|  | //===- Target.cpp ---------------------------------------------------------===// | 
|  | // | 
|  | //                             The LLVM Linker | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Machine-specific things, such as applying relocations, creation of | 
|  | // GOT or PLT entries, etc., are handled in this file. | 
|  | // | 
|  | // Refer the ELF spec for the single letter variables, S, A or P, used | 
|  | // in this file. | 
|  | // | 
|  | // Some functions defined in this file has "relaxTls" as part of their names. | 
|  | // They do peephole optimization for TLS variables by rewriting instructions. | 
|  | // They are not part of the ABI but optional optimization, so you can skip | 
|  | // them if you are not interested in how TLS variables are optimized. | 
|  | // See the following paper for the details. | 
|  | // | 
|  | //   Ulrich Drepper, ELF Handling For Thread-Local Storage | 
|  | //   http://www.akkadia.org/drepper/tls.pdf | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "Target.h" | 
|  | #include "Error.h" | 
|  | #include "InputFiles.h" | 
|  | #include "OutputSections.h" | 
|  | #include "Symbols.h" | 
|  | #include "SyntheticSections.h" | 
|  | #include "Thunks.h" | 
|  | #include "Writer.h" | 
|  | #include "lld/Support/Memory.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/Object/ELF.h" | 
|  | #include "llvm/Support/ELF.h" | 
|  | #include "llvm/Support/Endian.h" | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::object; | 
|  | using namespace llvm::support::endian; | 
|  | using namespace llvm::ELF; | 
|  |  | 
|  | namespace lld { | 
|  | namespace elf { | 
|  |  | 
|  | TargetInfo *Target; | 
|  |  | 
|  | static void or32le(uint8_t *P, int32_t V) { write32le(P, read32le(P) | V); } | 
|  | static void or32be(uint8_t *P, int32_t V) { write32be(P, read32be(P) | V); } | 
|  |  | 
|  | std::string toString(uint32_t Type) { | 
|  | return getELFRelocationTypeName(Config->EMachine, Type); | 
|  | } | 
|  |  | 
|  | template <unsigned N> | 
|  | static void checkInt(uint8_t *Loc, int64_t V, uint32_t Type) { | 
|  | if (!isInt<N>(V)) | 
|  | error(getErrorLocation(Loc) + "relocation " + toString(Type) + | 
|  | " out of range"); | 
|  | } | 
|  |  | 
|  | template <unsigned N> | 
|  | static void checkUInt(uint8_t *Loc, uint64_t V, uint32_t Type) { | 
|  | if (!isUInt<N>(V)) | 
|  | error(getErrorLocation(Loc) + "relocation " + toString(Type) + | 
|  | " out of range"); | 
|  | } | 
|  |  | 
|  | template <unsigned N> | 
|  | static void checkIntUInt(uint8_t *Loc, uint64_t V, uint32_t Type) { | 
|  | if (!isInt<N>(V) && !isUInt<N>(V)) | 
|  | error(getErrorLocation(Loc) + "relocation " + toString(Type) + | 
|  | " out of range"); | 
|  | } | 
|  |  | 
|  | template <unsigned N> | 
|  | static void checkAlignment(uint8_t *Loc, uint64_t V, uint32_t Type) { | 
|  | if ((V & (N - 1)) != 0) | 
|  | error(getErrorLocation(Loc) + "improper alignment for relocation " + | 
|  | toString(Type)); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class X86TargetInfo final : public TargetInfo { | 
|  | public: | 
|  | X86TargetInfo(); | 
|  | RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; | 
|  | uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override; | 
|  | void writeGotPltHeader(uint8_t *Buf) const override; | 
|  | uint32_t getDynRel(uint32_t Type) const override; | 
|  | bool isTlsLocalDynamicRel(uint32_t Type) const override; | 
|  | bool isTlsGlobalDynamicRel(uint32_t Type) const override; | 
|  | bool isTlsInitialExecRel(uint32_t Type) const override; | 
|  | void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; | 
|  | void writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const override; | 
|  | void writePltHeader(uint8_t *Buf) const override; | 
|  | void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, | 
|  | int32_t Index, unsigned RelOff) const override; | 
|  | void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; | 
|  |  | 
|  | RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data, | 
|  | RelExpr Expr) const override; | 
|  | void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; | 
|  | void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; | 
|  | void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; | 
|  | void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; | 
|  | }; | 
|  |  | 
|  | template <class ELFT> class X86_64TargetInfo final : public TargetInfo { | 
|  | public: | 
|  | X86_64TargetInfo(); | 
|  | RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; | 
|  | bool isPicRel(uint32_t Type) const override; | 
|  | bool isTlsLocalDynamicRel(uint32_t Type) const override; | 
|  | bool isTlsGlobalDynamicRel(uint32_t Type) const override; | 
|  | bool isTlsInitialExecRel(uint32_t Type) const override; | 
|  | void writeGotPltHeader(uint8_t *Buf) const override; | 
|  | void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; | 
|  | void writePltHeader(uint8_t *Buf) const override; | 
|  | void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, | 
|  | int32_t Index, unsigned RelOff) const override; | 
|  | void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; | 
|  |  | 
|  | RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data, | 
|  | RelExpr Expr) const override; | 
|  | void relaxGot(uint8_t *Loc, uint64_t Val) const override; | 
|  | void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; | 
|  | void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; | 
|  | void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; | 
|  | void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; | 
|  |  | 
|  | private: | 
|  | void relaxGotNoPic(uint8_t *Loc, uint64_t Val, uint8_t Op, | 
|  | uint8_t ModRm) const; | 
|  | }; | 
|  |  | 
|  | class PPCTargetInfo final : public TargetInfo { | 
|  | public: | 
|  | PPCTargetInfo(); | 
|  | void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; | 
|  | RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; | 
|  | }; | 
|  |  | 
|  | class PPC64TargetInfo final : public TargetInfo { | 
|  | public: | 
|  | PPC64TargetInfo(); | 
|  | RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; | 
|  | void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, | 
|  | int32_t Index, unsigned RelOff) const override; | 
|  | void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; | 
|  | }; | 
|  |  | 
|  | class AArch64TargetInfo final : public TargetInfo { | 
|  | public: | 
|  | AArch64TargetInfo(); | 
|  | RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; | 
|  | bool isPicRel(uint32_t Type) const override; | 
|  | bool isTlsInitialExecRel(uint32_t Type) const override; | 
|  | void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; | 
|  | void writePltHeader(uint8_t *Buf) const override; | 
|  | void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, | 
|  | int32_t Index, unsigned RelOff) const override; | 
|  | bool usesOnlyLowPageBits(uint32_t Type) const override; | 
|  | void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; | 
|  | RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data, | 
|  | RelExpr Expr) const override; | 
|  | void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; | 
|  | void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; | 
|  | void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; | 
|  | }; | 
|  |  | 
|  | class AMDGPUTargetInfo final : public TargetInfo { | 
|  | public: | 
|  | AMDGPUTargetInfo(); | 
|  | void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; | 
|  | RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; | 
|  | }; | 
|  |  | 
|  | class ARMTargetInfo final : public TargetInfo { | 
|  | public: | 
|  | ARMTargetInfo(); | 
|  | RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; | 
|  | bool isPicRel(uint32_t Type) const override; | 
|  | uint32_t getDynRel(uint32_t Type) const override; | 
|  | uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override; | 
|  | bool isTlsLocalDynamicRel(uint32_t Type) const override; | 
|  | bool isTlsGlobalDynamicRel(uint32_t Type) const override; | 
|  | bool isTlsInitialExecRel(uint32_t Type) const override; | 
|  | void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; | 
|  | void writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const override; | 
|  | void writePltHeader(uint8_t *Buf) const override; | 
|  | void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, | 
|  | int32_t Index, unsigned RelOff) const override; | 
|  | RelExpr getThunkExpr(RelExpr Expr, uint32_t RelocType, const InputFile &File, | 
|  | const SymbolBody &S) const override; | 
|  | void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; | 
|  | }; | 
|  |  | 
|  | template <class ELFT> class MipsTargetInfo final : public TargetInfo { | 
|  | public: | 
|  | MipsTargetInfo(); | 
|  | RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; | 
|  | uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override; | 
|  | bool isPicRel(uint32_t Type) const override; | 
|  | uint32_t getDynRel(uint32_t Type) const override; | 
|  | bool isTlsLocalDynamicRel(uint32_t Type) const override; | 
|  | bool isTlsGlobalDynamicRel(uint32_t Type) const override; | 
|  | void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; | 
|  | void writePltHeader(uint8_t *Buf) const override; | 
|  | void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, | 
|  | int32_t Index, unsigned RelOff) const override; | 
|  | RelExpr getThunkExpr(RelExpr Expr, uint32_t RelocType, const InputFile &File, | 
|  | const SymbolBody &S) const override; | 
|  | void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; | 
|  | bool usesOnlyLowPageBits(uint32_t Type) const override; | 
|  | }; | 
|  | } // anonymous namespace | 
|  |  | 
|  | TargetInfo *createTarget() { | 
|  | switch (Config->EMachine) { | 
|  | case EM_386: | 
|  | case EM_IAMCU: | 
|  | return make<X86TargetInfo>(); | 
|  | case EM_AARCH64: | 
|  | return make<AArch64TargetInfo>(); | 
|  | case EM_AMDGPU: | 
|  | return make<AMDGPUTargetInfo>(); | 
|  | case EM_ARM: | 
|  | return make<ARMTargetInfo>(); | 
|  | case EM_MIPS: | 
|  | switch (Config->EKind) { | 
|  | case ELF32LEKind: | 
|  | return make<MipsTargetInfo<ELF32LE>>(); | 
|  | case ELF32BEKind: | 
|  | return make<MipsTargetInfo<ELF32BE>>(); | 
|  | case ELF64LEKind: | 
|  | return make<MipsTargetInfo<ELF64LE>>(); | 
|  | case ELF64BEKind: | 
|  | return make<MipsTargetInfo<ELF64BE>>(); | 
|  | default: | 
|  | fatal("unsupported MIPS target"); | 
|  | } | 
|  | case EM_PPC: | 
|  | return make<PPCTargetInfo>(); | 
|  | case EM_PPC64: | 
|  | return make<PPC64TargetInfo>(); | 
|  | case EM_X86_64: | 
|  | if (Config->EKind == ELF32LEKind) | 
|  | return make<X86_64TargetInfo<ELF32LE>>(); | 
|  | return make<X86_64TargetInfo<ELF64LE>>(); | 
|  | } | 
|  | fatal("unknown target machine"); | 
|  | } | 
|  |  | 
|  | TargetInfo::~TargetInfo() {} | 
|  |  | 
|  | uint64_t TargetInfo::getImplicitAddend(const uint8_t *Buf, | 
|  | uint32_t Type) const { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool TargetInfo::usesOnlyLowPageBits(uint32_t Type) const { return false; } | 
|  |  | 
|  | RelExpr TargetInfo::getThunkExpr(RelExpr Expr, uint32_t RelocType, | 
|  | const InputFile &File, | 
|  | const SymbolBody &S) const { | 
|  | return Expr; | 
|  | } | 
|  |  | 
|  | bool TargetInfo::isTlsInitialExecRel(uint32_t Type) const { return false; } | 
|  |  | 
|  | bool TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const { return false; } | 
|  |  | 
|  | bool TargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const { return false; } | 
|  |  | 
|  | void TargetInfo::writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const { | 
|  | writeGotPlt(Buf, S); | 
|  | } | 
|  |  | 
|  | RelExpr TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data, | 
|  | RelExpr Expr) const { | 
|  | return Expr; | 
|  | } | 
|  |  | 
|  | void TargetInfo::relaxGot(uint8_t *Loc, uint64_t Val) const { | 
|  | llvm_unreachable("Should not have claimed to be relaxable"); | 
|  | } | 
|  |  | 
|  | void TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, | 
|  | uint64_t Val) const { | 
|  | llvm_unreachable("Should not have claimed to be relaxable"); | 
|  | } | 
|  |  | 
|  | void TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, | 
|  | uint64_t Val) const { | 
|  | llvm_unreachable("Should not have claimed to be relaxable"); | 
|  | } | 
|  |  | 
|  | void TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, | 
|  | uint64_t Val) const { | 
|  | llvm_unreachable("Should not have claimed to be relaxable"); | 
|  | } | 
|  |  | 
|  | void TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, | 
|  | uint64_t Val) const { | 
|  | llvm_unreachable("Should not have claimed to be relaxable"); | 
|  | } | 
|  |  | 
|  | X86TargetInfo::X86TargetInfo() { | 
|  | CopyRel = R_386_COPY; | 
|  | GotRel = R_386_GLOB_DAT; | 
|  | PltRel = R_386_JUMP_SLOT; | 
|  | IRelativeRel = R_386_IRELATIVE; | 
|  | RelativeRel = R_386_RELATIVE; | 
|  | TlsGotRel = R_386_TLS_TPOFF; | 
|  | TlsModuleIndexRel = R_386_TLS_DTPMOD32; | 
|  | TlsOffsetRel = R_386_TLS_DTPOFF32; | 
|  | GotEntrySize = 4; | 
|  | GotPltEntrySize = 4; | 
|  | PltEntrySize = 16; | 
|  | PltHeaderSize = 16; | 
|  | TlsGdRelaxSkip = 2; | 
|  | } | 
|  |  | 
|  | RelExpr X86TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { | 
|  | switch (Type) { | 
|  | default: | 
|  | return R_ABS; | 
|  | case R_386_TLS_GD: | 
|  | return R_TLSGD; | 
|  | case R_386_TLS_LDM: | 
|  | return R_TLSLD; | 
|  | case R_386_PLT32: | 
|  | return R_PLT_PC; | 
|  | case R_386_PC16: | 
|  | case R_386_PC32: | 
|  | return R_PC; | 
|  | case R_386_GOTPC: | 
|  | return R_GOTONLY_PC_FROM_END; | 
|  | case R_386_TLS_IE: | 
|  | return R_GOT; | 
|  | case R_386_GOT32: | 
|  | case R_386_GOT32X: | 
|  | case R_386_TLS_GOTIE: | 
|  | return R_GOT_FROM_END; | 
|  | case R_386_GOTOFF: | 
|  | return R_GOTREL_FROM_END; | 
|  | case R_386_TLS_LE: | 
|  | return R_TLS; | 
|  | case R_386_TLS_LE_32: | 
|  | return R_NEG_TLS; | 
|  | } | 
|  | } | 
|  |  | 
|  | RelExpr X86TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data, | 
|  | RelExpr Expr) const { | 
|  | switch (Expr) { | 
|  | default: | 
|  | return Expr; | 
|  | case R_RELAX_TLS_GD_TO_IE: | 
|  | return R_RELAX_TLS_GD_TO_IE_END; | 
|  | case R_RELAX_TLS_GD_TO_LE: | 
|  | return R_RELAX_TLS_GD_TO_LE_NEG; | 
|  | } | 
|  | } | 
|  |  | 
|  | void X86TargetInfo::writeGotPltHeader(uint8_t *Buf) const { | 
|  | write32le(Buf, In<ELF32LE>::Dynamic->getVA()); | 
|  | } | 
|  |  | 
|  | void X86TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &S) const { | 
|  | // Entries in .got.plt initially points back to the corresponding | 
|  | // PLT entries with a fixed offset to skip the first instruction. | 
|  | write32le(Buf, S.getPltVA<ELF32LE>() + 6); | 
|  | } | 
|  |  | 
|  | void X86TargetInfo::writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const { | 
|  | // An x86 entry is the address of the ifunc resolver function. | 
|  | write32le(Buf, S.getVA<ELF32LE>()); | 
|  | } | 
|  |  | 
|  | uint32_t X86TargetInfo::getDynRel(uint32_t Type) const { | 
|  | if (Type == R_386_TLS_LE) | 
|  | return R_386_TLS_TPOFF; | 
|  | if (Type == R_386_TLS_LE_32) | 
|  | return R_386_TLS_TPOFF32; | 
|  | return Type; | 
|  | } | 
|  |  | 
|  | bool X86TargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const { | 
|  | return Type == R_386_TLS_GD; | 
|  | } | 
|  |  | 
|  | bool X86TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const { | 
|  | return Type == R_386_TLS_LDO_32 || Type == R_386_TLS_LDM; | 
|  | } | 
|  |  | 
|  | bool X86TargetInfo::isTlsInitialExecRel(uint32_t Type) const { | 
|  | return Type == R_386_TLS_IE || Type == R_386_TLS_GOTIE; | 
|  | } | 
|  |  | 
|  | void X86TargetInfo::writePltHeader(uint8_t *Buf) const { | 
|  | // Executable files and shared object files have | 
|  | // separate procedure linkage tables. | 
|  | if (Config->Pic) { | 
|  | const uint8_t V[] = { | 
|  | 0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, // pushl 4(%ebx) | 
|  | 0xff, 0xa3, 0x08, 0x00, 0x00, 0x00, // jmp   *8(%ebx) | 
|  | 0x90, 0x90, 0x90, 0x90              // nop; nop; nop; nop | 
|  | }; | 
|  | memcpy(Buf, V, sizeof(V)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const uint8_t PltData[] = { | 
|  | 0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushl (GOT+4) | 
|  | 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp   *(GOT+8) | 
|  | 0x90, 0x90, 0x90, 0x90              // nop; nop; nop; nop | 
|  | }; | 
|  | memcpy(Buf, PltData, sizeof(PltData)); | 
|  | uint32_t Got = In<ELF32LE>::GotPlt->getVA(); | 
|  | write32le(Buf + 2, Got + 4); | 
|  | write32le(Buf + 8, Got + 8); | 
|  | } | 
|  |  | 
|  | void X86TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, | 
|  | uint64_t PltEntryAddr, int32_t Index, | 
|  | unsigned RelOff) const { | 
|  | const uint8_t Inst[] = { | 
|  | 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, // jmp *foo_in_GOT|*foo@GOT(%ebx) | 
|  | 0x68, 0x00, 0x00, 0x00, 0x00,       // pushl $reloc_offset | 
|  | 0xe9, 0x00, 0x00, 0x00, 0x00        // jmp .PLT0@PC | 
|  | }; | 
|  | memcpy(Buf, Inst, sizeof(Inst)); | 
|  |  | 
|  | // jmp *foo@GOT(%ebx) or jmp *foo_in_GOT | 
|  | Buf[1] = Config->Pic ? 0xa3 : 0x25; | 
|  | uint32_t Got = In<ELF32LE>::GotPlt->getVA(); | 
|  | write32le(Buf + 2, Config->Shared ? GotEntryAddr - Got : GotEntryAddr); | 
|  | write32le(Buf + 7, RelOff); | 
|  | write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16); | 
|  | } | 
|  |  | 
|  | uint64_t X86TargetInfo::getImplicitAddend(const uint8_t *Buf, | 
|  | uint32_t Type) const { | 
|  | switch (Type) { | 
|  | default: | 
|  | return 0; | 
|  | case R_386_16: | 
|  | case R_386_PC16: | 
|  | return read16le(Buf); | 
|  | case R_386_32: | 
|  | case R_386_GOT32: | 
|  | case R_386_GOT32X: | 
|  | case R_386_GOTOFF: | 
|  | case R_386_GOTPC: | 
|  | case R_386_PC32: | 
|  | case R_386_PLT32: | 
|  | case R_386_TLS_LE: | 
|  | return read32le(Buf); | 
|  | } | 
|  | } | 
|  |  | 
|  | void X86TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, | 
|  | uint64_t Val) const { | 
|  | checkInt<32>(Loc, Val, Type); | 
|  |  | 
|  | // R_386_PC16 and R_386_16 are not part of the current i386 psABI. They are | 
|  | // used by 16-bit x86 objects, like boot loaders. | 
|  | if (Type == R_386_16 || Type == R_386_PC16) { | 
|  | write16le(Loc, Val); | 
|  | return; | 
|  | } | 
|  | write32le(Loc, Val); | 
|  | } | 
|  |  | 
|  | void X86TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, | 
|  | uint64_t Val) const { | 
|  | // Convert | 
|  | //   leal x@tlsgd(, %ebx, 1), | 
|  | //   call __tls_get_addr@plt | 
|  | // to | 
|  | //   movl %gs:0,%eax | 
|  | //   subl $x@ntpoff,%eax | 
|  | const uint8_t Inst[] = { | 
|  | 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax | 
|  | 0x81, 0xe8, 0x00, 0x00, 0x00, 0x00  // subl 0(%ebx), %eax | 
|  | }; | 
|  | memcpy(Loc - 3, Inst, sizeof(Inst)); | 
|  | relocateOne(Loc + 5, R_386_32, Val); | 
|  | } | 
|  |  | 
|  | void X86TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, | 
|  | uint64_t Val) const { | 
|  | // Convert | 
|  | //   leal x@tlsgd(, %ebx, 1), | 
|  | //   call __tls_get_addr@plt | 
|  | // to | 
|  | //   movl %gs:0, %eax | 
|  | //   addl x@gotntpoff(%ebx), %eax | 
|  | const uint8_t Inst[] = { | 
|  | 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax | 
|  | 0x03, 0x83, 0x00, 0x00, 0x00, 0x00  // addl 0(%ebx), %eax | 
|  | }; | 
|  | memcpy(Loc - 3, Inst, sizeof(Inst)); | 
|  | relocateOne(Loc + 5, R_386_32, Val); | 
|  | } | 
|  |  | 
|  | // In some conditions, relocations can be optimized to avoid using GOT. | 
|  | // This function does that for Initial Exec to Local Exec case. | 
|  | void X86TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, | 
|  | uint64_t Val) const { | 
|  | // Ulrich's document section 6.2 says that @gotntpoff can | 
|  | // be used with MOVL or ADDL instructions. | 
|  | // @indntpoff is similar to @gotntpoff, but for use in | 
|  | // position dependent code. | 
|  | uint8_t Reg = (Loc[-1] >> 3) & 7; | 
|  |  | 
|  | if (Type == R_386_TLS_IE) { | 
|  | if (Loc[-1] == 0xa1) { | 
|  | // "movl foo@indntpoff,%eax" -> "movl $foo,%eax" | 
|  | // This case is different from the generic case below because | 
|  | // this is a 5 byte instruction while below is 6 bytes. | 
|  | Loc[-1] = 0xb8; | 
|  | } else if (Loc[-2] == 0x8b) { | 
|  | // "movl foo@indntpoff,%reg" -> "movl $foo,%reg" | 
|  | Loc[-2] = 0xc7; | 
|  | Loc[-1] = 0xc0 | Reg; | 
|  | } else { | 
|  | // "addl foo@indntpoff,%reg" -> "addl $foo,%reg" | 
|  | Loc[-2] = 0x81; | 
|  | Loc[-1] = 0xc0 | Reg; | 
|  | } | 
|  | } else { | 
|  | assert(Type == R_386_TLS_GOTIE); | 
|  | if (Loc[-2] == 0x8b) { | 
|  | // "movl foo@gottpoff(%rip),%reg" -> "movl $foo,%reg" | 
|  | Loc[-2] = 0xc7; | 
|  | Loc[-1] = 0xc0 | Reg; | 
|  | } else { | 
|  | // "addl foo@gotntpoff(%rip),%reg" -> "leal foo(%reg),%reg" | 
|  | Loc[-2] = 0x8d; | 
|  | Loc[-1] = 0x80 | (Reg << 3) | Reg; | 
|  | } | 
|  | } | 
|  | relocateOne(Loc, R_386_TLS_LE, Val); | 
|  | } | 
|  |  | 
|  | void X86TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, | 
|  | uint64_t Val) const { | 
|  | if (Type == R_386_TLS_LDO_32) { | 
|  | relocateOne(Loc, R_386_TLS_LE, Val); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Convert | 
|  | //   leal foo(%reg),%eax | 
|  | //   call ___tls_get_addr | 
|  | // to | 
|  | //   movl %gs:0,%eax | 
|  | //   nop | 
|  | //   leal 0(%esi,1),%esi | 
|  | const uint8_t Inst[] = { | 
|  | 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax | 
|  | 0x90,                               // nop | 
|  | 0x8d, 0x74, 0x26, 0x00              // leal 0(%esi,1),%esi | 
|  | }; | 
|  | memcpy(Loc - 2, Inst, sizeof(Inst)); | 
|  | } | 
|  |  | 
|  | template <class ELFT> X86_64TargetInfo<ELFT>::X86_64TargetInfo() { | 
|  | CopyRel = R_X86_64_COPY; | 
|  | GotRel = R_X86_64_GLOB_DAT; | 
|  | PltRel = R_X86_64_JUMP_SLOT; | 
|  | RelativeRel = R_X86_64_RELATIVE; | 
|  | IRelativeRel = R_X86_64_IRELATIVE; | 
|  | TlsGotRel = R_X86_64_TPOFF64; | 
|  | TlsModuleIndexRel = R_X86_64_DTPMOD64; | 
|  | TlsOffsetRel = R_X86_64_DTPOFF64; | 
|  | GotEntrySize = 8; | 
|  | GotPltEntrySize = 8; | 
|  | PltEntrySize = 16; | 
|  | PltHeaderSize = 16; | 
|  | TlsGdRelaxSkip = 2; | 
|  | // Align to the large page size (known as a superpage or huge page). | 
|  | // FreeBSD automatically promotes large, superpage-aligned allocations. | 
|  | DefaultImageBase = 0x200000; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | RelExpr X86_64TargetInfo<ELFT>::getRelExpr(uint32_t Type, | 
|  | const SymbolBody &S) const { | 
|  | switch (Type) { | 
|  | default: | 
|  | return R_ABS; | 
|  | case R_X86_64_TPOFF32: | 
|  | return R_TLS; | 
|  | case R_X86_64_TLSLD: | 
|  | return R_TLSLD_PC; | 
|  | case R_X86_64_TLSGD: | 
|  | return R_TLSGD_PC; | 
|  | case R_X86_64_SIZE32: | 
|  | case R_X86_64_SIZE64: | 
|  | return R_SIZE; | 
|  | case R_X86_64_PLT32: | 
|  | return R_PLT_PC; | 
|  | case R_X86_64_PC32: | 
|  | case R_X86_64_PC64: | 
|  | return R_PC; | 
|  | case R_X86_64_GOT32: | 
|  | case R_X86_64_GOT64: | 
|  | return R_GOT_FROM_END; | 
|  | case R_X86_64_GOTPCREL: | 
|  | case R_X86_64_GOTPCRELX: | 
|  | case R_X86_64_REX_GOTPCRELX: | 
|  | case R_X86_64_GOTTPOFF: | 
|  | return R_GOT_PC; | 
|  | case R_X86_64_NONE: | 
|  | return R_HINT; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void X86_64TargetInfo<ELFT>::writeGotPltHeader(uint8_t *Buf) const { | 
|  | // The first entry holds the value of _DYNAMIC. It is not clear why that is | 
|  | // required, but it is documented in the psabi and the glibc dynamic linker | 
|  | // seems to use it (note that this is relevant for linking ld.so, not any | 
|  | // other program). | 
|  | write64le(Buf, In<ELFT>::Dynamic->getVA()); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void X86_64TargetInfo<ELFT>::writeGotPlt(uint8_t *Buf, | 
|  | const SymbolBody &S) const { | 
|  | // See comments in X86TargetInfo::writeGotPlt. | 
|  | write32le(Buf, S.getPltVA<ELFT>() + 6); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void X86_64TargetInfo<ELFT>::writePltHeader(uint8_t *Buf) const { | 
|  | const uint8_t PltData[] = { | 
|  | 0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushq GOT+8(%rip) | 
|  | 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *GOT+16(%rip) | 
|  | 0x0f, 0x1f, 0x40, 0x00              // nopl 0x0(rax) | 
|  | }; | 
|  | memcpy(Buf, PltData, sizeof(PltData)); | 
|  | uint64_t Got = In<ELFT>::GotPlt->getVA(); | 
|  | uint64_t Plt = In<ELFT>::Plt->getVA(); | 
|  | write32le(Buf + 2, Got - Plt + 2); // GOT+8 | 
|  | write32le(Buf + 8, Got - Plt + 4); // GOT+16 | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void X86_64TargetInfo<ELFT>::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, | 
|  | uint64_t PltEntryAddr, int32_t Index, | 
|  | unsigned RelOff) const { | 
|  | const uint8_t Inst[] = { | 
|  | 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmpq *got(%rip) | 
|  | 0x68, 0x00, 0x00, 0x00, 0x00,       // pushq <relocation index> | 
|  | 0xe9, 0x00, 0x00, 0x00, 0x00        // jmpq plt[0] | 
|  | }; | 
|  | memcpy(Buf, Inst, sizeof(Inst)); | 
|  |  | 
|  | write32le(Buf + 2, GotEntryAddr - PltEntryAddr - 6); | 
|  | write32le(Buf + 7, Index); | 
|  | write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | bool X86_64TargetInfo<ELFT>::isPicRel(uint32_t Type) const { | 
|  | return Type != R_X86_64_PC32 && Type != R_X86_64_32; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | bool X86_64TargetInfo<ELFT>::isTlsInitialExecRel(uint32_t Type) const { | 
|  | return Type == R_X86_64_GOTTPOFF; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | bool X86_64TargetInfo<ELFT>::isTlsGlobalDynamicRel(uint32_t Type) const { | 
|  | return Type == R_X86_64_TLSGD; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | bool X86_64TargetInfo<ELFT>::isTlsLocalDynamicRel(uint32_t Type) const { | 
|  | return Type == R_X86_64_DTPOFF32 || Type == R_X86_64_DTPOFF64 || | 
|  | Type == R_X86_64_TLSLD; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void X86_64TargetInfo<ELFT>::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, | 
|  | uint64_t Val) const { | 
|  | // Convert | 
|  | //   .byte 0x66 | 
|  | //   leaq x@tlsgd(%rip), %rdi | 
|  | //   .word 0x6666 | 
|  | //   rex64 | 
|  | //   call __tls_get_addr@plt | 
|  | // to | 
|  | //   mov %fs:0x0,%rax | 
|  | //   lea x@tpoff,%rax | 
|  | const uint8_t Inst[] = { | 
|  | 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax | 
|  | 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00              // lea x@tpoff,%rax | 
|  | }; | 
|  | memcpy(Loc - 4, Inst, sizeof(Inst)); | 
|  | // The original code used a pc relative relocation and so we have to | 
|  | // compensate for the -4 in had in the addend. | 
|  | relocateOne(Loc + 8, R_X86_64_TPOFF32, Val + 4); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void X86_64TargetInfo<ELFT>::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, | 
|  | uint64_t Val) const { | 
|  | // Convert | 
|  | //   .byte 0x66 | 
|  | //   leaq x@tlsgd(%rip), %rdi | 
|  | //   .word 0x6666 | 
|  | //   rex64 | 
|  | //   call __tls_get_addr@plt | 
|  | // to | 
|  | //   mov %fs:0x0,%rax | 
|  | //   addq x@tpoff,%rax | 
|  | const uint8_t Inst[] = { | 
|  | 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax | 
|  | 0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00              // addq x@tpoff,%rax | 
|  | }; | 
|  | memcpy(Loc - 4, Inst, sizeof(Inst)); | 
|  | // Both code sequences are PC relatives, but since we are moving the constant | 
|  | // forward by 8 bytes we have to subtract the value by 8. | 
|  | relocateOne(Loc + 8, R_X86_64_PC32, Val - 8); | 
|  | } | 
|  |  | 
|  | // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to | 
|  | // R_X86_64_TPOFF32 so that it does not use GOT. | 
|  | template <class ELFT> | 
|  | void X86_64TargetInfo<ELFT>::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, | 
|  | uint64_t Val) const { | 
|  | uint8_t *Inst = Loc - 3; | 
|  | uint8_t Reg = Loc[-1] >> 3; | 
|  | uint8_t *RegSlot = Loc - 1; | 
|  |  | 
|  | // Note that ADD with RSP or R12 is converted to ADD instead of LEA | 
|  | // because LEA with these registers needs 4 bytes to encode and thus | 
|  | // wouldn't fit the space. | 
|  |  | 
|  | if (memcmp(Inst, "\x48\x03\x25", 3) == 0) { | 
|  | // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp" | 
|  | memcpy(Inst, "\x48\x81\xc4", 3); | 
|  | } else if (memcmp(Inst, "\x4c\x03\x25", 3) == 0) { | 
|  | // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12" | 
|  | memcpy(Inst, "\x49\x81\xc4", 3); | 
|  | } else if (memcmp(Inst, "\x4c\x03", 2) == 0) { | 
|  | // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]" | 
|  | memcpy(Inst, "\x4d\x8d", 2); | 
|  | *RegSlot = 0x80 | (Reg << 3) | Reg; | 
|  | } else if (memcmp(Inst, "\x48\x03", 2) == 0) { | 
|  | // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg" | 
|  | memcpy(Inst, "\x48\x8d", 2); | 
|  | *RegSlot = 0x80 | (Reg << 3) | Reg; | 
|  | } else if (memcmp(Inst, "\x4c\x8b", 2) == 0) { | 
|  | // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]" | 
|  | memcpy(Inst, "\x49\xc7", 2); | 
|  | *RegSlot = 0xc0 | Reg; | 
|  | } else if (memcmp(Inst, "\x48\x8b", 2) == 0) { | 
|  | // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg" | 
|  | memcpy(Inst, "\x48\xc7", 2); | 
|  | *RegSlot = 0xc0 | Reg; | 
|  | } else { | 
|  | fatal(getErrorLocation(Loc - 3) + | 
|  | "R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only"); | 
|  | } | 
|  |  | 
|  | // The original code used a PC relative relocation. | 
|  | // Need to compensate for the -4 it had in the addend. | 
|  | relocateOne(Loc, R_X86_64_TPOFF32, Val + 4); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void X86_64TargetInfo<ELFT>::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, | 
|  | uint64_t Val) const { | 
|  | // Convert | 
|  | //   leaq bar@tlsld(%rip), %rdi | 
|  | //   callq __tls_get_addr@PLT | 
|  | //   leaq bar@dtpoff(%rax), %rcx | 
|  | // to | 
|  | //   .word 0x6666 | 
|  | //   .byte 0x66 | 
|  | //   mov %fs:0,%rax | 
|  | //   leaq bar@tpoff(%rax), %rcx | 
|  | if (Type == R_X86_64_DTPOFF64) { | 
|  | write64le(Loc, Val); | 
|  | return; | 
|  | } | 
|  | if (Type == R_X86_64_DTPOFF32) { | 
|  | relocateOne(Loc, R_X86_64_TPOFF32, Val); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const uint8_t Inst[] = { | 
|  | 0x66, 0x66,                                          // .word 0x6666 | 
|  | 0x66,                                                // .byte 0x66 | 
|  | 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax | 
|  | }; | 
|  | memcpy(Loc - 3, Inst, sizeof(Inst)); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void X86_64TargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint32_t Type, | 
|  | uint64_t Val) const { | 
|  | switch (Type) { | 
|  | case R_X86_64_32: | 
|  | checkUInt<32>(Loc, Val, Type); | 
|  | write32le(Loc, Val); | 
|  | break; | 
|  | case R_X86_64_32S: | 
|  | case R_X86_64_TPOFF32: | 
|  | case R_X86_64_GOT32: | 
|  | case R_X86_64_GOTPCREL: | 
|  | case R_X86_64_GOTPCRELX: | 
|  | case R_X86_64_REX_GOTPCRELX: | 
|  | case R_X86_64_PC32: | 
|  | case R_X86_64_GOTTPOFF: | 
|  | case R_X86_64_PLT32: | 
|  | case R_X86_64_TLSGD: | 
|  | case R_X86_64_TLSLD: | 
|  | case R_X86_64_DTPOFF32: | 
|  | case R_X86_64_SIZE32: | 
|  | checkInt<32>(Loc, Val, Type); | 
|  | write32le(Loc, Val); | 
|  | break; | 
|  | case R_X86_64_64: | 
|  | case R_X86_64_DTPOFF64: | 
|  | case R_X86_64_GLOB_DAT: | 
|  | case R_X86_64_PC64: | 
|  | case R_X86_64_SIZE64: | 
|  | case R_X86_64_GOT64: | 
|  | write64le(Loc, Val); | 
|  | break; | 
|  | default: | 
|  | fatal(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type)); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | RelExpr X86_64TargetInfo<ELFT>::adjustRelaxExpr(uint32_t Type, | 
|  | const uint8_t *Data, | 
|  | RelExpr RelExpr) const { | 
|  | if (Type != R_X86_64_GOTPCRELX && Type != R_X86_64_REX_GOTPCRELX) | 
|  | return RelExpr; | 
|  | const uint8_t Op = Data[-2]; | 
|  | const uint8_t ModRm = Data[-1]; | 
|  | // FIXME: When PIC is disabled and foo is defined locally in the | 
|  | // lower 32 bit address space, memory operand in mov can be converted into | 
|  | // immediate operand. Otherwise, mov must be changed to lea. We support only | 
|  | // latter relaxation at this moment. | 
|  | if (Op == 0x8b) | 
|  | return R_RELAX_GOT_PC; | 
|  | // Relax call and jmp. | 
|  | if (Op == 0xff && (ModRm == 0x15 || ModRm == 0x25)) | 
|  | return R_RELAX_GOT_PC; | 
|  |  | 
|  | // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor. | 
|  | // If PIC then no relaxation is available. | 
|  | // We also don't relax test/binop instructions without REX byte, | 
|  | // they are 32bit operations and not common to have. | 
|  | assert(Type == R_X86_64_REX_GOTPCRELX); | 
|  | return Config->Pic ? RelExpr : R_RELAX_GOT_PC_NOPIC; | 
|  | } | 
|  |  | 
|  | // A subset of relaxations can only be applied for no-PIC. This method | 
|  | // handles such relaxations. Instructions encoding information was taken from: | 
|  | // "Intel 64 and IA-32 Architectures Software Developer's Manual V2" | 
|  | // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/ | 
|  | //    64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf) | 
|  | template <class ELFT> | 
|  | void X86_64TargetInfo<ELFT>::relaxGotNoPic(uint8_t *Loc, uint64_t Val, | 
|  | uint8_t Op, uint8_t ModRm) const { | 
|  | const uint8_t Rex = Loc[-3]; | 
|  | // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg". | 
|  | if (Op == 0x85) { | 
|  | // See "TEST-Logical Compare" (4-428 Vol. 2B), | 
|  | // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension). | 
|  |  | 
|  | // ModR/M byte has form XX YYY ZZZ, where | 
|  | // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1). | 
|  | // XX has different meanings: | 
|  | // 00: The operand's memory address is in reg1. | 
|  | // 01: The operand's memory address is reg1 + a byte-sized displacement. | 
|  | // 10: The operand's memory address is reg1 + a word-sized displacement. | 
|  | // 11: The operand is reg1 itself. | 
|  | // If an instruction requires only one operand, the unused reg2 field | 
|  | // holds extra opcode bits rather than a register code | 
|  | // 0xC0 == 11 000 000 binary. | 
|  | // 0x38 == 00 111 000 binary. | 
|  | // We transfer reg2 to reg1 here as operand. | 
|  | // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3). | 
|  | Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3; // ModR/M byte. | 
|  |  | 
|  | // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32 | 
|  | // See "TEST-Logical Compare" (4-428 Vol. 2B). | 
|  | Loc[-2] = 0xf7; | 
|  |  | 
|  | // Move R bit to the B bit in REX byte. | 
|  | // REX byte is encoded as 0100WRXB, where | 
|  | // 0100 is 4bit fixed pattern. | 
|  | // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the | 
|  | //   default operand size is used (which is 32-bit for most but not all | 
|  | //   instructions). | 
|  | // REX.R This 1-bit value is an extension to the MODRM.reg field. | 
|  | // REX.X This 1-bit value is an extension to the SIB.index field. | 
|  | // REX.B This 1-bit value is an extension to the MODRM.rm field or the | 
|  | // SIB.base field. | 
|  | // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A). | 
|  | Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2; | 
|  | relocateOne(Loc, R_X86_64_PC32, Val); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub | 
|  | // or xor operations. | 
|  |  | 
|  | // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg". | 
|  | // Logic is close to one for test instruction above, but we also | 
|  | // write opcode extension here, see below for details. | 
|  | Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3 | (Op & 0x3c); // ModR/M byte. | 
|  |  | 
|  | // Primary opcode is 0x81, opcode extension is one of: | 
|  | // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB, | 
|  | // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP. | 
|  | // This value was wrote to MODRM.reg in a line above. | 
|  | // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15), | 
|  | // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for | 
|  | // descriptions about each operation. | 
|  | Loc[-2] = 0x81; | 
|  | Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2; | 
|  | relocateOne(Loc, R_X86_64_PC32, Val); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void X86_64TargetInfo<ELFT>::relaxGot(uint8_t *Loc, uint64_t Val) const { | 
|  | const uint8_t Op = Loc[-2]; | 
|  | const uint8_t ModRm = Loc[-1]; | 
|  |  | 
|  | // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg". | 
|  | if (Op == 0x8b) { | 
|  | Loc[-2] = 0x8d; | 
|  | relocateOne(Loc, R_X86_64_PC32, Val); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Op != 0xff) { | 
|  | // We are relaxing a rip relative to an absolute, so compensate | 
|  | // for the old -4 addend. | 
|  | assert(!Config->Pic); | 
|  | relaxGotNoPic(Loc, Val + 4, Op, ModRm); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Convert call/jmp instructions. | 
|  | if (ModRm == 0x15) { | 
|  | // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo". | 
|  | // Instead we convert to "addr32 call foo" where addr32 is an instruction | 
|  | // prefix. That makes result expression to be a single instruction. | 
|  | Loc[-2] = 0x67; // addr32 prefix | 
|  | Loc[-1] = 0xe8; // call | 
|  | relocateOne(Loc, R_X86_64_PC32, Val); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop". | 
|  | // jmp doesn't return, so it is fine to use nop here, it is just a stub. | 
|  | assert(ModRm == 0x25); | 
|  | Loc[-2] = 0xe9; // jmp | 
|  | Loc[3] = 0x90;  // nop | 
|  | relocateOne(Loc - 1, R_X86_64_PC32, Val + 1); | 
|  | } | 
|  |  | 
|  | // Relocation masks following the #lo(value), #hi(value), #ha(value), | 
|  | // #higher(value), #highera(value), #highest(value), and #highesta(value) | 
|  | // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi | 
|  | // document. | 
|  | static uint16_t applyPPCLo(uint64_t V) { return V; } | 
|  | static uint16_t applyPPCHi(uint64_t V) { return V >> 16; } | 
|  | static uint16_t applyPPCHa(uint64_t V) { return (V + 0x8000) >> 16; } | 
|  | static uint16_t applyPPCHigher(uint64_t V) { return V >> 32; } | 
|  | static uint16_t applyPPCHighera(uint64_t V) { return (V + 0x8000) >> 32; } | 
|  | static uint16_t applyPPCHighest(uint64_t V) { return V >> 48; } | 
|  | static uint16_t applyPPCHighesta(uint64_t V) { return (V + 0x8000) >> 48; } | 
|  |  | 
|  | PPCTargetInfo::PPCTargetInfo() {} | 
|  |  | 
|  | void PPCTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, | 
|  | uint64_t Val) const { | 
|  | switch (Type) { | 
|  | case R_PPC_ADDR16_HA: | 
|  | write16be(Loc, applyPPCHa(Val)); | 
|  | break; | 
|  | case R_PPC_ADDR16_LO: | 
|  | write16be(Loc, applyPPCLo(Val)); | 
|  | break; | 
|  | case R_PPC_ADDR32: | 
|  | case R_PPC_REL32: | 
|  | write32be(Loc, Val); | 
|  | break; | 
|  | case R_PPC_REL24: | 
|  | or32be(Loc, Val & 0x3FFFFFC); | 
|  | break; | 
|  | default: | 
|  | fatal(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type)); | 
|  | } | 
|  | } | 
|  |  | 
|  | RelExpr PPCTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { | 
|  | switch (Type) { | 
|  | case R_PPC_REL24: | 
|  | case R_PPC_REL32: | 
|  | return R_PC; | 
|  | default: | 
|  | return R_ABS; | 
|  | } | 
|  | } | 
|  |  | 
|  | PPC64TargetInfo::PPC64TargetInfo() { | 
|  | PltRel = GotRel = R_PPC64_GLOB_DAT; | 
|  | RelativeRel = R_PPC64_RELATIVE; | 
|  | GotEntrySize = 8; | 
|  | GotPltEntrySize = 8; | 
|  | PltEntrySize = 32; | 
|  | PltHeaderSize = 0; | 
|  |  | 
|  | // We need 64K pages (at least under glibc/Linux, the loader won't | 
|  | // set different permissions on a finer granularity than that). | 
|  | DefaultMaxPageSize = 65536; | 
|  |  | 
|  | // The PPC64 ELF ABI v1 spec, says: | 
|  | // | 
|  | //   It is normally desirable to put segments with different characteristics | 
|  | //   in separate 256 Mbyte portions of the address space, to give the | 
|  | //   operating system full paging flexibility in the 64-bit address space. | 
|  | // | 
|  | // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers | 
|  | // use 0x10000000 as the starting address. | 
|  | DefaultImageBase = 0x10000000; | 
|  | } | 
|  |  | 
|  | static uint64_t PPC64TocOffset = 0x8000; | 
|  |  | 
|  | uint64_t getPPC64TocBase() { | 
|  | // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The | 
|  | // TOC starts where the first of these sections starts. We always create a | 
|  | // .got when we see a relocation that uses it, so for us the start is always | 
|  | // the .got. | 
|  | uint64_t TocVA = In<ELF64BE>::Got->getVA(); | 
|  |  | 
|  | // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 | 
|  | // thus permitting a full 64 Kbytes segment. Note that the glibc startup | 
|  | // code (crt1.o) assumes that you can get from the TOC base to the | 
|  | // start of the .toc section with only a single (signed) 16-bit relocation. | 
|  | return TocVA + PPC64TocOffset; | 
|  | } | 
|  |  | 
|  | RelExpr PPC64TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { | 
|  | switch (Type) { | 
|  | default: | 
|  | return R_ABS; | 
|  | case R_PPC64_TOC16: | 
|  | case R_PPC64_TOC16_DS: | 
|  | case R_PPC64_TOC16_HA: | 
|  | case R_PPC64_TOC16_HI: | 
|  | case R_PPC64_TOC16_LO: | 
|  | case R_PPC64_TOC16_LO_DS: | 
|  | return R_GOTREL; | 
|  | case R_PPC64_TOC: | 
|  | return R_PPC_TOC; | 
|  | case R_PPC64_REL24: | 
|  | return R_PPC_PLT_OPD; | 
|  | } | 
|  | } | 
|  |  | 
|  | void PPC64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, | 
|  | uint64_t PltEntryAddr, int32_t Index, | 
|  | unsigned RelOff) const { | 
|  | uint64_t Off = GotEntryAddr - getPPC64TocBase(); | 
|  |  | 
|  | // FIXME: What we should do, in theory, is get the offset of the function | 
|  | // descriptor in the .opd section, and use that as the offset from %r2 (the | 
|  | // TOC-base pointer). Instead, we have the GOT-entry offset, and that will | 
|  | // be a pointer to the function descriptor in the .opd section. Using | 
|  | // this scheme is simpler, but requires an extra indirection per PLT dispatch. | 
|  |  | 
|  | write32be(Buf, 0xf8410028);                       // std %r2, 40(%r1) | 
|  | write32be(Buf + 4, 0x3d620000 | applyPPCHa(Off)); // addis %r11, %r2, X@ha | 
|  | write32be(Buf + 8, 0xe98b0000 | applyPPCLo(Off)); // ld %r12, X@l(%r11) | 
|  | write32be(Buf + 12, 0xe96c0000);                  // ld %r11,0(%r12) | 
|  | write32be(Buf + 16, 0x7d6903a6);                  // mtctr %r11 | 
|  | write32be(Buf + 20, 0xe84c0008);                  // ld %r2,8(%r12) | 
|  | write32be(Buf + 24, 0xe96c0010);                  // ld %r11,16(%r12) | 
|  | write32be(Buf + 28, 0x4e800420);                  // bctr | 
|  | } | 
|  |  | 
|  | static std::pair<uint32_t, uint64_t> toAddr16Rel(uint32_t Type, uint64_t Val) { | 
|  | uint64_t V = Val - PPC64TocOffset; | 
|  | switch (Type) { | 
|  | case R_PPC64_TOC16: | 
|  | return {R_PPC64_ADDR16, V}; | 
|  | case R_PPC64_TOC16_DS: | 
|  | return {R_PPC64_ADDR16_DS, V}; | 
|  | case R_PPC64_TOC16_HA: | 
|  | return {R_PPC64_ADDR16_HA, V}; | 
|  | case R_PPC64_TOC16_HI: | 
|  | return {R_PPC64_ADDR16_HI, V}; | 
|  | case R_PPC64_TOC16_LO: | 
|  | return {R_PPC64_ADDR16_LO, V}; | 
|  | case R_PPC64_TOC16_LO_DS: | 
|  | return {R_PPC64_ADDR16_LO_DS, V}; | 
|  | default: | 
|  | return {Type, Val}; | 
|  | } | 
|  | } | 
|  |  | 
|  | void PPC64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, | 
|  | uint64_t Val) const { | 
|  | // For a TOC-relative relocation, proceed in terms of the corresponding | 
|  | // ADDR16 relocation type. | 
|  | std::tie(Type, Val) = toAddr16Rel(Type, Val); | 
|  |  | 
|  | switch (Type) { | 
|  | case R_PPC64_ADDR14: { | 
|  | checkAlignment<4>(Loc, Val, Type); | 
|  | // Preserve the AA/LK bits in the branch instruction | 
|  | uint8_t AALK = Loc[3]; | 
|  | write16be(Loc + 2, (AALK & 3) | (Val & 0xfffc)); | 
|  | break; | 
|  | } | 
|  | case R_PPC64_ADDR16: | 
|  | checkInt<16>(Loc, Val, Type); | 
|  | write16be(Loc, Val); | 
|  | break; | 
|  | case R_PPC64_ADDR16_DS: | 
|  | checkInt<16>(Loc, Val, Type); | 
|  | write16be(Loc, (read16be(Loc) & 3) | (Val & ~3)); | 
|  | break; | 
|  | case R_PPC64_ADDR16_HA: | 
|  | case R_PPC64_REL16_HA: | 
|  | write16be(Loc, applyPPCHa(Val)); | 
|  | break; | 
|  | case R_PPC64_ADDR16_HI: | 
|  | case R_PPC64_REL16_HI: | 
|  | write16be(Loc, applyPPCHi(Val)); | 
|  | break; | 
|  | case R_PPC64_ADDR16_HIGHER: | 
|  | write16be(Loc, applyPPCHigher(Val)); | 
|  | break; | 
|  | case R_PPC64_ADDR16_HIGHERA: | 
|  | write16be(Loc, applyPPCHighera(Val)); | 
|  | break; | 
|  | case R_PPC64_ADDR16_HIGHEST: | 
|  | write16be(Loc, applyPPCHighest(Val)); | 
|  | break; | 
|  | case R_PPC64_ADDR16_HIGHESTA: | 
|  | write16be(Loc, applyPPCHighesta(Val)); | 
|  | break; | 
|  | case R_PPC64_ADDR16_LO: | 
|  | write16be(Loc, applyPPCLo(Val)); | 
|  | break; | 
|  | case R_PPC64_ADDR16_LO_DS: | 
|  | case R_PPC64_REL16_LO: | 
|  | write16be(Loc, (read16be(Loc) & 3) | (applyPPCLo(Val) & ~3)); | 
|  | break; | 
|  | case R_PPC64_ADDR32: | 
|  | case R_PPC64_REL32: | 
|  | checkInt<32>(Loc, Val, Type); | 
|  | write32be(Loc, Val); | 
|  | break; | 
|  | case R_PPC64_ADDR64: | 
|  | case R_PPC64_REL64: | 
|  | case R_PPC64_TOC: | 
|  | write64be(Loc, Val); | 
|  | break; | 
|  | case R_PPC64_REL24: { | 
|  | uint32_t Mask = 0x03FFFFFC; | 
|  | checkInt<24>(Loc, Val, Type); | 
|  | write32be(Loc, (read32be(Loc) & ~Mask) | (Val & Mask)); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | fatal(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type)); | 
|  | } | 
|  | } | 
|  |  | 
|  | AArch64TargetInfo::AArch64TargetInfo() { | 
|  | CopyRel = R_AARCH64_COPY; | 
|  | RelativeRel = R_AARCH64_RELATIVE; | 
|  | IRelativeRel = R_AARCH64_IRELATIVE; | 
|  | GotRel = R_AARCH64_GLOB_DAT; | 
|  | PltRel = R_AARCH64_JUMP_SLOT; | 
|  | TlsDescRel = R_AARCH64_TLSDESC; | 
|  | TlsGotRel = R_AARCH64_TLS_TPREL64; | 
|  | GotEntrySize = 8; | 
|  | GotPltEntrySize = 8; | 
|  | PltEntrySize = 16; | 
|  | PltHeaderSize = 32; | 
|  | DefaultMaxPageSize = 65536; | 
|  |  | 
|  | // It doesn't seem to be documented anywhere, but tls on aarch64 uses variant | 
|  | // 1 of the tls structures and the tcb size is 16. | 
|  | TcbSize = 16; | 
|  | } | 
|  |  | 
|  | RelExpr AArch64TargetInfo::getRelExpr(uint32_t Type, | 
|  | const SymbolBody &S) const { | 
|  | switch (Type) { | 
|  | default: | 
|  | return R_ABS; | 
|  | case R_AARCH64_TLSDESC_ADR_PAGE21: | 
|  | return R_TLSDESC_PAGE; | 
|  | case R_AARCH64_TLSDESC_LD64_LO12_NC: | 
|  | case R_AARCH64_TLSDESC_ADD_LO12_NC: | 
|  | return R_TLSDESC; | 
|  | case R_AARCH64_TLSDESC_CALL: | 
|  | return R_TLSDESC_CALL; | 
|  | case R_AARCH64_TLSLE_ADD_TPREL_HI12: | 
|  | case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: | 
|  | return R_TLS; | 
|  | case R_AARCH64_CALL26: | 
|  | case R_AARCH64_CONDBR19: | 
|  | case R_AARCH64_JUMP26: | 
|  | case R_AARCH64_TSTBR14: | 
|  | return R_PLT_PC; | 
|  | case R_AARCH64_PREL16: | 
|  | case R_AARCH64_PREL32: | 
|  | case R_AARCH64_PREL64: | 
|  | case R_AARCH64_ADR_PREL_LO21: | 
|  | return R_PC; | 
|  | case R_AARCH64_ADR_PREL_PG_HI21: | 
|  | return R_PAGE_PC; | 
|  | case R_AARCH64_LD64_GOT_LO12_NC: | 
|  | case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: | 
|  | return R_GOT; | 
|  | case R_AARCH64_ADR_GOT_PAGE: | 
|  | case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: | 
|  | return R_GOT_PAGE_PC; | 
|  | } | 
|  | } | 
|  |  | 
|  | RelExpr AArch64TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data, | 
|  | RelExpr Expr) const { | 
|  | if (Expr == R_RELAX_TLS_GD_TO_IE) { | 
|  | if (Type == R_AARCH64_TLSDESC_ADR_PAGE21) | 
|  | return R_RELAX_TLS_GD_TO_IE_PAGE_PC; | 
|  | return R_RELAX_TLS_GD_TO_IE_ABS; | 
|  | } | 
|  | return Expr; | 
|  | } | 
|  |  | 
|  | bool AArch64TargetInfo::usesOnlyLowPageBits(uint32_t Type) const { | 
|  | switch (Type) { | 
|  | default: | 
|  | return false; | 
|  | case R_AARCH64_ADD_ABS_LO12_NC: | 
|  | case R_AARCH64_LD64_GOT_LO12_NC: | 
|  | case R_AARCH64_LDST128_ABS_LO12_NC: | 
|  | case R_AARCH64_LDST16_ABS_LO12_NC: | 
|  | case R_AARCH64_LDST32_ABS_LO12_NC: | 
|  | case R_AARCH64_LDST64_ABS_LO12_NC: | 
|  | case R_AARCH64_LDST8_ABS_LO12_NC: | 
|  | case R_AARCH64_TLSDESC_ADD_LO12_NC: | 
|  | case R_AARCH64_TLSDESC_LD64_LO12_NC: | 
|  | case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AArch64TargetInfo::isTlsInitialExecRel(uint32_t Type) const { | 
|  | return Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 || | 
|  | Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC; | 
|  | } | 
|  |  | 
|  | bool AArch64TargetInfo::isPicRel(uint32_t Type) const { | 
|  | return Type == R_AARCH64_ABS32 || Type == R_AARCH64_ABS64; | 
|  | } | 
|  |  | 
|  | void AArch64TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const { | 
|  | write64le(Buf, In<ELF64LE>::Plt->getVA()); | 
|  | } | 
|  |  | 
|  | // Page(Expr) is the page address of the expression Expr, defined | 
|  | // as (Expr & ~0xFFF). (This applies even if the machine page size | 
|  | // supported by the platform has a different value.) | 
|  | uint64_t getAArch64Page(uint64_t Expr) { | 
|  | return Expr & (~static_cast<uint64_t>(0xFFF)); | 
|  | } | 
|  |  | 
|  | void AArch64TargetInfo::writePltHeader(uint8_t *Buf) const { | 
|  | const uint8_t PltData[] = { | 
|  | 0xf0, 0x7b, 0xbf, 0xa9, // stp	x16, x30, [sp,#-16]! | 
|  | 0x10, 0x00, 0x00, 0x90, // adrp	x16, Page(&(.plt.got[2])) | 
|  | 0x11, 0x02, 0x40, 0xf9, // ldr	x17, [x16, Offset(&(.plt.got[2]))] | 
|  | 0x10, 0x02, 0x00, 0x91, // add	x16, x16, Offset(&(.plt.got[2])) | 
|  | 0x20, 0x02, 0x1f, 0xd6, // br	x17 | 
|  | 0x1f, 0x20, 0x03, 0xd5, // nop | 
|  | 0x1f, 0x20, 0x03, 0xd5, // nop | 
|  | 0x1f, 0x20, 0x03, 0xd5  // nop | 
|  | }; | 
|  | memcpy(Buf, PltData, sizeof(PltData)); | 
|  |  | 
|  | uint64_t Got = In<ELF64LE>::GotPlt->getVA(); | 
|  | uint64_t Plt = In<ELF64LE>::Plt->getVA(); | 
|  | relocateOne(Buf + 4, R_AARCH64_ADR_PREL_PG_HI21, | 
|  | getAArch64Page(Got + 16) - getAArch64Page(Plt + 4)); | 
|  | relocateOne(Buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, Got + 16); | 
|  | relocateOne(Buf + 12, R_AARCH64_ADD_ABS_LO12_NC, Got + 16); | 
|  | } | 
|  |  | 
|  | void AArch64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, | 
|  | uint64_t PltEntryAddr, int32_t Index, | 
|  | unsigned RelOff) const { | 
|  | const uint8_t Inst[] = { | 
|  | 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[n])) | 
|  | 0x11, 0x02, 0x40, 0xf9, // ldr  x17, [x16, Offset(&(.plt.got[n]))] | 
|  | 0x10, 0x02, 0x00, 0x91, // add  x16, x16, Offset(&(.plt.got[n])) | 
|  | 0x20, 0x02, 0x1f, 0xd6  // br   x17 | 
|  | }; | 
|  | memcpy(Buf, Inst, sizeof(Inst)); | 
|  |  | 
|  | relocateOne(Buf, R_AARCH64_ADR_PREL_PG_HI21, | 
|  | getAArch64Page(GotEntryAddr) - getAArch64Page(PltEntryAddr)); | 
|  | relocateOne(Buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, GotEntryAddr); | 
|  | relocateOne(Buf + 8, R_AARCH64_ADD_ABS_LO12_NC, GotEntryAddr); | 
|  | } | 
|  |  | 
|  | static void write32AArch64Addr(uint8_t *L, uint64_t Imm) { | 
|  | uint32_t ImmLo = (Imm & 0x3) << 29; | 
|  | uint32_t ImmHi = (Imm & 0x1FFFFC) << 3; | 
|  | uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3); | 
|  | write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi); | 
|  | } | 
|  |  | 
|  | // Return the bits [Start, End] from Val shifted Start bits. | 
|  | // For instance, getBits(0xF0, 4, 8) returns 0xF. | 
|  | static uint64_t getBits(uint64_t Val, int Start, int End) { | 
|  | uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1; | 
|  | return (Val >> Start) & Mask; | 
|  | } | 
|  |  | 
|  | // Update the immediate field in a AARCH64 ldr, str, and add instruction. | 
|  | static void or32AArch64Imm(uint8_t *L, uint64_t Imm) { | 
|  | or32le(L, (Imm & 0xFFF) << 10); | 
|  | } | 
|  |  | 
|  | void AArch64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, | 
|  | uint64_t Val) const { | 
|  | switch (Type) { | 
|  | case R_AARCH64_ABS16: | 
|  | case R_AARCH64_PREL16: | 
|  | checkIntUInt<16>(Loc, Val, Type); | 
|  | write16le(Loc, Val); | 
|  | break; | 
|  | case R_AARCH64_ABS32: | 
|  | case R_AARCH64_PREL32: | 
|  | checkIntUInt<32>(Loc, Val, Type); | 
|  | write32le(Loc, Val); | 
|  | break; | 
|  | case R_AARCH64_ABS64: | 
|  | case R_AARCH64_GLOB_DAT: | 
|  | case R_AARCH64_PREL64: | 
|  | write64le(Loc, Val); | 
|  | break; | 
|  | case R_AARCH64_ADD_ABS_LO12_NC: | 
|  | or32AArch64Imm(Loc, Val); | 
|  | break; | 
|  | case R_AARCH64_ADR_GOT_PAGE: | 
|  | case R_AARCH64_ADR_PREL_PG_HI21: | 
|  | case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: | 
|  | case R_AARCH64_TLSDESC_ADR_PAGE21: | 
|  | checkInt<33>(Loc, Val, Type); | 
|  | write32AArch64Addr(Loc, Val >> 12); | 
|  | break; | 
|  | case R_AARCH64_ADR_PREL_LO21: | 
|  | checkInt<21>(Loc, Val, Type); | 
|  | write32AArch64Addr(Loc, Val); | 
|  | break; | 
|  | case R_AARCH64_CALL26: | 
|  | case R_AARCH64_JUMP26: | 
|  | checkInt<28>(Loc, Val, Type); | 
|  | or32le(Loc, (Val & 0x0FFFFFFC) >> 2); | 
|  | break; | 
|  | case R_AARCH64_CONDBR19: | 
|  | checkInt<21>(Loc, Val, Type); | 
|  | or32le(Loc, (Val & 0x1FFFFC) << 3); | 
|  | break; | 
|  | case R_AARCH64_LD64_GOT_LO12_NC: | 
|  | case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: | 
|  | case R_AARCH64_TLSDESC_LD64_LO12_NC: | 
|  | checkAlignment<8>(Loc, Val, Type); | 
|  | or32le(Loc, (Val & 0xFF8) << 7); | 
|  | break; | 
|  | case R_AARCH64_LDST8_ABS_LO12_NC: | 
|  | or32AArch64Imm(Loc, getBits(Val, 0, 11)); | 
|  | break; | 
|  | case R_AARCH64_LDST16_ABS_LO12_NC: | 
|  | or32AArch64Imm(Loc, getBits(Val, 1, 11)); | 
|  | break; | 
|  | case R_AARCH64_LDST32_ABS_LO12_NC: | 
|  | or32AArch64Imm(Loc, getBits(Val, 2, 11)); | 
|  | break; | 
|  | case R_AARCH64_LDST64_ABS_LO12_NC: | 
|  | or32AArch64Imm(Loc, getBits(Val, 3, 11)); | 
|  | break; | 
|  | case R_AARCH64_LDST128_ABS_LO12_NC: | 
|  | or32AArch64Imm(Loc, getBits(Val, 4, 11)); | 
|  | break; | 
|  | case R_AARCH64_MOVW_UABS_G0_NC: | 
|  | or32le(Loc, (Val & 0xFFFF) << 5); | 
|  | break; | 
|  | case R_AARCH64_MOVW_UABS_G1_NC: | 
|  | or32le(Loc, (Val & 0xFFFF0000) >> 11); | 
|  | break; | 
|  | case R_AARCH64_MOVW_UABS_G2_NC: | 
|  | or32le(Loc, (Val & 0xFFFF00000000) >> 27); | 
|  | break; | 
|  | case R_AARCH64_MOVW_UABS_G3: | 
|  | or32le(Loc, (Val & 0xFFFF000000000000) >> 43); | 
|  | break; | 
|  | case R_AARCH64_TSTBR14: | 
|  | checkInt<16>(Loc, Val, Type); | 
|  | or32le(Loc, (Val & 0xFFFC) << 3); | 
|  | break; | 
|  | case R_AARCH64_TLSLE_ADD_TPREL_HI12: | 
|  | checkInt<24>(Loc, Val, Type); | 
|  | or32AArch64Imm(Loc, Val >> 12); | 
|  | break; | 
|  | case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: | 
|  | case R_AARCH64_TLSDESC_ADD_LO12_NC: | 
|  | or32AArch64Imm(Loc, Val); | 
|  | break; | 
|  | default: | 
|  | fatal(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void AArch64TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, | 
|  | uint64_t Val) const { | 
|  | // TLSDESC Global-Dynamic relocation are in the form: | 
|  | //   adrp    x0, :tlsdesc:v             [R_AARCH64_TLSDESC_ADR_PAGE21] | 
|  | //   ldr     x1, [x0, #:tlsdesc_lo12:v  [R_AARCH64_TLSDESC_LD64_LO12_NC] | 
|  | //   add     x0, x0, :tlsdesc_los:v     [_AARCH64_TLSDESC_ADD_LO12_NC] | 
|  | //   .tlsdesccall                       [R_AARCH64_TLSDESC_CALL] | 
|  | //   blr     x1 | 
|  | // And it can optimized to: | 
|  | //   movz    x0, #0x0, lsl #16 | 
|  | //   movk    x0, #0x10 | 
|  | //   nop | 
|  | //   nop | 
|  | checkUInt<32>(Loc, Val, Type); | 
|  |  | 
|  | switch (Type) { | 
|  | case R_AARCH64_TLSDESC_ADD_LO12_NC: | 
|  | case R_AARCH64_TLSDESC_CALL: | 
|  | write32le(Loc, 0xd503201f); // nop | 
|  | return; | 
|  | case R_AARCH64_TLSDESC_ADR_PAGE21: | 
|  | write32le(Loc, 0xd2a00000 | (((Val >> 16) & 0xffff) << 5)); // movz | 
|  | return; | 
|  | case R_AARCH64_TLSDESC_LD64_LO12_NC: | 
|  | write32le(Loc, 0xf2800000 | ((Val & 0xffff) << 5)); // movk | 
|  | return; | 
|  | default: | 
|  | llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void AArch64TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, | 
|  | uint64_t Val) const { | 
|  | // TLSDESC Global-Dynamic relocation are in the form: | 
|  | //   adrp    x0, :tlsdesc:v             [R_AARCH64_TLSDESC_ADR_PAGE21] | 
|  | //   ldr     x1, [x0, #:tlsdesc_lo12:v  [R_AARCH64_TLSDESC_LD64_LO12_NC] | 
|  | //   add     x0, x0, :tlsdesc_los:v     [_AARCH64_TLSDESC_ADD_LO12_NC] | 
|  | //   .tlsdesccall                       [R_AARCH64_TLSDESC_CALL] | 
|  | //   blr     x1 | 
|  | // And it can optimized to: | 
|  | //   adrp    x0, :gottprel:v | 
|  | //   ldr     x0, [x0, :gottprel_lo12:v] | 
|  | //   nop | 
|  | //   nop | 
|  |  | 
|  | switch (Type) { | 
|  | case R_AARCH64_TLSDESC_ADD_LO12_NC: | 
|  | case R_AARCH64_TLSDESC_CALL: | 
|  | write32le(Loc, 0xd503201f); // nop | 
|  | break; | 
|  | case R_AARCH64_TLSDESC_ADR_PAGE21: | 
|  | write32le(Loc, 0x90000000); // adrp | 
|  | relocateOne(Loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, Val); | 
|  | break; | 
|  | case R_AARCH64_TLSDESC_LD64_LO12_NC: | 
|  | write32le(Loc, 0xf9400000); // ldr | 
|  | relocateOne(Loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, Val); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void AArch64TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, | 
|  | uint64_t Val) const { | 
|  | checkUInt<32>(Loc, Val, Type); | 
|  |  | 
|  | if (Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) { | 
|  | // Generate MOVZ. | 
|  | uint32_t RegNo = read32le(Loc) & 0x1f; | 
|  | write32le(Loc, (0xd2a00000 | RegNo) | (((Val >> 16) & 0xffff) << 5)); | 
|  | return; | 
|  | } | 
|  | if (Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) { | 
|  | // Generate MOVK. | 
|  | uint32_t RegNo = read32le(Loc) & 0x1f; | 
|  | write32le(Loc, (0xf2800000 | RegNo) | ((Val & 0xffff) << 5)); | 
|  | return; | 
|  | } | 
|  | llvm_unreachable("invalid relocation for TLS IE to LE relaxation"); | 
|  | } | 
|  |  | 
|  | AMDGPUTargetInfo::AMDGPUTargetInfo() { | 
|  | RelativeRel = R_AMDGPU_REL64; | 
|  | GotRel = R_AMDGPU_ABS64; | 
|  | GotEntrySize = 8; | 
|  | } | 
|  |  | 
|  | void AMDGPUTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, | 
|  | uint64_t Val) const { | 
|  | switch (Type) { | 
|  | case R_AMDGPU_ABS32: | 
|  | case R_AMDGPU_GOTPCREL: | 
|  | case R_AMDGPU_GOTPCREL32_LO: | 
|  | case R_AMDGPU_REL32: | 
|  | case R_AMDGPU_REL32_LO: | 
|  | write32le(Loc, Val); | 
|  | break; | 
|  | case R_AMDGPU_ABS64: | 
|  | write64le(Loc, Val); | 
|  | break; | 
|  | case R_AMDGPU_GOTPCREL32_HI: | 
|  | case R_AMDGPU_REL32_HI: | 
|  | write32le(Loc, Val >> 32); | 
|  | break; | 
|  | default: | 
|  | fatal(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type)); | 
|  | } | 
|  | } | 
|  |  | 
|  | RelExpr AMDGPUTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { | 
|  | switch (Type) { | 
|  | case R_AMDGPU_ABS32: | 
|  | case R_AMDGPU_ABS64: | 
|  | return R_ABS; | 
|  | case R_AMDGPU_REL32: | 
|  | case R_AMDGPU_REL32_LO: | 
|  | case R_AMDGPU_REL32_HI: | 
|  | return R_PC; | 
|  | case R_AMDGPU_GOTPCREL: | 
|  | case R_AMDGPU_GOTPCREL32_LO: | 
|  | case R_AMDGPU_GOTPCREL32_HI: | 
|  | return R_GOT_PC; | 
|  | default: | 
|  | fatal("do not know how to handle relocation " + Twine(Type)); | 
|  | } | 
|  | } | 
|  |  | 
|  | ARMTargetInfo::ARMTargetInfo() { | 
|  | CopyRel = R_ARM_COPY; | 
|  | RelativeRel = R_ARM_RELATIVE; | 
|  | IRelativeRel = R_ARM_IRELATIVE; | 
|  | GotRel = R_ARM_GLOB_DAT; | 
|  | PltRel = R_ARM_JUMP_SLOT; | 
|  | TlsGotRel = R_ARM_TLS_TPOFF32; | 
|  | TlsModuleIndexRel = R_ARM_TLS_DTPMOD32; | 
|  | TlsOffsetRel = R_ARM_TLS_DTPOFF32; | 
|  | GotEntrySize = 4; | 
|  | GotPltEntrySize = 4; | 
|  | PltEntrySize = 16; | 
|  | PltHeaderSize = 20; | 
|  | // ARM uses Variant 1 TLS | 
|  | TcbSize = 8; | 
|  | NeedsThunks = true; | 
|  | } | 
|  |  | 
|  | RelExpr ARMTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { | 
|  | switch (Type) { | 
|  | default: | 
|  | return R_ABS; | 
|  | case R_ARM_THM_JUMP11: | 
|  | return R_PC; | 
|  | case R_ARM_CALL: | 
|  | case R_ARM_JUMP24: | 
|  | case R_ARM_PC24: | 
|  | case R_ARM_PLT32: | 
|  | case R_ARM_PREL31: | 
|  | case R_ARM_THM_JUMP19: | 
|  | case R_ARM_THM_JUMP24: | 
|  | case R_ARM_THM_CALL: | 
|  | return R_PLT_PC; | 
|  | case R_ARM_GOTOFF32: | 
|  | // (S + A) - GOT_ORG | 
|  | return R_GOTREL; | 
|  | case R_ARM_GOT_BREL: | 
|  | // GOT(S) + A - GOT_ORG | 
|  | return R_GOT_OFF; | 
|  | case R_ARM_GOT_PREL: | 
|  | case R_ARM_TLS_IE32: | 
|  | // GOT(S) + A - P | 
|  | return R_GOT_PC; | 
|  | case R_ARM_TARGET1: | 
|  | return Config->Target1Rel ? R_PC : R_ABS; | 
|  | case R_ARM_TARGET2: | 
|  | if (Config->Target2 == Target2Policy::Rel) | 
|  | return R_PC; | 
|  | if (Config->Target2 == Target2Policy::Abs) | 
|  | return R_ABS; | 
|  | return R_GOT_PC; | 
|  | case R_ARM_TLS_GD32: | 
|  | return R_TLSGD_PC; | 
|  | case R_ARM_TLS_LDM32: | 
|  | return R_TLSLD_PC; | 
|  | case R_ARM_BASE_PREL: | 
|  | // B(S) + A - P | 
|  | // FIXME: currently B(S) assumed to be .got, this may not hold for all | 
|  | // platforms. | 
|  | return R_GOTONLY_PC; | 
|  | case R_ARM_MOVW_PREL_NC: | 
|  | case R_ARM_MOVT_PREL: | 
|  | case R_ARM_REL32: | 
|  | case R_ARM_THM_MOVW_PREL_NC: | 
|  | case R_ARM_THM_MOVT_PREL: | 
|  | return R_PC; | 
|  | case R_ARM_NONE: | 
|  | return R_HINT; | 
|  | case R_ARM_TLS_LE32: | 
|  | return R_TLS; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool ARMTargetInfo::isPicRel(uint32_t Type) const { | 
|  | return (Type == R_ARM_TARGET1 && !Config->Target1Rel) || | 
|  | (Type == R_ARM_ABS32); | 
|  | } | 
|  |  | 
|  | uint32_t ARMTargetInfo::getDynRel(uint32_t Type) const { | 
|  | if (Type == R_ARM_TARGET1 && !Config->Target1Rel) | 
|  | return R_ARM_ABS32; | 
|  | if (Type == R_ARM_ABS32) | 
|  | return Type; | 
|  | // Keep it going with a dummy value so that we can find more reloc errors. | 
|  | return R_ARM_ABS32; | 
|  | } | 
|  |  | 
|  | void ARMTargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const { | 
|  | write32le(Buf, In<ELF32LE>::Plt->getVA()); | 
|  | } | 
|  |  | 
|  | void ARMTargetInfo::writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const { | 
|  | // An ARM entry is the address of the ifunc resolver function. | 
|  | write32le(Buf, S.getVA<ELF32LE>()); | 
|  | } | 
|  |  | 
|  | void ARMTargetInfo::writePltHeader(uint8_t *Buf) const { | 
|  | const uint8_t PltData[] = { | 
|  | 0x04, 0xe0, 0x2d, 0xe5, //     str lr, [sp,#-4]! | 
|  | 0x04, 0xe0, 0x9f, 0xe5, //     ldr lr, L2 | 
|  | 0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr | 
|  | 0x08, 0xf0, 0xbe, 0xe5, //     ldr pc, [lr, #8] | 
|  | 0x00, 0x00, 0x00, 0x00, // L2: .word   &(.got.plt) - L1 - 8 | 
|  | }; | 
|  | memcpy(Buf, PltData, sizeof(PltData)); | 
|  | uint64_t GotPlt = In<ELF32LE>::GotPlt->getVA(); | 
|  | uint64_t L1 = In<ELF32LE>::Plt->getVA() + 8; | 
|  | write32le(Buf + 16, GotPlt - L1 - 8); | 
|  | } | 
|  |  | 
|  | void ARMTargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, | 
|  | uint64_t PltEntryAddr, int32_t Index, | 
|  | unsigned RelOff) const { | 
|  | // FIXME: Using simple code sequence with simple relocations. | 
|  | // There is a more optimal sequence but it requires support for the group | 
|  | // relocations. See ELF for the ARM Architecture Appendix A.3 | 
|  | const uint8_t PltData[] = { | 
|  | 0x04, 0xc0, 0x9f, 0xe5, //     ldr ip, L2 | 
|  | 0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc | 
|  | 0x00, 0xf0, 0x9c, 0xe5, //     ldr pc, [ip] | 
|  | 0x00, 0x00, 0x00, 0x00, // L2: .word   Offset(&(.plt.got) - L1 - 8 | 
|  | }; | 
|  | memcpy(Buf, PltData, sizeof(PltData)); | 
|  | uint64_t L1 = PltEntryAddr + 4; | 
|  | write32le(Buf + 12, GotEntryAddr - L1 - 8); | 
|  | } | 
|  |  | 
|  | RelExpr ARMTargetInfo::getThunkExpr(RelExpr Expr, uint32_t RelocType, | 
|  | const InputFile &File, | 
|  | const SymbolBody &S) const { | 
|  | // If S is an undefined weak symbol we don't need a Thunk | 
|  | if (S.isUndefined()) | 
|  | return Expr; | 
|  | // A state change from ARM to Thumb and vice versa must go through an | 
|  | // interworking thunk if the relocation type is not R_ARM_CALL or | 
|  | // R_ARM_THM_CALL. | 
|  | switch (RelocType) { | 
|  | case R_ARM_PC24: | 
|  | case R_ARM_PLT32: | 
|  | case R_ARM_JUMP24: | 
|  | // Source is ARM, all PLT entries are ARM so no interworking required. | 
|  | // Otherwise we need to interwork if Symbol has bit 0 set (Thumb). | 
|  | if (Expr == R_PC && ((S.getVA<ELF32LE>() & 1) == 1)) | 
|  | return R_THUNK_PC; | 
|  | break; | 
|  | case R_ARM_THM_JUMP19: | 
|  | case R_ARM_THM_JUMP24: | 
|  | // Source is Thumb, all PLT entries are ARM so interworking is required. | 
|  | // Otherwise we need to interwork if Symbol has bit 0 clear (ARM). | 
|  | if (Expr == R_PLT_PC) | 
|  | return R_THUNK_PLT_PC; | 
|  | if ((S.getVA<ELF32LE>() & 1) == 0) | 
|  | return R_THUNK_PC; | 
|  | break; | 
|  | } | 
|  | return Expr; | 
|  | } | 
|  |  | 
|  | void ARMTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, | 
|  | uint64_t Val) const { | 
|  | switch (Type) { | 
|  | case R_ARM_ABS32: | 
|  | case R_ARM_BASE_PREL: | 
|  | case R_ARM_GLOB_DAT: | 
|  | case R_ARM_GOTOFF32: | 
|  | case R_ARM_GOT_BREL: | 
|  | case R_ARM_GOT_PREL: | 
|  | case R_ARM_REL32: | 
|  | case R_ARM_RELATIVE: | 
|  | case R_ARM_TARGET1: | 
|  | case R_ARM_TARGET2: | 
|  | case R_ARM_TLS_GD32: | 
|  | case R_ARM_TLS_IE32: | 
|  | case R_ARM_TLS_LDM32: | 
|  | case R_ARM_TLS_LDO32: | 
|  | case R_ARM_TLS_LE32: | 
|  | case R_ARM_TLS_TPOFF32: | 
|  | write32le(Loc, Val); | 
|  | break; | 
|  | case R_ARM_TLS_DTPMOD32: | 
|  | write32le(Loc, 1); | 
|  | break; | 
|  | case R_ARM_PREL31: | 
|  | checkInt<31>(Loc, Val, Type); | 
|  | write32le(Loc, (read32le(Loc) & 0x80000000) | (Val & ~0x80000000)); | 
|  | break; | 
|  | case R_ARM_CALL: | 
|  | // R_ARM_CALL is used for BL and BLX instructions, depending on the | 
|  | // value of bit 0 of Val, we must select a BL or BLX instruction | 
|  | if (Val & 1) { | 
|  | // If bit 0 of Val is 1 the target is Thumb, we must select a BLX. | 
|  | // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1' | 
|  | checkInt<26>(Loc, Val, Type); | 
|  | write32le(Loc, 0xfa000000 |                    // opcode | 
|  | ((Val & 2) << 23) |         // H | 
|  | ((Val >> 2) & 0x00ffffff)); // imm24 | 
|  | break; | 
|  | } | 
|  | if ((read32le(Loc) & 0xfe000000) == 0xfa000000) | 
|  | // BLX (always unconditional) instruction to an ARM Target, select an | 
|  | // unconditional BL. | 
|  | write32le(Loc, 0xeb000000 | (read32le(Loc) & 0x00ffffff)); | 
|  | // fall through as BL encoding is shared with B | 
|  | case R_ARM_JUMP24: | 
|  | case R_ARM_PC24: | 
|  | case R_ARM_PLT32: | 
|  | checkInt<26>(Loc, Val, Type); | 
|  | write32le(Loc, (read32le(Loc) & ~0x00ffffff) | ((Val >> 2) & 0x00ffffff)); | 
|  | break; | 
|  | case R_ARM_THM_JUMP11: | 
|  | checkInt<12>(Loc, Val, Type); | 
|  | write16le(Loc, (read32le(Loc) & 0xf800) | ((Val >> 1) & 0x07ff)); | 
|  | break; | 
|  | case R_ARM_THM_JUMP19: | 
|  | // Encoding T3: Val = S:J2:J1:imm6:imm11:0 | 
|  | checkInt<21>(Loc, Val, Type); | 
|  | write16le(Loc, | 
|  | (read16le(Loc) & 0xfbc0) |   // opcode cond | 
|  | ((Val >> 10) & 0x0400) | // S | 
|  | ((Val >> 12) & 0x003f)); // imm6 | 
|  | write16le(Loc + 2, | 
|  | 0x8000 |                    // opcode | 
|  | ((Val >> 8) & 0x0800) | // J2 | 
|  | ((Val >> 5) & 0x2000) | // J1 | 
|  | ((Val >> 1) & 0x07ff)); // imm11 | 
|  | break; | 
|  | case R_ARM_THM_CALL: | 
|  | // R_ARM_THM_CALL is used for BL and BLX instructions, depending on the | 
|  | // value of bit 0 of Val, we must select a BL or BLX instruction | 
|  | if ((Val & 1) == 0) { | 
|  | // Ensure BLX destination is 4-byte aligned. As BLX instruction may | 
|  | // only be two byte aligned. This must be done before overflow check | 
|  | Val = alignTo(Val, 4); | 
|  | } | 
|  | // Bit 12 is 0 for BLX, 1 for BL | 
|  | write16le(Loc + 2, (read16le(Loc + 2) & ~0x1000) | (Val & 1) << 12); | 
|  | // Fall through as rest of encoding is the same as B.W | 
|  | case R_ARM_THM_JUMP24: | 
|  | // Encoding B  T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0 | 
|  | // FIXME: Use of I1 and I2 require v6T2ops | 
|  | checkInt<25>(Loc, Val, Type); | 
|  | write16le(Loc, | 
|  | 0xf000 |                     // opcode | 
|  | ((Val >> 14) & 0x0400) | // S | 
|  | ((Val >> 12) & 0x03ff)); // imm10 | 
|  | write16le(Loc + 2, | 
|  | (read16le(Loc + 2) & 0xd000) |                  // opcode | 
|  | (((~(Val >> 10)) ^ (Val >> 11)) & 0x2000) | // J1 | 
|  | (((~(Val >> 11)) ^ (Val >> 13)) & 0x0800) | // J2 | 
|  | ((Val >> 1) & 0x07ff));                     // imm11 | 
|  | break; | 
|  | case R_ARM_MOVW_ABS_NC: | 
|  | case R_ARM_MOVW_PREL_NC: | 
|  | write32le(Loc, (read32le(Loc) & ~0x000f0fff) | ((Val & 0xf000) << 4) | | 
|  | (Val & 0x0fff)); | 
|  | break; | 
|  | case R_ARM_MOVT_ABS: | 
|  | case R_ARM_MOVT_PREL: | 
|  | checkInt<32>(Loc, Val, Type); | 
|  | write32le(Loc, (read32le(Loc) & ~0x000f0fff) | | 
|  | (((Val >> 16) & 0xf000) << 4) | ((Val >> 16) & 0xfff)); | 
|  | break; | 
|  | case R_ARM_THM_MOVT_ABS: | 
|  | case R_ARM_THM_MOVT_PREL: | 
|  | // Encoding T1: A = imm4:i:imm3:imm8 | 
|  | checkInt<32>(Loc, Val, Type); | 
|  | write16le(Loc, | 
|  | 0xf2c0 |                     // opcode | 
|  | ((Val >> 17) & 0x0400) | // i | 
|  | ((Val >> 28) & 0x000f)); // imm4 | 
|  | write16le(Loc + 2, | 
|  | (read16le(Loc + 2) & 0x8f00) | // opcode | 
|  | ((Val >> 12) & 0x7000) |   // imm3 | 
|  | ((Val >> 16) & 0x00ff));   // imm8 | 
|  | break; | 
|  | case R_ARM_THM_MOVW_ABS_NC: | 
|  | case R_ARM_THM_MOVW_PREL_NC: | 
|  | // Encoding T3: A = imm4:i:imm3:imm8 | 
|  | write16le(Loc, | 
|  | 0xf240 |                     // opcode | 
|  | ((Val >> 1) & 0x0400) |  // i | 
|  | ((Val >> 12) & 0x000f)); // imm4 | 
|  | write16le(Loc + 2, | 
|  | (read16le(Loc + 2) & 0x8f00) | // opcode | 
|  | ((Val << 4) & 0x7000) |    // imm3 | 
|  | (Val & 0x00ff));           // imm8 | 
|  | break; | 
|  | default: | 
|  | fatal(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type)); | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t ARMTargetInfo::getImplicitAddend(const uint8_t *Buf, | 
|  | uint32_t Type) const { | 
|  | switch (Type) { | 
|  | default: | 
|  | return 0; | 
|  | case R_ARM_ABS32: | 
|  | case R_ARM_BASE_PREL: | 
|  | case R_ARM_GOTOFF32: | 
|  | case R_ARM_GOT_BREL: | 
|  | case R_ARM_GOT_PREL: | 
|  | case R_ARM_REL32: | 
|  | case R_ARM_TARGET1: | 
|  | case R_ARM_TARGET2: | 
|  | case R_ARM_TLS_GD32: | 
|  | case R_ARM_TLS_LDM32: | 
|  | case R_ARM_TLS_LDO32: | 
|  | case R_ARM_TLS_IE32: | 
|  | case R_ARM_TLS_LE32: | 
|  | return SignExtend64<32>(read32le(Buf)); | 
|  | case R_ARM_PREL31: | 
|  | return SignExtend64<31>(read32le(Buf)); | 
|  | case R_ARM_CALL: | 
|  | case R_ARM_JUMP24: | 
|  | case R_ARM_PC24: | 
|  | case R_ARM_PLT32: | 
|  | return SignExtend64<26>(read32le(Buf) << 2); | 
|  | case R_ARM_THM_JUMP11: | 
|  | return SignExtend64<12>(read16le(Buf) << 1); | 
|  | case R_ARM_THM_JUMP19: { | 
|  | // Encoding T3: A = S:J2:J1:imm10:imm6:0 | 
|  | uint16_t Hi = read16le(Buf); | 
|  | uint16_t Lo = read16le(Buf + 2); | 
|  | return SignExtend64<20>(((Hi & 0x0400) << 10) | // S | 
|  | ((Lo & 0x0800) << 8) |  // J2 | 
|  | ((Lo & 0x2000) << 5) |  // J1 | 
|  | ((Hi & 0x003f) << 12) | // imm6 | 
|  | ((Lo & 0x07ff) << 1));  // imm11:0 | 
|  | } | 
|  | case R_ARM_THM_CALL: | 
|  | case R_ARM_THM_JUMP24: { | 
|  | // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0 | 
|  | // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S) | 
|  | // FIXME: I1 and I2 require v6T2ops | 
|  | uint16_t Hi = read16le(Buf); | 
|  | uint16_t Lo = read16le(Buf + 2); | 
|  | return SignExtend64<24>(((Hi & 0x0400) << 14) |                    // S | 
|  | (~((Lo ^ (Hi << 3)) << 10) & 0x00800000) | // I1 | 
|  | (~((Lo ^ (Hi << 1)) << 11) & 0x00400000) | // I2 | 
|  | ((Hi & 0x003ff) << 12) |                   // imm0 | 
|  | ((Lo & 0x007ff) << 1)); // imm11:0 | 
|  | } | 
|  | // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and | 
|  | // MOVT is in the range -32768 <= A < 32768 | 
|  | case R_ARM_MOVW_ABS_NC: | 
|  | case R_ARM_MOVT_ABS: | 
|  | case R_ARM_MOVW_PREL_NC: | 
|  | case R_ARM_MOVT_PREL: { | 
|  | uint64_t Val = read32le(Buf) & 0x000f0fff; | 
|  | return SignExtend64<16>(((Val & 0x000f0000) >> 4) | (Val & 0x00fff)); | 
|  | } | 
|  | case R_ARM_THM_MOVW_ABS_NC: | 
|  | case R_ARM_THM_MOVT_ABS: | 
|  | case R_ARM_THM_MOVW_PREL_NC: | 
|  | case R_ARM_THM_MOVT_PREL: { | 
|  | // Encoding T3: A = imm4:i:imm3:imm8 | 
|  | uint16_t Hi = read16le(Buf); | 
|  | uint16_t Lo = read16le(Buf + 2); | 
|  | return SignExtend64<16>(((Hi & 0x000f) << 12) | // imm4 | 
|  | ((Hi & 0x0400) << 1) |  // i | 
|  | ((Lo & 0x7000) >> 4) |  // imm3 | 
|  | (Lo & 0x00ff));         // imm8 | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool ARMTargetInfo::isTlsLocalDynamicRel(uint32_t Type) const { | 
|  | return Type == R_ARM_TLS_LDO32 || Type == R_ARM_TLS_LDM32; | 
|  | } | 
|  |  | 
|  | bool ARMTargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const { | 
|  | return Type == R_ARM_TLS_GD32; | 
|  | } | 
|  |  | 
|  | bool ARMTargetInfo::isTlsInitialExecRel(uint32_t Type) const { | 
|  | return Type == R_ARM_TLS_IE32; | 
|  | } | 
|  |  | 
|  | template <class ELFT> MipsTargetInfo<ELFT>::MipsTargetInfo() { | 
|  | GotPltHeaderEntriesNum = 2; | 
|  | DefaultMaxPageSize = 65536; | 
|  | GotEntrySize = sizeof(typename ELFT::uint); | 
|  | GotPltEntrySize = sizeof(typename ELFT::uint); | 
|  | PltEntrySize = 16; | 
|  | PltHeaderSize = 32; | 
|  | CopyRel = R_MIPS_COPY; | 
|  | PltRel = R_MIPS_JUMP_SLOT; | 
|  | NeedsThunks = true; | 
|  | if (ELFT::Is64Bits) { | 
|  | RelativeRel = (R_MIPS_64 << 8) | R_MIPS_REL32; | 
|  | TlsGotRel = R_MIPS_TLS_TPREL64; | 
|  | TlsModuleIndexRel = R_MIPS_TLS_DTPMOD64; | 
|  | TlsOffsetRel = R_MIPS_TLS_DTPREL64; | 
|  | } else { | 
|  | RelativeRel = R_MIPS_REL32; | 
|  | TlsGotRel = R_MIPS_TLS_TPREL32; | 
|  | TlsModuleIndexRel = R_MIPS_TLS_DTPMOD32; | 
|  | TlsOffsetRel = R_MIPS_TLS_DTPREL32; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | RelExpr MipsTargetInfo<ELFT>::getRelExpr(uint32_t Type, | 
|  | const SymbolBody &S) const { | 
|  | // See comment in the calculateMipsRelChain. | 
|  | if (ELFT::Is64Bits || Config->MipsN32Abi) | 
|  | Type &= 0xff; | 
|  | switch (Type) { | 
|  | default: | 
|  | return R_ABS; | 
|  | case R_MIPS_JALR: | 
|  | return R_HINT; | 
|  | case R_MIPS_GPREL16: | 
|  | case R_MIPS_GPREL32: | 
|  | return R_MIPS_GOTREL; | 
|  | case R_MIPS_26: | 
|  | return R_PLT; | 
|  | case R_MIPS_HI16: | 
|  | case R_MIPS_LO16: | 
|  | case R_MIPS_GOT_OFST: | 
|  | // R_MIPS_HI16/R_MIPS_LO16 relocations against _gp_disp calculate | 
|  | // offset between start of function and 'gp' value which by default | 
|  | // equal to the start of .got section. In that case we consider these | 
|  | // relocations as relative. | 
|  | if (&S == ElfSym<ELFT>::MipsGpDisp) | 
|  | return R_PC; | 
|  | return R_ABS; | 
|  | case R_MIPS_PC32: | 
|  | case R_MIPS_PC16: | 
|  | case R_MIPS_PC19_S2: | 
|  | case R_MIPS_PC21_S2: | 
|  | case R_MIPS_PC26_S2: | 
|  | case R_MIPS_PCHI16: | 
|  | case R_MIPS_PCLO16: | 
|  | return R_PC; | 
|  | case R_MIPS_GOT16: | 
|  | if (S.isLocal()) | 
|  | return R_MIPS_GOT_LOCAL_PAGE; | 
|  | // fallthrough | 
|  | case R_MIPS_CALL16: | 
|  | case R_MIPS_GOT_DISP: | 
|  | case R_MIPS_TLS_GOTTPREL: | 
|  | return R_MIPS_GOT_OFF; | 
|  | case R_MIPS_CALL_HI16: | 
|  | case R_MIPS_CALL_LO16: | 
|  | case R_MIPS_GOT_HI16: | 
|  | case R_MIPS_GOT_LO16: | 
|  | return R_MIPS_GOT_OFF32; | 
|  | case R_MIPS_GOT_PAGE: | 
|  | return R_MIPS_GOT_LOCAL_PAGE; | 
|  | case R_MIPS_TLS_GD: | 
|  | return R_MIPS_TLSGD; | 
|  | case R_MIPS_TLS_LDM: | 
|  | return R_MIPS_TLSLD; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> bool MipsTargetInfo<ELFT>::isPicRel(uint32_t Type) const { | 
|  | return Type == R_MIPS_32 || Type == R_MIPS_64; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | uint32_t MipsTargetInfo<ELFT>::getDynRel(uint32_t Type) const { | 
|  | return RelativeRel; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | bool MipsTargetInfo<ELFT>::isTlsLocalDynamicRel(uint32_t Type) const { | 
|  | return Type == R_MIPS_TLS_LDM; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | bool MipsTargetInfo<ELFT>::isTlsGlobalDynamicRel(uint32_t Type) const { | 
|  | return Type == R_MIPS_TLS_GD; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void MipsTargetInfo<ELFT>::writeGotPlt(uint8_t *Buf, const SymbolBody &) const { | 
|  | write32<ELFT::TargetEndianness>(Buf, In<ELFT>::Plt->getVA()); | 
|  | } | 
|  |  | 
|  | template <endianness E, uint8_t BSIZE, uint8_t SHIFT> | 
|  | static int64_t getPcRelocAddend(const uint8_t *Loc) { | 
|  | uint32_t Instr = read32<E>(Loc); | 
|  | uint32_t Mask = 0xffffffff >> (32 - BSIZE); | 
|  | return SignExtend64<BSIZE + SHIFT>((Instr & Mask) << SHIFT); | 
|  | } | 
|  |  | 
|  | template <endianness E, uint8_t BSIZE, uint8_t SHIFT> | 
|  | static void applyMipsPcReloc(uint8_t *Loc, uint32_t Type, uint64_t V) { | 
|  | uint32_t Mask = 0xffffffff >> (32 - BSIZE); | 
|  | uint32_t Instr = read32<E>(Loc); | 
|  | if (SHIFT > 0) | 
|  | checkAlignment<(1 << SHIFT)>(Loc, V, Type); | 
|  | checkInt<BSIZE + SHIFT>(Loc, V, Type); | 
|  | write32<E>(Loc, (Instr & ~Mask) | ((V >> SHIFT) & Mask)); | 
|  | } | 
|  |  | 
|  | template <endianness E> static void writeMipsHi16(uint8_t *Loc, uint64_t V) { | 
|  | uint32_t Instr = read32<E>(Loc); | 
|  | uint16_t Res = ((V + 0x8000) >> 16) & 0xffff; | 
|  | write32<E>(Loc, (Instr & 0xffff0000) | Res); | 
|  | } | 
|  |  | 
|  | template <endianness E> static void writeMipsHigher(uint8_t *Loc, uint64_t V) { | 
|  | uint32_t Instr = read32<E>(Loc); | 
|  | uint16_t Res = ((V + 0x80008000) >> 32) & 0xffff; | 
|  | write32<E>(Loc, (Instr & 0xffff0000) | Res); | 
|  | } | 
|  |  | 
|  | template <endianness E> static void writeMipsHighest(uint8_t *Loc, uint64_t V) { | 
|  | uint32_t Instr = read32<E>(Loc); | 
|  | uint16_t Res = ((V + 0x800080008000) >> 48) & 0xffff; | 
|  | write32<E>(Loc, (Instr & 0xffff0000) | Res); | 
|  | } | 
|  |  | 
|  | template <endianness E> static void writeMipsLo16(uint8_t *Loc, uint64_t V) { | 
|  | uint32_t Instr = read32<E>(Loc); | 
|  | write32<E>(Loc, (Instr & 0xffff0000) | (V & 0xffff)); | 
|  | } | 
|  |  | 
|  | template <class ELFT> static bool isMipsR6() { | 
|  | const auto &FirstObj = cast<ELFFileBase<ELFT>>(*Config->FirstElf); | 
|  | uint32_t Arch = FirstObj.getObj().getHeader()->e_flags & EF_MIPS_ARCH; | 
|  | return Arch == EF_MIPS_ARCH_32R6 || Arch == EF_MIPS_ARCH_64R6; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void MipsTargetInfo<ELFT>::writePltHeader(uint8_t *Buf) const { | 
|  | const endianness E = ELFT::TargetEndianness; | 
|  | if (Config->MipsN32Abi) { | 
|  | write32<E>(Buf, 0x3c0e0000);      // lui   $14, %hi(&GOTPLT[0]) | 
|  | write32<E>(Buf + 4, 0x8dd90000);  // lw    $25, %lo(&GOTPLT[0])($14) | 
|  | write32<E>(Buf + 8, 0x25ce0000);  // addiu $14, $14, %lo(&GOTPLT[0]) | 
|  | write32<E>(Buf + 12, 0x030ec023); // subu  $24, $24, $14 | 
|  | } else { | 
|  | write32<E>(Buf, 0x3c1c0000);      // lui   $28, %hi(&GOTPLT[0]) | 
|  | write32<E>(Buf + 4, 0x8f990000);  // lw    $25, %lo(&GOTPLT[0])($28) | 
|  | write32<E>(Buf + 8, 0x279c0000);  // addiu $28, $28, %lo(&GOTPLT[0]) | 
|  | write32<E>(Buf + 12, 0x031cc023); // subu  $24, $24, $28 | 
|  | } | 
|  | write32<E>(Buf + 16, 0x03e07825); // move  $15, $31 | 
|  | write32<E>(Buf + 20, 0x0018c082); // srl   $24, $24, 2 | 
|  | write32<E>(Buf + 24, 0x0320f809); // jalr  $25 | 
|  | write32<E>(Buf + 28, 0x2718fffe); // subu  $24, $24, 2 | 
|  | uint64_t Got = In<ELFT>::GotPlt->getVA(); | 
|  | writeMipsHi16<E>(Buf, Got); | 
|  | writeMipsLo16<E>(Buf + 4, Got); | 
|  | writeMipsLo16<E>(Buf + 8, Got); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void MipsTargetInfo<ELFT>::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, | 
|  | uint64_t PltEntryAddr, int32_t Index, | 
|  | unsigned RelOff) const { | 
|  | const endianness E = ELFT::TargetEndianness; | 
|  | write32<E>(Buf, 0x3c0f0000);     // lui   $15, %hi(.got.plt entry) | 
|  | write32<E>(Buf + 4, 0x8df90000); // l[wd] $25, %lo(.got.plt entry)($15) | 
|  | // jr    $25 | 
|  | write32<E>(Buf + 8, isMipsR6<ELFT>() ? 0x03200009 : 0x03200008); | 
|  | write32<E>(Buf + 12, 0x25f80000); // addiu $24, $15, %lo(.got.plt entry) | 
|  | writeMipsHi16<E>(Buf, GotEntryAddr); | 
|  | writeMipsLo16<E>(Buf + 4, GotEntryAddr); | 
|  | writeMipsLo16<E>(Buf + 12, GotEntryAddr); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | RelExpr MipsTargetInfo<ELFT>::getThunkExpr(RelExpr Expr, uint32_t Type, | 
|  | const InputFile &File, | 
|  | const SymbolBody &S) const { | 
|  | // Any MIPS PIC code function is invoked with its address in register $t9. | 
|  | // So if we have a branch instruction from non-PIC code to the PIC one | 
|  | // we cannot make the jump directly and need to create a small stubs | 
|  | // to save the target function address. | 
|  | // See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf | 
|  | if (Type != R_MIPS_26) | 
|  | return Expr; | 
|  | auto *F = dyn_cast<ELFFileBase<ELFT>>(&File); | 
|  | if (!F) | 
|  | return Expr; | 
|  | // If current file has PIC code, LA25 stub is not required. | 
|  | if (F->getObj().getHeader()->e_flags & EF_MIPS_PIC) | 
|  | return Expr; | 
|  | auto *D = dyn_cast<DefinedRegular<ELFT>>(&S); | 
|  | // LA25 is required if target file has PIC code | 
|  | // or target symbol is a PIC symbol. | 
|  | return D && D->isMipsPIC() ? R_THUNK_ABS : Expr; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | uint64_t MipsTargetInfo<ELFT>::getImplicitAddend(const uint8_t *Buf, | 
|  | uint32_t Type) const { | 
|  | const endianness E = ELFT::TargetEndianness; | 
|  | switch (Type) { | 
|  | default: | 
|  | return 0; | 
|  | case R_MIPS_32: | 
|  | case R_MIPS_GPREL32: | 
|  | case R_MIPS_TLS_DTPREL32: | 
|  | case R_MIPS_TLS_TPREL32: | 
|  | return read32<E>(Buf); | 
|  | case R_MIPS_26: | 
|  | // FIXME (simon): If the relocation target symbol is not a PLT entry | 
|  | // we should use another expression for calculation: | 
|  | // ((A << 2) | (P & 0xf0000000)) >> 2 | 
|  | return SignExtend64<28>((read32<E>(Buf) & 0x3ffffff) << 2); | 
|  | case R_MIPS_GPREL16: | 
|  | case R_MIPS_LO16: | 
|  | case R_MIPS_PCLO16: | 
|  | case R_MIPS_TLS_DTPREL_HI16: | 
|  | case R_MIPS_TLS_DTPREL_LO16: | 
|  | case R_MIPS_TLS_TPREL_HI16: | 
|  | case R_MIPS_TLS_TPREL_LO16: | 
|  | return SignExtend64<16>(read32<E>(Buf)); | 
|  | case R_MIPS_PC16: | 
|  | return getPcRelocAddend<E, 16, 2>(Buf); | 
|  | case R_MIPS_PC19_S2: | 
|  | return getPcRelocAddend<E, 19, 2>(Buf); | 
|  | case R_MIPS_PC21_S2: | 
|  | return getPcRelocAddend<E, 21, 2>(Buf); | 
|  | case R_MIPS_PC26_S2: | 
|  | return getPcRelocAddend<E, 26, 2>(Buf); | 
|  | case R_MIPS_PC32: | 
|  | return getPcRelocAddend<E, 32, 0>(Buf); | 
|  | } | 
|  | } | 
|  |  | 
|  | static std::pair<uint32_t, uint64_t> | 
|  | calculateMipsRelChain(uint8_t *Loc, uint32_t Type, uint64_t Val) { | 
|  | // MIPS N64 ABI packs multiple relocations into the single relocation | 
|  | // record. In general, all up to three relocations can have arbitrary | 
|  | // types. In fact, Clang and GCC uses only a few combinations. For now, | 
|  | // we support two of them. That is allow to pass at least all LLVM | 
|  | // test suite cases. | 
|  | // <any relocation> / R_MIPS_SUB / R_MIPS_HI16 | R_MIPS_LO16 | 
|  | // <any relocation> / R_MIPS_64 / R_MIPS_NONE | 
|  | // The first relocation is a 'real' relocation which is calculated | 
|  | // using the corresponding symbol's value. The second and the third | 
|  | // relocations used to modify result of the first one: extend it to | 
|  | // 64-bit, extract high or low part etc. For details, see part 2.9 Relocation | 
|  | // at the https://dmz-portal.mips.com/mw/images/8/82/007-4658-001.pdf | 
|  | uint32_t Type2 = (Type >> 8) & 0xff; | 
|  | uint32_t Type3 = (Type >> 16) & 0xff; | 
|  | if (Type2 == R_MIPS_NONE && Type3 == R_MIPS_NONE) | 
|  | return std::make_pair(Type, Val); | 
|  | if (Type2 == R_MIPS_64 && Type3 == R_MIPS_NONE) | 
|  | return std::make_pair(Type2, Val); | 
|  | if (Type2 == R_MIPS_SUB && (Type3 == R_MIPS_HI16 || Type3 == R_MIPS_LO16)) | 
|  | return std::make_pair(Type3, -Val); | 
|  | error(getErrorLocation(Loc) + "unsupported relocations combination " + | 
|  | Twine(Type)); | 
|  | return std::make_pair(Type & 0xff, Val); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void MipsTargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint32_t Type, | 
|  | uint64_t Val) const { | 
|  | const endianness E = ELFT::TargetEndianness; | 
|  | // Thread pointer and DRP offsets from the start of TLS data area. | 
|  | // https://www.linux-mips.org/wiki/NPTL | 
|  | if (Type == R_MIPS_TLS_DTPREL_HI16 || Type == R_MIPS_TLS_DTPREL_LO16 || | 
|  | Type == R_MIPS_TLS_DTPREL32 || Type == R_MIPS_TLS_DTPREL64) | 
|  | Val -= 0x8000; | 
|  | else if (Type == R_MIPS_TLS_TPREL_HI16 || Type == R_MIPS_TLS_TPREL_LO16 || | 
|  | Type == R_MIPS_TLS_TPREL32 || Type == R_MIPS_TLS_TPREL64) | 
|  | Val -= 0x7000; | 
|  | if (ELFT::Is64Bits || Config->MipsN32Abi) | 
|  | std::tie(Type, Val) = calculateMipsRelChain(Loc, Type, Val); | 
|  | switch (Type) { | 
|  | case R_MIPS_32: | 
|  | case R_MIPS_GPREL32: | 
|  | case R_MIPS_TLS_DTPREL32: | 
|  | case R_MIPS_TLS_TPREL32: | 
|  | write32<E>(Loc, Val); | 
|  | break; | 
|  | case R_MIPS_64: | 
|  | case R_MIPS_TLS_DTPREL64: | 
|  | case R_MIPS_TLS_TPREL64: | 
|  | write64<E>(Loc, Val); | 
|  | break; | 
|  | case R_MIPS_26: | 
|  | write32<E>(Loc, (read32<E>(Loc) & ~0x3ffffff) | ((Val >> 2) & 0x3ffffff)); | 
|  | break; | 
|  | case R_MIPS_GOT_DISP: | 
|  | case R_MIPS_GOT_PAGE: | 
|  | case R_MIPS_GOT16: | 
|  | case R_MIPS_GPREL16: | 
|  | case R_MIPS_TLS_GD: | 
|  | case R_MIPS_TLS_LDM: | 
|  | checkInt<16>(Loc, Val, Type); | 
|  | // fallthrough | 
|  | case R_MIPS_CALL16: | 
|  | case R_MIPS_CALL_LO16: | 
|  | case R_MIPS_GOT_LO16: | 
|  | case R_MIPS_GOT_OFST: | 
|  | case R_MIPS_LO16: | 
|  | case R_MIPS_PCLO16: | 
|  | case R_MIPS_TLS_DTPREL_LO16: | 
|  | case R_MIPS_TLS_GOTTPREL: | 
|  | case R_MIPS_TLS_TPREL_LO16: | 
|  | writeMipsLo16<E>(Loc, Val); | 
|  | break; | 
|  | case R_MIPS_CALL_HI16: | 
|  | case R_MIPS_GOT_HI16: | 
|  | case R_MIPS_HI16: | 
|  | case R_MIPS_PCHI16: | 
|  | case R_MIPS_TLS_DTPREL_HI16: | 
|  | case R_MIPS_TLS_TPREL_HI16: | 
|  | writeMipsHi16<E>(Loc, Val); | 
|  | break; | 
|  | case R_MIPS_HIGHER: | 
|  | writeMipsHigher<E>(Loc, Val); | 
|  | break; | 
|  | case R_MIPS_HIGHEST: | 
|  | writeMipsHighest<E>(Loc, Val); | 
|  | break; | 
|  | case R_MIPS_JALR: | 
|  | // Ignore this optimization relocation for now | 
|  | break; | 
|  | case R_MIPS_PC16: | 
|  | applyMipsPcReloc<E, 16, 2>(Loc, Type, Val); | 
|  | break; | 
|  | case R_MIPS_PC19_S2: | 
|  | applyMipsPcReloc<E, 19, 2>(Loc, Type, Val); | 
|  | break; | 
|  | case R_MIPS_PC21_S2: | 
|  | applyMipsPcReloc<E, 21, 2>(Loc, Type, Val); | 
|  | break; | 
|  | case R_MIPS_PC26_S2: | 
|  | applyMipsPcReloc<E, 26, 2>(Loc, Type, Val); | 
|  | break; | 
|  | case R_MIPS_PC32: | 
|  | applyMipsPcReloc<E, 32, 0>(Loc, Type, Val); | 
|  | break; | 
|  | default: | 
|  | fatal(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type)); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | bool MipsTargetInfo<ELFT>::usesOnlyLowPageBits(uint32_t Type) const { | 
|  | return Type == R_MIPS_LO16 || Type == R_MIPS_GOT_OFST; | 
|  | } | 
|  | } | 
|  | } |