| //===- OutputSections.cpp -------------------------------------------------===// |
| // |
| // The LLVM Linker |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "OutputSections.h" |
| #include "Config.h" |
| #include "LinkerScript.h" |
| #include "SymbolTable.h" |
| #include "Target.h" |
| #include "llvm/Support/Dwarf.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <map> |
| |
| using namespace llvm; |
| using namespace llvm::dwarf; |
| using namespace llvm::object; |
| using namespace llvm::support::endian; |
| using namespace llvm::ELF; |
| |
| using namespace lld; |
| using namespace lld::elf; |
| |
| static bool isAlpha(char C) { |
| return ('a' <= C && C <= 'z') || ('A' <= C && C <= 'Z') || C == '_'; |
| } |
| |
| static bool isAlnum(char C) { return isAlpha(C) || ('0' <= C && C <= '9'); } |
| |
| // Returns true if S is valid as a C language identifier. |
| bool elf::isValidCIdentifier(StringRef S) { |
| return !S.empty() && isAlpha(S[0]) && |
| std::all_of(S.begin() + 1, S.end(), isAlnum); |
| } |
| |
| template <class ELFT> |
| OutputSectionBase<ELFT>::OutputSectionBase(StringRef Name, uint32_t Type, |
| uintX_t Flags) |
| : Name(Name) { |
| memset(&Header, 0, sizeof(Elf_Shdr)); |
| Header.sh_type = Type; |
| Header.sh_flags = Flags; |
| } |
| |
| template <class ELFT> |
| GotPltSection<ELFT>::GotPltSection() |
| : OutputSectionBase<ELFT>(".got.plt", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) { |
| this->Header.sh_addralign = sizeof(uintX_t); |
| } |
| |
| template <class ELFT> void GotPltSection<ELFT>::addEntry(SymbolBody *Sym) { |
| Sym->GotPltIndex = Target->GotPltHeaderEntriesNum + Entries.size(); |
| Entries.push_back(Sym); |
| } |
| |
| template <class ELFT> bool GotPltSection<ELFT>::empty() const { |
| return Entries.empty(); |
| } |
| |
| template <class ELFT> void GotPltSection<ELFT>::finalize() { |
| this->Header.sh_size = |
| (Target->GotPltHeaderEntriesNum + Entries.size()) * sizeof(uintX_t); |
| } |
| |
| template <class ELFT> void GotPltSection<ELFT>::writeTo(uint8_t *Buf) { |
| Target->writeGotPltHeader(Buf); |
| Buf += Target->GotPltHeaderEntriesNum * sizeof(uintX_t); |
| for (const SymbolBody *B : Entries) { |
| Target->writeGotPlt(Buf, B->getPltVA<ELFT>()); |
| Buf += sizeof(uintX_t); |
| } |
| } |
| |
| template <class ELFT> |
| GotSection<ELFT>::GotSection() |
| : OutputSectionBase<ELFT>(".got", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) { |
| if (Config->EMachine == EM_MIPS) |
| this->Header.sh_flags |= SHF_MIPS_GPREL; |
| this->Header.sh_addralign = sizeof(uintX_t); |
| } |
| |
| template <class ELFT> void GotSection<ELFT>::addEntry(SymbolBody *Sym) { |
| Sym->GotIndex = Entries.size(); |
| Entries.push_back(Sym); |
| } |
| |
| template <class ELFT> void GotSection<ELFT>::addMipsLocalEntry() { |
| ++MipsLocalEntries; |
| } |
| |
| template <class ELFT> bool GotSection<ELFT>::addDynTlsEntry(SymbolBody *Sym) { |
| if (Sym->hasGlobalDynIndex()) |
| return false; |
| Sym->GlobalDynIndex = Target->GotHeaderEntriesNum + Entries.size(); |
| // Global Dynamic TLS entries take two GOT slots. |
| Entries.push_back(Sym); |
| Entries.push_back(nullptr); |
| return true; |
| } |
| |
| // Reserves TLS entries for a TLS module ID and a TLS block offset. |
| // In total it takes two GOT slots. |
| template <class ELFT> bool GotSection<ELFT>::addTlsIndex() { |
| if (TlsIndexOff != uint32_t(-1)) |
| return false; |
| TlsIndexOff = Entries.size() * sizeof(uintX_t); |
| Entries.push_back(nullptr); |
| Entries.push_back(nullptr); |
| return true; |
| } |
| |
| template <class ELFT> |
| typename GotSection<ELFT>::uintX_t |
| GotSection<ELFT>::getMipsLocalFullAddr(const SymbolBody &B) { |
| return getMipsLocalEntryAddr(B.getVA<ELFT>()); |
| } |
| |
| template <class ELFT> |
| typename GotSection<ELFT>::uintX_t |
| GotSection<ELFT>::getMipsLocalPageAddr(uintX_t EntryValue) { |
| // Initialize the entry by the %hi(EntryValue) expression |
| // but without right-shifting. |
| return getMipsLocalEntryAddr((EntryValue + 0x8000) & ~0xffff); |
| } |
| |
| template <class ELFT> |
| typename GotSection<ELFT>::uintX_t |
| GotSection<ELFT>::getMipsLocalEntryAddr(uintX_t EntryValue) { |
| size_t NewIndex = Target->GotHeaderEntriesNum + MipsLocalGotPos.size(); |
| auto P = MipsLocalGotPos.insert(std::make_pair(EntryValue, NewIndex)); |
| assert(!P.second || MipsLocalGotPos.size() <= MipsLocalEntries); |
| return this->getVA() + P.first->second * sizeof(uintX_t); |
| } |
| |
| template <class ELFT> |
| typename GotSection<ELFT>::uintX_t |
| GotSection<ELFT>::getGlobalDynAddr(const SymbolBody &B) const { |
| return this->getVA() + B.GlobalDynIndex * sizeof(uintX_t); |
| } |
| |
| template <class ELFT> |
| const SymbolBody *GotSection<ELFT>::getMipsFirstGlobalEntry() const { |
| return Entries.empty() ? nullptr : Entries.front(); |
| } |
| |
| template <class ELFT> |
| unsigned GotSection<ELFT>::getMipsLocalEntriesNum() const { |
| return Target->GotHeaderEntriesNum + MipsLocalEntries; |
| } |
| |
| template <class ELFT> void GotSection<ELFT>::finalize() { |
| this->Header.sh_size = |
| (Target->GotHeaderEntriesNum + MipsLocalEntries + Entries.size()) * |
| sizeof(uintX_t); |
| } |
| |
| template <class ELFT> void GotSection<ELFT>::writeTo(uint8_t *Buf) { |
| Target->writeGotHeader(Buf); |
| for (std::pair<uintX_t, size_t> &L : MipsLocalGotPos) { |
| uint8_t *Entry = Buf + L.second * sizeof(uintX_t); |
| write<uintX_t, ELFT::TargetEndianness, sizeof(uintX_t)>(Entry, L.first); |
| } |
| Buf += Target->GotHeaderEntriesNum * sizeof(uintX_t); |
| Buf += MipsLocalEntries * sizeof(uintX_t); |
| for (const SymbolBody *B : Entries) { |
| uint8_t *Entry = Buf; |
| Buf += sizeof(uintX_t); |
| if (!B) |
| continue; |
| // MIPS has special rules to fill up GOT entries. |
| // See "Global Offset Table" in Chapter 5 in the following document |
| // for detailed description: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| // As the first approach, we can just store addresses for all symbols. |
| if (Config->EMachine != EM_MIPS && canBePreempted(B)) |
| continue; // The dynamic linker will take care of it. |
| uintX_t VA = B->getVA<ELFT>(); |
| write<uintX_t, ELFT::TargetEndianness, sizeof(uintX_t)>(Entry, VA); |
| } |
| } |
| |
| template <class ELFT> |
| PltSection<ELFT>::PltSection() |
| : OutputSectionBase<ELFT>(".plt", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR) { |
| this->Header.sh_addralign = 16; |
| } |
| |
| template <class ELFT> void PltSection<ELFT>::writeTo(uint8_t *Buf) { |
| size_t Off = 0; |
| if (Target->UseLazyBinding) { |
| // At beginning of PLT, we have code to call the dynamic linker |
| // to resolve dynsyms at runtime. Write such code. |
| Target->writePltZero(Buf); |
| Off += Target->PltZeroSize; |
| } |
| for (auto &I : Entries) { |
| const SymbolBody *B = I.first; |
| unsigned RelOff = I.second; |
| uint64_t Got = |
| Target->UseLazyBinding ? B->getGotPltVA<ELFT>() : B->getGotVA<ELFT>(); |
| uint64_t Plt = this->getVA() + Off; |
| Target->writePlt(Buf + Off, Got, Plt, B->PltIndex, RelOff); |
| Off += Target->PltEntrySize; |
| } |
| } |
| |
| template <class ELFT> void PltSection<ELFT>::addEntry(SymbolBody *Sym) { |
| Sym->PltIndex = Entries.size(); |
| unsigned RelOff = Target->UseLazyBinding |
| ? Out<ELFT>::RelaPlt->getRelocOffset() |
| : Out<ELFT>::RelaDyn->getRelocOffset(); |
| Entries.push_back(std::make_pair(Sym, RelOff)); |
| } |
| |
| template <class ELFT> void PltSection<ELFT>::finalize() { |
| this->Header.sh_size = |
| Target->PltZeroSize + Entries.size() * Target->PltEntrySize; |
| } |
| |
| template <class ELFT> |
| RelocationSection<ELFT>::RelocationSection(StringRef Name, bool IsRela) |
| : OutputSectionBase<ELFT>(Name, IsRela ? SHT_RELA : SHT_REL, SHF_ALLOC), |
| IsRela(IsRela) { |
| this->Header.sh_entsize = IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); |
| this->Header.sh_addralign = sizeof(uintX_t); |
| } |
| |
| template <class ELFT> |
| void RelocationSection<ELFT>::addReloc(const DynamicReloc<ELFT> &Reloc) { |
| SymbolBody *Sym = Reloc.Sym; |
| if (!Reloc.UseSymVA && Sym) |
| Sym->MustBeInDynSym = true; |
| Relocs.push_back(Reloc); |
| } |
| |
| template <class ELFT> |
| typename ELFFile<ELFT>::uintX_t DynamicReloc<ELFT>::getOffset() const { |
| switch (OKind) { |
| case Off_GTlsIndex: |
| return Out<ELFT>::Got->getGlobalDynAddr(*Sym); |
| case Off_GTlsOffset: |
| return Out<ELFT>::Got->getGlobalDynAddr(*Sym) + sizeof(uintX_t); |
| case Off_LTlsIndex: |
| return Out<ELFT>::Got->getTlsIndexVA(); |
| case Off_Sec: |
| return OffsetSec->getOffset(OffsetInSec) + OffsetSec->OutSec->getVA(); |
| case Off_Bss: |
| return cast<SharedSymbol<ELFT>>(Sym)->OffsetInBss + Out<ELFT>::Bss->getVA(); |
| case Off_Got: |
| return Sym->getGotVA<ELFT>(); |
| case Off_GotPlt: |
| return Sym->getGotPltVA<ELFT>(); |
| } |
| llvm_unreachable("Invalid offset kind"); |
| } |
| |
| template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *Buf) { |
| for (const DynamicReloc<ELFT> &Rel : Relocs) { |
| auto *P = reinterpret_cast<Elf_Rel *>(Buf); |
| Buf += IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); |
| SymbolBody *Sym = Rel.Sym; |
| |
| if (IsRela) { |
| uintX_t VA = 0; |
| if (Rel.UseSymVA) |
| VA = Sym->getVA<ELFT>(); |
| else if (Rel.TargetSec) |
| VA = Rel.TargetSec->getOffset(Rel.OffsetInTargetSec) + |
| Rel.TargetSec->OutSec->getVA(); |
| reinterpret_cast<Elf_Rela *>(P)->r_addend = Rel.Addend + VA; |
| } |
| |
| P->r_offset = Rel.getOffset(); |
| uint32_t SymIdx = (!Rel.UseSymVA && Sym) ? Sym->DynsymIndex : 0; |
| P->setSymbolAndType(SymIdx, Rel.Type, Config->Mips64EL); |
| } |
| } |
| |
| template <class ELFT> unsigned RelocationSection<ELFT>::getRelocOffset() { |
| return this->Header.sh_entsize * Relocs.size(); |
| } |
| |
| template <class ELFT> void RelocationSection<ELFT>::finalize() { |
| this->Header.sh_link = Static ? Out<ELFT>::SymTab->SectionIndex |
| : Out<ELFT>::DynSymTab->SectionIndex; |
| this->Header.sh_size = Relocs.size() * this->Header.sh_entsize; |
| } |
| |
| template <class ELFT> |
| InterpSection<ELFT>::InterpSection() |
| : OutputSectionBase<ELFT>(".interp", SHT_PROGBITS, SHF_ALLOC) { |
| this->Header.sh_size = Config->DynamicLinker.size() + 1; |
| this->Header.sh_addralign = 1; |
| } |
| |
| template <class ELFT> |
| void OutputSectionBase<ELFT>::writeHeaderTo(Elf_Shdr *SHdr) { |
| *SHdr = Header; |
| } |
| |
| template <class ELFT> void InterpSection<ELFT>::writeTo(uint8_t *Buf) { |
| memcpy(Buf, Config->DynamicLinker.data(), Config->DynamicLinker.size()); |
| } |
| |
| template <class ELFT> |
| HashTableSection<ELFT>::HashTableSection() |
| : OutputSectionBase<ELFT>(".hash", SHT_HASH, SHF_ALLOC) { |
| this->Header.sh_entsize = sizeof(Elf_Word); |
| this->Header.sh_addralign = sizeof(Elf_Word); |
| } |
| |
| static uint32_t hashSysv(StringRef Name) { |
| uint32_t H = 0; |
| for (char C : Name) { |
| H = (H << 4) + C; |
| uint32_t G = H & 0xf0000000; |
| if (G) |
| H ^= G >> 24; |
| H &= ~G; |
| } |
| return H; |
| } |
| |
| template <class ELFT> void HashTableSection<ELFT>::finalize() { |
| this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex; |
| |
| unsigned NumEntries = 2; // nbucket and nchain. |
| NumEntries += Out<ELFT>::DynSymTab->getNumSymbols(); // The chain entries. |
| |
| // Create as many buckets as there are symbols. |
| // FIXME: This is simplistic. We can try to optimize it, but implementing |
| // support for SHT_GNU_HASH is probably even more profitable. |
| NumEntries += Out<ELFT>::DynSymTab->getNumSymbols(); |
| this->Header.sh_size = NumEntries * sizeof(Elf_Word); |
| } |
| |
| template <class ELFT> void HashTableSection<ELFT>::writeTo(uint8_t *Buf) { |
| unsigned NumSymbols = Out<ELFT>::DynSymTab->getNumSymbols(); |
| auto *P = reinterpret_cast<Elf_Word *>(Buf); |
| *P++ = NumSymbols; // nbucket |
| *P++ = NumSymbols; // nchain |
| |
| Elf_Word *Buckets = P; |
| Elf_Word *Chains = P + NumSymbols; |
| |
| for (const std::pair<SymbolBody *, unsigned> &P : |
| Out<ELFT>::DynSymTab->getSymbols()) { |
| SymbolBody *Body = P.first; |
| StringRef Name = Body->getName(); |
| unsigned I = Body->DynsymIndex; |
| uint32_t Hash = hashSysv(Name) % NumSymbols; |
| Chains[I] = Buckets[Hash]; |
| Buckets[Hash] = I; |
| } |
| } |
| |
| static uint32_t hashGnu(StringRef Name) { |
| uint32_t H = 5381; |
| for (uint8_t C : Name) |
| H = (H << 5) + H + C; |
| return H; |
| } |
| |
| template <class ELFT> |
| GnuHashTableSection<ELFT>::GnuHashTableSection() |
| : OutputSectionBase<ELFT>(".gnu.hash", SHT_GNU_HASH, SHF_ALLOC) { |
| this->Header.sh_entsize = ELFT::Is64Bits ? 0 : 4; |
| this->Header.sh_addralign = sizeof(uintX_t); |
| } |
| |
| template <class ELFT> |
| unsigned GnuHashTableSection<ELFT>::calcNBuckets(unsigned NumHashed) { |
| if (!NumHashed) |
| return 0; |
| |
| // These values are prime numbers which are not greater than 2^(N-1) + 1. |
| // In result, for any particular NumHashed we return a prime number |
| // which is not greater than NumHashed. |
| static const unsigned Primes[] = { |
| 1, 1, 3, 3, 7, 13, 31, 61, 127, 251, |
| 509, 1021, 2039, 4093, 8191, 16381, 32749, 65521, 131071}; |
| |
| return Primes[std::min<unsigned>(Log2_32_Ceil(NumHashed), |
| array_lengthof(Primes) - 1)]; |
| } |
| |
| // Bloom filter estimation: at least 8 bits for each hashed symbol. |
| // GNU Hash table requirement: it should be a power of 2, |
| // the minimum value is 1, even for an empty table. |
| // Expected results for a 32-bit target: |
| // calcMaskWords(0..4) = 1 |
| // calcMaskWords(5..8) = 2 |
| // calcMaskWords(9..16) = 4 |
| // For a 64-bit target: |
| // calcMaskWords(0..8) = 1 |
| // calcMaskWords(9..16) = 2 |
| // calcMaskWords(17..32) = 4 |
| template <class ELFT> |
| unsigned GnuHashTableSection<ELFT>::calcMaskWords(unsigned NumHashed) { |
| if (!NumHashed) |
| return 1; |
| return NextPowerOf2((NumHashed - 1) / sizeof(Elf_Off)); |
| } |
| |
| template <class ELFT> void GnuHashTableSection<ELFT>::finalize() { |
| unsigned NumHashed = Symbols.size(); |
| NBuckets = calcNBuckets(NumHashed); |
| MaskWords = calcMaskWords(NumHashed); |
| // Second hash shift estimation: just predefined values. |
| Shift2 = ELFT::Is64Bits ? 6 : 5; |
| |
| this->Header.sh_link = Out<ELFT>::DynSymTab->SectionIndex; |
| this->Header.sh_size = sizeof(Elf_Word) * 4 // Header |
| + sizeof(Elf_Off) * MaskWords // Bloom Filter |
| + sizeof(Elf_Word) * NBuckets // Hash Buckets |
| + sizeof(Elf_Word) * NumHashed; // Hash Values |
| } |
| |
| template <class ELFT> void GnuHashTableSection<ELFT>::writeTo(uint8_t *Buf) { |
| writeHeader(Buf); |
| if (Symbols.empty()) |
| return; |
| writeBloomFilter(Buf); |
| writeHashTable(Buf); |
| } |
| |
| template <class ELFT> |
| void GnuHashTableSection<ELFT>::writeHeader(uint8_t *&Buf) { |
| auto *P = reinterpret_cast<Elf_Word *>(Buf); |
| *P++ = NBuckets; |
| *P++ = Out<ELFT>::DynSymTab->getNumSymbols() - Symbols.size(); |
| *P++ = MaskWords; |
| *P++ = Shift2; |
| Buf = reinterpret_cast<uint8_t *>(P); |
| } |
| |
| template <class ELFT> |
| void GnuHashTableSection<ELFT>::writeBloomFilter(uint8_t *&Buf) { |
| unsigned C = sizeof(Elf_Off) * 8; |
| |
| auto *Masks = reinterpret_cast<Elf_Off *>(Buf); |
| for (const SymbolData &Sym : Symbols) { |
| size_t Pos = (Sym.Hash / C) & (MaskWords - 1); |
| uintX_t V = (uintX_t(1) << (Sym.Hash % C)) | |
| (uintX_t(1) << ((Sym.Hash >> Shift2) % C)); |
| Masks[Pos] |= V; |
| } |
| Buf += sizeof(Elf_Off) * MaskWords; |
| } |
| |
| template <class ELFT> |
| void GnuHashTableSection<ELFT>::writeHashTable(uint8_t *Buf) { |
| Elf_Word *Buckets = reinterpret_cast<Elf_Word *>(Buf); |
| Elf_Word *Values = Buckets + NBuckets; |
| |
| int PrevBucket = -1; |
| int I = 0; |
| for (const SymbolData &Sym : Symbols) { |
| int Bucket = Sym.Hash % NBuckets; |
| assert(PrevBucket <= Bucket); |
| if (Bucket != PrevBucket) { |
| Buckets[Bucket] = Sym.Body->DynsymIndex; |
| PrevBucket = Bucket; |
| if (I > 0) |
| Values[I - 1] |= 1; |
| } |
| Values[I] = Sym.Hash & ~1; |
| ++I; |
| } |
| if (I > 0) |
| Values[I - 1] |= 1; |
| } |
| |
| static bool includeInGnuHashTable(SymbolBody *B) { |
| // Assume that includeInDynsym() is already checked. |
| return !B->isUndefined(); |
| } |
| |
| // Add symbols to this symbol hash table. Note that this function |
| // destructively sort a given vector -- which is needed because |
| // GNU-style hash table places some sorting requirements. |
| template <class ELFT> |
| void GnuHashTableSection<ELFT>::addSymbols( |
| std::vector<std::pair<SymbolBody *, size_t>> &V) { |
| auto Mid = std::stable_partition(V.begin(), V.end(), |
| [](std::pair<SymbolBody *, size_t> &P) { |
| return !includeInGnuHashTable(P.first); |
| }); |
| if (Mid == V.end()) |
| return; |
| for (auto I = Mid, E = V.end(); I != E; ++I) { |
| SymbolBody *B = I->first; |
| size_t StrOff = I->second; |
| Symbols.push_back({B, StrOff, hashGnu(B->getName())}); |
| } |
| |
| unsigned NBuckets = calcNBuckets(Symbols.size()); |
| std::stable_sort(Symbols.begin(), Symbols.end(), |
| [&](const SymbolData &L, const SymbolData &R) { |
| return L.Hash % NBuckets < R.Hash % NBuckets; |
| }); |
| |
| V.erase(Mid, V.end()); |
| for (const SymbolData &Sym : Symbols) |
| V.push_back({Sym.Body, Sym.STName}); |
| } |
| |
| template <class ELFT> |
| DynamicSection<ELFT>::DynamicSection(SymbolTable<ELFT> &SymTab) |
| : OutputSectionBase<ELFT>(".dynamic", SHT_DYNAMIC, SHF_ALLOC | SHF_WRITE), |
| SymTab(SymTab) { |
| Elf_Shdr &Header = this->Header; |
| Header.sh_addralign = sizeof(uintX_t); |
| Header.sh_entsize = ELFT::Is64Bits ? 16 : 8; |
| |
| // .dynamic section is not writable on MIPS. |
| // See "Special Section" in Chapter 4 in the following document: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| if (Config->EMachine == EM_MIPS) |
| Header.sh_flags = SHF_ALLOC; |
| } |
| |
| template <class ELFT> void DynamicSection<ELFT>::finalize() { |
| if (this->Header.sh_size) |
| return; // Already finalized. |
| |
| Elf_Shdr &Header = this->Header; |
| Header.sh_link = Out<ELFT>::DynStrTab->SectionIndex; |
| |
| auto Add = [=](Entry E) { Entries.push_back(E); }; |
| |
| // Add strings. We know that these are the last strings to be added to |
| // DynStrTab and doing this here allows this function to set DT_STRSZ. |
| if (!Config->RPath.empty()) |
| Add({Config->EnableNewDtags ? DT_RUNPATH : DT_RPATH, |
| Out<ELFT>::DynStrTab->addString(Config->RPath)}); |
| for (const std::unique_ptr<SharedFile<ELFT>> &F : SymTab.getSharedFiles()) |
| if (F->isNeeded()) |
| Add({DT_NEEDED, Out<ELFT>::DynStrTab->addString(F->getSoName())}); |
| if (!Config->SoName.empty()) |
| Add({DT_SONAME, Out<ELFT>::DynStrTab->addString(Config->SoName)}); |
| |
| Out<ELFT>::DynStrTab->finalize(); |
| |
| if (Out<ELFT>::RelaDyn->hasRelocs()) { |
| bool IsRela = Out<ELFT>::RelaDyn->isRela(); |
| Add({IsRela ? DT_RELA : DT_REL, Out<ELFT>::RelaDyn}); |
| Add({IsRela ? DT_RELASZ : DT_RELSZ, Out<ELFT>::RelaDyn->getSize()}); |
| Add({IsRela ? DT_RELAENT : DT_RELENT, |
| uintX_t(IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel))}); |
| } |
| if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs()) { |
| Add({DT_JMPREL, Out<ELFT>::RelaPlt}); |
| Add({DT_PLTRELSZ, Out<ELFT>::RelaPlt->getSize()}); |
| Add({Config->EMachine == EM_MIPS ? DT_MIPS_PLTGOT : DT_PLTGOT, |
| Out<ELFT>::GotPlt}); |
| Add({DT_PLTREL, uint64_t(Out<ELFT>::RelaPlt->isRela() ? DT_RELA : DT_REL)}); |
| } |
| |
| Add({DT_SYMTAB, Out<ELFT>::DynSymTab}); |
| Add({DT_SYMENT, sizeof(Elf_Sym)}); |
| Add({DT_STRTAB, Out<ELFT>::DynStrTab}); |
| Add({DT_STRSZ, Out<ELFT>::DynStrTab->getSize()}); |
| if (Out<ELFT>::GnuHashTab) |
| Add({DT_GNU_HASH, Out<ELFT>::GnuHashTab}); |
| if (Out<ELFT>::HashTab) |
| Add({DT_HASH, Out<ELFT>::HashTab}); |
| |
| if (PreInitArraySec) { |
| Add({DT_PREINIT_ARRAY, PreInitArraySec}); |
| Add({DT_PREINIT_ARRAYSZ, PreInitArraySec->getSize()}); |
| } |
| if (InitArraySec) { |
| Add({DT_INIT_ARRAY, InitArraySec}); |
| Add({DT_INIT_ARRAYSZ, (uintX_t)InitArraySec->getSize()}); |
| } |
| if (FiniArraySec) { |
| Add({DT_FINI_ARRAY, FiniArraySec}); |
| Add({DT_FINI_ARRAYSZ, (uintX_t)FiniArraySec->getSize()}); |
| } |
| |
| if (SymbolBody *B = SymTab.find(Config->Init)) |
| Add({DT_INIT, B}); |
| if (SymbolBody *B = SymTab.find(Config->Fini)) |
| Add({DT_FINI, B}); |
| |
| uint32_t DtFlags = 0; |
| uint32_t DtFlags1 = 0; |
| if (Config->Bsymbolic) |
| DtFlags |= DF_SYMBOLIC; |
| if (Config->ZNodelete) |
| DtFlags1 |= DF_1_NODELETE; |
| if (Config->ZNow) { |
| DtFlags |= DF_BIND_NOW; |
| DtFlags1 |= DF_1_NOW; |
| } |
| if (Config->ZOrigin) { |
| DtFlags |= DF_ORIGIN; |
| DtFlags1 |= DF_1_ORIGIN; |
| } |
| |
| if (DtFlags) |
| Add({DT_FLAGS, DtFlags}); |
| if (DtFlags1) |
| Add({DT_FLAGS_1, DtFlags1}); |
| |
| if (!Config->Entry.empty()) |
| Add({DT_DEBUG, (uint64_t)0}); |
| |
| if (Config->EMachine == EM_MIPS) { |
| Add({DT_MIPS_RLD_VERSION, 1}); |
| Add({DT_MIPS_FLAGS, RHF_NOTPOT}); |
| Add({DT_MIPS_BASE_ADDRESS, (uintX_t)Target->getVAStart()}); |
| Add({DT_MIPS_SYMTABNO, Out<ELFT>::DynSymTab->getNumSymbols()}); |
| Add({DT_MIPS_LOCAL_GOTNO, Out<ELFT>::Got->getMipsLocalEntriesNum()}); |
| if (const SymbolBody *B = Out<ELFT>::Got->getMipsFirstGlobalEntry()) |
| Add({DT_MIPS_GOTSYM, B->DynsymIndex}); |
| else |
| Add({DT_MIPS_GOTSYM, Out<ELFT>::DynSymTab->getNumSymbols()}); |
| Add({DT_PLTGOT, Out<ELFT>::Got}); |
| if (Out<ELFT>::MipsRldMap) |
| Add({DT_MIPS_RLD_MAP, Out<ELFT>::MipsRldMap}); |
| } |
| |
| // +1 for DT_NULL |
| Header.sh_size = (Entries.size() + 1) * Header.sh_entsize; |
| } |
| |
| template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *Buf) { |
| auto *P = reinterpret_cast<Elf_Dyn *>(Buf); |
| |
| for (const Entry &E : Entries) { |
| P->d_tag = E.Tag; |
| switch (E.Kind) { |
| case Entry::SecAddr: |
| P->d_un.d_ptr = E.OutSec->getVA(); |
| break; |
| case Entry::SymAddr: |
| P->d_un.d_ptr = E.Sym->template getVA<ELFT>(); |
| break; |
| case Entry::PlainInt: |
| P->d_un.d_val = E.Val; |
| break; |
| } |
| ++P; |
| } |
| } |
| |
| template <class ELFT> |
| EhFrameHeader<ELFT>::EhFrameHeader() |
| : OutputSectionBase<ELFT>(".eh_frame_hdr", llvm::ELF::SHT_PROGBITS, |
| SHF_ALLOC) { |
| // It's a 4 bytes of header + pointer to the contents of the .eh_frame section |
| // + the number of FDE pointers in the table. |
| this->Header.sh_size = 12; |
| } |
| |
| // We have to get PC values of FDEs. They depend on relocations |
| // which are target specific, so we run this code after performing |
| // all relocations. We read the values from ouput buffer according to the |
| // encoding given for FDEs. Return value is an offset to the initial PC value |
| // for the FDE. |
| template <class ELFT> |
| typename EhFrameHeader<ELFT>::uintX_t |
| EhFrameHeader<ELFT>::getFdePc(uintX_t EhVA, const FdeData &F) { |
| const endianness E = ELFT::TargetEndianness; |
| assert((F.Enc & 0xF0) != DW_EH_PE_datarel); |
| |
| uintX_t FdeOff = EhVA + F.Off + 8; |
| switch (F.Enc & 0xF) { |
| case DW_EH_PE_udata2: |
| case DW_EH_PE_sdata2: |
| return FdeOff + read16<E>(F.PCRel); |
| case DW_EH_PE_udata4: |
| case DW_EH_PE_sdata4: |
| return FdeOff + read32<E>(F.PCRel); |
| case DW_EH_PE_udata8: |
| case DW_EH_PE_sdata8: |
| return FdeOff + read64<E>(F.PCRel); |
| case DW_EH_PE_absptr: |
| if (sizeof(uintX_t) == 8) |
| return FdeOff + read64<E>(F.PCRel); |
| return FdeOff + read32<E>(F.PCRel); |
| } |
| fatal("unknown FDE size encoding"); |
| } |
| |
| template <class ELFT> void EhFrameHeader<ELFT>::writeTo(uint8_t *Buf) { |
| const endianness E = ELFT::TargetEndianness; |
| |
| const uint8_t Header[] = {1, DW_EH_PE_pcrel | DW_EH_PE_sdata4, |
| DW_EH_PE_udata4, |
| DW_EH_PE_datarel | DW_EH_PE_sdata4}; |
| memcpy(Buf, Header, sizeof(Header)); |
| |
| uintX_t EhVA = Sec->getVA(); |
| uintX_t VA = this->getVA(); |
| uintX_t EhOff = EhVA - VA - 4; |
| write32<E>(Buf + 4, EhOff); |
| write32<E>(Buf + 8, this->FdeList.size()); |
| Buf += 12; |
| |
| // InitialPC -> Offset in .eh_frame, sorted by InitialPC. |
| std::map<uintX_t, size_t> PcToOffset; |
| for (const FdeData &F : FdeList) |
| PcToOffset[getFdePc(EhVA, F)] = F.Off; |
| |
| for (auto &I : PcToOffset) { |
| // The first four bytes are an offset to the initial PC value for the FDE. |
| write32<E>(Buf, I.first - VA); |
| // The last four bytes are an offset to the FDE data itself. |
| write32<E>(Buf + 4, EhVA + I.second - VA); |
| Buf += 8; |
| } |
| } |
| |
| template <class ELFT> |
| void EhFrameHeader<ELFT>::assignEhFrame(EHOutputSection<ELFT> *Sec) { |
| assert((!this->Sec || this->Sec == Sec) && |
| "multiple .eh_frame sections not supported for .eh_frame_hdr"); |
| Live = Config->EhFrameHdr; |
| this->Sec = Sec; |
| } |
| |
| template <class ELFT> |
| void EhFrameHeader<ELFT>::addFde(uint8_t Enc, size_t Off, uint8_t *PCRel) { |
| if (Live && (Enc & 0xF0) == DW_EH_PE_datarel) |
| fatal("DW_EH_PE_datarel encoding unsupported for FDEs by .eh_frame_hdr"); |
| FdeList.push_back(FdeData{Enc, Off, PCRel}); |
| } |
| |
| template <class ELFT> void EhFrameHeader<ELFT>::reserveFde() { |
| // Each FDE entry is 8 bytes long: |
| // The first four bytes are an offset to the initial PC value for the FDE. The |
| // last four byte are an offset to the FDE data itself. |
| this->Header.sh_size += 8; |
| } |
| |
| template <class ELFT> |
| OutputSection<ELFT>::OutputSection(StringRef Name, uint32_t Type, uintX_t Flags) |
| : OutputSectionBase<ELFT>(Name, Type, Flags) { |
| if (Type == SHT_RELA) |
| this->Header.sh_entsize = sizeof(Elf_Rela); |
| else if (Type == SHT_REL) |
| this->Header.sh_entsize = sizeof(Elf_Rel); |
| } |
| |
| template <class ELFT> void OutputSection<ELFT>::finalize() { |
| uint32_t Type = this->Header.sh_type; |
| if (Type != SHT_RELA && Type != SHT_REL) |
| return; |
| this->Header.sh_link = Out<ELFT>::SymTab->SectionIndex; |
| // sh_info for SHT_REL[A] sections should contain the section header index of |
| // the section to which the relocation applies. |
| InputSectionBase<ELFT> *S = Sections[0]->getRelocatedSection(); |
| this->Header.sh_info = S->OutSec->SectionIndex; |
| } |
| |
| template <class ELFT> |
| void OutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { |
| assert(C->Live); |
| auto *S = cast<InputSection<ELFT>>(C); |
| Sections.push_back(S); |
| S->OutSec = this; |
| this->updateAlign(S->Align); |
| |
| uintX_t Off = this->Header.sh_size; |
| Off = alignTo(Off, S->Align); |
| S->OutSecOff = Off; |
| Off += S->getSize(); |
| this->Header.sh_size = Off; |
| } |
| |
| // If an input string is in the form of "foo.N" where N is a number, |
| // return N. Otherwise, returns 65536, which is one greater than the |
| // lowest priority. |
| static int getPriority(StringRef S) { |
| size_t Pos = S.rfind('.'); |
| if (Pos == StringRef::npos) |
| return 65536; |
| int V; |
| if (S.substr(Pos + 1).getAsInteger(10, V)) |
| return 65536; |
| return V; |
| } |
| |
| // This function is called after we sort input sections |
| // to update their offsets. |
| template <class ELFT> void OutputSection<ELFT>::reassignOffsets() { |
| uintX_t Off = 0; |
| for (InputSection<ELFT> *S : Sections) { |
| Off = alignTo(Off, S->Align); |
| S->OutSecOff = Off; |
| Off += S->getSize(); |
| } |
| this->Header.sh_size = Off; |
| } |
| |
| // Sorts input sections by section name suffixes, so that .foo.N comes |
| // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections. |
| // We want to keep the original order if the priorities are the same |
| // because the compiler keeps the original initialization order in a |
| // translation unit and we need to respect that. |
| // For more detail, read the section of the GCC's manual about init_priority. |
| template <class ELFT> void OutputSection<ELFT>::sortInitFini() { |
| // Sort sections by priority. |
| typedef std::pair<int, InputSection<ELFT> *> Pair; |
| auto Comp = [](const Pair &A, const Pair &B) { return A.first < B.first; }; |
| |
| std::vector<Pair> V; |
| for (InputSection<ELFT> *S : Sections) |
| V.push_back({getPriority(S->getSectionName()), S}); |
| std::stable_sort(V.begin(), V.end(), Comp); |
| Sections.clear(); |
| for (Pair &P : V) |
| Sections.push_back(P.second); |
| reassignOffsets(); |
| } |
| |
| // Returns true if S matches /Filename.?\.o$/. |
| static bool isCrtBeginEnd(StringRef S, StringRef Filename) { |
| if (!S.endswith(".o")) |
| return false; |
| S = S.drop_back(2); |
| if (S.endswith(Filename)) |
| return true; |
| return !S.empty() && S.drop_back().endswith(Filename); |
| } |
| |
| static bool isCrtbegin(StringRef S) { return isCrtBeginEnd(S, "crtbegin"); } |
| static bool isCrtend(StringRef S) { return isCrtBeginEnd(S, "crtend"); } |
| |
| // .ctors and .dtors are sorted by this priority from highest to lowest. |
| // |
| // 1. The section was contained in crtbegin (crtbegin contains |
| // some sentinel value in its .ctors and .dtors so that the runtime |
| // can find the beginning of the sections.) |
| // |
| // 2. The section has an optional priority value in the form of ".ctors.N" |
| // or ".dtors.N" where N is a number. Unlike .{init,fini}_array, |
| // they are compared as string rather than number. |
| // |
| // 3. The section is just ".ctors" or ".dtors". |
| // |
| // 4. The section was contained in crtend, which contains an end marker. |
| // |
| // In an ideal world, we don't need this function because .init_array and |
| // .ctors are duplicate features (and .init_array is newer.) However, there |
| // are too many real-world use cases of .ctors, so we had no choice to |
| // support that with this rather ad-hoc semantics. |
| template <class ELFT> |
| static bool compCtors(const InputSection<ELFT> *A, |
| const InputSection<ELFT> *B) { |
| bool BeginA = isCrtbegin(A->getFile()->getName()); |
| bool BeginB = isCrtbegin(B->getFile()->getName()); |
| if (BeginA != BeginB) |
| return BeginA; |
| bool EndA = isCrtend(A->getFile()->getName()); |
| bool EndB = isCrtend(B->getFile()->getName()); |
| if (EndA != EndB) |
| return EndB; |
| StringRef X = A->getSectionName(); |
| StringRef Y = B->getSectionName(); |
| assert(X.startswith(".ctors") || X.startswith(".dtors")); |
| assert(Y.startswith(".ctors") || Y.startswith(".dtors")); |
| X = X.substr(6); |
| Y = Y.substr(6); |
| if (X.empty() && Y.empty()) |
| return false; |
| return X < Y; |
| } |
| |
| // Sorts input sections by the special rules for .ctors and .dtors. |
| // Unfortunately, the rules are different from the one for .{init,fini}_array. |
| // Read the comment above. |
| template <class ELFT> void OutputSection<ELFT>::sortCtorsDtors() { |
| std::stable_sort(Sections.begin(), Sections.end(), compCtors<ELFT>); |
| reassignOffsets(); |
| } |
| |
| // Returns a VA which a relocatin RI refers to. Used only for local symbols. |
| // For non-local symbols, use SymbolBody::getVA instead. |
| template <class ELFT, bool IsRela> |
| typename ELFFile<ELFT>::uintX_t |
| elf::getLocalRelTarget(const ObjectFile<ELFT> &File, |
| const Elf_Rel_Impl<ELFT, IsRela> &RI, |
| typename ELFFile<ELFT>::uintX_t Addend) { |
| typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym; |
| typedef typename ELFFile<ELFT>::uintX_t uintX_t; |
| |
| // PPC64 has a special relocation representing the TOC base pointer |
| // that does not have a corresponding symbol. |
| if (Config->EMachine == EM_PPC64 && RI.getType(false) == R_PPC64_TOC) |
| return getPPC64TocBase() + Addend; |
| |
| const Elf_Sym *Sym = |
| File.getObj().getRelocationSymbol(&RI, File.getSymbolTable()); |
| |
| if (!Sym) |
| fatal("Unsupported relocation without symbol"); |
| |
| InputSectionBase<ELFT> *Section = File.getSection(*Sym); |
| |
| if (Sym->getType() == STT_TLS) |
| return (Section->OutSec->getVA() + Section->getOffset(*Sym) + Addend) - |
| Out<ELFT>::TlsPhdr->p_vaddr; |
| |
| // According to the ELF spec reference to a local symbol from outside |
| // the group are not allowed. Unfortunately .eh_frame breaks that rule |
| // and must be treated specially. For now we just replace the symbol with |
| // 0. |
| if (Section == InputSection<ELFT>::Discarded || !Section->Live) |
| return Addend; |
| |
| uintX_t Offset = Sym->st_value; |
| if (Sym->getType() == STT_SECTION) { |
| Offset += Addend; |
| Addend = 0; |
| } |
| return Section->OutSec->getVA() + Section->getOffset(Offset) + Addend; |
| } |
| |
| // Returns true if a symbol can be replaced at load-time by a symbol |
| // with the same name defined in other ELF executable or DSO. |
| bool elf::canBePreempted(const SymbolBody *Body) { |
| if (!Body) |
| return false; // Body is a local symbol. |
| if (Body->isShared()) |
| return true; |
| |
| if (Body->isUndefined()) { |
| if (!Body->isWeak()) |
| return true; |
| |
| // Ideally the static linker should see a definition for every symbol, but |
| // shared object are normally allowed to have undefined references that the |
| // static linker never sees a definition for. |
| if (Config->Shared) |
| return true; |
| |
| // Otherwise, just resolve to 0. |
| return false; |
| } |
| if (!Config->Shared) |
| return false; |
| if (Body->getVisibility() != STV_DEFAULT) |
| return false; |
| if (Config->Bsymbolic || (Config->BsymbolicFunctions && Body->isFunc())) |
| return false; |
| return true; |
| } |
| |
| static void fill(uint8_t *Buf, size_t Size, ArrayRef<uint8_t> A) { |
| size_t I = 0; |
| for (; I + A.size() < Size; I += A.size()) |
| memcpy(Buf + I, A.data(), A.size()); |
| memcpy(Buf + I, A.data(), Size - I); |
| } |
| |
| template <class ELFT> void OutputSection<ELFT>::writeTo(uint8_t *Buf) { |
| ArrayRef<uint8_t> Filler = Script->getFiller(this->Name); |
| if (!Filler.empty()) |
| fill(Buf, this->getSize(), Filler); |
| for (InputSection<ELFT> *C : Sections) |
| C->writeTo(Buf); |
| } |
| |
| template <class ELFT> |
| EHOutputSection<ELFT>::EHOutputSection(StringRef Name, uint32_t Type, |
| uintX_t Flags) |
| : OutputSectionBase<ELFT>(Name, Type, Flags) { |
| Out<ELFT>::EhFrameHdr->assignEhFrame(this); |
| } |
| |
| template <class ELFT> |
| EHRegion<ELFT>::EHRegion(EHInputSection<ELFT> *S, unsigned Index) |
| : S(S), Index(Index) {} |
| |
| template <class ELFT> StringRef EHRegion<ELFT>::data() const { |
| ArrayRef<uint8_t> SecData = S->getSectionData(); |
| ArrayRef<std::pair<uintX_t, uintX_t>> Offsets = S->Offsets; |
| size_t Start = Offsets[Index].first; |
| size_t End = |
| Index == Offsets.size() - 1 ? SecData.size() : Offsets[Index + 1].first; |
| return StringRef((const char *)SecData.data() + Start, End - Start); |
| } |
| |
| template <class ELFT> |
| Cie<ELFT>::Cie(EHInputSection<ELFT> *S, unsigned Index) |
| : EHRegion<ELFT>(S, Index) {} |
| |
| // Read a byte and advance D by one byte. |
| static uint8_t readByte(ArrayRef<uint8_t> &D) { |
| if (D.empty()) |
| fatal("corrupted or unsupported CIE information"); |
| uint8_t B = D.front(); |
| D = D.slice(1); |
| return B; |
| } |
| |
| static void skipLeb128(ArrayRef<uint8_t> &D) { |
| while (!D.empty()) { |
| uint8_t Val = D.front(); |
| D = D.slice(1); |
| if ((Val & 0x80) == 0) |
| return; |
| } |
| fatal("corrupted or unsupported CIE information"); |
| } |
| |
| template <class ELFT> static size_t getAugPSize(unsigned Enc) { |
| switch (Enc & 0x0f) { |
| case DW_EH_PE_absptr: |
| case DW_EH_PE_signed: |
| return ELFT::Is64Bits ? 8 : 4; |
| case DW_EH_PE_udata2: |
| case DW_EH_PE_sdata2: |
| return 2; |
| case DW_EH_PE_udata4: |
| case DW_EH_PE_sdata4: |
| return 4; |
| case DW_EH_PE_udata8: |
| case DW_EH_PE_sdata8: |
| return 8; |
| } |
| fatal("unknown FDE encoding"); |
| } |
| |
| template <class ELFT> static void skipAugP(ArrayRef<uint8_t> &D) { |
| uint8_t Enc = readByte(D); |
| if ((Enc & 0xf0) == DW_EH_PE_aligned) |
| fatal("DW_EH_PE_aligned encoding is not supported"); |
| size_t Size = getAugPSize<ELFT>(Enc); |
| if (Size >= D.size()) |
| fatal("corrupted CIE"); |
| D = D.slice(Size); |
| } |
| |
| template <class ELFT> |
| uint8_t EHOutputSection<ELFT>::getFdeEncoding(ArrayRef<uint8_t> D) { |
| if (D.size() < 8) |
| fatal("CIE too small"); |
| D = D.slice(8); |
| |
| uint8_t Version = readByte(D); |
| if (Version != 1 && Version != 3) |
| fatal("FDE version 1 or 3 expected, but got " + Twine((unsigned)Version)); |
| |
| const unsigned char *AugEnd = std::find(D.begin() + 1, D.end(), '\0'); |
| if (AugEnd == D.end()) |
| fatal("corrupted CIE"); |
| StringRef Aug(reinterpret_cast<const char *>(D.begin()), AugEnd - D.begin()); |
| D = D.slice(Aug.size() + 1); |
| |
| // Code alignment factor should always be 1 for .eh_frame. |
| if (readByte(D) != 1) |
| fatal("CIE code alignment must be 1"); |
| |
| // Skip data alignment factor. |
| skipLeb128(D); |
| |
| // Skip the return address register. In CIE version 1 this is a single |
| // byte. In CIE version 3 this is an unsigned LEB128. |
| if (Version == 1) |
| readByte(D); |
| else |
| skipLeb128(D); |
| |
| // We only care about an 'R' value, but other records may precede an 'R' |
| // record. Records are not in TLV (type-length-value) format, so we need |
| // to teach the linker how to skip records for each type. |
| for (char C : Aug) { |
| if (C == 'R') |
| return readByte(D); |
| if (C == 'z') { |
| skipLeb128(D); |
| continue; |
| } |
| if (C == 'P') { |
| skipAugP<ELFT>(D); |
| continue; |
| } |
| if (C == 'L') |
| continue; |
| fatal("unknown .eh_frame augmentation string: " + Aug); |
| } |
| return DW_EH_PE_absptr; |
| } |
| |
| template <class ELFT> |
| static typename ELFFile<ELFT>::uintX_t readEntryLength(ArrayRef<uint8_t> D) { |
| const endianness E = ELFT::TargetEndianness; |
| if (D.size() < 4) |
| fatal("CIE/FDE too small"); |
| |
| // First 4 bytes of CIE/FDE is the size of the record. |
| // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead. |
| uint64_t V = read32<E>(D.data()); |
| if (V < UINT32_MAX) { |
| uint64_t Len = V + 4; |
| if (Len > D.size()) |
| fatal("CIE/FIE ends past the end of the section"); |
| return Len; |
| } |
| |
| if (D.size() < 12) |
| fatal("CIE/FDE too small"); |
| V = read64<E>(D.data() + 4); |
| uint64_t Len = V + 12; |
| if (Len < V || D.size() < Len) |
| fatal("CIE/FIE ends past the end of the section"); |
| return Len; |
| } |
| |
| template <class ELFT> |
| template <bool IsRela> |
| void EHOutputSection<ELFT>::addSectionAux( |
| EHInputSection<ELFT> *S, |
| iterator_range<const Elf_Rel_Impl<ELFT, IsRela> *> Rels) { |
| const endianness E = ELFT::TargetEndianness; |
| |
| S->OutSec = this; |
| this->updateAlign(S->Align); |
| Sections.push_back(S); |
| |
| ArrayRef<uint8_t> SecData = S->getSectionData(); |
| ArrayRef<uint8_t> D = SecData; |
| uintX_t Offset = 0; |
| auto RelI = Rels.begin(); |
| auto RelE = Rels.end(); |
| |
| DenseMap<unsigned, unsigned> OffsetToIndex; |
| while (!D.empty()) { |
| unsigned Index = S->Offsets.size(); |
| S->Offsets.push_back(std::make_pair(Offset, -1)); |
| |
| uintX_t Length = readEntryLength<ELFT>(D); |
| // If CIE/FDE data length is zero then Length is 4, this |
| // shall be considered a terminator and processing shall end. |
| if (Length == 4) |
| break; |
| StringRef Entry((const char *)D.data(), Length); |
| |
| while (RelI != RelE && RelI->r_offset < Offset) |
| ++RelI; |
| uintX_t NextOffset = Offset + Length; |
| bool HasReloc = RelI != RelE && RelI->r_offset < NextOffset; |
| |
| uint32_t ID = read32<E>(D.data() + 4); |
| if (ID == 0) { |
| // CIE |
| Cie<ELFT> C(S, Index); |
| if (Config->EhFrameHdr) |
| C.FdeEncoding = getFdeEncoding(D); |
| |
| SymbolBody *Personality = nullptr; |
| if (HasReloc) { |
| uint32_t SymIndex = RelI->getSymbol(Config->Mips64EL); |
| Personality = S->getFile()->getSymbolBody(SymIndex)->repl(); |
| } |
| |
| std::pair<StringRef, SymbolBody *> CieInfo(Entry, Personality); |
| auto P = CieMap.insert(std::make_pair(CieInfo, Cies.size())); |
| if (P.second) { |
| Cies.push_back(C); |
| this->Header.sh_size += alignTo(Length, sizeof(uintX_t)); |
| } |
| OffsetToIndex[Offset] = P.first->second; |
| } else { |
| if (!HasReloc) |
| fatal("FDE doesn't reference another section"); |
| InputSectionBase<ELFT> *Target = S->getRelocTarget(*RelI); |
| if (Target != InputSection<ELFT>::Discarded && Target->Live) { |
| uint32_t CieOffset = Offset + 4 - ID; |
| auto I = OffsetToIndex.find(CieOffset); |
| if (I == OffsetToIndex.end()) |
| fatal("Invalid CIE reference"); |
| Cies[I->second].Fdes.push_back(EHRegion<ELFT>(S, Index)); |
| Out<ELFT>::EhFrameHdr->reserveFde(); |
| this->Header.sh_size += alignTo(Length, sizeof(uintX_t)); |
| } |
| } |
| |
| Offset = NextOffset; |
| D = D.slice(Length); |
| } |
| } |
| |
| template <class ELFT> |
| void EHOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { |
| auto *S = cast<EHInputSection<ELFT>>(C); |
| const Elf_Shdr *RelSec = S->RelocSection; |
| if (!RelSec) { |
| addSectionAux(S, make_range<const Elf_Rela *>(nullptr, nullptr)); |
| return; |
| } |
| ELFFile<ELFT> &Obj = S->getFile()->getObj(); |
| if (RelSec->sh_type == SHT_RELA) |
| addSectionAux(S, Obj.relas(RelSec)); |
| else |
| addSectionAux(S, Obj.rels(RelSec)); |
| } |
| |
| template <class ELFT> |
| static typename ELFFile<ELFT>::uintX_t writeAlignedCieOrFde(StringRef Data, |
| uint8_t *Buf) { |
| typedef typename ELFFile<ELFT>::uintX_t uintX_t; |
| const endianness E = ELFT::TargetEndianness; |
| uint64_t Len = alignTo(Data.size(), sizeof(uintX_t)); |
| write32<E>(Buf, Len - 4); |
| memcpy(Buf + 4, Data.data() + 4, Data.size() - 4); |
| return Len; |
| } |
| |
| template <class ELFT> void EHOutputSection<ELFT>::writeTo(uint8_t *Buf) { |
| const endianness E = ELFT::TargetEndianness; |
| size_t Offset = 0; |
| for (const Cie<ELFT> &C : Cies) { |
| size_t CieOffset = Offset; |
| |
| uintX_t CIELen = writeAlignedCieOrFde<ELFT>(C.data(), Buf + Offset); |
| C.S->Offsets[C.Index].second = Offset; |
| Offset += CIELen; |
| |
| for (const EHRegion<ELFT> &F : C.Fdes) { |
| uintX_t Len = writeAlignedCieOrFde<ELFT>(F.data(), Buf + Offset); |
| write32<E>(Buf + Offset + 4, Offset + 4 - CieOffset); // Pointer |
| F.S->Offsets[F.Index].second = Offset; |
| Out<ELFT>::EhFrameHdr->addFde(C.FdeEncoding, Offset, Buf + Offset + 8); |
| Offset += Len; |
| } |
| } |
| |
| for (EHInputSection<ELFT> *S : Sections) { |
| const Elf_Shdr *RelSec = S->RelocSection; |
| if (!RelSec) |
| continue; |
| ELFFile<ELFT> &EObj = S->getFile()->getObj(); |
| if (RelSec->sh_type == SHT_RELA) |
| S->relocate(Buf, nullptr, EObj.relas(RelSec)); |
| else |
| S->relocate(Buf, nullptr, EObj.rels(RelSec)); |
| } |
| } |
| |
| template <class ELFT> |
| MergeOutputSection<ELFT>::MergeOutputSection(StringRef Name, uint32_t Type, |
| uintX_t Flags, uintX_t Alignment) |
| : OutputSectionBase<ELFT>(Name, Type, Flags), |
| Builder(llvm::StringTableBuilder::RAW, Alignment) {} |
| |
| template <class ELFT> void MergeOutputSection<ELFT>::writeTo(uint8_t *Buf) { |
| if (shouldTailMerge()) { |
| StringRef Data = Builder.data(); |
| memcpy(Buf, Data.data(), Data.size()); |
| return; |
| } |
| for (const std::pair<StringRef, size_t> &P : Builder.getMap()) { |
| StringRef Data = P.first; |
| memcpy(Buf + P.second, Data.data(), Data.size()); |
| } |
| } |
| |
| static size_t findNull(StringRef S, size_t EntSize) { |
| // Optimize the common case. |
| if (EntSize == 1) |
| return S.find(0); |
| |
| for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { |
| const char *B = S.begin() + I; |
| if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) |
| return I; |
| } |
| return StringRef::npos; |
| } |
| |
| template <class ELFT> |
| void MergeOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { |
| auto *S = cast<MergeInputSection<ELFT>>(C); |
| S->OutSec = this; |
| this->updateAlign(S->Align); |
| |
| ArrayRef<uint8_t> D = S->getSectionData(); |
| StringRef Data((const char *)D.data(), D.size()); |
| uintX_t EntSize = S->getSectionHdr()->sh_entsize; |
| |
| // If this is of type string, the contents are null-terminated strings. |
| if (this->Header.sh_flags & SHF_STRINGS) { |
| uintX_t Offset = 0; |
| while (!Data.empty()) { |
| size_t End = findNull(Data, EntSize); |
| if (End == StringRef::npos) |
| fatal("String is not null terminated"); |
| StringRef Entry = Data.substr(0, End + EntSize); |
| uintX_t OutputOffset = Builder.add(Entry); |
| if (shouldTailMerge()) |
| OutputOffset = -1; |
| S->Offsets.push_back(std::make_pair(Offset, OutputOffset)); |
| uintX_t Size = End + EntSize; |
| Data = Data.substr(Size); |
| Offset += Size; |
| } |
| return; |
| } |
| |
| // If this is not of type string, every entry has the same size. |
| for (unsigned I = 0, N = Data.size(); I != N; I += EntSize) { |
| StringRef Entry = Data.substr(I, EntSize); |
| size_t OutputOffset = Builder.add(Entry); |
| S->Offsets.push_back(std::make_pair(I, OutputOffset)); |
| } |
| } |
| |
| template <class ELFT> |
| unsigned MergeOutputSection<ELFT>::getOffset(StringRef Val) { |
| return Builder.getOffset(Val); |
| } |
| |
| template <class ELFT> bool MergeOutputSection<ELFT>::shouldTailMerge() const { |
| return Config->Optimize >= 2 && this->Header.sh_flags & SHF_STRINGS; |
| } |
| |
| template <class ELFT> void MergeOutputSection<ELFT>::finalize() { |
| if (shouldTailMerge()) |
| Builder.finalize(); |
| this->Header.sh_size = Builder.getSize(); |
| } |
| |
| template <class ELFT> |
| StringTableSection<ELFT>::StringTableSection(StringRef Name, bool Dynamic) |
| : OutputSectionBase<ELFT>(Name, SHT_STRTAB, |
| Dynamic ? (uintX_t)SHF_ALLOC : 0), |
| Dynamic(Dynamic) { |
| this->Header.sh_addralign = 1; |
| } |
| |
| // Adds a string to the string table. If HashIt is true we hash and check for |
| // duplicates. It is optional because the name of global symbols are already |
| // uniqued and hashing them again has a big cost for a small value: uniquing |
| // them with some other string that happens to be the same. |
| template <class ELFT> |
| unsigned StringTableSection<ELFT>::addString(StringRef S, bool HashIt) { |
| if (HashIt) { |
| auto R = StringMap.insert(std::make_pair(S, Size)); |
| if (!R.second) |
| return R.first->second; |
| } |
| unsigned Ret = Size; |
| Size += S.size() + 1; |
| Strings.push_back(S); |
| return Ret; |
| } |
| |
| template <class ELFT> void StringTableSection<ELFT>::writeTo(uint8_t *Buf) { |
| // ELF string tables start with NUL byte, so advance the pointer by one. |
| ++Buf; |
| for (StringRef S : Strings) { |
| memcpy(Buf, S.data(), S.size()); |
| Buf += S.size() + 1; |
| } |
| } |
| |
| template <class ELFT> |
| SymbolTableSection<ELFT>::SymbolTableSection( |
| SymbolTable<ELFT> &Table, StringTableSection<ELFT> &StrTabSec) |
| : OutputSectionBase<ELFT>(StrTabSec.isDynamic() ? ".dynsym" : ".symtab", |
| StrTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, |
| StrTabSec.isDynamic() ? (uintX_t)SHF_ALLOC : 0), |
| StrTabSec(StrTabSec), Table(Table) { |
| this->Header.sh_entsize = sizeof(Elf_Sym); |
| this->Header.sh_addralign = sizeof(uintX_t); |
| } |
| |
| // Orders symbols according to their positions in the GOT, |
| // in compliance with MIPS ABI rules. |
| // See "Global Offset Table" in Chapter 5 in the following document |
| // for detailed description: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| static bool sortMipsSymbols(const std::pair<SymbolBody *, unsigned> &L, |
| const std::pair<SymbolBody *, unsigned> &R) { |
| if (!L.first->isInGot() || !R.first->isInGot()) |
| return R.first->isInGot(); |
| return L.first->GotIndex < R.first->GotIndex; |
| } |
| |
| template <class ELFT> void SymbolTableSection<ELFT>::finalize() { |
| if (this->Header.sh_size) |
| return; // Already finalized. |
| |
| this->Header.sh_size = getNumSymbols() * sizeof(Elf_Sym); |
| this->Header.sh_link = StrTabSec.SectionIndex; |
| this->Header.sh_info = NumLocals + 1; |
| |
| if (Config->Relocatable) { |
| size_t I = NumLocals; |
| for (const std::pair<SymbolBody *, size_t> &P : Symbols) |
| P.first->DynsymIndex = ++I; |
| return; |
| } |
| |
| if (!StrTabSec.isDynamic()) { |
| std::stable_sort(Symbols.begin(), Symbols.end(), |
| [](const std::pair<SymbolBody *, unsigned> &L, |
| const std::pair<SymbolBody *, unsigned> &R) { |
| return getSymbolBinding(L.first) == STB_LOCAL && |
| getSymbolBinding(R.first) != STB_LOCAL; |
| }); |
| return; |
| } |
| if (Out<ELFT>::GnuHashTab) |
| // NB: It also sorts Symbols to meet the GNU hash table requirements. |
| Out<ELFT>::GnuHashTab->addSymbols(Symbols); |
| else if (Config->EMachine == EM_MIPS) |
| std::stable_sort(Symbols.begin(), Symbols.end(), sortMipsSymbols); |
| size_t I = 0; |
| for (const std::pair<SymbolBody *, size_t> &P : Symbols) |
| P.first->DynsymIndex = ++I; |
| } |
| |
| template <class ELFT> |
| void SymbolTableSection<ELFT>::addSymbol(SymbolBody *B) { |
| Symbols.push_back({B, StrTabSec.addString(B->getName(), false)}); |
| } |
| |
| template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *Buf) { |
| Buf += sizeof(Elf_Sym); |
| |
| // All symbols with STB_LOCAL binding precede the weak and global symbols. |
| // .dynsym only contains global symbols. |
| if (!Config->DiscardAll && !StrTabSec.isDynamic()) |
| writeLocalSymbols(Buf); |
| |
| writeGlobalSymbols(Buf); |
| } |
| |
| template <class ELFT> |
| void SymbolTableSection<ELFT>::writeLocalSymbols(uint8_t *&Buf) { |
| // Iterate over all input object files to copy their local symbols |
| // to the output symbol table pointed by Buf. |
| for (const std::unique_ptr<ObjectFile<ELFT>> &File : Table.getObjectFiles()) { |
| for (const std::pair<const Elf_Sym *, size_t> &P : File->KeptLocalSyms) { |
| const Elf_Sym *Sym = P.first; |
| |
| auto *ESym = reinterpret_cast<Elf_Sym *>(Buf); |
| uintX_t VA = 0; |
| if (Sym->st_shndx == SHN_ABS) { |
| ESym->st_shndx = SHN_ABS; |
| VA = Sym->st_value; |
| } else { |
| InputSectionBase<ELFT> *Section = File->getSection(*Sym); |
| const OutputSectionBase<ELFT> *OutSec = Section->OutSec; |
| ESym->st_shndx = OutSec->SectionIndex; |
| VA = Section->getOffset(*Sym); |
| |
| // Symbol offsets for AMDGPU are the offsets in bytes of the |
| // symbols from the beginning of the section. There seems to be no |
| // reason for that deviation -- it's just that the definition of |
| // st_value field in AMDGPU's ELF is odd. |
| if (Config->EMachine != EM_AMDGPU) |
| VA += OutSec->getVA(); |
| } |
| ESym->st_name = P.second; |
| ESym->st_size = Sym->st_size; |
| ESym->setBindingAndType(Sym->getBinding(), Sym->getType()); |
| ESym->st_value = VA; |
| Buf += sizeof(*ESym); |
| } |
| } |
| } |
| |
| template <class ELFT> |
| static const typename llvm::object::ELFFile<ELFT>::Elf_Sym * |
| getElfSym(SymbolBody &Body) { |
| if (auto *EBody = dyn_cast<DefinedElf<ELFT>>(&Body)) |
| return &EBody->Sym; |
| if (auto *EBody = dyn_cast<UndefinedElf<ELFT>>(&Body)) |
| return &EBody->Sym; |
| return nullptr; |
| } |
| |
| template <class ELFT> |
| void SymbolTableSection<ELFT>::writeGlobalSymbols(uint8_t *Buf) { |
| // Write the internal symbol table contents to the output symbol table |
| // pointed by Buf. |
| auto *ESym = reinterpret_cast<Elf_Sym *>(Buf); |
| for (const std::pair<SymbolBody *, size_t> &P : Symbols) { |
| SymbolBody *Body = P.first; |
| size_t StrOff = P.second; |
| |
| unsigned char Type = STT_NOTYPE; |
| uintX_t Size = 0; |
| if (const Elf_Sym *InputSym = getElfSym<ELFT>(*Body)) { |
| Type = InputSym->getType(); |
| Size = InputSym->st_size; |
| } else if (auto *C = dyn_cast<DefinedCommon>(Body)) { |
| Type = STT_OBJECT; |
| Size = C->Size; |
| } |
| |
| ESym->setBindingAndType(getSymbolBinding(Body), Type); |
| ESym->st_size = Size; |
| ESym->st_name = StrOff; |
| ESym->setVisibility(Body->getVisibility()); |
| ESym->st_value = Body->getVA<ELFT>(); |
| |
| if (const OutputSectionBase<ELFT> *OutSec = getOutputSection(Body)) |
| ESym->st_shndx = OutSec->SectionIndex; |
| else if (isa<DefinedRegular<ELFT>>(Body)) |
| ESym->st_shndx = SHN_ABS; |
| |
| // On MIPS we need to mark symbol which has a PLT entry and requires pointer |
| // equality by STO_MIPS_PLT flag. That is necessary to help dynamic linker |
| // distinguish such symbols and MIPS lazy-binding stubs. |
| // https://sourceware.org/ml/binutils/2008-07/txt00000.txt |
| if (Config->EMachine == EM_MIPS && Body->isInPlt() && |
| Body->NeedsCopyOrPltAddr) |
| ESym->st_other |= STO_MIPS_PLT; |
| ++ESym; |
| } |
| } |
| |
| template <class ELFT> |
| const OutputSectionBase<ELFT> * |
| SymbolTableSection<ELFT>::getOutputSection(SymbolBody *Sym) { |
| switch (Sym->kind()) { |
| case SymbolBody::DefinedSyntheticKind: |
| return &cast<DefinedSynthetic<ELFT>>(Sym)->Section; |
| case SymbolBody::DefinedRegularKind: { |
| auto *D = cast<DefinedRegular<ELFT>>(Sym->repl()); |
| if (D->Section) |
| return D->Section->OutSec; |
| break; |
| } |
| case SymbolBody::DefinedCommonKind: |
| return Out<ELFT>::Bss; |
| case SymbolBody::SharedKind: |
| if (cast<SharedSymbol<ELFT>>(Sym)->needsCopy()) |
| return Out<ELFT>::Bss; |
| break; |
| case SymbolBody::UndefinedElfKind: |
| case SymbolBody::UndefinedKind: |
| case SymbolBody::LazyKind: |
| break; |
| case SymbolBody::DefinedBitcodeKind: |
| llvm_unreachable("Should have been replaced"); |
| } |
| return nullptr; |
| } |
| |
| template <class ELFT> |
| uint8_t SymbolTableSection<ELFT>::getSymbolBinding(SymbolBody *Body) { |
| uint8_t Visibility = Body->getVisibility(); |
| if (Visibility != STV_DEFAULT && Visibility != STV_PROTECTED) |
| return STB_LOCAL; |
| if (const Elf_Sym *ESym = getElfSym<ELFT>(*Body)) |
| return ESym->getBinding(); |
| if (isa<DefinedSynthetic<ELFT>>(Body)) |
| return STB_LOCAL; |
| return Body->isWeak() ? STB_WEAK : STB_GLOBAL; |
| } |
| |
| template <class ELFT> |
| MipsReginfoOutputSection<ELFT>::MipsReginfoOutputSection() |
| : OutputSectionBase<ELFT>(".reginfo", SHT_MIPS_REGINFO, SHF_ALLOC) { |
| this->Header.sh_addralign = 4; |
| this->Header.sh_entsize = sizeof(Elf_Mips_RegInfo); |
| this->Header.sh_size = sizeof(Elf_Mips_RegInfo); |
| } |
| |
| template <class ELFT> |
| void MipsReginfoOutputSection<ELFT>::writeTo(uint8_t *Buf) { |
| auto *R = reinterpret_cast<Elf_Mips_RegInfo *>(Buf); |
| R->ri_gp_value = getMipsGpAddr<ELFT>(); |
| R->ri_gprmask = GprMask; |
| } |
| |
| template <class ELFT> |
| void MipsReginfoOutputSection<ELFT>::addSection(InputSectionBase<ELFT> *C) { |
| // Copy input object file's .reginfo gprmask to output. |
| auto *S = cast<MipsReginfoInputSection<ELFT>>(C); |
| GprMask |= S->Reginfo->ri_gprmask; |
| } |
| |
| namespace lld { |
| namespace elf { |
| template class OutputSectionBase<ELF32LE>; |
| template class OutputSectionBase<ELF32BE>; |
| template class OutputSectionBase<ELF64LE>; |
| template class OutputSectionBase<ELF64BE>; |
| |
| template class EhFrameHeader<ELF32LE>; |
| template class EhFrameHeader<ELF32BE>; |
| template class EhFrameHeader<ELF64LE>; |
| template class EhFrameHeader<ELF64BE>; |
| |
| template class GotPltSection<ELF32LE>; |
| template class GotPltSection<ELF32BE>; |
| template class GotPltSection<ELF64LE>; |
| template class GotPltSection<ELF64BE>; |
| |
| template class GotSection<ELF32LE>; |
| template class GotSection<ELF32BE>; |
| template class GotSection<ELF64LE>; |
| template class GotSection<ELF64BE>; |
| |
| template class PltSection<ELF32LE>; |
| template class PltSection<ELF32BE>; |
| template class PltSection<ELF64LE>; |
| template class PltSection<ELF64BE>; |
| |
| template class RelocationSection<ELF32LE>; |
| template class RelocationSection<ELF32BE>; |
| template class RelocationSection<ELF64LE>; |
| template class RelocationSection<ELF64BE>; |
| |
| template class InterpSection<ELF32LE>; |
| template class InterpSection<ELF32BE>; |
| template class InterpSection<ELF64LE>; |
| template class InterpSection<ELF64BE>; |
| |
| template class GnuHashTableSection<ELF32LE>; |
| template class GnuHashTableSection<ELF32BE>; |
| template class GnuHashTableSection<ELF64LE>; |
| template class GnuHashTableSection<ELF64BE>; |
| |
| template class HashTableSection<ELF32LE>; |
| template class HashTableSection<ELF32BE>; |
| template class HashTableSection<ELF64LE>; |
| template class HashTableSection<ELF64BE>; |
| |
| template class DynamicSection<ELF32LE>; |
| template class DynamicSection<ELF32BE>; |
| template class DynamicSection<ELF64LE>; |
| template class DynamicSection<ELF64BE>; |
| |
| template class OutputSection<ELF32LE>; |
| template class OutputSection<ELF32BE>; |
| template class OutputSection<ELF64LE>; |
| template class OutputSection<ELF64BE>; |
| |
| template class EHOutputSection<ELF32LE>; |
| template class EHOutputSection<ELF32BE>; |
| template class EHOutputSection<ELF64LE>; |
| template class EHOutputSection<ELF64BE>; |
| |
| template class MipsReginfoOutputSection<ELF32LE>; |
| template class MipsReginfoOutputSection<ELF32BE>; |
| template class MipsReginfoOutputSection<ELF64LE>; |
| template class MipsReginfoOutputSection<ELF64BE>; |
| |
| template class MergeOutputSection<ELF32LE>; |
| template class MergeOutputSection<ELF32BE>; |
| template class MergeOutputSection<ELF64LE>; |
| template class MergeOutputSection<ELF64BE>; |
| |
| template class StringTableSection<ELF32LE>; |
| template class StringTableSection<ELF32BE>; |
| template class StringTableSection<ELF64LE>; |
| template class StringTableSection<ELF64BE>; |
| |
| template class SymbolTableSection<ELF32LE>; |
| template class SymbolTableSection<ELF32BE>; |
| template class SymbolTableSection<ELF64LE>; |
| template class SymbolTableSection<ELF64BE>; |
| |
| template uint32_t getLocalRelTarget(const ObjectFile<ELF32LE> &, |
| const ELFFile<ELF32LE>::Elf_Rel &, |
| uint32_t); |
| template uint32_t getLocalRelTarget(const ObjectFile<ELF32BE> &, |
| const ELFFile<ELF32BE>::Elf_Rel &, |
| uint32_t); |
| template uint64_t getLocalRelTarget(const ObjectFile<ELF64LE> &, |
| const ELFFile<ELF64LE>::Elf_Rel &, |
| uint64_t); |
| template uint64_t getLocalRelTarget(const ObjectFile<ELF64BE> &, |
| const ELFFile<ELF64BE>::Elf_Rel &, |
| uint64_t); |
| template uint32_t getLocalRelTarget(const ObjectFile<ELF32LE> &, |
| const ELFFile<ELF32LE>::Elf_Rela &, |
| uint32_t); |
| template uint32_t getLocalRelTarget(const ObjectFile<ELF32BE> &, |
| const ELFFile<ELF32BE>::Elf_Rela &, |
| uint32_t); |
| template uint64_t getLocalRelTarget(const ObjectFile<ELF64LE> &, |
| const ELFFile<ELF64LE>::Elf_Rela &, |
| uint64_t); |
| template uint64_t getLocalRelTarget(const ObjectFile<ELF64BE> &, |
| const ELFFile<ELF64BE>::Elf_Rela &, |
| uint64_t); |
| } |
| } |