blob: 57e3df76d02312f365236ba7fa34073180c21973 [file] [log] [blame]
Chris Lattnerd43023a2002-08-02 16:43:03 +00001//===- Dominators.cpp - Dominator Calculation -----------------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner081aabc2001-07-02 05:46:38 +00009//
Chris Lattnerd43023a2002-08-02 16:43:03 +000010// This file implements simple dominator construction algorithms for finding
11// forward dominators. Postdominators are available in libanalysis, but are not
12// included in libvmcore, because it's not needed. Forward dominators are
13// needed to support the Verifier pass.
Chris Lattner081aabc2001-07-02 05:46:38 +000014//
15//===----------------------------------------------------------------------===//
16
Chandler Carruth5ad5f152014-01-13 09:26:24 +000017#include "llvm/IR/Dominators.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000018#include "llvm/ADT/DepthFirstIterator.h"
Devang Patel5a1bd402007-03-27 20:50:46 +000019#include "llvm/ADT/SmallPtrSet.h"
Chandler Carruth1305dc32014-03-04 11:45:46 +000020#include "llvm/IR/CFG.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000021#include "llvm/IR/Instructions.h"
Chandler Carruth64764b42015-01-14 10:19:28 +000022#include "llvm/IR/PassManager.h"
Dan Gohman4dbb3012009-09-28 00:27:48 +000023#include "llvm/Support/CommandLine.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000024#include "llvm/Support/Debug.h"
Chandler Carruthe509db42014-01-13 10:52:56 +000025#include "llvm/Support/GenericDomTreeConstruction.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000026#include "llvm/Support/raw_ostream.h"
Chris Lattnerc5e0be62004-06-05 00:24:59 +000027#include <algorithm>
Chris Lattner189d19f2003-11-21 20:23:48 +000028using namespace llvm;
Brian Gaeke960707c2003-11-11 22:41:34 +000029
Dan Gohman4dbb3012009-09-28 00:27:48 +000030// Always verify dominfo if expensive checking is enabled.
Filipe Cabecinhas0da99372016-04-29 15:22:48 +000031#ifdef EXPENSIVE_CHECKS
Dan Gohmanb29cda92010-04-15 17:08:50 +000032static bool VerifyDomInfo = true;
Dan Gohman4dbb3012009-09-28 00:27:48 +000033#else
Dan Gohmanb29cda92010-04-15 17:08:50 +000034static bool VerifyDomInfo = false;
Dan Gohman4dbb3012009-09-28 00:27:48 +000035#endif
36static cl::opt<bool,true>
37VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
38 cl::desc("Verify dominator info (time consuming)"));
39
Rafael Espindolacc80cde2012-08-16 15:09:43 +000040bool BasicBlockEdge::isSingleEdge() const {
41 const TerminatorInst *TI = Start->getTerminator();
42 unsigned NumEdgesToEnd = 0;
43 for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
44 if (TI->getSuccessor(i) == End)
45 ++NumEdgesToEnd;
46 if (NumEdgesToEnd >= 2)
47 return false;
48 }
49 assert(NumEdgesToEnd == 1);
50 return true;
Rafael Espindola11870772012-08-10 14:05:55 +000051}
52
Chris Lattnerc385beb2001-07-06 16:58:22 +000053//===----------------------------------------------------------------------===//
Owen Andersonf35a1db2007-04-15 08:47:27 +000054// DominatorTree Implementation
Chris Lattner00f51672003-12-07 00:38:08 +000055//===----------------------------------------------------------------------===//
56//
Owen Anderson84c357f2007-09-23 21:31:44 +000057// Provide public access to DominatorTree information. Implementation details
Chandler Carruthe509db42014-01-13 10:52:56 +000058// can be found in Dominators.h, GenericDomTree.h, and
59// GenericDomTreeConstruction.h.
Chris Lattner00f51672003-12-07 00:38:08 +000060//
61//===----------------------------------------------------------------------===//
62
Benjamin Kramera667d1a2015-07-13 17:21:31 +000063template class llvm::DomTreeNodeBase<BasicBlock>;
64template class llvm::DominatorTreeBase<BasicBlock>;
Owen Anderson41878012007-10-16 19:59:25 +000065
Benjamin Kramera667d1a2015-07-13 17:21:31 +000066template void llvm::Calculate<Function, BasicBlock *>(
67 DominatorTreeBase<GraphTraits<BasicBlock *>::NodeType> &DT, Function &F);
68template void llvm::Calculate<Function, Inverse<BasicBlock *>>(
69 DominatorTreeBase<GraphTraits<Inverse<BasicBlock *>>::NodeType> &DT,
70 Function &F);
Rafael Espindola30616362014-02-14 22:36:16 +000071
Rafael Espindola94df2672012-02-26 02:19:19 +000072// dominates - Return true if Def dominates a use in User. This performs
73// the special checks necessary if Def and User are in the same basic block.
74// Note that Def doesn't dominate a use in Def itself!
75bool DominatorTree::dominates(const Instruction *Def,
76 const Instruction *User) const {
77 const BasicBlock *UseBB = User->getParent();
78 const BasicBlock *DefBB = Def->getParent();
Rafael Espindola082d4822012-02-18 19:46:02 +000079
Rafael Espindolaa53c46a2012-03-30 16:46:21 +000080 // Any unreachable use is dominated, even if Def == User.
81 if (!isReachableFromEntry(UseBB))
82 return true;
83
84 // Unreachable definitions don't dominate anything.
85 if (!isReachableFromEntry(DefBB))
86 return false;
Rafael Espindola082d4822012-02-18 19:46:02 +000087
Rafael Espindola94df2672012-02-26 02:19:19 +000088 // An instruction doesn't dominate a use in itself.
89 if (Def == User)
Chris Lattner22151ce2009-09-21 22:30:50 +000090 return false;
Rafael Espindola082d4822012-02-18 19:46:02 +000091
David Majnemer8a1c45d2015-12-12 05:38:55 +000092 // The value defined by an invoke dominates an instruction only if it
93 // dominates every instruction in UseBB.
94 // A PHI is dominated only if the instruction dominates every possible use in
95 // the UseBB.
96 if (isa<InvokeInst>(Def) || isa<PHINode>(User))
Rafael Espindola94df2672012-02-26 02:19:19 +000097 return dominates(Def, UseBB);
98
99 if (DefBB != UseBB)
100 return dominates(DefBB, UseBB);
101
102 // Loop through the basic block until we find Def or User.
103 BasicBlock::const_iterator I = DefBB->begin();
104 for (; &*I != Def && &*I != User; ++I)
Chris Lattner22151ce2009-09-21 22:30:50 +0000105 /*empty*/;
Rafael Espindola082d4822012-02-18 19:46:02 +0000106
Rafael Espindola94df2672012-02-26 02:19:19 +0000107 return &*I == Def;
108}
109
110// true if Def would dominate a use in any instruction in UseBB.
111// note that dominates(Def, Def->getParent()) is false.
112bool DominatorTree::dominates(const Instruction *Def,
113 const BasicBlock *UseBB) const {
114 const BasicBlock *DefBB = Def->getParent();
115
Rafael Espindolaa53c46a2012-03-30 16:46:21 +0000116 // Any unreachable use is dominated, even if DefBB == UseBB.
117 if (!isReachableFromEntry(UseBB))
118 return true;
119
120 // Unreachable definitions don't dominate anything.
121 if (!isReachableFromEntry(DefBB))
122 return false;
Rafael Espindola94df2672012-02-26 02:19:19 +0000123
124 if (DefBB == UseBB)
125 return false;
126
David Majnemer8a1c45d2015-12-12 05:38:55 +0000127 // Invoke results are only usable in the normal destination, not in the
128 // exceptional destination.
David Majnemer0bc0eef2015-08-15 02:46:08 +0000129 if (const auto *II = dyn_cast<InvokeInst>(Def)) {
130 BasicBlock *NormalDest = II->getNormalDest();
131 BasicBlockEdge E(DefBB, NormalDest);
132 return dominates(E, UseBB);
133 }
Rafael Espindola94df2672012-02-26 02:19:19 +0000134
David Majnemer0bc0eef2015-08-15 02:46:08 +0000135 return dominates(DefBB, UseBB);
Rafael Espindola59564072012-08-07 17:30:46 +0000136}
137
138bool DominatorTree::dominates(const BasicBlockEdge &BBE,
139 const BasicBlock *UseBB) const {
Rafael Espindola9a167352012-08-17 18:21:28 +0000140 // Assert that we have a single edge. We could handle them by simply
141 // returning false, but since isSingleEdge is linear on the number of
142 // edges, the callers can normally handle them more efficiently.
Piotr Padlewski28ffcbe2015-09-02 19:59:59 +0000143 assert(BBE.isSingleEdge() &&
144 "This function is not efficient in handling multiple edges");
Rafael Espindola9a167352012-08-17 18:21:28 +0000145
Rafael Espindola59564072012-08-07 17:30:46 +0000146 // If the BB the edge ends in doesn't dominate the use BB, then the
147 // edge also doesn't.
148 const BasicBlock *Start = BBE.getStart();
149 const BasicBlock *End = BBE.getEnd();
150 if (!dominates(End, UseBB))
Rafael Espindola94df2672012-02-26 02:19:19 +0000151 return false;
152
Rafael Espindola59564072012-08-07 17:30:46 +0000153 // Simple case: if the end BB has a single predecessor, the fact that it
154 // dominates the use block implies that the edge also does.
155 if (End->getSinglePredecessor())
Rafael Espindola94df2672012-02-26 02:19:19 +0000156 return true;
157
158 // The normal edge from the invoke is critical. Conceptually, what we would
159 // like to do is split it and check if the new block dominates the use.
160 // With X being the new block, the graph would look like:
161 //
162 // DefBB
163 // /\ . .
164 // / \ . .
165 // / \ . .
166 // / \ | |
167 // A X B C
168 // | \ | /
169 // . \|/
170 // . NormalDest
171 // .
172 //
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000173 // Given the definition of dominance, NormalDest is dominated by X iff X
Rafael Espindola94df2672012-02-26 02:19:19 +0000174 // dominates all of NormalDest's predecessors (X, B, C in the example). X
175 // trivially dominates itself, so we only have to find if it dominates the
176 // other predecessors. Since the only way out of X is via NormalDest, X can
177 // only properly dominate a node if NormalDest dominates that node too.
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +0000178 for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
179 PI != E; ++PI) {
180 const BasicBlock *BB = *PI;
Rafael Espindola59564072012-08-07 17:30:46 +0000181 if (BB == Start)
Rafael Espindola94df2672012-02-26 02:19:19 +0000182 continue;
183
Rafael Espindola59564072012-08-07 17:30:46 +0000184 if (!dominates(End, BB))
Rafael Espindola94df2672012-02-26 02:19:19 +0000185 return false;
186 }
187 return true;
Chris Lattner22151ce2009-09-21 22:30:50 +0000188}
Dan Gohman73273272012-04-12 23:31:46 +0000189
Chandler Carruth73523022014-01-13 13:07:17 +0000190bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
Rafael Espindola9a167352012-08-17 18:21:28 +0000191 // Assert that we have a single edge. We could handle them by simply
192 // returning false, but since isSingleEdge is linear on the number of
193 // edges, the callers can normally handle them more efficiently.
Piotr Padlewski28ffcbe2015-09-02 19:59:59 +0000194 assert(BBE.isSingleEdge() &&
195 "This function is not efficient in handling multiple edges");
Rafael Espindola9a167352012-08-17 18:21:28 +0000196
Rafael Espindola59564072012-08-07 17:30:46 +0000197 Instruction *UserInst = cast<Instruction>(U.getUser());
198 // A PHI in the end of the edge is dominated by it.
199 PHINode *PN = dyn_cast<PHINode>(UserInst);
200 if (PN && PN->getParent() == BBE.getEnd() &&
201 PN->getIncomingBlock(U) == BBE.getStart())
202 return true;
203
204 // Otherwise use the edge-dominates-block query, which
205 // handles the crazy critical edge cases properly.
206 const BasicBlock *UseBB;
207 if (PN)
208 UseBB = PN->getIncomingBlock(U);
209 else
210 UseBB = UserInst->getParent();
211 return dominates(BBE, UseBB);
212}
213
Chandler Carruth73523022014-01-13 13:07:17 +0000214bool DominatorTree::dominates(const Instruction *Def, const Use &U) const {
Rafael Espindola59564072012-08-07 17:30:46 +0000215 Instruction *UserInst = cast<Instruction>(U.getUser());
Dan Gohman73273272012-04-12 23:31:46 +0000216 const BasicBlock *DefBB = Def->getParent();
217
218 // Determine the block in which the use happens. PHI nodes use
219 // their operands on edges; simulate this by thinking of the use
220 // happening at the end of the predecessor block.
221 const BasicBlock *UseBB;
222 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
223 UseBB = PN->getIncomingBlock(U);
224 else
225 UseBB = UserInst->getParent();
226
227 // Any unreachable use is dominated, even if Def == User.
228 if (!isReachableFromEntry(UseBB))
229 return true;
230
231 // Unreachable definitions don't dominate anything.
232 if (!isReachableFromEntry(DefBB))
233 return false;
234
David Majnemer8a1c45d2015-12-12 05:38:55 +0000235 // Invoke instructions define their return values on the edges to their normal
236 // successors, so we have to handle them specially.
Dan Gohman73273272012-04-12 23:31:46 +0000237 // Among other things, this means they don't dominate anything in
238 // their own block, except possibly a phi, so we don't need to
239 // walk the block in any case.
240 if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
Rafael Espindola59564072012-08-07 17:30:46 +0000241 BasicBlock *NormalDest = II->getNormalDest();
242 BasicBlockEdge E(DefBB, NormalDest);
243 return dominates(E, U);
Dan Gohman73273272012-04-12 23:31:46 +0000244 }
245
246 // If the def and use are in different blocks, do a simple CFG dominator
247 // tree query.
248 if (DefBB != UseBB)
249 return dominates(DefBB, UseBB);
250
251 // Ok, def and use are in the same block. If the def is an invoke, it
252 // doesn't dominate anything in the block. If it's a PHI, it dominates
253 // everything in the block.
254 if (isa<PHINode>(UserInst))
255 return true;
256
257 // Otherwise, just loop through the basic block until we find Def or User.
258 BasicBlock::const_iterator I = DefBB->begin();
259 for (; &*I != Def && &*I != UserInst; ++I)
260 /*empty*/;
261
262 return &*I != UserInst;
263}
264
265bool DominatorTree::isReachableFromEntry(const Use &U) const {
266 Instruction *I = dyn_cast<Instruction>(U.getUser());
267
268 // ConstantExprs aren't really reachable from the entry block, but they
269 // don't need to be treated like unreachable code either.
270 if (!I) return true;
271
272 // PHI nodes use their operands on their incoming edges.
273 if (PHINode *PN = dyn_cast<PHINode>(I))
274 return isReachableFromEntry(PN->getIncomingBlock(U));
275
276 // Everything else uses their operands in their own block.
277 return isReachableFromEntry(I->getParent());
278}
Chandler Carruth73523022014-01-13 13:07:17 +0000279
280void DominatorTree::verifyDomTree() const {
Chandler Carruth73523022014-01-13 13:07:17 +0000281 Function &F = *getRoot()->getParent();
282
283 DominatorTree OtherDT;
284 OtherDT.recalculate(F);
285 if (compare(OtherDT)) {
286 errs() << "DominatorTree is not up to date!\nComputed:\n";
287 print(errs());
288 errs() << "\nActual:\n";
289 OtherDT.print(errs());
290 abort();
291 }
292}
293
294//===----------------------------------------------------------------------===//
Chandler Carruth64764b42015-01-14 10:19:28 +0000295// DominatorTreeAnalysis and related pass implementations
296//===----------------------------------------------------------------------===//
297//
298// This implements the DominatorTreeAnalysis which is used with the new pass
299// manager. It also implements some methods from utility passes.
300//
301//===----------------------------------------------------------------------===//
302
Chandler Carruth164a2aa62016-06-17 00:11:01 +0000303DominatorTree DominatorTreeAnalysis::run(Function &F,
304 AnalysisManager<Function> &) {
Chandler Carruth64764b42015-01-14 10:19:28 +0000305 DominatorTree DT;
306 DT.recalculate(F);
307 return DT;
308}
309
Chandler Carruthb4faf132016-03-11 10:22:49 +0000310char DominatorTreeAnalysis::PassID;
NAKAMURA Takumidf0cd722016-02-28 17:17:00 +0000311
Chandler Carruth64764b42015-01-14 10:19:28 +0000312DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
313
314PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
Chandler Carruthb47f8012016-03-11 11:05:24 +0000315 FunctionAnalysisManager &AM) {
Chandler Carruth64764b42015-01-14 10:19:28 +0000316 OS << "DominatorTree for function: " << F.getName() << "\n";
Chandler Carruthb47f8012016-03-11 11:05:24 +0000317 AM.getResult<DominatorTreeAnalysis>(F).print(OS);
Chandler Carruth64764b42015-01-14 10:19:28 +0000318
319 return PreservedAnalyses::all();
320}
321
322PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
Chandler Carruthb47f8012016-03-11 11:05:24 +0000323 FunctionAnalysisManager &AM) {
324 AM.getResult<DominatorTreeAnalysis>(F).verifyDomTree();
Chandler Carruth64764b42015-01-14 10:19:28 +0000325
326 return PreservedAnalyses::all();
327}
328
329//===----------------------------------------------------------------------===//
Chandler Carruth73523022014-01-13 13:07:17 +0000330// DominatorTreeWrapperPass Implementation
331//===----------------------------------------------------------------------===//
332//
Chandler Carruth64764b42015-01-14 10:19:28 +0000333// The implementation details of the wrapper pass that holds a DominatorTree
334// suitable for use with the legacy pass manager.
Chandler Carruth73523022014-01-13 13:07:17 +0000335//
336//===----------------------------------------------------------------------===//
337
338char DominatorTreeWrapperPass::ID = 0;
339INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
340 "Dominator Tree Construction", true, true)
341
342bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
343 DT.recalculate(F);
344 return false;
345}
346
Adam Nemete340f852015-05-06 08:18:41 +0000347void DominatorTreeWrapperPass::verifyAnalysis() const {
348 if (VerifyDomInfo)
349 DT.verifyDomTree();
350}
Chandler Carruth73523022014-01-13 13:07:17 +0000351
352void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
353 DT.print(OS);
354}
355