Evan Cheng | d38c22b | 2006-05-11 23:55:42 +0000 | [diff] [blame] | 1 | //===----- ScheduleDAGList.cpp - Reg pressure reduction list scheduler ----===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by Evan Cheng and is distributed under the |
| 6 | // University of Illinois Open Source License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This implements bottom-up and top-down register pressure reduction list |
| 11 | // schedulers, using standard algorithms. The basic approach uses a priority |
| 12 | // queue of available nodes to schedule. One at a time, nodes are taken from |
| 13 | // the priority queue (thus in priority order), checked for legality to |
| 14 | // schedule, and emitted if legal. |
| 15 | // |
| 16 | //===----------------------------------------------------------------------===// |
| 17 | |
| 18 | #define DEBUG_TYPE "sched" |
| 19 | #include "llvm/CodeGen/ScheduleDAG.h" |
| 20 | #include "llvm/CodeGen/SSARegMap.h" |
| 21 | #include "llvm/Target/MRegisterInfo.h" |
Owen Anderson | 8c2c1e9 | 2006-05-12 06:33:49 +0000 | [diff] [blame] | 22 | #include "llvm/Target/TargetData.h" |
Evan Cheng | d38c22b | 2006-05-11 23:55:42 +0000 | [diff] [blame] | 23 | #include "llvm/Target/TargetMachine.h" |
| 24 | #include "llvm/Target/TargetInstrInfo.h" |
| 25 | #include "llvm/Support/Debug.h" |
| 26 | #include "llvm/ADT/Statistic.h" |
| 27 | #include <climits> |
| 28 | #include <iostream> |
| 29 | #include <queue> |
| 30 | #include "llvm/Support/CommandLine.h" |
| 31 | using namespace llvm; |
| 32 | |
| 33 | namespace { |
Evan Cheng | d38c22b | 2006-05-11 23:55:42 +0000 | [diff] [blame] | 34 | //===----------------------------------------------------------------------===// |
| 35 | /// ScheduleDAGRRList - The actual register reduction list scheduler |
| 36 | /// implementation. This supports both top-down and bottom-up scheduling. |
| 37 | /// |
| 38 | |
| 39 | class ScheduleDAGRRList : public ScheduleDAG { |
| 40 | private: |
| 41 | /// isBottomUp - This is true if the scheduling problem is bottom-up, false if |
| 42 | /// it is top-down. |
| 43 | bool isBottomUp; |
| 44 | |
| 45 | /// AvailableQueue - The priority queue to use for the available SUnits. |
| 46 | /// |
| 47 | SchedulingPriorityQueue *AvailableQueue; |
| 48 | |
| 49 | public: |
| 50 | ScheduleDAGRRList(SelectionDAG &dag, MachineBasicBlock *bb, |
| 51 | const TargetMachine &tm, bool isbottomup, |
| 52 | SchedulingPriorityQueue *availqueue) |
| 53 | : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup), |
| 54 | AvailableQueue(availqueue) { |
| 55 | } |
| 56 | |
| 57 | ~ScheduleDAGRRList() { |
| 58 | delete AvailableQueue; |
| 59 | } |
| 60 | |
| 61 | void Schedule(); |
| 62 | |
| 63 | private: |
| 64 | void ReleasePred(SUnit *PredSU, bool isChain, unsigned CurCycle); |
| 65 | void ReleaseSucc(SUnit *SuccSU, bool isChain, unsigned CurCycle); |
| 66 | void ScheduleNodeBottomUp(SUnit *SU, unsigned& CurCycle); |
| 67 | void ScheduleNodeTopDown(SUnit *SU, unsigned& CurCycle); |
| 68 | void ListScheduleTopDown(); |
| 69 | void ListScheduleBottomUp(); |
Evan Cheng | afed73e | 2006-05-12 01:58:24 +0000 | [diff] [blame] | 70 | void CommuteNodesToReducePressure(); |
Evan Cheng | d38c22b | 2006-05-11 23:55:42 +0000 | [diff] [blame] | 71 | }; |
| 72 | } // end anonymous namespace |
| 73 | |
| 74 | |
| 75 | /// Schedule - Schedule the DAG using list scheduling. |
| 76 | void ScheduleDAGRRList::Schedule() { |
| 77 | DEBUG(std::cerr << "********** List Scheduling **********\n"); |
| 78 | |
| 79 | // Build scheduling units. |
| 80 | BuildSchedUnits(); |
Evan Cheng | 99f2f79 | 2006-05-13 08:22:24 +0000 | [diff] [blame] | 81 | DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) |
| 82 | SUnits[su].dumpAll(&DAG)); |
Evan Cheng | d38c22b | 2006-05-11 23:55:42 +0000 | [diff] [blame] | 83 | |
| 84 | CalculateDepths(); |
| 85 | CalculateHeights(); |
| 86 | DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) |
| 87 | SUnits[su].dumpAll(&DAG)); |
| 88 | |
| 89 | AvailableQueue->initNodes(SUnits); |
| 90 | |
| 91 | // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate. |
| 92 | if (isBottomUp) |
| 93 | ListScheduleBottomUp(); |
| 94 | else |
| 95 | ListScheduleTopDown(); |
| 96 | |
| 97 | AvailableQueue->releaseState(); |
Evan Cheng | afed73e | 2006-05-12 01:58:24 +0000 | [diff] [blame] | 98 | |
Evan Cheng | 009f5f5 | 2006-05-25 08:37:31 +0000 | [diff] [blame^] | 99 | CommuteNodesToReducePressure(); |
Evan Cheng | d38c22b | 2006-05-11 23:55:42 +0000 | [diff] [blame] | 100 | |
| 101 | DEBUG(std::cerr << "*** Final schedule ***\n"); |
| 102 | DEBUG(dumpSchedule()); |
| 103 | DEBUG(std::cerr << "\n"); |
| 104 | |
| 105 | // Emit in scheduled order |
| 106 | EmitSchedule(); |
| 107 | } |
| 108 | |
Evan Cheng | afed73e | 2006-05-12 01:58:24 +0000 | [diff] [blame] | 109 | /// CommuteNodesToReducePressure - Is a node is two-address and commutable, and |
| 110 | /// it is not the last use of its first operand, add it to the CommuteSet if |
| 111 | /// possible. It will be commuted when it is translated to a MI. |
| 112 | void ScheduleDAGRRList::CommuteNodesToReducePressure() { |
| 113 | std::set<SUnit *> OperandSeen; |
| 114 | for (unsigned i = Sequence.size()-1; i != 0; --i) { // Ignore first node. |
| 115 | SUnit *SU = Sequence[i]; |
| 116 | if (!SU) continue; |
| 117 | if (SU->isTwoAddress && SU->isCommutable) { |
| 118 | SDNode *OpN = SU->Node->getOperand(0).Val; |
| 119 | SUnit *OpSU = SUnitMap[OpN]; |
| 120 | if (OpSU && OperandSeen.count(OpSU) == 1) { |
| 121 | // Ok, so SU is not the last use of OpSU, but SU is two-address so |
| 122 | // it will clobber OpSU. Try to commute it if possible. |
| 123 | bool DoCommute = true; |
| 124 | for (unsigned j = 1, e = SU->Node->getNumOperands(); j != e; ++j) { |
| 125 | OpN = SU->Node->getOperand(j).Val; |
| 126 | OpSU = SUnitMap[OpN]; |
| 127 | if (OpSU && OperandSeen.count(OpSU) == 1) { |
| 128 | DoCommute = false; |
| 129 | break; |
| 130 | } |
| 131 | } |
| 132 | if (DoCommute) |
| 133 | CommuteSet.insert(SU->Node); |
| 134 | } |
| 135 | } |
| 136 | |
| 137 | for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(), |
| 138 | E = SU->Preds.end(); I != E; ++I) { |
| 139 | if (!I->second) |
| 140 | OperandSeen.insert(I->first); |
| 141 | } |
| 142 | } |
| 143 | } |
Evan Cheng | d38c22b | 2006-05-11 23:55:42 +0000 | [diff] [blame] | 144 | |
| 145 | //===----------------------------------------------------------------------===// |
| 146 | // Bottom-Up Scheduling |
| 147 | //===----------------------------------------------------------------------===// |
| 148 | |
| 149 | static const TargetRegisterClass *getRegClass(SUnit *SU, |
| 150 | const TargetInstrInfo *TII, |
| 151 | const MRegisterInfo *MRI, |
| 152 | SSARegMap *RegMap) { |
| 153 | if (SU->Node->isTargetOpcode()) { |
| 154 | unsigned Opc = SU->Node->getTargetOpcode(); |
| 155 | const TargetInstrDescriptor &II = TII->get(Opc); |
| 156 | return II.OpInfo->RegClass; |
| 157 | } else { |
| 158 | assert(SU->Node->getOpcode() == ISD::CopyFromReg); |
| 159 | unsigned SrcReg = cast<RegisterSDNode>(SU->Node->getOperand(1))->getReg(); |
| 160 | if (MRegisterInfo::isVirtualRegister(SrcReg)) |
| 161 | return RegMap->getRegClass(SrcReg); |
| 162 | else { |
| 163 | for (MRegisterInfo::regclass_iterator I = MRI->regclass_begin(), |
| 164 | E = MRI->regclass_end(); I != E; ++I) |
| 165 | if ((*I)->hasType(SU->Node->getValueType(0)) && |
| 166 | (*I)->contains(SrcReg)) |
| 167 | return *I; |
| 168 | assert(false && "Couldn't find register class for reg copy!"); |
| 169 | } |
| 170 | return NULL; |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | static unsigned getNumResults(SUnit *SU) { |
| 175 | unsigned NumResults = 0; |
| 176 | for (unsigned i = 0, e = SU->Node->getNumValues(); i != e; ++i) { |
| 177 | MVT::ValueType VT = SU->Node->getValueType(i); |
| 178 | if (VT != MVT::Other && VT != MVT::Flag) |
| 179 | NumResults++; |
| 180 | } |
| 181 | return NumResults; |
| 182 | } |
| 183 | |
| 184 | /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to |
| 185 | /// the Available queue is the count reaches zero. Also update its cycle bound. |
| 186 | void ScheduleDAGRRList::ReleasePred(SUnit *PredSU, bool isChain, |
| 187 | unsigned CurCycle) { |
| 188 | // FIXME: the distance between two nodes is not always == the predecessor's |
| 189 | // latency. For example, the reader can very well read the register written |
| 190 | // by the predecessor later than the issue cycle. It also depends on the |
| 191 | // interrupt model (drain vs. freeze). |
| 192 | PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency); |
| 193 | |
| 194 | if (!isChain) |
| 195 | PredSU->NumSuccsLeft--; |
| 196 | else |
| 197 | PredSU->NumChainSuccsLeft--; |
| 198 | |
| 199 | #ifndef NDEBUG |
| 200 | if (PredSU->NumSuccsLeft < 0 || PredSU->NumChainSuccsLeft < 0) { |
| 201 | std::cerr << "*** List scheduling failed! ***\n"; |
| 202 | PredSU->dump(&DAG); |
| 203 | std::cerr << " has been released too many times!\n"; |
| 204 | assert(0); |
| 205 | } |
| 206 | #endif |
| 207 | |
| 208 | if ((PredSU->NumSuccsLeft + PredSU->NumChainSuccsLeft) == 0) { |
| 209 | // EntryToken has to go last! Special case it here. |
| 210 | if (PredSU->Node->getOpcode() != ISD::EntryToken) { |
| 211 | PredSU->isAvailable = true; |
| 212 | AvailableQueue->push(PredSU); |
| 213 | } |
| 214 | } |
| 215 | } |
| 216 | |
| 217 | /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending |
| 218 | /// count of its predecessors. If a predecessor pending count is zero, add it to |
| 219 | /// the Available queue. |
| 220 | void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned& CurCycle) { |
| 221 | DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: "); |
| 222 | DEBUG(SU->dump(&DAG)); |
| 223 | SU->Cycle = CurCycle; |
| 224 | |
| 225 | AvailableQueue->ScheduledNode(SU); |
| 226 | Sequence.push_back(SU); |
| 227 | |
| 228 | // Bottom up: release predecessors |
| 229 | for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(), |
| 230 | E = SU->Preds.end(); I != E; ++I) |
| 231 | ReleasePred(I->first, I->second, CurCycle); |
| 232 | SU->isScheduled = true; |
| 233 | CurCycle++; |
| 234 | } |
| 235 | |
| 236 | /// isReady - True if node's lower cycle bound is less or equal to the current |
| 237 | /// scheduling cycle. Always true if all nodes have uniform latency 1. |
| 238 | static inline bool isReady(SUnit *SU, unsigned CurCycle) { |
| 239 | return SU->CycleBound <= CurCycle; |
| 240 | } |
| 241 | |
| 242 | /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up |
| 243 | /// schedulers. |
| 244 | void ScheduleDAGRRList::ListScheduleBottomUp() { |
| 245 | unsigned CurCycle = 0; |
| 246 | // Add root to Available queue. |
| 247 | AvailableQueue->push(SUnitMap[DAG.getRoot().Val]); |
| 248 | |
| 249 | // While Available queue is not empty, grab the node with the highest |
| 250 | // priority. If it is not ready put it back. Schedule the node. |
| 251 | std::vector<SUnit*> NotReady; |
| 252 | SUnit *CurNode = NULL; |
| 253 | while (!AvailableQueue->empty()) { |
| 254 | SUnit *CurNode = AvailableQueue->pop(); |
| 255 | while (!isReady(CurNode, CurCycle)) { |
| 256 | NotReady.push_back(CurNode); |
| 257 | CurNode = AvailableQueue->pop(); |
| 258 | } |
| 259 | |
| 260 | // Add the nodes that aren't ready back onto the available list. |
| 261 | AvailableQueue->push_all(NotReady); |
| 262 | NotReady.clear(); |
| 263 | |
| 264 | ScheduleNodeBottomUp(CurNode, CurCycle); |
| 265 | } |
| 266 | |
| 267 | // Add entry node last |
| 268 | if (DAG.getEntryNode().Val != DAG.getRoot().Val) { |
| 269 | SUnit *Entry = SUnitMap[DAG.getEntryNode().Val]; |
| 270 | Sequence.push_back(Entry); |
| 271 | } |
| 272 | |
| 273 | // Reverse the order if it is bottom up. |
| 274 | std::reverse(Sequence.begin(), Sequence.end()); |
| 275 | |
| 276 | |
| 277 | #ifndef NDEBUG |
| 278 | // Verify that all SUnits were scheduled. |
| 279 | bool AnyNotSched = false; |
| 280 | for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { |
| 281 | if (SUnits[i].NumSuccsLeft != 0 || SUnits[i].NumChainSuccsLeft != 0) { |
| 282 | if (!AnyNotSched) |
| 283 | std::cerr << "*** List scheduling failed! ***\n"; |
| 284 | SUnits[i].dump(&DAG); |
| 285 | std::cerr << "has not been scheduled!\n"; |
| 286 | AnyNotSched = true; |
| 287 | } |
| 288 | } |
| 289 | assert(!AnyNotSched); |
| 290 | #endif |
| 291 | } |
| 292 | |
| 293 | //===----------------------------------------------------------------------===// |
| 294 | // Top-Down Scheduling |
| 295 | //===----------------------------------------------------------------------===// |
| 296 | |
| 297 | /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to |
| 298 | /// the PendingQueue if the count reaches zero. |
| 299 | void ScheduleDAGRRList::ReleaseSucc(SUnit *SuccSU, bool isChain, |
| 300 | unsigned CurCycle) { |
| 301 | // FIXME: the distance between two nodes is not always == the predecessor's |
| 302 | // latency. For example, the reader can very well read the register written |
| 303 | // by the predecessor later than the issue cycle. It also depends on the |
| 304 | // interrupt model (drain vs. freeze). |
| 305 | SuccSU->CycleBound = std::max(SuccSU->CycleBound, CurCycle + SuccSU->Latency); |
| 306 | |
| 307 | if (!isChain) |
| 308 | SuccSU->NumPredsLeft--; |
| 309 | else |
| 310 | SuccSU->NumChainPredsLeft--; |
| 311 | |
| 312 | #ifndef NDEBUG |
| 313 | if (SuccSU->NumPredsLeft < 0 || SuccSU->NumChainPredsLeft < 0) { |
| 314 | std::cerr << "*** List scheduling failed! ***\n"; |
| 315 | SuccSU->dump(&DAG); |
| 316 | std::cerr << " has been released too many times!\n"; |
| 317 | assert(0); |
| 318 | } |
| 319 | #endif |
| 320 | |
| 321 | if ((SuccSU->NumPredsLeft + SuccSU->NumChainPredsLeft) == 0) { |
| 322 | SuccSU->isAvailable = true; |
| 323 | AvailableQueue->push(SuccSU); |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | |
| 328 | /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending |
| 329 | /// count of its successors. If a successor pending count is zero, add it to |
| 330 | /// the Available queue. |
| 331 | void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned& CurCycle) { |
| 332 | DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: "); |
| 333 | DEBUG(SU->dump(&DAG)); |
| 334 | SU->Cycle = CurCycle; |
| 335 | |
| 336 | AvailableQueue->ScheduledNode(SU); |
| 337 | Sequence.push_back(SU); |
| 338 | |
| 339 | // Top down: release successors |
| 340 | for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Succs.begin(), |
| 341 | E = SU->Succs.end(); I != E; ++I) |
| 342 | ReleaseSucc(I->first, I->second, CurCycle); |
| 343 | SU->isScheduled = true; |
| 344 | CurCycle++; |
| 345 | } |
| 346 | |
| 347 | void ScheduleDAGRRList::ListScheduleTopDown() { |
| 348 | unsigned CurCycle = 0; |
| 349 | SUnit *Entry = SUnitMap[DAG.getEntryNode().Val]; |
| 350 | |
| 351 | // All leaves to Available queue. |
| 352 | for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { |
| 353 | // It is available if it has no predecessors. |
| 354 | if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) { |
| 355 | AvailableQueue->push(&SUnits[i]); |
| 356 | SUnits[i].isAvailable = true; |
| 357 | } |
| 358 | } |
| 359 | |
| 360 | // Emit the entry node first. |
| 361 | ScheduleNodeTopDown(Entry, CurCycle); |
| 362 | |
| 363 | // While Available queue is not empty, grab the node with the highest |
| 364 | // priority. If it is not ready put it back. Schedule the node. |
| 365 | std::vector<SUnit*> NotReady; |
| 366 | SUnit *CurNode = NULL; |
| 367 | while (!AvailableQueue->empty()) { |
| 368 | SUnit *CurNode = AvailableQueue->pop(); |
| 369 | while (!isReady(CurNode, CurCycle)) { |
| 370 | NotReady.push_back(CurNode); |
| 371 | CurNode = AvailableQueue->pop(); |
| 372 | } |
| 373 | |
| 374 | // Add the nodes that aren't ready back onto the available list. |
| 375 | AvailableQueue->push_all(NotReady); |
| 376 | NotReady.clear(); |
| 377 | |
| 378 | ScheduleNodeTopDown(CurNode, CurCycle); |
| 379 | } |
| 380 | |
| 381 | |
| 382 | #ifndef NDEBUG |
| 383 | // Verify that all SUnits were scheduled. |
| 384 | bool AnyNotSched = false; |
| 385 | for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { |
| 386 | if (!SUnits[i].isScheduled) { |
| 387 | if (!AnyNotSched) |
| 388 | std::cerr << "*** List scheduling failed! ***\n"; |
| 389 | SUnits[i].dump(&DAG); |
| 390 | std::cerr << "has not been scheduled!\n"; |
| 391 | AnyNotSched = true; |
| 392 | } |
| 393 | } |
| 394 | assert(!AnyNotSched); |
| 395 | #endif |
| 396 | } |
| 397 | |
| 398 | |
| 399 | |
| 400 | //===----------------------------------------------------------------------===// |
| 401 | // RegReductionPriorityQueue Implementation |
| 402 | //===----------------------------------------------------------------------===// |
| 403 | // |
| 404 | // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers |
| 405 | // to reduce register pressure. |
| 406 | // |
| 407 | namespace { |
| 408 | template<class SF> |
| 409 | class RegReductionPriorityQueue; |
| 410 | |
| 411 | /// Sorting functions for the Available queue. |
| 412 | struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> { |
| 413 | RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ; |
| 414 | bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {} |
| 415 | bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {} |
| 416 | |
| 417 | bool operator()(const SUnit* left, const SUnit* right) const; |
| 418 | }; |
| 419 | |
| 420 | struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> { |
| 421 | RegReductionPriorityQueue<td_ls_rr_sort> *SPQ; |
| 422 | td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {} |
| 423 | td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {} |
| 424 | |
| 425 | bool operator()(const SUnit* left, const SUnit* right) const; |
| 426 | }; |
| 427 | } // end anonymous namespace |
| 428 | |
| 429 | namespace { |
| 430 | template<class SF> |
| 431 | class RegReductionPriorityQueue : public SchedulingPriorityQueue { |
| 432 | std::priority_queue<SUnit*, std::vector<SUnit*>, SF> Queue; |
| 433 | |
| 434 | public: |
| 435 | RegReductionPriorityQueue() : |
| 436 | Queue(SF(this)) {} |
| 437 | |
| 438 | virtual void initNodes(const std::vector<SUnit> &sunits) {} |
| 439 | virtual void releaseState() {} |
| 440 | |
| 441 | virtual int getSethiUllmanNumber(unsigned NodeNum) const { |
| 442 | return 0; |
| 443 | } |
| 444 | |
| 445 | bool empty() const { return Queue.empty(); } |
| 446 | |
| 447 | void push(SUnit *U) { |
| 448 | Queue.push(U); |
| 449 | } |
| 450 | void push_all(const std::vector<SUnit *> &Nodes) { |
| 451 | for (unsigned i = 0, e = Nodes.size(); i != e; ++i) |
| 452 | Queue.push(Nodes[i]); |
| 453 | } |
| 454 | |
| 455 | SUnit *pop() { |
| 456 | SUnit *V = Queue.top(); |
| 457 | Queue.pop(); |
| 458 | return V; |
| 459 | } |
| 460 | }; |
| 461 | |
| 462 | template<class SF> |
| 463 | class BURegReductionPriorityQueue : public RegReductionPriorityQueue<SF> { |
| 464 | // SUnits - The SUnits for the current graph. |
| 465 | const std::vector<SUnit> *SUnits; |
| 466 | |
| 467 | // SethiUllmanNumbers - The SethiUllman number for each node. |
| 468 | std::vector<int> SethiUllmanNumbers; |
| 469 | |
| 470 | public: |
| 471 | BURegReductionPriorityQueue() {} |
| 472 | |
| 473 | void initNodes(const std::vector<SUnit> &sunits) { |
| 474 | SUnits = &sunits; |
| 475 | // Add pseudo dependency edges for two-address nodes. |
Evan Cheng | afed73e | 2006-05-12 01:58:24 +0000 | [diff] [blame] | 476 | AddPseudoTwoAddrDeps(); |
Evan Cheng | d38c22b | 2006-05-11 23:55:42 +0000 | [diff] [blame] | 477 | // Calculate node priorities. |
| 478 | CalculatePriorities(); |
| 479 | } |
| 480 | |
| 481 | void releaseState() { |
| 482 | SUnits = 0; |
| 483 | SethiUllmanNumbers.clear(); |
| 484 | } |
| 485 | |
| 486 | int getSethiUllmanNumber(unsigned NodeNum) const { |
| 487 | assert(NodeNum < SethiUllmanNumbers.size()); |
| 488 | return SethiUllmanNumbers[NodeNum]; |
| 489 | } |
| 490 | |
| 491 | private: |
| 492 | void AddPseudoTwoAddrDeps(); |
| 493 | void CalculatePriorities(); |
| 494 | int CalcNodePriority(const SUnit *SU); |
| 495 | }; |
| 496 | |
| 497 | |
| 498 | template<class SF> |
| 499 | class TDRegReductionPriorityQueue : public RegReductionPriorityQueue<SF> { |
| 500 | // SUnits - The SUnits for the current graph. |
| 501 | const std::vector<SUnit> *SUnits; |
| 502 | |
| 503 | // SethiUllmanNumbers - The SethiUllman number for each node. |
| 504 | std::vector<int> SethiUllmanNumbers; |
| 505 | |
| 506 | public: |
| 507 | TDRegReductionPriorityQueue() {} |
| 508 | |
| 509 | void initNodes(const std::vector<SUnit> &sunits) { |
| 510 | SUnits = &sunits; |
| 511 | // Calculate node priorities. |
| 512 | CalculatePriorities(); |
| 513 | } |
| 514 | |
| 515 | void releaseState() { |
| 516 | SUnits = 0; |
| 517 | SethiUllmanNumbers.clear(); |
| 518 | } |
| 519 | |
| 520 | int getSethiUllmanNumber(unsigned NodeNum) const { |
| 521 | assert(NodeNum < SethiUllmanNumbers.size()); |
| 522 | return SethiUllmanNumbers[NodeNum]; |
| 523 | } |
| 524 | |
| 525 | private: |
| 526 | void CalculatePriorities(); |
| 527 | int CalcNodePriority(const SUnit *SU); |
| 528 | }; |
| 529 | } |
| 530 | |
Evan Cheng | 99f2f79 | 2006-05-13 08:22:24 +0000 | [diff] [blame] | 531 | static bool isFloater(const SUnit *SU) { |
| 532 | if (SU->Node->isTargetOpcode()) { |
| 533 | if (SU->NumPreds == 0) |
| 534 | return true; |
| 535 | if (SU->NumPreds == 1) { |
| 536 | for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(), |
| 537 | E = SU->Preds.end(); I != E; ++I) { |
| 538 | if (I->second) continue; |
| 539 | |
| 540 | SUnit *PredSU = I->first; |
| 541 | unsigned Opc = PredSU->Node->getOpcode(); |
| 542 | if (Opc != ISD::EntryToken && Opc != ISD::TokenFactor && |
| 543 | Opc != ISD::CopyFromReg && Opc != ISD::CopyToReg) |
| 544 | return false; |
| 545 | } |
| 546 | return true; |
| 547 | } |
| 548 | } |
| 549 | return false; |
| 550 | } |
| 551 | |
| 552 | static bool isSimpleFloaterUse(const SUnit *SU) { |
| 553 | unsigned NumOps = 0; |
| 554 | for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(), |
| 555 | E = SU->Preds.end(); I != E; ++I) { |
| 556 | if (I->second) continue; |
| 557 | if (++NumOps > 1) |
| 558 | return false; |
| 559 | if (!isFloater(I->first)) |
| 560 | return false; |
| 561 | } |
| 562 | return true; |
| 563 | } |
| 564 | |
Evan Cheng | d38c22b | 2006-05-11 23:55:42 +0000 | [diff] [blame] | 565 | // Bottom up |
| 566 | bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const { |
| 567 | unsigned LeftNum = left->NodeNum; |
| 568 | unsigned RightNum = right->NodeNum; |
| 569 | bool LIsTarget = left->Node->isTargetOpcode(); |
| 570 | bool RIsTarget = right->Node->isTargetOpcode(); |
| 571 | int LPriority = SPQ->getSethiUllmanNumber(LeftNum); |
| 572 | int RPriority = SPQ->getSethiUllmanNumber(RightNum); |
Evan Cheng | d38c22b | 2006-05-11 23:55:42 +0000 | [diff] [blame] | 573 | int LBonus = 0; |
| 574 | int RBonus = 0; |
| 575 | |
| 576 | // Schedule floaters (e.g. load from some constant address) and those nodes |
| 577 | // with a single predecessor each first. They maintain / reduce register |
| 578 | // pressure. |
Evan Cheng | 99f2f79 | 2006-05-13 08:22:24 +0000 | [diff] [blame] | 579 | if (isFloater(left) || isSimpleFloaterUse(left)) |
Evan Cheng | d38c22b | 2006-05-11 23:55:42 +0000 | [diff] [blame] | 580 | LBonus += 2; |
Evan Cheng | 99f2f79 | 2006-05-13 08:22:24 +0000 | [diff] [blame] | 581 | if (isFloater(right) || isSimpleFloaterUse(right)) |
Evan Cheng | d38c22b | 2006-05-11 23:55:42 +0000 | [diff] [blame] | 582 | RBonus += 2; |
| 583 | |
Evan Cheng | 99f2f79 | 2006-05-13 08:22:24 +0000 | [diff] [blame] | 584 | // Special tie breaker: if two nodes share a operand, the one that use it |
| 585 | // as a def&use operand is preferred. |
| 586 | if (LIsTarget && RIsTarget) { |
| 587 | if (left->isTwoAddress && !right->isTwoAddress) { |
| 588 | SDNode *DUNode = left->Node->getOperand(0).Val; |
| 589 | if (DUNode->isOperand(right->Node)) |
| 590 | LBonus += 2; |
| 591 | } |
| 592 | if (!left->isTwoAddress && right->isTwoAddress) { |
| 593 | SDNode *DUNode = right->Node->getOperand(0).Val; |
| 594 | if (DUNode->isOperand(left->Node)) |
| 595 | RBonus += 2; |
| 596 | } |
| 597 | } |
| 598 | |
Evan Cheng | d38c22b | 2006-05-11 23:55:42 +0000 | [diff] [blame] | 599 | if (LPriority+LBonus < RPriority+RBonus) |
| 600 | return true; |
| 601 | else if (LPriority+LBonus == RPriority+RBonus) |
Evan Cheng | 99f2f79 | 2006-05-13 08:22:24 +0000 | [diff] [blame] | 602 | if (left->Height > right->Height) |
Evan Cheng | d38c22b | 2006-05-11 23:55:42 +0000 | [diff] [blame] | 603 | return true; |
Evan Cheng | 99f2f79 | 2006-05-13 08:22:24 +0000 | [diff] [blame] | 604 | else if (left->Height == right->Height) |
| 605 | if (left->Depth < right->Depth) |
Evan Cheng | d38c22b | 2006-05-11 23:55:42 +0000 | [diff] [blame] | 606 | return true; |
Evan Cheng | 99f2f79 | 2006-05-13 08:22:24 +0000 | [diff] [blame] | 607 | else if (left->Depth == right->Depth) |
| 608 | if (left->CycleBound > right->CycleBound) |
| 609 | return true; |
Evan Cheng | d38c22b | 2006-05-11 23:55:42 +0000 | [diff] [blame] | 610 | return false; |
| 611 | } |
| 612 | |
| 613 | static inline bool isCopyFromLiveIn(const SUnit *SU) { |
| 614 | SDNode *N = SU->Node; |
| 615 | return N->getOpcode() == ISD::CopyFromReg && |
| 616 | N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag; |
| 617 | } |
| 618 | |
| 619 | // FIXME: This is probably too slow! |
| 620 | static void isReachable(SUnit *SU, SUnit *TargetSU, |
| 621 | std::set<SUnit *> &Visited, bool &Reached) { |
| 622 | if (Reached) return; |
| 623 | if (SU == TargetSU) { |
| 624 | Reached = true; |
| 625 | return; |
| 626 | } |
| 627 | if (!Visited.insert(SU).second) return; |
| 628 | |
| 629 | for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(), |
| 630 | E = SU->Preds.end(); I != E; ++I) |
| 631 | isReachable(I->first, TargetSU, Visited, Reached); |
| 632 | } |
| 633 | |
| 634 | static bool isReachable(SUnit *SU, SUnit *TargetSU) { |
| 635 | std::set<SUnit *> Visited; |
| 636 | bool Reached = false; |
| 637 | isReachable(SU, TargetSU, Visited, Reached); |
| 638 | return Reached; |
| 639 | } |
| 640 | |
| 641 | static SUnit *getDefUsePredecessor(SUnit *SU) { |
| 642 | SDNode *DU = SU->Node->getOperand(0).Val; |
| 643 | for (std::set<std::pair<SUnit*, bool> >::iterator |
| 644 | I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { |
| 645 | if (I->second) continue; // ignore chain preds |
| 646 | SUnit *PredSU = I->first; |
| 647 | if (PredSU->Node == DU) |
| 648 | return PredSU; |
| 649 | } |
| 650 | |
| 651 | // Must be flagged. |
| 652 | return NULL; |
| 653 | } |
| 654 | |
| 655 | static bool canClobber(SUnit *SU, SUnit *Op) { |
| 656 | if (SU->isTwoAddress) |
| 657 | return Op == getDefUsePredecessor(SU); |
| 658 | return false; |
| 659 | } |
| 660 | |
| 661 | /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses |
| 662 | /// it as a def&use operand. Add a pseudo control edge from it to the other |
| 663 | /// node (if it won't create a cycle) so the two-address one will be scheduled |
| 664 | /// first (lower in the schedule). |
| 665 | template<class SF> |
| 666 | void BURegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() { |
| 667 | for (unsigned i = 0, e = SUnits->size(); i != e; ++i) { |
| 668 | SUnit *SU = (SUnit *)&((*SUnits)[i]); |
| 669 | SDNode *Node = SU->Node; |
| 670 | if (!Node->isTargetOpcode()) |
| 671 | continue; |
| 672 | |
| 673 | if (SU->isTwoAddress) { |
Evan Cheng | d38c22b | 2006-05-11 23:55:42 +0000 | [diff] [blame] | 674 | SUnit *DUSU = getDefUsePredecessor(SU); |
| 675 | if (!DUSU) continue; |
| 676 | |
| 677 | for (std::set<std::pair<SUnit*, bool> >::iterator I = DUSU->Succs.begin(), |
| 678 | E = DUSU->Succs.end(); I != E; ++I) { |
Evan Cheng | afed73e | 2006-05-12 01:58:24 +0000 | [diff] [blame] | 679 | if (I->second) continue; |
Evan Cheng | d38c22b | 2006-05-11 23:55:42 +0000 | [diff] [blame] | 680 | SUnit *SuccSU = I->first; |
Evan Cheng | afed73e | 2006-05-12 01:58:24 +0000 | [diff] [blame] | 681 | if (SuccSU != SU && |
| 682 | (!canClobber(SuccSU, DUSU) || |
Evan Cheng | 009f5f5 | 2006-05-25 08:37:31 +0000 | [diff] [blame^] | 683 | (!SU->isCommutable && SuccSU->isCommutable))){ |
Evan Cheng | 99f2f79 | 2006-05-13 08:22:24 +0000 | [diff] [blame] | 684 | if (SuccSU->Depth == SU->Depth && !isReachable(SuccSU, SU)) { |
Evan Cheng | d38c22b | 2006-05-11 23:55:42 +0000 | [diff] [blame] | 685 | DEBUG(std::cerr << "Adding an edge from SU # " << SU->NodeNum |
| 686 | << " to SU #" << SuccSU->NodeNum << "\n"); |
| 687 | if (SU->Preds.insert(std::make_pair(SuccSU, true)).second) |
| 688 | SU->NumChainPredsLeft++; |
| 689 | if (SuccSU->Succs.insert(std::make_pair(SU, true)).second) |
| 690 | SuccSU->NumChainSuccsLeft++; |
| 691 | } |
| 692 | } |
| 693 | } |
| 694 | } |
| 695 | } |
| 696 | } |
| 697 | |
| 698 | /// CalcNodePriority - Priority is the Sethi Ullman number. |
| 699 | /// Smaller number is the higher priority. |
| 700 | template<class SF> |
| 701 | int BURegReductionPriorityQueue<SF>::CalcNodePriority(const SUnit *SU) { |
| 702 | int &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum]; |
| 703 | if (SethiUllmanNumber != 0) |
| 704 | return SethiUllmanNumber; |
| 705 | |
| 706 | unsigned Opc = SU->Node->getOpcode(); |
| 707 | if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg) |
| 708 | SethiUllmanNumber = INT_MAX - 10; |
| 709 | else if (SU->NumSuccsLeft == 0) |
| 710 | // If SU does not have a use, i.e. it doesn't produce a value that would |
| 711 | // be consumed (e.g. store), then it terminates a chain of computation. |
| 712 | // Give it a small SethiUllman number so it will be scheduled right before its |
| 713 | // predecessors that it doesn't lengthen their live ranges. |
| 714 | SethiUllmanNumber = INT_MIN + 10; |
Evan Cheng | 99f2f79 | 2006-05-13 08:22:24 +0000 | [diff] [blame] | 715 | // FIXME: remove this else if? It seems to reduce register spills but often |
| 716 | // ends up increasing runtime. Need to investigate. |
Evan Cheng | d38c22b | 2006-05-11 23:55:42 +0000 | [diff] [blame] | 717 | else if (SU->NumPredsLeft == 0 && |
| 718 | (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU))) |
Evan Cheng | 99f2f79 | 2006-05-13 08:22:24 +0000 | [diff] [blame] | 719 | SethiUllmanNumber = INT_MAX - 10; |
Evan Cheng | d38c22b | 2006-05-11 23:55:42 +0000 | [diff] [blame] | 720 | else { |
| 721 | int Extra = 0; |
| 722 | for (std::set<std::pair<SUnit*, bool> >::const_iterator |
| 723 | I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { |
| 724 | if (I->second) continue; // ignore chain preds |
| 725 | SUnit *PredSU = I->first; |
| 726 | int PredSethiUllman = CalcNodePriority(PredSU); |
| 727 | if (PredSethiUllman > SethiUllmanNumber) { |
| 728 | SethiUllmanNumber = PredSethiUllman; |
| 729 | Extra = 0; |
| 730 | } else if (PredSethiUllman == SethiUllmanNumber && !I->second) |
| 731 | Extra++; |
| 732 | } |
| 733 | |
| 734 | SethiUllmanNumber += Extra; |
| 735 | } |
| 736 | |
| 737 | return SethiUllmanNumber; |
| 738 | } |
| 739 | |
| 740 | /// CalculatePriorities - Calculate priorities of all scheduling units. |
| 741 | template<class SF> |
| 742 | void BURegReductionPriorityQueue<SF>::CalculatePriorities() { |
| 743 | SethiUllmanNumbers.assign(SUnits->size(), 0); |
| 744 | |
| 745 | for (unsigned i = 0, e = SUnits->size(); i != e; ++i) |
| 746 | CalcNodePriority(&(*SUnits)[i]); |
| 747 | } |
| 748 | |
| 749 | static unsigned SumOfUnscheduledPredsOfSuccs(const SUnit *SU) { |
| 750 | unsigned Sum = 0; |
| 751 | for (std::set<std::pair<SUnit*, bool> >::const_iterator |
| 752 | I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { |
| 753 | SUnit *SuccSU = I->first; |
| 754 | for (std::set<std::pair<SUnit*, bool> >::const_iterator |
| 755 | II = SuccSU->Preds.begin(), EE = SuccSU->Preds.end(); II != EE; ++II) { |
| 756 | SUnit *PredSU = II->first; |
| 757 | if (!PredSU->isScheduled) |
| 758 | Sum++; |
| 759 | } |
| 760 | } |
| 761 | |
| 762 | return Sum; |
| 763 | } |
| 764 | |
| 765 | |
| 766 | // Top down |
| 767 | bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const { |
| 768 | unsigned LeftNum = left->NodeNum; |
| 769 | unsigned RightNum = right->NodeNum; |
| 770 | int LPriority = SPQ->getSethiUllmanNumber(LeftNum); |
| 771 | int RPriority = SPQ->getSethiUllmanNumber(RightNum); |
| 772 | bool LIsTarget = left->Node->isTargetOpcode(); |
| 773 | bool RIsTarget = right->Node->isTargetOpcode(); |
| 774 | bool LIsFloater = LIsTarget && left->NumPreds == 0; |
| 775 | bool RIsFloater = RIsTarget && right->NumPreds == 0; |
| 776 | unsigned LBonus = (SumOfUnscheduledPredsOfSuccs(left) == 1) ? 2 : 0; |
| 777 | unsigned RBonus = (SumOfUnscheduledPredsOfSuccs(right) == 1) ? 2 : 0; |
| 778 | |
| 779 | if (left->NumSuccs == 0 && right->NumSuccs != 0) |
| 780 | return false; |
| 781 | else if (left->NumSuccs != 0 && right->NumSuccs == 0) |
| 782 | return true; |
| 783 | |
| 784 | // Special tie breaker: if two nodes share a operand, the one that use it |
| 785 | // as a def&use operand is preferred. |
| 786 | if (LIsTarget && RIsTarget) { |
| 787 | if (left->isTwoAddress && !right->isTwoAddress) { |
| 788 | SDNode *DUNode = left->Node->getOperand(0).Val; |
| 789 | if (DUNode->isOperand(right->Node)) |
| 790 | RBonus += 2; |
| 791 | } |
| 792 | if (!left->isTwoAddress && right->isTwoAddress) { |
| 793 | SDNode *DUNode = right->Node->getOperand(0).Val; |
| 794 | if (DUNode->isOperand(left->Node)) |
| 795 | LBonus += 2; |
| 796 | } |
| 797 | } |
| 798 | if (LIsFloater) |
| 799 | LBonus -= 2; |
| 800 | if (RIsFloater) |
| 801 | RBonus -= 2; |
| 802 | if (left->NumSuccs == 1) |
| 803 | LBonus += 2; |
| 804 | if (right->NumSuccs == 1) |
| 805 | RBonus += 2; |
| 806 | |
| 807 | if (LPriority+LBonus < RPriority+RBonus) |
| 808 | return true; |
| 809 | else if (LPriority == RPriority) |
| 810 | if (left->Depth < right->Depth) |
| 811 | return true; |
| 812 | else if (left->Depth == right->Depth) |
| 813 | if (left->NumSuccsLeft > right->NumSuccsLeft) |
| 814 | return true; |
| 815 | else if (left->NumSuccsLeft == right->NumSuccsLeft) |
| 816 | if (left->CycleBound > right->CycleBound) |
| 817 | return true; |
| 818 | return false; |
| 819 | } |
| 820 | |
| 821 | /// CalcNodePriority - Priority is the Sethi Ullman number. |
| 822 | /// Smaller number is the higher priority. |
| 823 | template<class SF> |
| 824 | int TDRegReductionPriorityQueue<SF>::CalcNodePriority(const SUnit *SU) { |
| 825 | int &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum]; |
| 826 | if (SethiUllmanNumber != 0) |
| 827 | return SethiUllmanNumber; |
| 828 | |
| 829 | unsigned Opc = SU->Node->getOpcode(); |
| 830 | if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg) |
| 831 | SethiUllmanNumber = INT_MAX - 10; |
| 832 | else if (SU->NumSuccsLeft == 0) |
| 833 | // If SU does not have a use, i.e. it doesn't produce a value that would |
| 834 | // be consumed (e.g. store), then it terminates a chain of computation. |
| 835 | // Give it a small SethiUllman number so it will be scheduled right before its |
| 836 | // predecessors that it doesn't lengthen their live ranges. |
| 837 | SethiUllmanNumber = INT_MIN + 10; |
| 838 | else if (SU->NumPredsLeft == 0 && |
| 839 | (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU))) |
| 840 | SethiUllmanNumber = 1; |
| 841 | else { |
| 842 | int Extra = 0; |
| 843 | for (std::set<std::pair<SUnit*, bool> >::const_iterator |
| 844 | I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { |
| 845 | if (I->second) continue; // ignore chain preds |
| 846 | SUnit *PredSU = I->first; |
| 847 | int PredSethiUllman = CalcNodePriority(PredSU); |
| 848 | if (PredSethiUllman > SethiUllmanNumber) { |
| 849 | SethiUllmanNumber = PredSethiUllman; |
| 850 | Extra = 0; |
| 851 | } else if (PredSethiUllman == SethiUllmanNumber && !I->second) |
| 852 | Extra++; |
| 853 | } |
| 854 | |
| 855 | SethiUllmanNumber += Extra; |
| 856 | } |
| 857 | |
| 858 | return SethiUllmanNumber; |
| 859 | } |
| 860 | |
| 861 | /// CalculatePriorities - Calculate priorities of all scheduling units. |
| 862 | template<class SF> |
| 863 | void TDRegReductionPriorityQueue<SF>::CalculatePriorities() { |
| 864 | SethiUllmanNumbers.assign(SUnits->size(), 0); |
| 865 | |
| 866 | for (unsigned i = 0, e = SUnits->size(); i != e; ++i) |
| 867 | CalcNodePriority(&(*SUnits)[i]); |
| 868 | } |
| 869 | |
| 870 | //===----------------------------------------------------------------------===// |
| 871 | // Public Constructor Functions |
| 872 | //===----------------------------------------------------------------------===// |
| 873 | |
| 874 | llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAG &DAG, |
| 875 | MachineBasicBlock *BB) { |
| 876 | return new ScheduleDAGRRList(DAG, BB, DAG.getTarget(), true, |
| 877 | new BURegReductionPriorityQueue<bu_ls_rr_sort>()); |
| 878 | } |
| 879 | |
| 880 | llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAG &DAG, |
| 881 | MachineBasicBlock *BB) { |
| 882 | return new ScheduleDAGRRList(DAG, BB, DAG.getTarget(), false, |
| 883 | new TDRegReductionPriorityQueue<td_ls_rr_sort>()); |
| 884 | } |
| 885 | |