(AD, 1)); | 
|  | return true; | 
|  | } | 
|  | case ISD::SETLT: { | 
|  | SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op, | 
|  | getI32Imm(1, dl)), 0); | 
|  | SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD, | 
|  | Op), 0); | 
|  | SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl), | 
|  | getI32Imm(31, dl) }; | 
|  | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); | 
|  | return true; | 
|  | } | 
|  | case ISD::SETGT: { | 
|  | SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), | 
|  | getI32Imm(31, dl) }; | 
|  | Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); | 
|  | CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl)); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  |  | 
|  | // Altivec Vector compare instructions do not set any CR register by default and | 
|  | // vector compare operations return the same type as the operands. | 
|  | if (LHS.getValueType().isVector()) { | 
|  | if (PPCSubTarget->hasQPX()) | 
|  | return false; | 
|  |  | 
|  | EVT VecVT = LHS.getValueType(); | 
|  | bool Swap, Negate; | 
|  | unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC, | 
|  | PPCSubTarget->hasVSX(), Swap, Negate); | 
|  | if (Swap) | 
|  | std::swap(LHS, RHS); | 
|  |  | 
|  | EVT ResVT = VecVT.changeVectorElementTypeToInteger(); | 
|  | if (Negate) { | 
|  | SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0); | 
|  | CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR, | 
|  | ResVT, VCmp, VCmp); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (PPCSubTarget->useCRBits()) | 
|  | return false; | 
|  |  | 
|  | bool Inv; | 
|  | unsigned Idx = getCRIdxForSetCC(CC, Inv); | 
|  | SDValue CCReg = SelectCC(LHS, RHS, CC, dl); | 
|  | SDValue IntCR; | 
|  |  | 
|  | // Force the ccreg into CR7. | 
|  | SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); | 
|  |  | 
|  | SDValue InFlag(nullptr, 0);  // Null incoming flag value. | 
|  | CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg, | 
|  | InFlag).getValue(1); | 
|  |  | 
|  | IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg, | 
|  | CCReg), 0); | 
|  |  | 
|  | SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl), | 
|  | getI32Imm(31, dl), getI32Imm(31, dl) }; | 
|  | if (!Inv) { | 
|  | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Get the specified bit. | 
|  | SDValue Tmp = | 
|  | SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); | 
|  | CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) { | 
|  | // Transfer memoperands. | 
|  | MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); | 
|  | MemOp[0] = cast<MemSDNode>(N)->getMemOperand(); | 
|  | cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Select - Convert the specified operand from a target-independent to a | 
|  | // target-specific node if it hasn't already been changed. | 
|  | void PPCDAGToDAGISel::Select(SDNode *N) { | 
|  | SDLoc dl(N); | 
|  | if (N->isMachineOpcode()) { | 
|  | N->setNodeId(-1); | 
|  | return;   // Already selected. | 
|  | } | 
|  |  | 
|  | // In case any misguided DAG-level optimizations form an ADD with a | 
|  | // TargetConstant operand, crash here instead of miscompiling (by selecting | 
|  | // an r+r add instead of some kind of r+i add). | 
|  | if (N->getOpcode() == ISD::ADD && | 
|  | N->getOperand(1).getOpcode() == ISD::TargetConstant) | 
|  | llvm_unreachable("Invalid ADD with TargetConstant operand"); | 
|  |  | 
|  | // Try matching complex bit permutations before doing anything else. | 
|  | if (tryBitPermutation(N)) | 
|  | return; | 
|  |  | 
|  | switch (N->getOpcode()) { | 
|  | default: break; | 
|  |  | 
|  | case ISD::Constant: { | 
|  | if (N->getValueType(0) == MVT::i64) { | 
|  | ReplaceNode(N, getInt64(CurDAG, N)); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::SETCC: { | 
|  | if (trySETCC(N)) | 
|  | return; | 
|  | break; | 
|  | } | 
|  | case PPCISD::GlobalBaseReg: | 
|  | ReplaceNode(N, getGlobalBaseReg()); | 
|  | return; | 
|  |  | 
|  | case ISD::FrameIndex: | 
|  | selectFrameIndex(N, N); | 
|  | return; | 
|  |  | 
|  | case PPCISD::MFOCRF: { | 
|  | SDValue InFlag = N->getOperand(1); | 
|  | ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, | 
|  | N->getOperand(0), InFlag)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case PPCISD::READ_TIME_BASE: { | 
|  | ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32, | 
|  | MVT::Other, N->getOperand(0))); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case PPCISD::SRA_ADDZE: { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue ShiftAmt = | 
|  | CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))-> | 
|  | getConstantIntValue(), dl, | 
|  | N->getValueType(0)); | 
|  | if (N->getValueType(0) == MVT::i64) { | 
|  | SDNode *Op = | 
|  | CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue, | 
|  | N0, ShiftAmt); | 
|  | CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0), | 
|  | SDValue(Op, 1)); | 
|  | return; | 
|  | } else { | 
|  | assert(N->getValueType(0) == MVT::i32 && | 
|  | "Expecting i64 or i32 in PPCISD::SRA_ADDZE"); | 
|  | SDNode *Op = | 
|  | CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, | 
|  | N0, ShiftAmt); | 
|  | CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0), | 
|  | SDValue(Op, 1)); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | case ISD::LOAD: { | 
|  | // Handle preincrement loads. | 
|  | LoadSDNode *LD = cast<LoadSDNode>(N); | 
|  | EVT LoadedVT = LD->getMemoryVT(); | 
|  |  | 
|  | // Normal loads are handled by code generated from the .td file. | 
|  | if (LD->getAddressingMode() != ISD::PRE_INC) | 
|  | break; | 
|  |  | 
|  | SDValue Offset = LD->getOffset(); | 
|  | if (Offset.getOpcode() == ISD::TargetConstant || | 
|  | Offset.getOpcode() == ISD::TargetGlobalAddress) { | 
|  |  | 
|  | unsigned Opcode; | 
|  | bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; | 
|  | if (LD->getValueType(0) != MVT::i64) { | 
|  | // Handle PPC32 integer and normal FP loads. | 
|  | assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); | 
|  | switch (LoadedVT.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Invalid PPC load type!"); | 
|  | case MVT::f64: Opcode = PPC::LFDU; break; | 
|  | case MVT::f32: Opcode = PPC::LFSU; break; | 
|  | case MVT::i32: Opcode = PPC::LWZU; break; | 
|  | case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break; | 
|  | case MVT::i1: | 
|  | case MVT::i8:  Opcode = PPC::LBZU; break; | 
|  | } | 
|  | } else { | 
|  | assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); | 
|  | assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); | 
|  | switch (LoadedVT.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Invalid PPC load type!"); | 
|  | case MVT::i64: Opcode = PPC::LDU; break; | 
|  | case MVT::i32: Opcode = PPC::LWZU8; break; | 
|  | case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break; | 
|  | case MVT::i1: | 
|  | case MVT::i8:  Opcode = PPC::LBZU8; break; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue Chain = LD->getChain(); | 
|  | SDValue Base = LD->getBasePtr(); | 
|  | SDValue Ops[] = { Offset, Base, Chain }; | 
|  | SDNode *MN = CurDAG->getMachineNode( | 
|  | Opcode, dl, LD->getValueType(0), | 
|  | PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); | 
|  | transferMemOperands(N, MN); | 
|  | ReplaceNode(N, MN); | 
|  | return; | 
|  | } else { | 
|  | unsigned Opcode; | 
|  | bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; | 
|  | if (LD->getValueType(0) != MVT::i64) { | 
|  | // Handle PPC32 integer and normal FP loads. | 
|  | assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); | 
|  | switch (LoadedVT.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Invalid PPC load type!"); | 
|  | case MVT::v4f64: Opcode = PPC::QVLFDUX; break; // QPX | 
|  | case MVT::v4f32: Opcode = PPC::QVLFSUX; break; // QPX | 
|  | case MVT::f64: Opcode = PPC::LFDUX; break; | 
|  | case MVT::f32: Opcode = PPC::LFSUX; break; | 
|  | case MVT::i32: Opcode = PPC::LWZUX; break; | 
|  | case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break; | 
|  | case MVT::i1: | 
|  | case MVT::i8:  Opcode = PPC::LBZUX; break; | 
|  | } | 
|  | } else { | 
|  | assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); | 
|  | assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) && | 
|  | "Invalid sext update load"); | 
|  | switch (LoadedVT.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Invalid PPC load type!"); | 
|  | case MVT::i64: Opcode = PPC::LDUX; break; | 
|  | case MVT::i32: Opcode = isSExt ? PPC::LWAUX  : PPC::LWZUX8; break; | 
|  | case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break; | 
|  | case MVT::i1: | 
|  | case MVT::i8:  Opcode = PPC::LBZUX8; break; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue Chain = LD->getChain(); | 
|  | SDValue Base = LD->getBasePtr(); | 
|  | SDValue Ops[] = { Base, Offset, Chain }; | 
|  | SDNode *MN = CurDAG->getMachineNode( | 
|  | Opcode, dl, LD->getValueType(0), | 
|  | PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); | 
|  | transferMemOperands(N, MN); | 
|  | ReplaceNode(N, MN); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | case ISD::AND: { | 
|  | unsigned Imm, Imm2, SH, MB, ME; | 
|  | uint64_t Imm64; | 
|  |  | 
|  | // If this is an and of a value rotated between 0 and 31 bits and then and'd | 
|  | // with a mask, emit rlwinm | 
|  | if (isInt32Immediate(N->getOperand(1), Imm) && | 
|  | isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) { | 
|  | SDValue Val = N->getOperand(0).getOperand(0); | 
|  | SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl), | 
|  | getI32Imm(ME, dl) }; | 
|  | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); | 
|  | return; | 
|  | } | 
|  | // If this is just a masked value where the input is not handled above, and | 
|  | // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm | 
|  | if (isInt32Immediate(N->getOperand(1), Imm) && | 
|  | isRunOfOnes(Imm, MB, ME) && | 
|  | N->getOperand(0).getOpcode() != ISD::ROTL) { | 
|  | SDValue Val = N->getOperand(0); | 
|  | SDValue Ops[] = { Val, getI32Imm(0, dl), getI32Imm(MB, dl), | 
|  | getI32Imm(ME, dl) }; | 
|  | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); | 
|  | return; | 
|  | } | 
|  | // If this is a 64-bit zero-extension mask, emit rldicl. | 
|  | if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) && | 
|  | isMask_64(Imm64)) { | 
|  | SDValue Val = N->getOperand(0); | 
|  | MB = 64 - countTrailingOnes(Imm64); | 
|  | SH = 0; | 
|  |  | 
|  | if (Val.getOpcode() == ISD::ANY_EXTEND) { | 
|  | auto Op0 = Val.getOperand(0); | 
|  | if ( Op0.getOpcode() == ISD::SRL && | 
|  | isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) { | 
|  |  | 
|  | auto ResultType = Val.getNode()->getValueType(0); | 
|  | auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, | 
|  | ResultType); | 
|  | SDValue IDVal (ImDef, 0); | 
|  |  | 
|  | Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, | 
|  | ResultType, IDVal, Op0.getOperand(0), | 
|  | getI32Imm(1, dl)), 0); | 
|  | SH = 64 - Imm; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the operand is a logical right shift, we can fold it into this | 
|  | // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb) | 
|  | // for n <= mb. The right shift is really a left rotate followed by a | 
|  | // mask, and this mask is a more-restrictive sub-mask of the mask implied | 
|  | // by the shift. | 
|  | if (Val.getOpcode() == ISD::SRL && | 
|  | isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) { | 
|  | assert(Imm < 64 && "Illegal shift amount"); | 
|  | Val = Val.getOperand(0); | 
|  | SH = 64 - Imm; | 
|  | } | 
|  |  | 
|  | SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) }; | 
|  | CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops); | 
|  | return; | 
|  | } | 
|  | // AND X, 0 -> 0, not "rlwinm 32". | 
|  | if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) { | 
|  | ReplaceUses(SDValue(N, 0), N->getOperand(1)); | 
|  | return; | 
|  | } | 
|  | // ISD::OR doesn't get all the bitfield insertion fun. | 
|  | // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a | 
|  | // bitfield insert. | 
|  | if (isInt32Immediate(N->getOperand(1), Imm) && | 
|  | N->getOperand(0).getOpcode() == ISD::OR && | 
|  | isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) { | 
|  | // The idea here is to check whether this is equivalent to: | 
|  | //   (c1 & m) | (x & ~m) | 
|  | // where m is a run-of-ones mask. The logic here is that, for each bit in | 
|  | // c1 and c2: | 
|  | //  - if both are 1, then the output will be 1. | 
|  | //  - if both are 0, then the output will be 0. | 
|  | //  - if the bit in c1 is 0, and the bit in c2 is 1, then the output will | 
|  | //    come from x. | 
|  | //  - if the bit in c1 is 1, and the bit in c2 is 0, then the output will | 
|  | //    be 0. | 
|  | //  If that last condition is never the case, then we can form m from the | 
|  | //  bits that are the same between c1 and c2. | 
|  | unsigned MB, ME; | 
|  | if (isRunOfOnes(~(Imm^Imm2), MB, ME) && !(~Imm & Imm2)) { | 
|  | SDValue Ops[] = { N->getOperand(0).getOperand(0), | 
|  | N->getOperand(0).getOperand(1), | 
|  | getI32Imm(0, dl), getI32Imm(MB, dl), | 
|  | getI32Imm(ME, dl) }; | 
|  | ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Other cases are autogenerated. | 
|  | break; | 
|  | } | 
|  | case ISD::OR: { | 
|  | if (N->getValueType(0) == MVT::i32) | 
|  | if (tryBitfieldInsert(N)) | 
|  | return; | 
|  |  | 
|  | short Imm; | 
|  | if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && | 
|  | isIntS16Immediate(N->getOperand(1), Imm)) { | 
|  | APInt LHSKnownZero, LHSKnownOne; | 
|  | CurDAG->computeKnownBits(N->getOperand(0), LHSKnownZero, LHSKnownOne); | 
|  |  | 
|  | // If this is equivalent to an add, then we can fold it with the | 
|  | // FrameIndex calculation. | 
|  | if ((LHSKnownZero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) { | 
|  | selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Other cases are autogenerated. | 
|  | break; | 
|  | } | 
|  | case ISD::ADD: { | 
|  | short Imm; | 
|  | if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && | 
|  | isIntS16Immediate(N->getOperand(1), Imm)) { | 
|  | selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm); | 
|  | return; | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | case ISD::SHL: { | 
|  | unsigned Imm, SH, MB, ME; | 
|  | if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && | 
|  | isRotateAndMask(N, Imm, true, SH, MB, ME)) { | 
|  | SDValue Ops[] = { N->getOperand(0).getOperand(0), | 
|  | getI32Imm(SH, dl), getI32Imm(MB, dl), | 
|  | getI32Imm(ME, dl) }; | 
|  | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Other cases are autogenerated. | 
|  | break; | 
|  | } | 
|  | case ISD::SRL: { | 
|  | unsigned Imm, SH, MB, ME; | 
|  | if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && | 
|  | isRotateAndMask(N, Imm, true, SH, MB, ME)) { | 
|  | SDValue Ops[] = { N->getOperand(0).getOperand(0), | 
|  | getI32Imm(SH, dl), getI32Imm(MB, dl), | 
|  | getI32Imm(ME, dl) }; | 
|  | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Other cases are autogenerated. | 
|  | break; | 
|  | } | 
|  | // FIXME: Remove this once the ANDI glue bug is fixed: | 
|  | case PPCISD::ANDIo_1_EQ_BIT: | 
|  | case PPCISD::ANDIo_1_GT_BIT: { | 
|  | if (!ANDIGlueBug) | 
|  | break; | 
|  |  | 
|  | EVT InVT = N->getOperand(0).getValueType(); | 
|  | assert((InVT == MVT::i64 || InVT == MVT::i32) && | 
|  | "Invalid input type for ANDIo_1_EQ_BIT"); | 
|  |  | 
|  | unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDIo8 : PPC::ANDIo; | 
|  | SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue, | 
|  | N->getOperand(0), | 
|  | CurDAG->getTargetConstant(1, dl, InVT)), | 
|  | 0); | 
|  | SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); | 
|  | SDValue SRIdxVal = | 
|  | CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ? | 
|  | PPC::sub_eq : PPC::sub_gt, dl, MVT::i32); | 
|  |  | 
|  | CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg, | 
|  | SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */); | 
|  | return; | 
|  | } | 
|  | case ISD::SELECT_CC: { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); | 
|  | EVT PtrVT = | 
|  | CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); | 
|  | bool isPPC64 = (PtrVT == MVT::i64); | 
|  |  | 
|  | // If this is a select of i1 operands, we'll pattern match it. | 
|  | if (PPCSubTarget->useCRBits() && | 
|  | N->getOperand(0).getValueType() == MVT::i1) | 
|  | break; | 
|  |  | 
|  | // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc | 
|  | if (!isPPC64) | 
|  | if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1))) | 
|  | if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2))) | 
|  | if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3))) | 
|  | if (N1C->isNullValue() && N3C->isNullValue() && | 
|  | N2C->getZExtValue() == 1ULL && CC == ISD::SETNE && | 
|  | // FIXME: Implement this optzn for PPC64. | 
|  | N->getValueType(0) == MVT::i32) { | 
|  | SDNode *Tmp = | 
|  | CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, | 
|  | N->getOperand(0), getI32Imm(~0U, dl)); | 
|  | CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0), | 
|  | N->getOperand(0), SDValue(Tmp, 1)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl); | 
|  |  | 
|  | if (N->getValueType(0) == MVT::i1) { | 
|  | // An i1 select is: (c & t) | (!c & f). | 
|  | bool Inv; | 
|  | unsigned Idx = getCRIdxForSetCC(CC, Inv); | 
|  |  | 
|  | unsigned SRI; | 
|  | switch (Idx) { | 
|  | default: llvm_unreachable("Invalid CC index"); | 
|  | case 0: SRI = PPC::sub_lt; break; | 
|  | case 1: SRI = PPC::sub_gt; break; | 
|  | case 2: SRI = PPC::sub_eq; break; | 
|  | case 3: SRI = PPC::sub_un; break; | 
|  | } | 
|  |  | 
|  | SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg); | 
|  |  | 
|  | SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1, | 
|  | CCBit, CCBit), 0); | 
|  | SDValue C =    Inv ? NotCCBit : CCBit, | 
|  | NotC = Inv ? CCBit    : NotCCBit; | 
|  |  | 
|  | SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, | 
|  | C, N->getOperand(2)), 0); | 
|  | SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, | 
|  | NotC, N->getOperand(3)), 0); | 
|  |  | 
|  | CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF); | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned BROpc = getPredicateForSetCC(CC); | 
|  |  | 
|  | unsigned SelectCCOp; | 
|  | if (N->getValueType(0) == MVT::i32) | 
|  | SelectCCOp = PPC::SELECT_CC_I4; | 
|  | else if (N->getValueType(0) == MVT::i64) | 
|  | SelectCCOp = PPC::SELECT_CC_I8; | 
|  | else if (N->getValueType(0) == MVT::f32) | 
|  | if (PPCSubTarget->hasP8Vector()) | 
|  | SelectCCOp = PPC::SELECT_CC_VSSRC; | 
|  | else | 
|  | SelectCCOp = PPC::SELECT_CC_F4; | 
|  | else if (N->getValueType(0) == MVT::f64) | 
|  | if (PPCSubTarget->hasVSX()) | 
|  | SelectCCOp = PPC::SELECT_CC_VSFRC; | 
|  | else | 
|  | SelectCCOp = PPC::SELECT_CC_F8; | 
|  | else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64) | 
|  | SelectCCOp = PPC::SELECT_CC_QFRC; | 
|  | else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32) | 
|  | SelectCCOp = PPC::SELECT_CC_QSRC; | 
|  | else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4i1) | 
|  | SelectCCOp = PPC::SELECT_CC_QBRC; | 
|  | else if (N->getValueType(0) == MVT::v2f64 || | 
|  | N->getValueType(0) == MVT::v2i64) | 
|  | SelectCCOp = PPC::SELECT_CC_VSRC; | 
|  | else | 
|  | SelectCCOp = PPC::SELECT_CC_VRRC; | 
|  |  | 
|  | SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3), | 
|  | getI32Imm(BROpc, dl) }; | 
|  | CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops); | 
|  | return; | 
|  | } | 
|  | case ISD::VSELECT: | 
|  | if (PPCSubTarget->hasVSX()) { | 
|  | SDValue Ops[] = { N->getOperand(2), N->getOperand(1), N->getOperand(0) }; | 
|  | CurDAG->SelectNodeTo(N, PPC::XXSEL, N->getValueType(0), Ops); | 
|  | return; | 
|  | } | 
|  |  | 
|  | break; | 
|  | case ISD::VECTOR_SHUFFLE: | 
|  | if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 || | 
|  | N->getValueType(0) == MVT::v2i64)) { | 
|  | ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); | 
|  |  | 
|  | SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1), | 
|  | Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1); | 
|  | unsigned DM[2]; | 
|  |  | 
|  | for (int i = 0; i < 2; ++i) | 
|  | if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2) | 
|  | DM[i] = 0; | 
|  | else | 
|  | DM[i] = 1; | 
|  |  | 
|  | if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 && | 
|  | Op1.getOpcode() == ISD::SCALAR_TO_VECTOR && | 
|  | isa<LoadSDNode>(Op1.getOperand(0))) { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0)); | 
|  | SDValue Base, Offset; | 
|  |  | 
|  | if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() && | 
|  | (LD->getMemoryVT() == MVT::f64 || | 
|  | LD->getMemoryVT() == MVT::i64) && | 
|  | SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) { | 
|  | SDValue Chain = LD->getChain(); | 
|  | SDValue Ops[] = { Base, Offset, Chain }; | 
|  | CurDAG->SelectNodeTo(N, PPC::LXVDSX, N->getValueType(0), Ops); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // For little endian, we must swap the input operands and adjust | 
|  | // the mask elements (reverse and invert them). | 
|  | if (PPCSubTarget->isLittleEndian()) { | 
|  | std::swap(Op1, Op2); | 
|  | unsigned tmp = DM[0]; | 
|  | DM[0] = 1 - DM[1]; | 
|  | DM[1] = 1 - tmp; | 
|  | } | 
|  |  | 
|  | SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl, | 
|  | MVT::i32); | 
|  | SDValue Ops[] = { Op1, Op2, DMV }; | 
|  | CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops); | 
|  | return; | 
|  | } | 
|  |  | 
|  | break; | 
|  | case PPCISD::BDNZ: | 
|  | case PPCISD::BDZ: { | 
|  | bool IsPPC64 = PPCSubTarget->isPPC64(); | 
|  | SDValue Ops[] = { N->getOperand(1), N->getOperand(0) }; | 
|  | CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ | 
|  | ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) | 
|  | : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ), | 
|  | MVT::Other, Ops); | 
|  | return; | 
|  | } | 
|  | case PPCISD::COND_BRANCH: { | 
|  | // Op #0 is the Chain. | 
|  | // Op #1 is the PPC::PRED_* number. | 
|  | // Op #2 is the CR# | 
|  | // Op #3 is the Dest MBB | 
|  | // Op #4 is the Flag. | 
|  | // Prevent PPC::PRED_* from being selected into LI. | 
|  | unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); | 
|  | if (EnableBranchHint) | 
|  | PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(3)); | 
|  |  | 
|  | SDValue Pred = getI32Imm(PCC, dl); | 
|  | SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3), | 
|  | N->getOperand(0), N->getOperand(4) }; | 
|  | CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); | 
|  | return; | 
|  | } | 
|  | case ISD::BR_CC: { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); | 
|  | unsigned PCC = getPredicateForSetCC(CC); | 
|  |  | 
|  | if (N->getOperand(2).getValueType() == MVT::i1) { | 
|  | unsigned Opc; | 
|  | bool Swap; | 
|  | switch (PCC) { | 
|  | default: llvm_unreachable("Unexpected Boolean-operand predicate"); | 
|  | case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true;  break; | 
|  | case PPC::PRED_LE: Opc = PPC::CRORC;  Swap = true;  break; | 
|  | case PPC::PRED_EQ: Opc = PPC::CREQV;  Swap = false; break; | 
|  | case PPC::PRED_GE: Opc = PPC::CRORC;  Swap = false; break; | 
|  | case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break; | 
|  | case PPC::PRED_NE: Opc = PPC::CRXOR;  Swap = false; break; | 
|  | } | 
|  |  | 
|  | SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1, | 
|  | N->getOperand(Swap ? 3 : 2), | 
|  | N->getOperand(Swap ? 2 : 3)), 0); | 
|  | CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4), | 
|  | N->getOperand(0)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (EnableBranchHint) | 
|  | PCC |= getBranchHint(PCC, FuncInfo, N->getOperand(4)); | 
|  |  | 
|  | SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl); | 
|  | SDValue Ops[] = { getI32Imm(PCC, dl), CondCode, | 
|  | N->getOperand(4), N->getOperand(0) }; | 
|  | CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); | 
|  | return; | 
|  | } | 
|  | case ISD::BRIND: { | 
|  | // FIXME: Should custom lower this. | 
|  | SDValue Chain = N->getOperand(0); | 
|  | SDValue Target = N->getOperand(1); | 
|  | unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8; | 
|  | unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8; | 
|  | Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target, | 
|  | Chain), 0); | 
|  | CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain); | 
|  | return; | 
|  | } | 
|  | case PPCISD::TOC_ENTRY: { | 
|  | assert ((PPCSubTarget->isPPC64() || PPCSubTarget->isSVR4ABI()) && | 
|  | "Only supported for 64-bit ABI and 32-bit SVR4"); | 
|  | if (PPCSubTarget->isSVR4ABI() && !PPCSubTarget->isPPC64()) { | 
|  | SDValue GA = N->getOperand(0); | 
|  | SDNode *MN = CurDAG->getMachineNode(PPC::LWZtoc, dl, MVT::i32, GA, | 
|  | N->getOperand(1)); | 
|  | transferMemOperands(N, MN); | 
|  | ReplaceNode(N, MN); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // For medium and large code model, we generate two instructions as | 
|  | // described below.  Otherwise we allow SelectCodeCommon to handle this, | 
|  | // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA. | 
|  | CodeModel::Model CModel = TM.getCodeModel(); | 
|  | if (CModel != CodeModel::Medium && CModel != CodeModel::Large) | 
|  | break; | 
|  |  | 
|  | // The first source operand is a TargetGlobalAddress or a TargetJumpTable. | 
|  | // If it must be toc-referenced according to PPCSubTarget, we generate: | 
|  | //   LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>)) | 
|  | // Otherwise we generate: | 
|  | //   ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>) | 
|  | SDValue GA = N->getOperand(0); | 
|  | SDValue TOCbase = N->getOperand(1); | 
|  | SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64, | 
|  | TOCbase, GA); | 
|  |  | 
|  | if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA) || | 
|  | CModel == CodeModel::Large) { | 
|  | SDNode *MN = CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA, | 
|  | SDValue(Tmp, 0)); | 
|  | transferMemOperands(N, MN); | 
|  | ReplaceNode(N, MN); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) { | 
|  | const GlobalValue *GV = G->getGlobal(); | 
|  | unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV); | 
|  | if (GVFlags & PPCII::MO_NLP_FLAG) { | 
|  | SDNode *MN = CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA, | 
|  | SDValue(Tmp, 0)); | 
|  | transferMemOperands(N, MN); | 
|  | ReplaceNode(N, MN); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64, | 
|  | SDValue(Tmp, 0), GA)); | 
|  | return; | 
|  | } | 
|  | case PPCISD::PPC32_PICGOT: { | 
|  | // Generate a PIC-safe GOT reference. | 
|  | assert(!PPCSubTarget->isPPC64() && PPCSubTarget->isSVR4ABI() && | 
|  | "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4"); | 
|  | CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT, | 
|  | PPCLowering->getPointerTy(CurDAG->getDataLayout()), | 
|  | MVT::i32); | 
|  | return; | 
|  | } | 
|  | case PPCISD::VADD_SPLAT: { | 
|  | // This expands into one of three sequences, depending on whether | 
|  | // the first operand is odd or even, positive or negative. | 
|  | assert(isa<ConstantSDNode>(N->getOperand(0)) && | 
|  | isa<ConstantSDNode>(N->getOperand(1)) && | 
|  | "Invalid operand on VADD_SPLAT!"); | 
|  |  | 
|  | int Elt     = N->getConstantOperandVal(0); | 
|  | int EltSize = N->getConstantOperandVal(1); | 
|  | unsigned Opc1, Opc2, Opc3; | 
|  | EVT VT; | 
|  |  | 
|  | if (EltSize == 1) { | 
|  | Opc1 = PPC::VSPLTISB; | 
|  | Opc2 = PPC::VADDUBM; | 
|  | Opc3 = PPC::VSUBUBM; | 
|  | VT = MVT::v16i8; | 
|  | } else if (EltSize == 2) { | 
|  | Opc1 = PPC::VSPLTISH; | 
|  | Opc2 = PPC::VADDUHM; | 
|  | Opc3 = PPC::VSUBUHM; | 
|  | VT = MVT::v8i16; | 
|  | } else { | 
|  | assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!"); | 
|  | Opc1 = PPC::VSPLTISW; | 
|  | Opc2 = PPC::VADDUWM; | 
|  | Opc3 = PPC::VSUBUWM; | 
|  | VT = MVT::v4i32; | 
|  | } | 
|  |  | 
|  | if ((Elt & 1) == 0) { | 
|  | // Elt is even, in the range [-32,-18] + [16,30]. | 
|  | // | 
|  | // Convert: VADD_SPLAT elt, size | 
|  | // Into:    tmp = VSPLTIS[BHW] elt | 
|  | //          VADDU[BHW]M tmp, tmp | 
|  | // Where:   [BHW] = B for size = 1, H for size = 2, W for size = 4 | 
|  | SDValue EltVal = getI32Imm(Elt >> 1, dl); | 
|  | SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); | 
|  | SDValue TmpVal = SDValue(Tmp, 0); | 
|  | ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal)); | 
|  | return; | 
|  |  | 
|  | } else if (Elt > 0) { | 
|  | // Elt is odd and positive, in the range [17,31]. | 
|  | // | 
|  | // Convert: VADD_SPLAT elt, size | 
|  | // Into:    tmp1 = VSPLTIS[BHW] elt-16 | 
|  | //          tmp2 = VSPLTIS[BHW] -16 | 
|  | //          VSUBU[BHW]M tmp1, tmp2 | 
|  | SDValue EltVal = getI32Imm(Elt - 16, dl); | 
|  | SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); | 
|  | EltVal = getI32Imm(-16, dl); | 
|  | SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); | 
|  | ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0), | 
|  | SDValue(Tmp2, 0))); | 
|  | return; | 
|  |  | 
|  | } else { | 
|  | // Elt is odd and negative, in the range [-31,-17]. | 
|  | // | 
|  | // Convert: VADD_SPLAT elt, size | 
|  | // Into:    tmp1 = VSPLTIS[BHW] elt+16 | 
|  | //          tmp2 = VSPLTIS[BHW] -16 | 
|  | //          VADDU[BHW]M tmp1, tmp2 | 
|  | SDValue EltVal = getI32Imm(Elt + 16, dl); | 
|  | SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); | 
|  | EltVal = getI32Imm(-16, dl); | 
|  | SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); | 
|  | ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0), | 
|  | SDValue(Tmp2, 0))); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SelectCode(N); | 
|  | } | 
|  |  | 
|  | // If the target supports the cmpb instruction, do the idiom recognition here. | 
|  | // We don't do this as a DAG combine because we don't want to do it as nodes | 
|  | // are being combined (because we might miss part of the eventual idiom). We | 
|  | // don't want to do it during instruction selection because we want to reuse | 
|  | // the logic for lowering the masking operations already part of the | 
|  | // instruction selector. | 
|  | SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) { | 
|  | SDLoc dl(N); | 
|  |  | 
|  | assert(N->getOpcode() == ISD::OR && | 
|  | "Only OR nodes are supported for CMPB"); | 
|  |  | 
|  | SDValue Res; | 
|  | if (!PPCSubTarget->hasCMPB()) | 
|  | return Res; | 
|  |  | 
|  | if (N->getValueType(0) != MVT::i32 && | 
|  | N->getValueType(0) != MVT::i64) | 
|  | return Res; | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | SDValue RHS, LHS; | 
|  | bool BytesFound[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; | 
|  | uint64_t Mask = 0, Alt = 0; | 
|  |  | 
|  | auto IsByteSelectCC = [this](SDValue O, unsigned &b, | 
|  | uint64_t &Mask, uint64_t &Alt, | 
|  | SDValue &LHS, SDValue &RHS) { | 
|  | if (O.getOpcode() != ISD::SELECT_CC) | 
|  | return false; | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get(); | 
|  |  | 
|  | if (!isa<ConstantSDNode>(O.getOperand(2)) || | 
|  | !isa<ConstantSDNode>(O.getOperand(3))) | 
|  | return false; | 
|  |  | 
|  | uint64_t PM = O.getConstantOperandVal(2); | 
|  | uint64_t PAlt = O.getConstantOperandVal(3); | 
|  | for (b = 0; b < 8; ++b) { | 
|  | uint64_t Mask = UINT64_C(0xFF) << (8*b); | 
|  | if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (b == 8) | 
|  | return false; | 
|  | Mask |= PM; | 
|  | Alt  |= PAlt; | 
|  |  | 
|  | if (!isa<ConstantSDNode>(O.getOperand(1)) || | 
|  | O.getConstantOperandVal(1) != 0) { | 
|  | SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1); | 
|  | if (Op0.getOpcode() == ISD::TRUNCATE) | 
|  | Op0 = Op0.getOperand(0); | 
|  | if (Op1.getOpcode() == ISD::TRUNCATE) | 
|  | Op1 = Op1.getOperand(0); | 
|  |  | 
|  | if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL && | 
|  | Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ && | 
|  | isa<ConstantSDNode>(Op0.getOperand(1))) { | 
|  |  | 
|  | unsigned Bits = Op0.getValueSizeInBits(); | 
|  | if (b != Bits/8-1) | 
|  | return false; | 
|  | if (Op0.getConstantOperandVal(1) != Bits-8) | 
|  | return false; | 
|  |  | 
|  | LHS = Op0.getOperand(0); | 
|  | RHS = Op1.getOperand(0); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // When we have small integers (i16 to be specific), the form present | 
|  | // post-legalization uses SETULT in the SELECT_CC for the | 
|  | // higher-order byte, depending on the fact that the | 
|  | // even-higher-order bytes are known to all be zero, for example: | 
|  | //   select_cc (xor $lhs, $rhs), 256, 65280, 0, setult | 
|  | // (so when the second byte is the same, because all higher-order | 
|  | // bits from bytes 3 and 4 are known to be zero, the result of the | 
|  | // xor can be at most 255) | 
|  | if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT && | 
|  | isa<ConstantSDNode>(O.getOperand(1))) { | 
|  |  | 
|  | uint64_t ULim = O.getConstantOperandVal(1); | 
|  | if (ULim != (UINT64_C(1) << b*8)) | 
|  | return false; | 
|  |  | 
|  | // Now we need to make sure that the upper bytes are known to be | 
|  | // zero. | 
|  | unsigned Bits = Op0.getValueSizeInBits(); | 
|  | if (!CurDAG->MaskedValueIsZero( | 
|  | Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8))) | 
|  | return false; | 
|  |  | 
|  | LHS = Op0.getOperand(0); | 
|  | RHS = Op0.getOperand(1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (CC != ISD::SETEQ) | 
|  | return false; | 
|  |  | 
|  | SDValue Op = O.getOperand(0); | 
|  | if (Op.getOpcode() == ISD::AND) { | 
|  | if (!isa<ConstantSDNode>(Op.getOperand(1))) | 
|  | return false; | 
|  | if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b))) | 
|  | return false; | 
|  |  | 
|  | SDValue XOR = Op.getOperand(0); | 
|  | if (XOR.getOpcode() == ISD::TRUNCATE) | 
|  | XOR = XOR.getOperand(0); | 
|  | if (XOR.getOpcode() != ISD::XOR) | 
|  | return false; | 
|  |  | 
|  | LHS = XOR.getOperand(0); | 
|  | RHS = XOR.getOperand(1); | 
|  | return true; | 
|  | } else if (Op.getOpcode() == ISD::SRL) { | 
|  | if (!isa<ConstantSDNode>(Op.getOperand(1))) | 
|  | return false; | 
|  | unsigned Bits = Op.getValueSizeInBits(); | 
|  | if (b != Bits/8-1) | 
|  | return false; | 
|  | if (Op.getConstantOperandVal(1) != Bits-8) | 
|  | return false; | 
|  |  | 
|  | SDValue XOR = Op.getOperand(0); | 
|  | if (XOR.getOpcode() == ISD::TRUNCATE) | 
|  | XOR = XOR.getOperand(0); | 
|  | if (XOR.getOpcode() != ISD::XOR) | 
|  | return false; | 
|  |  | 
|  | LHS = XOR.getOperand(0); | 
|  | RHS = XOR.getOperand(1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | SmallVector<SDValue, 8> Queue(1, SDValue(N, 0)); | 
|  | while (!Queue.empty()) { | 
|  | SDValue V = Queue.pop_back_val(); | 
|  |  | 
|  | for (const SDValue &O : V.getNode()->ops()) { | 
|  | unsigned b; | 
|  | uint64_t M = 0, A = 0; | 
|  | SDValue OLHS, ORHS; | 
|  | if (O.getOpcode() == ISD::OR) { | 
|  | Queue.push_back(O); | 
|  | } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) { | 
|  | if (!LHS) { | 
|  | LHS = OLHS; | 
|  | RHS = ORHS; | 
|  | BytesFound[b] = true; | 
|  | Mask |= M; | 
|  | Alt  |= A; | 
|  | } else if ((LHS == ORHS && RHS == OLHS) || | 
|  | (RHS == ORHS && LHS == OLHS)) { | 
|  | BytesFound[b] = true; | 
|  | Mask |= M; | 
|  | Alt  |= A; | 
|  | } else { | 
|  | return Res; | 
|  | } | 
|  | } else { | 
|  | return Res; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned LastB = 0, BCnt = 0; | 
|  | for (unsigned i = 0; i < 8; ++i) | 
|  | if (BytesFound[LastB]) { | 
|  | ++BCnt; | 
|  | LastB = i; | 
|  | } | 
|  |  | 
|  | if (!LastB || BCnt < 2) | 
|  | return Res; | 
|  |  | 
|  | // Because we'll be zero-extending the output anyway if don't have a specific | 
|  | // value for each input byte (via the Mask), we can 'anyext' the inputs. | 
|  | if (LHS.getValueType() != VT) { | 
|  | LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT); | 
|  | RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT); | 
|  | } | 
|  |  | 
|  | Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS); | 
|  |  | 
|  | bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1); | 
|  | if (NonTrivialMask && !Alt) { | 
|  | // Res = Mask & CMPB | 
|  | Res = CurDAG->getNode(ISD::AND, dl, VT, Res, | 
|  | CurDAG->getConstant(Mask, dl, VT)); | 
|  | } else if (Alt) { | 
|  | // Res = (CMPB & Mask) | (~CMPB & Alt) | 
|  | // Which, as suggested here: | 
|  | //   https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge | 
|  | // can be written as: | 
|  | // Res = Alt ^ ((Alt ^ Mask) & CMPB) | 
|  | // useful because the (Alt ^ Mask) can be pre-computed. | 
|  | Res = CurDAG->getNode(ISD::AND, dl, VT, Res, | 
|  | CurDAG->getConstant(Mask ^ Alt, dl, VT)); | 
|  | Res = CurDAG->getNode(ISD::XOR, dl, VT, Res, | 
|  | CurDAG->getConstant(Alt, dl, VT)); | 
|  | } | 
|  |  | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // When CR bit registers are enabled, an extension of an i1 variable to a i32 | 
|  | // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus | 
|  | // involves constant materialization of a 0 or a 1 or both. If the result of | 
|  | // the extension is then operated upon by some operator that can be constant | 
|  | // folded with a constant 0 or 1, and that constant can be materialized using | 
|  | // only one instruction (like a zero or one), then we should fold in those | 
|  | // operations with the select. | 
|  | void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) { | 
|  | if (!PPCSubTarget->useCRBits()) | 
|  | return; | 
|  |  | 
|  | if (N->getOpcode() != ISD::ZERO_EXTEND && | 
|  | N->getOpcode() != ISD::SIGN_EXTEND && | 
|  | N->getOpcode() != ISD::ANY_EXTEND) | 
|  | return; | 
|  |  | 
|  | if (N->getOperand(0).getValueType() != MVT::i1) | 
|  | return; | 
|  |  | 
|  | if (!N->hasOneUse()) | 
|  | return; | 
|  |  | 
|  | SDLoc dl(N); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDValue Cond = N->getOperand(0); | 
|  | SDValue ConstTrue = | 
|  | CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT); | 
|  | SDValue ConstFalse = CurDAG->getConstant(0, dl, VT); | 
|  |  | 
|  | do { | 
|  | SDNode *User = *N->use_begin(); | 
|  | if (User->getNumOperands() != 2) | 
|  | break; | 
|  |  | 
|  | auto TryFold = [this, N, User, dl](SDValue Val) { | 
|  | SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1); | 
|  | SDValue O0 = UserO0.getNode() == N ? Val : UserO0; | 
|  | SDValue O1 = UserO1.getNode() == N ? Val : UserO1; | 
|  |  | 
|  | return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl, | 
|  | User->getValueType(0), | 
|  | O0.getNode(), O1.getNode()); | 
|  | }; | 
|  |  | 
|  | SDValue TrueRes = TryFold(ConstTrue); | 
|  | if (!TrueRes) | 
|  | break; | 
|  | SDValue FalseRes = TryFold(ConstFalse); | 
|  | if (!FalseRes) | 
|  | break; | 
|  |  | 
|  | // For us to materialize these using one instruction, we must be able to | 
|  | // represent them as signed 16-bit integers. | 
|  | uint64_t True  = cast<ConstantSDNode>(TrueRes)->getZExtValue(), | 
|  | False = cast<ConstantSDNode>(FalseRes)->getZExtValue(); | 
|  | if (!isInt<16>(True) || !isInt<16>(False)) | 
|  | break; | 
|  |  | 
|  | // We can replace User with a new SELECT node, and try again to see if we | 
|  | // can fold the select with its user. | 
|  | Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes); | 
|  | N = User; | 
|  | ConstTrue = TrueRes; | 
|  | ConstFalse = FalseRes; | 
|  | } while (N->hasOneUse()); | 
|  | } | 
|  |  | 
|  | void PPCDAGToDAGISel::PreprocessISelDAG() { | 
|  | SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode()); | 
|  | ++Position; | 
|  |  | 
|  | bool MadeChange = false; | 
|  | while (Position != CurDAG->allnodes_begin()) { | 
|  | SDNode *N = &*--Position; | 
|  | if (N->use_empty()) | 
|  | continue; | 
|  |  | 
|  | SDValue Res; | 
|  | switch (N->getOpcode()) { | 
|  | default: break; | 
|  | case ISD::OR: | 
|  | Res = combineToCMPB(N); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!Res) | 
|  | foldBoolExts(Res, N); | 
|  |  | 
|  | if (Res) { | 
|  | DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld:    "); | 
|  | DEBUG(N->dump(CurDAG)); | 
|  | DEBUG(dbgs() << "\nNew: "); | 
|  | DEBUG(Res.getNode()->dump(CurDAG)); | 
|  | DEBUG(dbgs() << "\n"); | 
|  |  | 
|  | CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); | 
|  | MadeChange = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (MadeChange) | 
|  | CurDAG->RemoveDeadNodes(); | 
|  | } | 
|  |  | 
|  | /// PostprocessISelDAG - Perform some late peephole optimizations | 
|  | /// on the DAG representation. | 
|  | void PPCDAGToDAGISel::PostprocessISelDAG() { | 
|  |  | 
|  | // Skip peepholes at -O0. | 
|  | if (TM.getOptLevel() == CodeGenOpt::None) | 
|  | return; | 
|  |  | 
|  | PeepholePPC64(); | 
|  | PeepholeCROps(); | 
|  | PeepholePPC64ZExt(); | 
|  | } | 
|  |  | 
|  | // Check if all users of this node will become isel where the second operand | 
|  | // is the constant zero. If this is so, and if we can negate the condition, | 
|  | // then we can flip the true and false operands. This will allow the zero to | 
|  | // be folded with the isel so that we don't need to materialize a register | 
|  | // containing zero. | 
|  | bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) { | 
|  | // If we're not using isel, then this does not matter. | 
|  | if (!PPCSubTarget->hasISEL()) | 
|  | return false; | 
|  |  | 
|  | for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); | 
|  | UI != UE; ++UI) { | 
|  | SDNode *User = *UI; | 
|  | if (!User->isMachineOpcode()) | 
|  | return false; | 
|  | if (User->getMachineOpcode() != PPC::SELECT_I4 && | 
|  | User->getMachineOpcode() != PPC::SELECT_I8) | 
|  | return false; | 
|  |  | 
|  | SDNode *Op2 = User->getOperand(2).getNode(); | 
|  | if (!Op2->isMachineOpcode()) | 
|  | return false; | 
|  |  | 
|  | if (Op2->getMachineOpcode() != PPC::LI && | 
|  | Op2->getMachineOpcode() != PPC::LI8) | 
|  | return false; | 
|  |  | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0)); | 
|  | if (!C) | 
|  | return false; | 
|  |  | 
|  | if (!C->isNullValue()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) { | 
|  | SmallVector<SDNode *, 4> ToReplace; | 
|  | for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); | 
|  | UI != UE; ++UI) { | 
|  | SDNode *User = *UI; | 
|  | assert((User->getMachineOpcode() == PPC::SELECT_I4 || | 
|  | User->getMachineOpcode() == PPC::SELECT_I8) && | 
|  | "Must have all select users"); | 
|  | ToReplace.push_back(User); | 
|  | } | 
|  |  | 
|  | for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(), | 
|  | UE = ToReplace.end(); UI != UE; ++UI) { | 
|  | SDNode *User = *UI; | 
|  | SDNode *ResNode = | 
|  | CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User), | 
|  | User->getValueType(0), User->getOperand(0), | 
|  | User->getOperand(2), | 
|  | User->getOperand(1)); | 
|  |  | 
|  | DEBUG(dbgs() << "CR Peephole replacing:\nOld:    "); | 
|  | DEBUG(User->dump(CurDAG)); | 
|  | DEBUG(dbgs() << "\nNew: "); | 
|  | DEBUG(ResNode->dump(CurDAG)); | 
|  | DEBUG(dbgs() << "\n"); | 
|  |  | 
|  | ReplaceUses(User, ResNode); | 
|  | } | 
|  | } | 
|  |  | 
|  | void PPCDAGToDAGISel::PeepholeCROps() { | 
|  | bool IsModified; | 
|  | do { | 
|  | IsModified = false; | 
|  | for (SDNode &Node : CurDAG->allnodes()) { | 
|  | MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node); | 
|  | if (!MachineNode || MachineNode->use_empty()) | 
|  | continue; | 
|  | SDNode *ResNode = MachineNode; | 
|  |  | 
|  | bool Op1Set   = false, Op1Unset = false, | 
|  | Op1Not   = false, | 
|  | Op2Set   = false, Op2Unset = false, | 
|  | Op2Not   = false; | 
|  |  | 
|  | unsigned Opcode = MachineNode->getMachineOpcode(); | 
|  | switch (Opcode) { | 
|  | default: break; | 
|  | case PPC::CRAND: | 
|  | case PPC::CRNAND: | 
|  | case PPC::CROR: | 
|  | case PPC::CRXOR: | 
|  | case PPC::CRNOR: | 
|  | case PPC::CREQV: | 
|  | case PPC::CRANDC: | 
|  | case PPC::CRORC: { | 
|  | SDValue Op = MachineNode->getOperand(1); | 
|  | if (Op.isMachineOpcode()) { | 
|  | if (Op.getMachineOpcode() == PPC::CRSET) | 
|  | Op2Set = true; | 
|  | else if (Op.getMachineOpcode() == PPC::CRUNSET) | 
|  | Op2Unset = true; | 
|  | else if (Op.getMachineOpcode() == PPC::CRNOR && | 
|  | Op.getOperand(0) == Op.getOperand(1)) | 
|  | Op2Not = true; | 
|  | } | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  | case PPC::BC: | 
|  | case PPC::BCn: | 
|  | case PPC::SELECT_I4: | 
|  | case PPC::SELECT_I8: | 
|  | case PPC::SELECT_F4: | 
|  | case PPC::SELECT_F8: | 
|  | case PPC::SELECT_QFRC: | 
|  | case PPC::SELECT_QSRC: | 
|  | case PPC::SELECT_QBRC: | 
|  | case PPC::SELECT_VRRC: | 
|  | case PPC::SELECT_VSFRC: | 
|  | case PPC::SELECT_VSSRC: | 
|  | case PPC::SELECT_VSRC: { | 
|  | SDValue Op = MachineNode->getOperand(0); | 
|  | if (Op.isMachineOpcode()) { | 
|  | if (Op.getMachineOpcode() == PPC::CRSET) | 
|  | Op1Set = true; | 
|  | else if (Op.getMachineOpcode() == PPC::CRUNSET) | 
|  | Op1Unset = true; | 
|  | else if (Op.getMachineOpcode() == PPC::CRNOR && | 
|  | Op.getOperand(0) == Op.getOperand(1)) | 
|  | Op1Not = true; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | bool SelectSwap = false; | 
|  | switch (Opcode) { | 
|  | default: break; | 
|  | case PPC::CRAND: | 
|  | if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) | 
|  | // x & x = x | 
|  | ResNode = MachineNode->getOperand(0).getNode(); | 
|  | else if (Op1Set) | 
|  | // 1 & y = y | 
|  | ResNode = MachineNode->getOperand(1).getNode(); | 
|  | else if (Op2Set) | 
|  | // x & 1 = x | 
|  | ResNode = MachineNode->getOperand(0).getNode(); | 
|  | else if (Op1Unset || Op2Unset) | 
|  | // x & 0 = 0 & y = 0 | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), | 
|  | MVT::i1); | 
|  | else if (Op1Not) | 
|  | // ~x & y = andc(y, x) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(1), | 
|  | MachineNode->getOperand(0). | 
|  | getOperand(0)); | 
|  | else if (Op2Not) | 
|  | // x & ~y = andc(x, y) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(1). | 
|  | getOperand(0)); | 
|  | else if (AllUsersSelectZero(MachineNode)) { | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(1)); | 
|  | SelectSwap = true; | 
|  | } | 
|  | break; | 
|  | case PPC::CRNAND: | 
|  | if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) | 
|  | // nand(x, x) -> nor(x, x) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(0)); | 
|  | else if (Op1Set) | 
|  | // nand(1, y) -> nor(y, y) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(1), | 
|  | MachineNode->getOperand(1)); | 
|  | else if (Op2Set) | 
|  | // nand(x, 1) -> nor(x, x) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(0)); | 
|  | else if (Op1Unset || Op2Unset) | 
|  | // nand(x, 0) = nand(0, y) = 1 | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), | 
|  | MVT::i1); | 
|  | else if (Op1Not) | 
|  | // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0). | 
|  | getOperand(0), | 
|  | MachineNode->getOperand(1)); | 
|  | else if (Op2Not) | 
|  | // nand(x, ~y) = ~x | y = orc(y, x) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(1). | 
|  | getOperand(0), | 
|  | MachineNode->getOperand(0)); | 
|  | else if (AllUsersSelectZero(MachineNode)) { | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(1)); | 
|  | SelectSwap = true; | 
|  | } | 
|  | break; | 
|  | case PPC::CROR: | 
|  | if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) | 
|  | // x | x = x | 
|  | ResNode = MachineNode->getOperand(0).getNode(); | 
|  | else if (Op1Set || Op2Set) | 
|  | // x | 1 = 1 | y = 1 | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), | 
|  | MVT::i1); | 
|  | else if (Op1Unset) | 
|  | // 0 | y = y | 
|  | ResNode = MachineNode->getOperand(1).getNode(); | 
|  | else if (Op2Unset) | 
|  | // x | 0 = x | 
|  | ResNode = MachineNode->getOperand(0).getNode(); | 
|  | else if (Op1Not) | 
|  | // ~x | y = orc(y, x) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(1), | 
|  | MachineNode->getOperand(0). | 
|  | getOperand(0)); | 
|  | else if (Op2Not) | 
|  | // x | ~y = orc(x, y) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(1). | 
|  | getOperand(0)); | 
|  | else if (AllUsersSelectZero(MachineNode)) { | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(1)); | 
|  | SelectSwap = true; | 
|  | } | 
|  | break; | 
|  | case PPC::CRXOR: | 
|  | if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) | 
|  | // xor(x, x) = 0 | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), | 
|  | MVT::i1); | 
|  | else if (Op1Set) | 
|  | // xor(1, y) -> nor(y, y) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(1), | 
|  | MachineNode->getOperand(1)); | 
|  | else if (Op2Set) | 
|  | // xor(x, 1) -> nor(x, x) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(0)); | 
|  | else if (Op1Unset) | 
|  | // xor(0, y) = y | 
|  | ResNode = MachineNode->getOperand(1).getNode(); | 
|  | else if (Op2Unset) | 
|  | // xor(x, 0) = x | 
|  | ResNode = MachineNode->getOperand(0).getNode(); | 
|  | else if (Op1Not) | 
|  | // xor(~x, y) = eqv(x, y) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0). | 
|  | getOperand(0), | 
|  | MachineNode->getOperand(1)); | 
|  | else if (Op2Not) | 
|  | // xor(x, ~y) = eqv(x, y) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(1). | 
|  | getOperand(0)); | 
|  | else if (AllUsersSelectZero(MachineNode)) { | 
|  | ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(1)); | 
|  | SelectSwap = true; | 
|  | } | 
|  | break; | 
|  | case PPC::CRNOR: | 
|  | if (Op1Set || Op2Set) | 
|  | // nor(1, y) -> 0 | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), | 
|  | MVT::i1); | 
|  | else if (Op1Unset) | 
|  | // nor(0, y) = ~y -> nor(y, y) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(1), | 
|  | MachineNode->getOperand(1)); | 
|  | else if (Op2Unset) | 
|  | // nor(x, 0) = ~x | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(0)); | 
|  | else if (Op1Not) | 
|  | // nor(~x, y) = andc(x, y) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0). | 
|  | getOperand(0), | 
|  | MachineNode->getOperand(1)); | 
|  | else if (Op2Not) | 
|  | // nor(x, ~y) = andc(y, x) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(1). | 
|  | getOperand(0), | 
|  | MachineNode->getOperand(0)); | 
|  | else if (AllUsersSelectZero(MachineNode)) { | 
|  | ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(1)); | 
|  | SelectSwap = true; | 
|  | } | 
|  | break; | 
|  | case PPC::CREQV: | 
|  | if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) | 
|  | // eqv(x, x) = 1 | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), | 
|  | MVT::i1); | 
|  | else if (Op1Set) | 
|  | // eqv(1, y) = y | 
|  | ResNode = MachineNode->getOperand(1).getNode(); | 
|  | else if (Op2Set) | 
|  | // eqv(x, 1) = x | 
|  | ResNode = MachineNode->getOperand(0).getNode(); | 
|  | else if (Op1Unset) | 
|  | // eqv(0, y) = ~y -> nor(y, y) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(1), | 
|  | MachineNode->getOperand(1)); | 
|  | else if (Op2Unset) | 
|  | // eqv(x, 0) = ~x | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(0)); | 
|  | else if (Op1Not) | 
|  | // eqv(~x, y) = xor(x, y) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0). | 
|  | getOperand(0), | 
|  | MachineNode->getOperand(1)); | 
|  | else if (Op2Not) | 
|  | // eqv(x, ~y) = xor(x, y) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(1). | 
|  | getOperand(0)); | 
|  | else if (AllUsersSelectZero(MachineNode)) { | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(1)); | 
|  | SelectSwap = true; | 
|  | } | 
|  | break; | 
|  | case PPC::CRANDC: | 
|  | if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) | 
|  | // andc(x, x) = 0 | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), | 
|  | MVT::i1); | 
|  | else if (Op1Set) | 
|  | // andc(1, y) = ~y | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(1), | 
|  | MachineNode->getOperand(1)); | 
|  | else if (Op1Unset || Op2Set) | 
|  | // andc(0, y) = andc(x, 1) = 0 | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), | 
|  | MVT::i1); | 
|  | else if (Op2Unset) | 
|  | // andc(x, 0) = x | 
|  | ResNode = MachineNode->getOperand(0).getNode(); | 
|  | else if (Op1Not) | 
|  | // andc(~x, y) = ~(x | y) = nor(x, y) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0). | 
|  | getOperand(0), | 
|  | MachineNode->getOperand(1)); | 
|  | else if (Op2Not) | 
|  | // andc(x, ~y) = x & y | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(1). | 
|  | getOperand(0)); | 
|  | else if (AllUsersSelectZero(MachineNode)) { | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(1), | 
|  | MachineNode->getOperand(0)); | 
|  | SelectSwap = true; | 
|  | } | 
|  | break; | 
|  | case PPC::CRORC: | 
|  | if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) | 
|  | // orc(x, x) = 1 | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), | 
|  | MVT::i1); | 
|  | else if (Op1Set || Op2Unset) | 
|  | // orc(1, y) = orc(x, 0) = 1 | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), | 
|  | MVT::i1); | 
|  | else if (Op2Set) | 
|  | // orc(x, 1) = x | 
|  | ResNode = MachineNode->getOperand(0).getNode(); | 
|  | else if (Op1Unset) | 
|  | // orc(0, y) = ~y | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(1), | 
|  | MachineNode->getOperand(1)); | 
|  | else if (Op1Not) | 
|  | // orc(~x, y) = ~(x & y) = nand(x, y) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0). | 
|  | getOperand(0), | 
|  | MachineNode->getOperand(1)); | 
|  | else if (Op2Not) | 
|  | // orc(x, ~y) = x | y | 
|  | ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(1). | 
|  | getOperand(0)); | 
|  | else if (AllUsersSelectZero(MachineNode)) { | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(1), | 
|  | MachineNode->getOperand(0)); | 
|  | SelectSwap = true; | 
|  | } | 
|  | break; | 
|  | case PPC::SELECT_I4: | 
|  | case PPC::SELECT_I8: | 
|  | case PPC::SELECT_F4: | 
|  | case PPC::SELECT_F8: | 
|  | case PPC::SELECT_QFRC: | 
|  | case PPC::SELECT_QSRC: | 
|  | case PPC::SELECT_QBRC: | 
|  | case PPC::SELECT_VRRC: | 
|  | case PPC::SELECT_VSFRC: | 
|  | case PPC::SELECT_VSSRC: | 
|  | case PPC::SELECT_VSRC: | 
|  | if (Op1Set) | 
|  | ResNode = MachineNode->getOperand(1).getNode(); | 
|  | else if (Op1Unset) | 
|  | ResNode = MachineNode->getOperand(2).getNode(); | 
|  | else if (Op1Not) | 
|  | ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(), | 
|  | SDLoc(MachineNode), | 
|  | MachineNode->getValueType(0), | 
|  | MachineNode->getOperand(0). | 
|  | getOperand(0), | 
|  | MachineNode->getOperand(2), | 
|  | MachineNode->getOperand(1)); | 
|  | break; | 
|  | case PPC::BC: | 
|  | case PPC::BCn: | 
|  | if (Op1Not) | 
|  | ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn : | 
|  | PPC::BC, | 
|  | SDLoc(MachineNode), | 
|  | MVT::Other, | 
|  | MachineNode->getOperand(0). | 
|  | getOperand(0), | 
|  | MachineNode->getOperand(1), | 
|  | MachineNode->getOperand(2)); | 
|  | // FIXME: Handle Op1Set, Op1Unset here too. | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If we're inverting this node because it is used only by selects that | 
|  | // we'd like to swap, then swap the selects before the node replacement. | 
|  | if (SelectSwap) | 
|  | SwapAllSelectUsers(MachineNode); | 
|  |  | 
|  | if (ResNode != MachineNode) { | 
|  | DEBUG(dbgs() << "CR Peephole replacing:\nOld:    "); | 
|  | DEBUG(MachineNode->dump(CurDAG)); | 
|  | DEBUG(dbgs() << "\nNew: "); | 
|  | DEBUG(ResNode->dump(CurDAG)); | 
|  | DEBUG(dbgs() << "\n"); | 
|  |  | 
|  | ReplaceUses(MachineNode, ResNode); | 
|  | IsModified = true; | 
|  | } | 
|  | } | 
|  | if (IsModified) | 
|  | CurDAG->RemoveDeadNodes(); | 
|  | } while (IsModified); | 
|  | } | 
|  |  | 
|  | // Gather the set of 32-bit operations that are known to have their | 
|  | // higher-order 32 bits zero, where ToPromote contains all such operations. | 
|  | static bool PeepholePPC64ZExtGather(SDValue Op32, | 
|  | SmallPtrSetImpl<SDNode *> &ToPromote) { | 
|  | if (!Op32.isMachineOpcode()) | 
|  | return false; | 
|  |  | 
|  | // First, check for the "frontier" instructions (those that will clear the | 
|  | // higher-order 32 bits. | 
|  |  | 
|  | // For RLWINM and RLWNM, we need to make sure that the mask does not wrap | 
|  | // around. If it does not, then these instructions will clear the | 
|  | // higher-order bits. | 
|  | if ((Op32.getMachineOpcode() == PPC::RLWINM || | 
|  | Op32.getMachineOpcode() == PPC::RLWNM) && | 
|  | Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) { | 
|  | ToPromote.insert(Op32.getNode()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // SLW and SRW always clear the higher-order bits. | 
|  | if (Op32.getMachineOpcode() == PPC::SLW || | 
|  | Op32.getMachineOpcode() == PPC::SRW) { | 
|  | ToPromote.insert(Op32.getNode()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // For LI and LIS, we need the immediate to be positive (so that it is not | 
|  | // sign extended). | 
|  | if (Op32.getMachineOpcode() == PPC::LI || | 
|  | Op32.getMachineOpcode() == PPC::LIS) { | 
|  | if (!isUInt<15>(Op32.getConstantOperandVal(0))) | 
|  | return false; | 
|  |  | 
|  | ToPromote.insert(Op32.getNode()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // LHBRX and LWBRX always clear the higher-order bits. | 
|  | if (Op32.getMachineOpcode() == PPC::LHBRX || | 
|  | Op32.getMachineOpcode() == PPC::LWBRX) { | 
|  | ToPromote.insert(Op32.getNode()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended. | 
|  | if (Op32.getMachineOpcode() == PPC::CNTLZW || | 
|  | Op32.getMachineOpcode() == PPC::CNTTZW) { | 
|  | ToPromote.insert(Op32.getNode()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Next, check for those instructions we can look through. | 
|  |  | 
|  | // Assuming the mask does not wrap around, then the higher-order bits are | 
|  | // taken directly from the first operand. | 
|  | if (Op32.getMachineOpcode() == PPC::RLWIMI && | 
|  | Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) { | 
|  | SmallPtrSet<SDNode *, 16> ToPromote1; | 
|  | if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) | 
|  | return false; | 
|  |  | 
|  | ToPromote.insert(Op32.getNode()); | 
|  | ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // For OR, the higher-order bits are zero if that is true for both operands. | 
|  | // For SELECT_I4, the same is true (but the relevant operand numbers are | 
|  | // shifted by 1). | 
|  | if (Op32.getMachineOpcode() == PPC::OR || | 
|  | Op32.getMachineOpcode() == PPC::SELECT_I4) { | 
|  | unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0; | 
|  | SmallPtrSet<SDNode *, 16> ToPromote1; | 
|  | if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1)) | 
|  | return false; | 
|  | if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1)) | 
|  | return false; | 
|  |  | 
|  | ToPromote.insert(Op32.getNode()); | 
|  | ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // For ORI and ORIS, we need the higher-order bits of the first operand to be | 
|  | // zero, and also for the constant to be positive (so that it is not sign | 
|  | // extended). | 
|  | if (Op32.getMachineOpcode() == PPC::ORI || | 
|  | Op32.getMachineOpcode() == PPC::ORIS) { | 
|  | SmallPtrSet<SDNode *, 16> ToPromote1; | 
|  | if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) | 
|  | return false; | 
|  | if (!isUInt<15>(Op32.getConstantOperandVal(1))) | 
|  | return false; | 
|  |  | 
|  | ToPromote.insert(Op32.getNode()); | 
|  | ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // The higher-order bits of AND are zero if that is true for at least one of | 
|  | // the operands. | 
|  | if (Op32.getMachineOpcode() == PPC::AND) { | 
|  | SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2; | 
|  | bool Op0OK = | 
|  | PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); | 
|  | bool Op1OK = | 
|  | PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2); | 
|  | if (!Op0OK && !Op1OK) | 
|  | return false; | 
|  |  | 
|  | ToPromote.insert(Op32.getNode()); | 
|  |  | 
|  | if (Op0OK) | 
|  | ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); | 
|  |  | 
|  | if (Op1OK) | 
|  | ToPromote.insert(ToPromote2.begin(), ToPromote2.end()); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // For ANDI and ANDIS, the higher-order bits are zero if either that is true | 
|  | // of the first operand, or if the second operand is positive (so that it is | 
|  | // not sign extended). | 
|  | if (Op32.getMachineOpcode() == PPC::ANDIo || | 
|  | Op32.getMachineOpcode() == PPC::ANDISo) { | 
|  | SmallPtrSet<SDNode *, 16> ToPromote1; | 
|  | bool Op0OK = | 
|  | PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); | 
|  | bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1)); | 
|  | if (!Op0OK && !Op1OK) | 
|  | return false; | 
|  |  | 
|  | ToPromote.insert(Op32.getNode()); | 
|  |  | 
|  | if (Op0OK) | 
|  | ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void PPCDAGToDAGISel::PeepholePPC64ZExt() { | 
|  | if (!PPCSubTarget->isPPC64()) | 
|  | return; | 
|  |  | 
|  | // When we zero-extend from i32 to i64, we use a pattern like this: | 
|  | // def : Pat<(i64 (zext i32:$in)), | 
|  | //           (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32), | 
|  | //                   0, 32)>; | 
|  | // There are several 32-bit shift/rotate instructions, however, that will | 
|  | // clear the higher-order bits of their output, rendering the RLDICL | 
|  | // unnecessary. When that happens, we remove it here, and redefine the | 
|  | // relevant 32-bit operation to be a 64-bit operation. | 
|  |  | 
|  | SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode()); | 
|  | ++Position; | 
|  |  | 
|  | bool MadeChange = false; | 
|  | while (Position != CurDAG->allnodes_begin()) { | 
|  | SDNode *N = &*--Position; | 
|  | // Skip dead nodes and any non-machine opcodes. | 
|  | if (N->use_empty() || !N->isMachineOpcode()) | 
|  | continue; | 
|  |  | 
|  | if (N->getMachineOpcode() != PPC::RLDICL) | 
|  | continue; | 
|  |  | 
|  | if (N->getConstantOperandVal(1) != 0 || | 
|  | N->getConstantOperandVal(2) != 32) | 
|  | continue; | 
|  |  | 
|  | SDValue ISR = N->getOperand(0); | 
|  | if (!ISR.isMachineOpcode() || | 
|  | ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG) | 
|  | continue; | 
|  |  | 
|  | if (!ISR.hasOneUse()) | 
|  | continue; | 
|  |  | 
|  | if (ISR.getConstantOperandVal(2) != PPC::sub_32) | 
|  | continue; | 
|  |  | 
|  | SDValue IDef = ISR.getOperand(0); | 
|  | if (!IDef.isMachineOpcode() || | 
|  | IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF) | 
|  | continue; | 
|  |  | 
|  | // We now know that we're looking at a canonical i32 -> i64 zext. See if we | 
|  | // can get rid of it. | 
|  |  | 
|  | SDValue Op32 = ISR->getOperand(1); | 
|  | if (!Op32.isMachineOpcode()) | 
|  | continue; | 
|  |  | 
|  | // There are some 32-bit instructions that always clear the high-order 32 | 
|  | // bits, there are also some instructions (like AND) that we can look | 
|  | // through. | 
|  | SmallPtrSet<SDNode *, 16> ToPromote; | 
|  | if (!PeepholePPC64ZExtGather(Op32, ToPromote)) | 
|  | continue; | 
|  |  | 
|  | // If the ToPromote set contains nodes that have uses outside of the set | 
|  | // (except for the original INSERT_SUBREG), then abort the transformation. | 
|  | bool OutsideUse = false; | 
|  | for (SDNode *PN : ToPromote) { | 
|  | for (SDNode *UN : PN->uses()) { | 
|  | if (!ToPromote.count(UN) && UN != ISR.getNode()) { | 
|  | OutsideUse = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (OutsideUse) | 
|  | break; | 
|  | } | 
|  | if (OutsideUse) | 
|  | continue; | 
|  |  | 
|  | MadeChange = true; | 
|  |  | 
|  | // We now know that this zero extension can be removed by promoting to | 
|  | // nodes in ToPromote to 64-bit operations, where for operations in the | 
|  | // frontier of the set, we need to insert INSERT_SUBREGs for their | 
|  | // operands. | 
|  | for (SDNode *PN : ToPromote) { | 
|  | unsigned NewOpcode; | 
|  | switch (PN->getMachineOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("Don't know the 64-bit variant of this instruction"); | 
|  | case PPC::RLWINM:    NewOpcode = PPC::RLWINM8; break; | 
|  | case PPC::RLWNM:     NewOpcode = PPC::RLWNM8; break; | 
|  | case PPC::SLW:       NewOpcode = PPC::SLW8; break; | 
|  | case PPC::SRW:       NewOpcode = PPC::SRW8; break; | 
|  | case PPC::LI:        NewOpcode = PPC::LI8; break; | 
|  | case PPC::LIS:       NewOpcode = PPC::LIS8; break; | 
|  | case PPC::LHBRX:     NewOpcode = PPC::LHBRX8; break; | 
|  | case PPC::LWBRX:     NewOpcode = PPC::LWBRX8; break; | 
|  | case PPC::CNTLZW:    NewOpcode = PPC::CNTLZW8; break; | 
|  | case PPC::CNTTZW:    NewOpcode = PPC::CNTTZW8; break; | 
|  | case PPC::RLWIMI:    NewOpcode = PPC::RLWIMI8; break; | 
|  | case PPC::OR:        NewOpcode = PPC::OR8; break; | 
|  | case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break; | 
|  | case PPC::ORI:       NewOpcode = PPC::ORI8; break; | 
|  | case PPC::ORIS:      NewOpcode = PPC::ORIS8; break; | 
|  | case PPC::AND:       NewOpcode = PPC::AND8; break; | 
|  | case PPC::ANDIo:     NewOpcode = PPC::ANDIo8; break; | 
|  | case PPC::ANDISo:    NewOpcode = PPC::ANDISo8; break; | 
|  | } | 
|  |  | 
|  | // Note: During the replacement process, the nodes will be in an | 
|  | // inconsistent state (some instructions will have operands with values | 
|  | // of the wrong type). Once done, however, everything should be right | 
|  | // again. | 
|  |  | 
|  | SmallVector<SDValue, 4> Ops; | 
|  | for (const SDValue &V : PN->ops()) { | 
|  | if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 && | 
|  | !isa<ConstantSDNode>(V)) { | 
|  | SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) }; | 
|  | SDNode *ReplOp = | 
|  | CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V), | 
|  | ISR.getNode()->getVTList(), ReplOpOps); | 
|  | Ops.push_back(SDValue(ReplOp, 0)); | 
|  | } else { | 
|  | Ops.push_back(V); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Because all to-be-promoted nodes only have users that are other | 
|  | // promoted nodes (or the original INSERT_SUBREG), we can safely replace | 
|  | // the i32 result value type with i64. | 
|  |  | 
|  | SmallVector<EVT, 2> NewVTs; | 
|  | SDVTList VTs = PN->getVTList(); | 
|  | for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i) | 
|  | if (VTs.VTs[i] == MVT::i32) | 
|  | NewVTs.push_back(MVT::i64); | 
|  | else | 
|  | NewVTs.push_back(VTs.VTs[i]); | 
|  |  | 
|  | DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld:    "); | 
|  | DEBUG(PN->dump(CurDAG)); | 
|  |  | 
|  | CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops); | 
|  |  | 
|  | DEBUG(dbgs() << "\nNew: "); | 
|  | DEBUG(PN->dump(CurDAG)); | 
|  | DEBUG(dbgs() << "\n"); | 
|  | } | 
|  |  | 
|  | // Now we replace the original zero extend and its associated INSERT_SUBREG | 
|  | // with the value feeding the INSERT_SUBREG (which has now been promoted to | 
|  | // return an i64). | 
|  |  | 
|  | DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld:    "); | 
|  | DEBUG(N->dump(CurDAG)); | 
|  | DEBUG(dbgs() << "\nNew: "); | 
|  | DEBUG(Op32.getNode()->dump(CurDAG)); | 
|  | DEBUG(dbgs() << "\n"); | 
|  |  | 
|  | ReplaceUses(N, Op32.getNode()); | 
|  | } | 
|  |  | 
|  | if (MadeChange) | 
|  | CurDAG->RemoveDeadNodes(); | 
|  | } | 
|  |  | 
|  | void PPCDAGToDAGISel::PeepholePPC64() { | 
|  | // These optimizations are currently supported only for 64-bit SVR4. | 
|  | if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64()) | 
|  | return; | 
|  |  | 
|  | SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode()); | 
|  | ++Position; | 
|  |  | 
|  | while (Position != CurDAG->allnodes_begin()) { | 
|  | SDNode *N = &*--Position; | 
|  | // Skip dead nodes and any non-machine opcodes. | 
|  | if (N->use_empty() || !N->isMachineOpcode()) | 
|  | continue; | 
|  |  | 
|  | unsigned FirstOp; | 
|  | unsigned StorageOpcode = N->getMachineOpcode(); | 
|  |  | 
|  | switch (StorageOpcode) { | 
|  | default: continue; | 
|  |  | 
|  | case PPC::LBZ: | 
|  | case PPC::LBZ8: | 
|  | case PPC::LD: | 
|  | case PPC::LFD: | 
|  | case PPC::LFS: | 
|  | case PPC::LHA: | 
|  | case PPC::LHA8: | 
|  | case PPC::LHZ: | 
|  | case PPC::LHZ8: | 
|  | case PPC::LWA: | 
|  | case PPC::LWZ: | 
|  | case PPC::LWZ8: | 
|  | FirstOp = 0; | 
|  | break; | 
|  |  | 
|  | case PPC::STB: | 
|  | case PPC::STB8: | 
|  | case PPC::STD: | 
|  | case PPC::STFD: | 
|  | case PPC::STFS: | 
|  | case PPC::STH: | 
|  | case PPC::STH8: | 
|  | case PPC::STW: | 
|  | case PPC::STW8: | 
|  | FirstOp = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If this is a load or store with a zero offset, or within the alignment, | 
|  | // we may be able to fold an add-immediate into the memory operation. | 
|  | // The check against alignment is below, as it can't occur until we check | 
|  | // the arguments to N | 
|  | if (!isa<ConstantSDNode>(N->getOperand(FirstOp))) | 
|  | continue; | 
|  |  | 
|  | SDValue Base = N->getOperand(FirstOp + 1); | 
|  | if (!Base.isMachineOpcode()) | 
|  | continue; | 
|  |  | 
|  | unsigned Flags = 0; | 
|  | bool ReplaceFlags = true; | 
|  |  | 
|  | // When the feeding operation is an add-immediate of some sort, | 
|  | // determine whether we need to add relocation information to the | 
|  | // target flags on the immediate operand when we fold it into the | 
|  | // load instruction. | 
|  | // | 
|  | // For something like ADDItocL, the relocation information is | 
|  | // inferred from the opcode; when we process it in the AsmPrinter, | 
|  | // we add the necessary relocation there.  A load, though, can receive | 
|  | // relocation from various flavors of ADDIxxx, so we need to carry | 
|  | // the relocation information in the target flags. | 
|  | switch (Base.getMachineOpcode()) { | 
|  | default: continue; | 
|  |  | 
|  | case PPC::ADDI8: | 
|  | case PPC::ADDI: | 
|  | // In some cases (such as TLS) the relocation information | 
|  | // is already in place on the operand, so copying the operand | 
|  | // is sufficient. | 
|  | ReplaceFlags = false; | 
|  | // For these cases, the immediate may not be divisible by 4, in | 
|  | // which case the fold is illegal for DS-form instructions.  (The | 
|  | // other cases provide aligned addresses and are always safe.) | 
|  | if ((StorageOpcode == PPC::LWA || | 
|  | StorageOpcode == PPC::LD  || | 
|  | StorageOpcode == PPC::STD) && | 
|  | (!isa<ConstantSDNode>(Base.getOperand(1)) || | 
|  | Base.getConstantOperandVal(1) % 4 != 0)) | 
|  | continue; | 
|  | break; | 
|  | case PPC::ADDIdtprelL: | 
|  | Flags = PPCII::MO_DTPREL_LO; | 
|  | break; | 
|  | case PPC::ADDItlsldL: | 
|  | Flags = PPCII::MO_TLSLD_LO; | 
|  | break; | 
|  | case PPC::ADDItocL: | 
|  | Flags = PPCII::MO_TOC_LO; | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDValue ImmOpnd = Base.getOperand(1); | 
|  |  | 
|  | // On PPC64, the TOC base pointer is guaranteed by the ABI only to have | 
|  | // 8-byte alignment, and so we can only use offsets less than 8 (otherwise, | 
|  | // we might have needed different @ha relocation values for the offset | 
|  | // pointers). | 
|  | int MaxDisplacement = 7; | 
|  | if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { | 
|  | const GlobalValue *GV = GA->getGlobal(); | 
|  | MaxDisplacement = std::min((int) GV->getAlignment() - 1, MaxDisplacement); | 
|  | } | 
|  |  | 
|  | bool UpdateHBase = false; | 
|  | SDValue HBase = Base.getOperand(0); | 
|  |  | 
|  | int Offset = N->getConstantOperandVal(FirstOp); | 
|  | if (ReplaceFlags) { | 
|  | if (Offset < 0 || Offset > MaxDisplacement) { | 
|  | // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only | 
|  | // one use, then we can do this for any offset, we just need to also | 
|  | // update the offset (i.e. the symbol addend) on the addis also. | 
|  | if (Base.getMachineOpcode() != PPC::ADDItocL) | 
|  | continue; | 
|  |  | 
|  | if (!HBase.isMachineOpcode() || | 
|  | HBase.getMachineOpcode() != PPC::ADDIStocHA) | 
|  | continue; | 
|  |  | 
|  | if (!Base.hasOneUse() || !HBase.hasOneUse()) | 
|  | continue; | 
|  |  | 
|  | SDValue HImmOpnd = HBase.getOperand(1); | 
|  | if (HImmOpnd != ImmOpnd) | 
|  | continue; | 
|  |  | 
|  | UpdateHBase = true; | 
|  | } | 
|  | } else { | 
|  | // If we're directly folding the addend from an addi instruction, then: | 
|  | //  1. In general, the offset on the memory access must be zero. | 
|  | //  2. If the addend is a constant, then it can be combined with a | 
|  | //     non-zero offset, but only if the result meets the encoding | 
|  | //     requirements. | 
|  | if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) { | 
|  | Offset += C->getSExtValue(); | 
|  |  | 
|  | if ((StorageOpcode == PPC::LWA || StorageOpcode == PPC::LD || | 
|  | StorageOpcode == PPC::STD) && (Offset % 4) != 0) | 
|  | continue; | 
|  |  | 
|  | if (!isInt<16>(Offset)) | 
|  | continue; | 
|  |  | 
|  | ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd), | 
|  | ImmOpnd.getValueType()); | 
|  | } else if (Offset != 0) { | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We found an opportunity.  Reverse the operands from the add | 
|  | // immediate and substitute them into the load or store.  If | 
|  | // needed, update the target flags for the immediate operand to | 
|  | // reflect the necessary relocation information. | 
|  | DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase:    "); | 
|  | DEBUG(Base->dump(CurDAG)); | 
|  | DEBUG(dbgs() << "\nN: "); | 
|  | DEBUG(N->dump(CurDAG)); | 
|  | DEBUG(dbgs() << "\n"); | 
|  |  | 
|  | // If the relocation information isn't already present on the | 
|  | // immediate operand, add it now. | 
|  | if (ReplaceFlags) { | 
|  | if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { | 
|  | SDLoc dl(GA); | 
|  | const GlobalValue *GV = GA->getGlobal(); | 
|  | // We can't perform this optimization for data whose alignment | 
|  | // is insufficient for the instruction encoding. | 
|  | if (GV->getAlignment() < 4 && | 
|  | (StorageOpcode == PPC::LD || StorageOpcode == PPC::STD || | 
|  | StorageOpcode == PPC::LWA || (Offset % 4) != 0)) { | 
|  | DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n"); | 
|  | continue; | 
|  | } | 
|  | ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags); | 
|  | } else if (ConstantPoolSDNode *CP = | 
|  | dyn_cast<ConstantPoolSDNode>(ImmOpnd)) { | 
|  | const Constant *C = CP->getConstVal(); | 
|  | ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, | 
|  | CP->getAlignment(), | 
|  | Offset, Flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (FirstOp == 1) // Store | 
|  | (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd, | 
|  | Base.getOperand(0), N->getOperand(3)); | 
|  | else // Load | 
|  | (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0), | 
|  | N->getOperand(2)); | 
|  |  | 
|  | if (UpdateHBase) | 
|  | (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0), | 
|  | ImmOpnd); | 
|  |  | 
|  | // The add-immediate may now be dead, in which case remove it. | 
|  | if (Base.getNode()->use_empty()) | 
|  | CurDAG->RemoveDeadNode(Base.getNode()); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// createPPCISelDag - This pass converts a legalized DAG into a | 
|  | /// PowerPC-specific DAG, ready for instruction scheduling. | 
|  | /// | 
|  | FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) { | 
|  | return new PPCDAGToDAGISel(TM); | 
|  | } |