blob: dcd8e5d15682d436d6fa84d7117c5c7ca7265b9e [file] [log] [blame]
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This transformation implements the well known scalar replacement of
11/// aggregates transformation. It tries to identify promotable elements of an
12/// aggregate alloca, and promote them to registers. It will also try to
13/// convert uses of an element (or set of elements) of an alloca into a vector
14/// or bitfield-style integer scalar if appropriate.
15///
16/// It works to do this with minimal slicing of the alloca so that regions
17/// which are merely transferred in and out of external memory remain unchanged
18/// and are not decomposed to scalar code.
19///
20/// Because this also performs alloca promotion, it can be thought of as also
21/// serving the purpose of SSA formation. The algorithm iterates on the
22/// function until all opportunities for promotion have been realized.
23///
24//===----------------------------------------------------------------------===//
25
26#define DEBUG_TYPE "sroa"
27#include "llvm/Transforms/Scalar.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000028#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/SetVector.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/Analysis/Dominators.h"
33#include "llvm/Analysis/Loads.h"
Chandler Carruthe41e7b72012-12-10 08:28:39 +000034#include "llvm/Analysis/PtrUseVisitor.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000035#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth1b398ae2012-09-14 09:22:59 +000036#include "llvm/DIBuilder.h"
37#include "llvm/DebugInfo.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000038#include "llvm/IR/Constants.h"
39#include "llvm/IR/DataLayout.h"
40#include "llvm/IR/DerivedTypes.h"
41#include "llvm/IR/Function.h"
42#include "llvm/IR/IRBuilder.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/IR/IntrinsicInst.h"
45#include "llvm/IR/LLVMContext.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000046#include "llvm/IR/Operator.h"
Chandler Carruthdbd69582012-11-30 03:08:41 +000047#include "llvm/InstVisitor.h"
Chandler Carruth1b398ae2012-09-14 09:22:59 +000048#include "llvm/Pass.h"
Chandler Carruth70b44c52012-09-15 11:43:14 +000049#include "llvm/Support/CommandLine.h"
Chandler Carruthf0546402013-07-18 07:15:00 +000050#include "llvm/Support/Compiler.h"
Chandler Carruth1b398ae2012-09-14 09:22:59 +000051#include "llvm/Support/Debug.h"
52#include "llvm/Support/ErrorHandling.h"
Chandler Carruth1b398ae2012-09-14 09:22:59 +000053#include "llvm/Support/MathExtras.h"
Chandler Carruth1b398ae2012-09-14 09:22:59 +000054#include "llvm/Support/raw_ostream.h"
Chandler Carruth1b398ae2012-09-14 09:22:59 +000055#include "llvm/Transforms/Utils/Local.h"
56#include "llvm/Transforms/Utils/PromoteMemToReg.h"
57#include "llvm/Transforms/Utils/SSAUpdater.h"
58using namespace llvm;
59
60STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
Chandler Carruth5f5b6162013-03-20 06:30:46 +000061STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
Chandler Carruth6c321c12013-07-19 10:57:36 +000062STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
63STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
64STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
Chandler Carruth5f5b6162013-03-20 06:30:46 +000065STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
66STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
Chandler Carruth1b398ae2012-09-14 09:22:59 +000067STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
Chandler Carruth5f5b6162013-03-20 06:30:46 +000068STATISTIC(NumDeleted, "Number of instructions deleted");
69STATISTIC(NumVectorized, "Number of vectorized aggregates");
Chandler Carruth1b398ae2012-09-14 09:22:59 +000070
Chandler Carruth70b44c52012-09-15 11:43:14 +000071/// Hidden option to force the pass to not use DomTree and mem2reg, instead
72/// forming SSA values through the SSAUpdater infrastructure.
73static cl::opt<bool>
74ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden);
75
Chandler Carruth1b398ae2012-09-14 09:22:59 +000076namespace {
Chandler Carruth34f0c7f2013-03-21 09:52:18 +000077/// \brief A custom IRBuilder inserter which prefixes all names if they are
78/// preserved.
79template <bool preserveNames = true>
80class IRBuilderPrefixedInserter :
81 public IRBuilderDefaultInserter<preserveNames> {
82 std::string Prefix;
83
84public:
85 void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
86
87protected:
88 void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
89 BasicBlock::iterator InsertPt) const {
90 IRBuilderDefaultInserter<preserveNames>::InsertHelper(
91 I, Name.isTriviallyEmpty() ? Name : Prefix + Name, BB, InsertPt);
92 }
93};
94
95// Specialization for not preserving the name is trivial.
96template <>
97class IRBuilderPrefixedInserter<false> :
98 public IRBuilderDefaultInserter<false> {
99public:
100 void SetNamePrefix(const Twine &P) {}
101};
102
Chandler Carruthd177f862013-03-20 07:30:36 +0000103/// \brief Provide a typedef for IRBuilder that drops names in release builds.
104#ifndef NDEBUG
Chandler Carruth34f0c7f2013-03-21 09:52:18 +0000105typedef llvm::IRBuilder<true, ConstantFolder,
106 IRBuilderPrefixedInserter<true> > IRBuilderTy;
Chandler Carruthd177f862013-03-20 07:30:36 +0000107#else
Chandler Carruth34f0c7f2013-03-21 09:52:18 +0000108typedef llvm::IRBuilder<false, ConstantFolder,
109 IRBuilderPrefixedInserter<false> > IRBuilderTy;
Chandler Carruthd177f862013-03-20 07:30:36 +0000110#endif
111}
112
113namespace {
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000114/// \brief A used slice of an alloca.
Chandler Carruthf0546402013-07-18 07:15:00 +0000115///
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000116/// This structure represents a slice of an alloca used by some instruction. It
117/// stores both the begin and end offsets of this use, a pointer to the use
118/// itself, and a flag indicating whether we can classify the use as splittable
119/// or not when forming partitions of the alloca.
120class Slice {
Chandler Carruthf74654d2013-03-18 08:36:46 +0000121 /// \brief The beginning offset of the range.
122 uint64_t BeginOffset;
123
124 /// \brief The ending offset, not included in the range.
125 uint64_t EndOffset;
126
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000127 /// \brief Storage for both the use of this slice and whether it can be
Chandler Carruthf0546402013-07-18 07:15:00 +0000128 /// split.
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000129 PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
Chandler Carruthf0546402013-07-18 07:15:00 +0000130
131public:
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000132 Slice() : BeginOffset(), EndOffset() {}
133 Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
Chandler Carruthf0546402013-07-18 07:15:00 +0000134 : BeginOffset(BeginOffset), EndOffset(EndOffset),
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000135 UseAndIsSplittable(U, IsSplittable) {}
Chandler Carruthf0546402013-07-18 07:15:00 +0000136
137 uint64_t beginOffset() const { return BeginOffset; }
138 uint64_t endOffset() const { return EndOffset; }
139
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000140 bool isSplittable() const { return UseAndIsSplittable.getInt(); }
141 void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
Chandler Carruthf0546402013-07-18 07:15:00 +0000142
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000143 Use *getUse() const { return UseAndIsSplittable.getPointer(); }
Chandler Carruthf0546402013-07-18 07:15:00 +0000144
145 bool isDead() const { return getUse() == 0; }
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000146 void kill() { UseAndIsSplittable.setPointer(0); }
Chandler Carruthf74654d2013-03-18 08:36:46 +0000147
148 /// \brief Support for ordering ranges.
149 ///
150 /// This provides an ordering over ranges such that start offsets are
151 /// always increasing, and within equal start offsets, the end offsets are
152 /// decreasing. Thus the spanning range comes first in a cluster with the
153 /// same start position.
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000154 bool operator<(const Slice &RHS) const {
Chandler Carruthf0546402013-07-18 07:15:00 +0000155 if (beginOffset() < RHS.beginOffset()) return true;
156 if (beginOffset() > RHS.beginOffset()) return false;
157 if (isSplittable() != RHS.isSplittable()) return !isSplittable();
158 if (endOffset() > RHS.endOffset()) return true;
Chandler Carruthf74654d2013-03-18 08:36:46 +0000159 return false;
160 }
161
162 /// \brief Support comparison with a single offset to allow binary searches.
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000163 friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
Chandler Carruthf0546402013-07-18 07:15:00 +0000164 uint64_t RHSOffset) {
165 return LHS.beginOffset() < RHSOffset;
Chandler Carruthf74654d2013-03-18 08:36:46 +0000166 }
Chandler Carruthe3899f22013-07-15 17:36:21 +0000167 friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000168 const Slice &RHS) {
Chandler Carruthf0546402013-07-18 07:15:00 +0000169 return LHSOffset < RHS.beginOffset();
Chandler Carruthf74654d2013-03-18 08:36:46 +0000170 }
Chandler Carruthe3899f22013-07-15 17:36:21 +0000171
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000172 bool operator==(const Slice &RHS) const {
Chandler Carruthf0546402013-07-18 07:15:00 +0000173 return isSplittable() == RHS.isSplittable() &&
174 beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
Chandler Carruthe3899f22013-07-15 17:36:21 +0000175 }
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000176 bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
Chandler Carruthf74654d2013-03-18 08:36:46 +0000177};
Chandler Carruthf0546402013-07-18 07:15:00 +0000178} // end anonymous namespace
Chandler Carruthf74654d2013-03-18 08:36:46 +0000179
180namespace llvm {
Chandler Carruthf0546402013-07-18 07:15:00 +0000181template <typename T> struct isPodLike;
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000182template <> struct isPodLike<Slice> {
Chandler Carruthf0546402013-07-18 07:15:00 +0000183 static const bool value = true;
184};
Chandler Carruthf74654d2013-03-18 08:36:46 +0000185}
186
187namespace {
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000188/// \brief Representation of the alloca slices.
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000189///
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000190/// This class represents the slices of an alloca which are formed by its
191/// various uses. If a pointer escapes, we can't fully build a representation
192/// for the slices used and we reflect that in this structure. The uses are
193/// stored, sorted by increasing beginning offset and with unsplittable slices
194/// starting at a particular offset before splittable slices.
195class AllocaSlices {
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000196public:
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000197 /// \brief Construct the slices of a particular alloca.
198 AllocaSlices(const DataLayout &DL, AllocaInst &AI);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000199
200 /// \brief Test whether a pointer to the allocation escapes our analysis.
201 ///
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000202 /// If this is true, the slices are never fully built and should be
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000203 /// ignored.
204 bool isEscaped() const { return PointerEscapingInstr; }
205
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000206 /// \brief Support for iterating over the slices.
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000207 /// @{
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000208 typedef SmallVectorImpl<Slice>::iterator iterator;
209 iterator begin() { return Slices.begin(); }
210 iterator end() { return Slices.end(); }
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000211
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000212 typedef SmallVectorImpl<Slice>::const_iterator const_iterator;
213 const_iterator begin() const { return Slices.begin(); }
214 const_iterator end() const { return Slices.end(); }
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000215 /// @}
216
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000217 /// \brief Allow iterating the dead users for this alloca.
218 ///
219 /// These are instructions which will never actually use the alloca as they
220 /// are outside the allocated range. They are safe to replace with undef and
221 /// delete.
222 /// @{
223 typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator;
224 dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); }
225 dead_user_iterator dead_user_end() const { return DeadUsers.end(); }
226 /// @}
227
Chandler Carruth93a21e72012-09-14 10:18:49 +0000228 /// \brief Allow iterating the dead expressions referring to this alloca.
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000229 ///
230 /// These are operands which have cannot actually be used to refer to the
231 /// alloca as they are outside its range and the user doesn't correct for
232 /// that. These mostly consist of PHI node inputs and the like which we just
233 /// need to replace with undef.
234 /// @{
235 typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator;
236 dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); }
237 dead_op_iterator dead_op_end() const { return DeadOperands.end(); }
238 /// @}
239
Chandler Carruth25fb23d2012-09-14 10:18:51 +0000240#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000241 void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const;
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000242 void printSlice(raw_ostream &OS, const_iterator I,
243 StringRef Indent = " ") const;
Chandler Carruthf0546402013-07-18 07:15:00 +0000244 void printUse(raw_ostream &OS, const_iterator I,
245 StringRef Indent = " ") const;
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000246 void print(raw_ostream &OS) const;
Alp Tokerf929e092014-01-04 22:47:48 +0000247 void dump(const_iterator I) const;
248 void dump() const;
Chandler Carruth25fb23d2012-09-14 10:18:51 +0000249#endif
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000250
251private:
252 template <typename DerivedT, typename RetT = void> class BuilderBase;
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000253 class SliceBuilder;
254 friend class AllocaSlices::SliceBuilder;
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000255
Nick Lewyckyc7776f72013-08-13 22:51:58 +0000256#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000257 /// \brief Handle to alloca instruction to simplify method interfaces.
258 AllocaInst &AI;
Nick Lewyckyc7776f72013-08-13 22:51:58 +0000259#endif
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000260
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000261 /// \brief The instruction responsible for this alloca not having a known set
262 /// of slices.
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000263 ///
264 /// When an instruction (potentially) escapes the pointer to the alloca, we
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000265 /// store a pointer to that here and abort trying to form slices of the
266 /// alloca. This will be null if the alloca slices are analyzed successfully.
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000267 Instruction *PointerEscapingInstr;
268
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000269 /// \brief The slices of the alloca.
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000270 ///
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000271 /// We store a vector of the slices formed by uses of the alloca here. This
272 /// vector is sorted by increasing begin offset, and then the unsplittable
273 /// slices before the splittable ones. See the Slice inner class for more
274 /// details.
275 SmallVector<Slice, 8> Slices;
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000276
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000277 /// \brief Instructions which will become dead if we rewrite the alloca.
278 ///
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000279 /// Note that these are not separated by slice. This is because we expect an
280 /// alloca to be completely rewritten or not rewritten at all. If rewritten,
281 /// all these instructions can simply be removed and replaced with undef as
282 /// they come from outside of the allocated space.
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000283 SmallVector<Instruction *, 8> DeadUsers;
284
285 /// \brief Operands which will become dead if we rewrite the alloca.
286 ///
287 /// These are operands that in their particular use can be replaced with
288 /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
289 /// to PHI nodes and the like. They aren't entirely dead (there might be
290 /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
291 /// want to swap this particular input for undef to simplify the use lists of
292 /// the alloca.
293 SmallVector<Use *, 8> DeadOperands;
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000294};
295}
296
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000297static Value *foldSelectInst(SelectInst &SI) {
298 // If the condition being selected on is a constant or the same value is
299 // being selected between, fold the select. Yes this does (rarely) happen
300 // early on.
301 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
302 return SI.getOperand(1+CI->isZero());
Jakub Staszak3c6583a2013-02-19 22:14:45 +0000303 if (SI.getOperand(1) == SI.getOperand(2))
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000304 return SI.getOperand(1);
Jakub Staszak3c6583a2013-02-19 22:14:45 +0000305
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000306 return 0;
307}
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000308
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000309/// \brief Builder for the alloca slices.
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000310///
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000311/// This class builds a set of alloca slices by recursively visiting the uses
312/// of an alloca and making a slice for each load and store at each offset.
313class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
314 friend class PtrUseVisitor<SliceBuilder>;
315 friend class InstVisitor<SliceBuilder>;
316 typedef PtrUseVisitor<SliceBuilder> Base;
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000317
318 const uint64_t AllocSize;
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000319 AllocaSlices &S;
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000320
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000321 SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
Chandler Carruthf0546402013-07-18 07:15:00 +0000322 SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
323
324 /// \brief Set to de-duplicate dead instructions found in the use walk.
325 SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000326
327public:
Nick Lewyckyc7776f72013-08-13 22:51:58 +0000328 SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &S)
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000329 : PtrUseVisitor<SliceBuilder>(DL),
Nick Lewyckyc7776f72013-08-13 22:51:58 +0000330 AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), S(S) {}
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000331
332private:
Chandler Carruthf0546402013-07-18 07:15:00 +0000333 void markAsDead(Instruction &I) {
334 if (VisitedDeadInsts.insert(&I))
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000335 S.DeadUsers.push_back(&I);
Chandler Carruthf0546402013-07-18 07:15:00 +0000336 }
337
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000338 void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
Chandler Carruth97121172012-09-16 19:39:50 +0000339 bool IsSplittable = false) {
Chandler Carruthf02b8bf2012-12-03 10:59:55 +0000340 // Completely skip uses which have a zero size or start either before or
341 // past the end of the allocation.
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000342 if (Size == 0 || Offset.isNegative() || Offset.uge(AllocSize)) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000343 DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
Chandler Carruthf02b8bf2012-12-03 10:59:55 +0000344 << " which has zero size or starts outside of the "
345 << AllocSize << " byte alloca:\n"
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000346 << " alloca: " << S.AI << "\n"
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000347 << " use: " << I << "\n");
Chandler Carruthf0546402013-07-18 07:15:00 +0000348 return markAsDead(I);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000349 }
350
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000351 uint64_t BeginOffset = Offset.getZExtValue();
352 uint64_t EndOffset = BeginOffset + Size;
Chandler Carruthe7a1ba52012-09-23 11:43:14 +0000353
354 // Clamp the end offset to the end of the allocation. Note that this is
355 // formulated to handle even the case where "BeginOffset + Size" overflows.
Chandler Carrutha1c54bb2013-03-14 11:32:24 +0000356 // This may appear superficially to be something we could ignore entirely,
357 // but that is not so! There may be widened loads or PHI-node uses where
358 // some instructions are dead but not others. We can't completely ignore
359 // them, and so have to record at least the information here.
Chandler Carruthe7a1ba52012-09-23 11:43:14 +0000360 assert(AllocSize >= BeginOffset); // Established above.
361 if (Size > AllocSize - BeginOffset) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000362 DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
363 << " to remain within the " << AllocSize << " byte alloca:\n"
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000364 << " alloca: " << S.AI << "\n"
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000365 << " use: " << I << "\n");
366 EndOffset = AllocSize;
367 }
368
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000369 S.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
Chandler Carruthf0546402013-07-18 07:15:00 +0000370 }
371
372 void visitBitCastInst(BitCastInst &BC) {
373 if (BC.use_empty())
374 return markAsDead(BC);
375
376 return Base::visitBitCastInst(BC);
377 }
378
379 void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
380 if (GEPI.use_empty())
381 return markAsDead(GEPI);
382
383 return Base::visitGetElementPtrInst(GEPI);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000384 }
385
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000386 void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
Chandler Carrutha1c54bb2013-03-14 11:32:24 +0000387 uint64_t Size, bool IsVolatile) {
Chandler Carruth58d05562012-10-25 04:37:07 +0000388 // We allow splitting of loads and stores where the type is an integer type
Chandler Carrutha1c54bb2013-03-14 11:32:24 +0000389 // and cover the entire alloca. This prevents us from splitting over
390 // eagerly.
391 // FIXME: In the great blue eventually, we should eagerly split all integer
392 // loads and stores, and then have a separate step that merges adjacent
393 // alloca partitions into a single partition suitable for integer widening.
394 // Or we should skip the merge step and rely on GVN and other passes to
395 // merge adjacent loads and stores that survive mem2reg.
396 bool IsSplittable =
397 Ty->isIntegerTy() && !IsVolatile && Offset == 0 && Size >= AllocSize;
Chandler Carruth58d05562012-10-25 04:37:07 +0000398
399 insertUse(I, Offset, Size, IsSplittable);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000400 }
401
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000402 void visitLoadInst(LoadInst &LI) {
Chandler Carruth42cb9cb2012-09-18 12:57:43 +0000403 assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
404 "All simple FCA loads should have been pre-split");
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000405
406 if (!IsOffsetKnown)
407 return PI.setAborted(&LI);
408
Chandler Carrutha1c54bb2013-03-14 11:32:24 +0000409 uint64_t Size = DL.getTypeStoreSize(LI.getType());
410 return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000411 }
412
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000413 void visitStoreInst(StoreInst &SI) {
Chandler Carruth42cb9cb2012-09-18 12:57:43 +0000414 Value *ValOp = SI.getValueOperand();
415 if (ValOp == *U)
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000416 return PI.setEscapedAndAborted(&SI);
417 if (!IsOffsetKnown)
418 return PI.setAborted(&SI);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000419
Chandler Carrutha1c54bb2013-03-14 11:32:24 +0000420 uint64_t Size = DL.getTypeStoreSize(ValOp->getType());
421
422 // If this memory access can be shown to *statically* extend outside the
423 // bounds of of the allocation, it's behavior is undefined, so simply
424 // ignore it. Note that this is more strict than the generic clamping
425 // behavior of insertUse. We also try to handle cases which might run the
426 // risk of overflow.
427 // FIXME: We should instead consider the pointer to have escaped if this
428 // function is being instrumented for addressing bugs or race conditions.
429 if (Offset.isNegative() || Size > AllocSize ||
430 Offset.ugt(AllocSize - Size)) {
431 DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" << Offset
432 << " which extends past the end of the " << AllocSize
433 << " byte alloca:\n"
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000434 << " alloca: " << S.AI << "\n"
Chandler Carrutha1c54bb2013-03-14 11:32:24 +0000435 << " use: " << SI << "\n");
Chandler Carruthf0546402013-07-18 07:15:00 +0000436 return markAsDead(SI);
Chandler Carrutha1c54bb2013-03-14 11:32:24 +0000437 }
438
Chandler Carruth42cb9cb2012-09-18 12:57:43 +0000439 assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
440 "All simple FCA stores should have been pre-split");
Chandler Carrutha1c54bb2013-03-14 11:32:24 +0000441 handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000442 }
443
444
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000445 void visitMemSetInst(MemSetInst &II) {
Chandler Carruthb0de6dd2012-09-14 10:26:34 +0000446 assert(II.getRawDest() == *U && "Pointer use is not the destination?");
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000447 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000448 if ((Length && Length->getValue() == 0) ||
449 (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
450 // Zero-length mem transfer intrinsics can be ignored entirely.
Chandler Carruthf0546402013-07-18 07:15:00 +0000451 return markAsDead(II);
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000452
453 if (!IsOffsetKnown)
454 return PI.setAborted(&II);
455
456 insertUse(II, Offset,
457 Length ? Length->getLimitedValue()
458 : AllocSize - Offset.getLimitedValue(),
459 (bool)Length);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000460 }
461
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000462 void visitMemTransferInst(MemTransferInst &II) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000463 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000464 if ((Length && Length->getValue() == 0) ||
465 (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000466 // Zero-length mem transfer intrinsics can be ignored entirely.
Chandler Carruthf0546402013-07-18 07:15:00 +0000467 return markAsDead(II);
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000468
469 if (!IsOffsetKnown)
470 return PI.setAborted(&II);
471
472 uint64_t RawOffset = Offset.getLimitedValue();
473 uint64_t Size = Length ? Length->getLimitedValue()
474 : AllocSize - RawOffset;
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000475
Chandler Carruthf0546402013-07-18 07:15:00 +0000476 // Check for the special case where the same exact value is used for both
477 // source and dest.
478 if (*U == II.getRawDest() && *U == II.getRawSource()) {
479 // For non-volatile transfers this is a no-op.
480 if (!II.isVolatile())
481 return markAsDead(II);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000482
Nick Lewycky6ab9d932013-07-22 23:38:27 +0000483 return insertUse(II, Offset, Size, /*IsSplittable=*/false);
Chandler Carruthe5b7a2c2012-10-05 01:29:09 +0000484 }
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000485
Chandler Carruthf0546402013-07-18 07:15:00 +0000486 // If we have seen both source and destination for a mem transfer, then
487 // they both point to the same alloca.
488 bool Inserted;
489 SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
490 llvm::tie(MTPI, Inserted) =
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000491 MemTransferSliceMap.insert(std::make_pair(&II, S.Slices.size()));
Chandler Carruthf0546402013-07-18 07:15:00 +0000492 unsigned PrevIdx = MTPI->second;
493 if (!Inserted) {
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000494 Slice &PrevP = S.Slices[PrevIdx];
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000495
Chandler Carruthe5b7a2c2012-10-05 01:29:09 +0000496 // Check if the begin offsets match and this is a non-volatile transfer.
497 // In that case, we can completely elide the transfer.
Chandler Carruthf0546402013-07-18 07:15:00 +0000498 if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
499 PrevP.kill();
500 return markAsDead(II);
Chandler Carruthe5b7a2c2012-10-05 01:29:09 +0000501 }
502
503 // Otherwise we have an offset transfer within the same alloca. We can't
504 // split those.
Chandler Carruthf0546402013-07-18 07:15:00 +0000505 PrevP.makeUnsplittable();
Chandler Carruthe5b7a2c2012-10-05 01:29:09 +0000506 }
507
Chandler Carruthe3899f22013-07-15 17:36:21 +0000508 // Insert the use now that we've fixed up the splittable nature.
Chandler Carruthf0546402013-07-18 07:15:00 +0000509 insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
Chandler Carruthe3899f22013-07-15 17:36:21 +0000510
Chandler Carruthf0546402013-07-18 07:15:00 +0000511 // Check that we ended up with a valid index in the map.
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000512 assert(S.Slices[PrevIdx].getUse()->getUser() == &II &&
513 "Map index doesn't point back to a slice with this user.");
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000514 }
515
516 // Disable SRoA for any intrinsics except for lifetime invariants.
Jakub Staszak086f6cd2013-02-19 22:02:21 +0000517 // FIXME: What about debug intrinsics? This matches old behavior, but
Chandler Carruth4b40e002012-09-14 10:26:36 +0000518 // doesn't make sense.
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000519 void visitIntrinsicInst(IntrinsicInst &II) {
520 if (!IsOffsetKnown)
521 return PI.setAborted(&II);
522
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000523 if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
524 II.getIntrinsicID() == Intrinsic::lifetime_end) {
525 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000526 uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
527 Length->getLimitedValue());
Chandler Carruth97121172012-09-16 19:39:50 +0000528 insertUse(II, Offset, Size, true);
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000529 return;
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000530 }
531
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000532 Base::visitIntrinsicInst(II);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000533 }
534
535 Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
536 // We consider any PHI or select that results in a direct load or store of
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000537 // the same offset to be a viable use for slicing purposes. These uses
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000538 // are considered unsplittable and the size is the maximum loaded or stored
539 // size.
540 SmallPtrSet<Instruction *, 4> Visited;
541 SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
542 Visited.insert(Root);
543 Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
Chandler Carruth8b907e82012-09-25 10:03:40 +0000544 // If there are no loads or stores, the access is dead. We mark that as
545 // a size zero access.
546 Size = 0;
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000547 do {
548 Instruction *I, *UsedI;
549 llvm::tie(UsedI, I) = Uses.pop_back_val();
550
551 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000552 Size = std::max(Size, DL.getTypeStoreSize(LI->getType()));
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000553 continue;
554 }
555 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
556 Value *Op = SI->getOperand(0);
557 if (Op == UsedI)
558 return SI;
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000559 Size = std::max(Size, DL.getTypeStoreSize(Op->getType()));
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000560 continue;
561 }
562
563 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
564 if (!GEP->hasAllZeroIndices())
565 return GEP;
566 } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
567 !isa<SelectInst>(I)) {
568 return I;
569 }
570
571 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
572 ++UI)
573 if (Visited.insert(cast<Instruction>(*UI)))
574 Uses.push_back(std::make_pair(I, cast<Instruction>(*UI)));
575 } while (!Uses.empty());
576
577 return 0;
578 }
579
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000580 void visitPHINode(PHINode &PN) {
581 if (PN.use_empty())
Chandler Carruthf0546402013-07-18 07:15:00 +0000582 return markAsDead(PN);
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000583 if (!IsOffsetKnown)
584 return PI.setAborted(&PN);
585
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000586 // See if we already have computed info on this node.
Chandler Carruthf0546402013-07-18 07:15:00 +0000587 uint64_t &PHISize = PHIOrSelectSizes[&PN];
588 if (!PHISize) {
589 // This is a new PHI node, check for an unsafe use of the PHI node.
590 if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&PN, PHISize))
591 return PI.setAborted(UnsafeI);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000592 }
593
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000594 // For PHI and select operands outside the alloca, we can't nuke the entire
595 // phi or select -- the other side might still be relevant, so we special
596 // case them here and use a separate structure to track the operands
597 // themselves which should be replaced with undef.
Chandler Carruthf0546402013-07-18 07:15:00 +0000598 // FIXME: This should instead be escaped in the event we're instrumenting
599 // for address sanitization.
600 if ((Offset.isNegative() && (-Offset).uge(PHISize)) ||
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000601 (!Offset.isNegative() && Offset.uge(AllocSize))) {
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000602 S.DeadOperands.push_back(U);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000603 return;
604 }
605
Chandler Carruthf0546402013-07-18 07:15:00 +0000606 insertUse(PN, Offset, PHISize);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000607 }
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000608
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000609 void visitSelectInst(SelectInst &SI) {
610 if (SI.use_empty())
611 return markAsDead(SI);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000612 if (Value *Result = foldSelectInst(SI)) {
Nick Lewyckyc7776f72013-08-13 22:51:58 +0000613 if (Result == *U)
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000614 // If the result of the constant fold will be the pointer, recurse
615 // through the select as if we had RAUW'ed it.
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000616 enqueueUsers(SI);
Nick Lewyckyc7776f72013-08-13 22:51:58 +0000617 else
Chandler Carruth225d4bd2012-09-21 23:36:40 +0000618 // Otherwise the operand to the select is dead, and we can replace it
619 // with undef.
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000620 S.DeadOperands.push_back(U);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000621
622 return;
623 }
Chandler Carruthf0546402013-07-18 07:15:00 +0000624 if (!IsOffsetKnown)
625 return PI.setAborted(&SI);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000626
Chandler Carruthf0546402013-07-18 07:15:00 +0000627 // See if we already have computed info on this node.
628 uint64_t &SelectSize = PHIOrSelectSizes[&SI];
629 if (!SelectSize) {
630 // This is a new Select, check for an unsafe use of it.
631 if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&SI, SelectSize))
632 return PI.setAborted(UnsafeI);
633 }
634
635 // For PHI and select operands outside the alloca, we can't nuke the entire
636 // phi or select -- the other side might still be relevant, so we special
637 // case them here and use a separate structure to track the operands
638 // themselves which should be replaced with undef.
639 // FIXME: This should instead be escaped in the event we're instrumenting
640 // for address sanitization.
641 if ((Offset.isNegative() && Offset.uge(SelectSize)) ||
642 (!Offset.isNegative() && Offset.uge(AllocSize))) {
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000643 S.DeadOperands.push_back(U);
Chandler Carruthf0546402013-07-18 07:15:00 +0000644 return;
645 }
646
647 insertUse(SI, Offset, SelectSize);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000648 }
649
Chandler Carruthf0546402013-07-18 07:15:00 +0000650 /// \brief Disable SROA entirely if there are unhandled users of the alloca.
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000651 void visitInstruction(Instruction &I) {
Chandler Carruthf0546402013-07-18 07:15:00 +0000652 PI.setAborted(&I);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000653 }
654};
655
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000656AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
Nick Lewyckyc7776f72013-08-13 22:51:58 +0000657 :
658#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
659 AI(AI),
660#endif
661 PointerEscapingInstr(0) {
662 SliceBuilder PB(DL, AI, *this);
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000663 SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000664 if (PtrI.isEscaped() || PtrI.isAborted()) {
665 // FIXME: We should sink the escape vs. abort info into the caller nicely,
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000666 // possibly by just storing the PtrInfo in the AllocaSlices.
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000667 PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
668 : PtrI.getAbortingInst();
669 assert(PointerEscapingInstr && "Did not track a bad instruction");
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000670 return;
Chandler Carruthe41e7b72012-12-10 08:28:39 +0000671 }
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000672
Benjamin Kramer08e50702013-07-20 08:38:34 +0000673 Slices.erase(std::remove_if(Slices.begin(), Slices.end(),
674 std::mem_fun_ref(&Slice::isDead)),
675 Slices.end());
676
Chandler Carruthe5b7a2c2012-10-05 01:29:09 +0000677 // Sort the uses. This arranges for the offsets to be in ascending order,
678 // and the sizes to be in descending order.
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000679 std::sort(Slices.begin(), Slices.end());
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000680}
681
Chandler Carruth25fb23d2012-09-14 10:18:51 +0000682#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
683
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000684void AllocaSlices::print(raw_ostream &OS, const_iterator I,
685 StringRef Indent) const {
686 printSlice(OS, I, Indent);
Chandler Carruthf0546402013-07-18 07:15:00 +0000687 printUse(OS, I, Indent);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000688}
689
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000690void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
691 StringRef Indent) const {
Chandler Carruthf0546402013-07-18 07:15:00 +0000692 OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000693 << " slice #" << (I - begin())
Chandler Carruthf0546402013-07-18 07:15:00 +0000694 << (I->isSplittable() ? " (splittable)" : "") << "\n";
695}
696
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000697void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
698 StringRef Indent) const {
Chandler Carruthf0546402013-07-18 07:15:00 +0000699 OS << Indent << " used by: " << *I->getUse()->getUser() << "\n";
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000700}
701
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000702void AllocaSlices::print(raw_ostream &OS) const {
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000703 if (PointerEscapingInstr) {
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000704 OS << "Can't analyze slices for alloca: " << AI << "\n"
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000705 << " A pointer to this alloca escaped by:\n"
706 << " " << *PointerEscapingInstr << "\n";
707 return;
708 }
709
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000710 OS << "Slices of alloca: " << AI << "\n";
Chandler Carruthf0546402013-07-18 07:15:00 +0000711 for (const_iterator I = begin(), E = end(); I != E; ++I)
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000712 print(OS, I);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000713}
714
Alp Tokerf929e092014-01-04 22:47:48 +0000715LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const {
716 print(dbgs(), I);
717}
718LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); }
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000719
Chandler Carruth25fb23d2012-09-14 10:18:51 +0000720#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
721
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000722namespace {
Chandler Carruth70b44c52012-09-15 11:43:14 +0000723/// \brief Implementation of LoadAndStorePromoter for promoting allocas.
724///
725/// This subclass of LoadAndStorePromoter adds overrides to handle promoting
726/// the loads and stores of an alloca instruction, as well as updating its
727/// debug information. This is used when a domtree is unavailable and thus
728/// mem2reg in its full form can't be used to handle promotion of allocas to
729/// scalar values.
730class AllocaPromoter : public LoadAndStorePromoter {
731 AllocaInst &AI;
732 DIBuilder &DIB;
733
734 SmallVector<DbgDeclareInst *, 4> DDIs;
735 SmallVector<DbgValueInst *, 4> DVIs;
736
737public:
Chandler Carruth45b136f2013-08-11 01:03:18 +0000738 AllocaPromoter(const SmallVectorImpl<Instruction *> &Insts, SSAUpdater &S,
Chandler Carruth70b44c52012-09-15 11:43:14 +0000739 AllocaInst &AI, DIBuilder &DIB)
Chandler Carruth45b136f2013-08-11 01:03:18 +0000740 : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {}
Chandler Carruth70b44c52012-09-15 11:43:14 +0000741
742 void run(const SmallVectorImpl<Instruction*> &Insts) {
Chandler Carruthcd7c8cd2013-07-29 09:06:53 +0000743 // Retain the debug information attached to the alloca for use when
744 // rewriting loads and stores.
Chandler Carruth70b44c52012-09-15 11:43:14 +0000745 if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) {
746 for (Value::use_iterator UI = DebugNode->use_begin(),
747 UE = DebugNode->use_end();
748 UI != UE; ++UI)
749 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
750 DDIs.push_back(DDI);
751 else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
752 DVIs.push_back(DVI);
753 }
754
755 LoadAndStorePromoter::run(Insts);
Chandler Carruthcd7c8cd2013-07-29 09:06:53 +0000756
757 // While we have the debug information, clear it off of the alloca. The
758 // caller takes care of deleting the alloca.
Chandler Carruth70b44c52012-09-15 11:43:14 +0000759 while (!DDIs.empty())
760 DDIs.pop_back_val()->eraseFromParent();
761 while (!DVIs.empty())
762 DVIs.pop_back_val()->eraseFromParent();
763 }
764
765 virtual bool isInstInList(Instruction *I,
766 const SmallVectorImpl<Instruction*> &Insts) const {
Chandler Carruthc17283b2013-08-11 01:56:15 +0000767 Value *Ptr;
Chandler Carruth70b44c52012-09-15 11:43:14 +0000768 if (LoadInst *LI = dyn_cast<LoadInst>(I))
Chandler Carruthc17283b2013-08-11 01:56:15 +0000769 Ptr = LI->getOperand(0);
770 else
771 Ptr = cast<StoreInst>(I)->getPointerOperand();
772
773 // Only used to detect cycles, which will be rare and quickly found as
774 // we're walking up a chain of defs rather than down through uses.
775 SmallPtrSet<Value *, 4> Visited;
776
777 do {
778 if (Ptr == &AI)
779 return true;
780
781 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Ptr))
782 Ptr = BCI->getOperand(0);
783 else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
784 Ptr = GEPI->getPointerOperand();
785 else
786 return false;
787
788 } while (Visited.insert(Ptr));
789
790 return false;
Chandler Carruth70b44c52012-09-15 11:43:14 +0000791 }
792
793 virtual void updateDebugInfo(Instruction *Inst) const {
Craig Topper31ee5862013-07-03 15:07:05 +0000794 for (SmallVectorImpl<DbgDeclareInst *>::const_iterator I = DDIs.begin(),
Chandler Carruth70b44c52012-09-15 11:43:14 +0000795 E = DDIs.end(); I != E; ++I) {
796 DbgDeclareInst *DDI = *I;
797 if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
798 ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
799 else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
800 ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
801 }
Craig Topper31ee5862013-07-03 15:07:05 +0000802 for (SmallVectorImpl<DbgValueInst *>::const_iterator I = DVIs.begin(),
Chandler Carruth70b44c52012-09-15 11:43:14 +0000803 E = DVIs.end(); I != E; ++I) {
804 DbgValueInst *DVI = *I;
Jakub Staszak3c6583a2013-02-19 22:14:45 +0000805 Value *Arg = 0;
Chandler Carruth70b44c52012-09-15 11:43:14 +0000806 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
807 // If an argument is zero extended then use argument directly. The ZExt
808 // may be zapped by an optimization pass in future.
809 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
810 Arg = dyn_cast<Argument>(ZExt->getOperand(0));
Jakub Staszak4f9d1e82013-03-24 09:56:28 +0000811 else if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
Chandler Carruth70b44c52012-09-15 11:43:14 +0000812 Arg = dyn_cast<Argument>(SExt->getOperand(0));
813 if (!Arg)
Jakub Staszak4f9d1e82013-03-24 09:56:28 +0000814 Arg = SI->getValueOperand();
Chandler Carruth70b44c52012-09-15 11:43:14 +0000815 } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
Jakub Staszak4f9d1e82013-03-24 09:56:28 +0000816 Arg = LI->getPointerOperand();
Chandler Carruth70b44c52012-09-15 11:43:14 +0000817 } else {
818 continue;
819 }
820 Instruction *DbgVal =
821 DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
822 Inst);
823 DbgVal->setDebugLoc(DVI->getDebugLoc());
824 }
825 }
826};
827} // end anon namespace
828
829
830namespace {
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000831/// \brief An optimization pass providing Scalar Replacement of Aggregates.
832///
833/// This pass takes allocations which can be completely analyzed (that is, they
834/// don't escape) and tries to turn them into scalar SSA values. There are
835/// a few steps to this process.
836///
837/// 1) It takes allocations of aggregates and analyzes the ways in which they
838/// are used to try to split them into smaller allocations, ideally of
839/// a single scalar data type. It will split up memcpy and memset accesses
Jakub Staszak086f6cd2013-02-19 22:02:21 +0000840/// as necessary and try to isolate individual scalar accesses.
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000841/// 2) It will transform accesses into forms which are suitable for SSA value
842/// promotion. This can be replacing a memset with a scalar store of an
843/// integer value, or it can involve speculating operations on a PHI or
844/// select to be a PHI or select of the results.
845/// 3) Finally, this will try to detect a pattern of accesses which map cleanly
846/// onto insert and extract operations on a vector value, and convert them to
847/// this form. By doing so, it will enable promotion of vector aggregates to
848/// SSA vector values.
849class SROA : public FunctionPass {
Chandler Carruth70b44c52012-09-15 11:43:14 +0000850 const bool RequiresDomTree;
851
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000852 LLVMContext *C;
Chandler Carruth90a735d2013-07-19 07:21:28 +0000853 const DataLayout *DL;
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000854 DominatorTree *DT;
855
856 /// \brief Worklist of alloca instructions to simplify.
857 ///
858 /// Each alloca in the function is added to this. Each new alloca formed gets
859 /// added to it as well to recursively simplify unless that alloca can be
860 /// directly promoted. Finally, each time we rewrite a use of an alloca other
861 /// the one being actively rewritten, we add it back onto the list if not
862 /// already present to ensure it is re-visited.
863 SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist;
864
865 /// \brief A collection of instructions to delete.
866 /// We try to batch deletions to simplify code and make things a bit more
867 /// efficient.
Chandler Carruth18db7952012-11-20 01:12:50 +0000868 SetVector<Instruction *, SmallVector<Instruction *, 8> > DeadInsts;
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000869
Chandler Carruthac8317f2012-10-04 12:33:50 +0000870 /// \brief Post-promotion worklist.
871 ///
872 /// Sometimes we discover an alloca which has a high probability of becoming
873 /// viable for SROA after a round of promotion takes place. In those cases,
874 /// the alloca is enqueued here for re-processing.
875 ///
876 /// Note that we have to be very careful to clear allocas out of this list in
877 /// the event they are deleted.
878 SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > PostPromotionWorklist;
879
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000880 /// \brief A collection of alloca instructions we can directly promote.
881 std::vector<AllocaInst *> PromotableAllocas;
882
Chandler Carruthf0546402013-07-18 07:15:00 +0000883 /// \brief A worklist of PHIs to speculate prior to promoting allocas.
884 ///
885 /// All of these PHIs have been checked for the safety of speculation and by
886 /// being speculated will allow promoting allocas currently in the promotable
887 /// queue.
888 SetVector<PHINode *, SmallVector<PHINode *, 2> > SpeculatablePHIs;
889
890 /// \brief A worklist of select instructions to speculate prior to promoting
891 /// allocas.
892 ///
893 /// All of these select instructions have been checked for the safety of
894 /// speculation and by being speculated will allow promoting allocas
895 /// currently in the promotable queue.
896 SetVector<SelectInst *, SmallVector<SelectInst *, 2> > SpeculatableSelects;
897
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000898public:
Chandler Carruth70b44c52012-09-15 11:43:14 +0000899 SROA(bool RequiresDomTree = true)
900 : FunctionPass(ID), RequiresDomTree(RequiresDomTree),
Chandler Carruth90a735d2013-07-19 07:21:28 +0000901 C(0), DL(0), DT(0) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000902 initializeSROAPass(*PassRegistry::getPassRegistry());
903 }
904 bool runOnFunction(Function &F);
905 void getAnalysisUsage(AnalysisUsage &AU) const;
906
907 const char *getPassName() const { return "SROA"; }
908 static char ID;
909
910private:
Chandler Carruth82a57542012-10-01 10:54:05 +0000911 friend class PHIOrSelectSpeculator;
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000912 friend class AllocaSliceRewriter;
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000913
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000914 bool rewritePartition(AllocaInst &AI, AllocaSlices &S,
915 AllocaSlices::iterator B, AllocaSlices::iterator E,
916 int64_t BeginOffset, int64_t EndOffset,
917 ArrayRef<AllocaSlices::iterator> SplitUses);
918 bool splitAlloca(AllocaInst &AI, AllocaSlices &S);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000919 bool runOnAlloca(AllocaInst &AI);
Chandler Carruth19450da2012-09-14 10:26:38 +0000920 void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas);
Chandler Carruth70b44c52012-09-15 11:43:14 +0000921 bool promoteAllocas(Function &F);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000922};
923}
924
925char SROA::ID = 0;
926
Chandler Carruth70b44c52012-09-15 11:43:14 +0000927FunctionPass *llvm::createSROAPass(bool RequiresDomTree) {
928 return new SROA(RequiresDomTree);
Chandler Carruth1b398ae2012-09-14 09:22:59 +0000929}
930
931INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates",
932 false, false)
933INITIALIZE_PASS_DEPENDENCY(DominatorTree)
934INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates",
935 false, false)
936
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000937/// Walk the range of a partitioning looking for a common type to cover this
938/// sequence of slices.
939static Type *findCommonType(AllocaSlices::const_iterator B,
940 AllocaSlices::const_iterator E,
Chandler Carruthf0546402013-07-18 07:15:00 +0000941 uint64_t EndOffset) {
942 Type *Ty = 0;
Chandler Carrutha1262002013-11-19 09:03:18 +0000943 bool IgnoreNonIntegralTypes = false;
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000944 for (AllocaSlices::const_iterator I = B; I != E; ++I) {
Chandler Carruthf0546402013-07-18 07:15:00 +0000945 Use *U = I->getUse();
946 if (isa<IntrinsicInst>(*U->getUser()))
947 continue;
948 if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
949 continue;
Chandler Carruth90c4a3a2012-10-05 01:29:06 +0000950
Chandler Carruthf0546402013-07-18 07:15:00 +0000951 Type *UserTy = 0;
Chandler Carrutha1262002013-11-19 09:03:18 +0000952 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
Chandler Carruthf0546402013-07-18 07:15:00 +0000953 UserTy = LI->getType();
Chandler Carrutha1262002013-11-19 09:03:18 +0000954 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
Chandler Carruthf0546402013-07-18 07:15:00 +0000955 UserTy = SI->getValueOperand()->getType();
Chandler Carrutha1262002013-11-19 09:03:18 +0000956 } else {
957 IgnoreNonIntegralTypes = true; // Give up on anything but an iN type.
958 continue;
959 }
Chandler Carruth90c4a3a2012-10-05 01:29:06 +0000960
Chandler Carruthf0546402013-07-18 07:15:00 +0000961 if (IntegerType *ITy = dyn_cast<IntegerType>(UserTy)) {
962 // If the type is larger than the partition, skip it. We only encounter
Chandler Carruth9f21fe12013-07-19 09:13:58 +0000963 // this for split integer operations where we want to use the type of the
Chandler Carrutha1262002013-11-19 09:03:18 +0000964 // entity causing the split. Also skip if the type is not a byte width
965 // multiple.
966 if (ITy->getBitWidth() % 8 != 0 ||
967 ITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
Chandler Carruthf0546402013-07-18 07:15:00 +0000968 continue;
Chandler Carruth90c4a3a2012-10-05 01:29:06 +0000969
Chandler Carruthf0546402013-07-18 07:15:00 +0000970 // If we have found an integer type use covering the alloca, use that
Chandler Carrutha1262002013-11-19 09:03:18 +0000971 // regardless of the other types, as integers are often used for
972 // a "bucket of bits" type.
973 //
974 // NB: This *must* be the only return from inside the loop so that the
975 // order of slices doesn't impact the computed type.
Chandler Carruthf0546402013-07-18 07:15:00 +0000976 return ITy;
Chandler Carrutha1262002013-11-19 09:03:18 +0000977 } else if (IgnoreNonIntegralTypes) {
978 continue;
Chandler Carruthe3899f22013-07-15 17:36:21 +0000979 }
Chandler Carruthf0546402013-07-18 07:15:00 +0000980
981 if (Ty && Ty != UserTy)
Chandler Carrutha1262002013-11-19 09:03:18 +0000982 IgnoreNonIntegralTypes = true; // Give up on anything but an iN type.
Chandler Carruthf0546402013-07-18 07:15:00 +0000983
984 Ty = UserTy;
Chandler Carruthe3899f22013-07-15 17:36:21 +0000985 }
Chandler Carruthf0546402013-07-18 07:15:00 +0000986 return Ty;
987}
Chandler Carruthe3899f22013-07-15 17:36:21 +0000988
Chandler Carruthf0546402013-07-18 07:15:00 +0000989/// PHI instructions that use an alloca and are subsequently loaded can be
990/// rewritten to load both input pointers in the pred blocks and then PHI the
991/// results, allowing the load of the alloca to be promoted.
992/// From this:
993/// %P2 = phi [i32* %Alloca, i32* %Other]
994/// %V = load i32* %P2
995/// to:
996/// %V1 = load i32* %Alloca -> will be mem2reg'd
997/// ...
998/// %V2 = load i32* %Other
999/// ...
1000/// %V = phi [i32 %V1, i32 %V2]
1001///
1002/// We can do this to a select if its only uses are loads and if the operands
1003/// to the select can be loaded unconditionally.
1004///
1005/// FIXME: This should be hoisted into a generic utility, likely in
1006/// Transforms/Util/Local.h
1007static bool isSafePHIToSpeculate(PHINode &PN,
Chandler Carruth90a735d2013-07-19 07:21:28 +00001008 const DataLayout *DL = 0) {
Chandler Carruthf0546402013-07-18 07:15:00 +00001009 // For now, we can only do this promotion if the load is in the same block
1010 // as the PHI, and if there are no stores between the phi and load.
1011 // TODO: Allow recursive phi users.
1012 // TODO: Allow stores.
1013 BasicBlock *BB = PN.getParent();
1014 unsigned MaxAlign = 0;
1015 bool HaveLoad = false;
1016 for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end(); UI != UE;
1017 ++UI) {
1018 LoadInst *LI = dyn_cast<LoadInst>(*UI);
1019 if (LI == 0 || !LI->isSimple())
Chandler Carruthe74ff4c2013-07-15 10:30:19 +00001020 return false;
Chandler Carruthe74ff4c2013-07-15 10:30:19 +00001021
Chandler Carruthf0546402013-07-18 07:15:00 +00001022 // For now we only allow loads in the same block as the PHI. This is
1023 // a common case that happens when instcombine merges two loads through
1024 // a PHI.
1025 if (LI->getParent() != BB)
1026 return false;
Chandler Carruthe3899f22013-07-15 17:36:21 +00001027
Chandler Carruthf0546402013-07-18 07:15:00 +00001028 // Ensure that there are no instructions between the PHI and the load that
1029 // could store.
1030 for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI)
1031 if (BBI->mayWriteToMemory())
Chandler Carruthe3899f22013-07-15 17:36:21 +00001032 return false;
Chandler Carruthe3899f22013-07-15 17:36:21 +00001033
Chandler Carruthf0546402013-07-18 07:15:00 +00001034 MaxAlign = std::max(MaxAlign, LI->getAlignment());
1035 HaveLoad = true;
Chandler Carruthe3899f22013-07-15 17:36:21 +00001036 }
1037
Chandler Carruthf0546402013-07-18 07:15:00 +00001038 if (!HaveLoad)
1039 return false;
Chandler Carruthe3899f22013-07-15 17:36:21 +00001040
Chandler Carruthf0546402013-07-18 07:15:00 +00001041 // We can only transform this if it is safe to push the loads into the
1042 // predecessor blocks. The only thing to watch out for is that we can't put
1043 // a possibly trapping load in the predecessor if it is a critical edge.
1044 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1045 TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
1046 Value *InVal = PN.getIncomingValue(Idx);
Chandler Carruthe3899f22013-07-15 17:36:21 +00001047
Chandler Carruthf0546402013-07-18 07:15:00 +00001048 // If the value is produced by the terminator of the predecessor (an
1049 // invoke) or it has side-effects, there is no valid place to put a load
1050 // in the predecessor.
1051 if (TI == InVal || TI->mayHaveSideEffects())
1052 return false;
Chandler Carruthe3899f22013-07-15 17:36:21 +00001053
Chandler Carruthf0546402013-07-18 07:15:00 +00001054 // If the predecessor has a single successor, then the edge isn't
1055 // critical.
1056 if (TI->getNumSuccessors() == 1)
1057 continue;
Chandler Carruthe3899f22013-07-15 17:36:21 +00001058
Chandler Carruthf0546402013-07-18 07:15:00 +00001059 // If this pointer is always safe to load, or if we can prove that there
1060 // is already a load in the block, then we can move the load to the pred
1061 // block.
1062 if (InVal->isDereferenceablePointer() ||
Chandler Carruth90a735d2013-07-19 07:21:28 +00001063 isSafeToLoadUnconditionally(InVal, TI, MaxAlign, DL))
Chandler Carruthf0546402013-07-18 07:15:00 +00001064 continue;
1065
1066 return false;
1067 }
1068
1069 return true;
1070}
1071
1072static void speculatePHINodeLoads(PHINode &PN) {
1073 DEBUG(dbgs() << " original: " << PN << "\n");
1074
1075 Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
1076 IRBuilderTy PHIBuilder(&PN);
1077 PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1078 PN.getName() + ".sroa.speculated");
1079
1080 // Get the TBAA tag and alignment to use from one of the loads. It doesn't
1081 // matter which one we get and if any differ.
1082 LoadInst *SomeLoad = cast<LoadInst>(*PN.use_begin());
1083 MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1084 unsigned Align = SomeLoad->getAlignment();
1085
1086 // Rewrite all loads of the PN to use the new PHI.
1087 while (!PN.use_empty()) {
1088 LoadInst *LI = cast<LoadInst>(*PN.use_begin());
1089 LI->replaceAllUsesWith(NewPN);
1090 LI->eraseFromParent();
1091 }
1092
1093 // Inject loads into all of the pred blocks.
1094 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1095 BasicBlock *Pred = PN.getIncomingBlock(Idx);
1096 TerminatorInst *TI = Pred->getTerminator();
1097 Value *InVal = PN.getIncomingValue(Idx);
1098 IRBuilderTy PredBuilder(TI);
1099
1100 LoadInst *Load = PredBuilder.CreateLoad(
1101 InVal, (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
1102 ++NumLoadsSpeculated;
1103 Load->setAlignment(Align);
1104 if (TBAATag)
1105 Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1106 NewPN->addIncoming(Load, Pred);
1107 }
1108
1109 DEBUG(dbgs() << " speculated to: " << *NewPN << "\n");
1110 PN.eraseFromParent();
1111}
1112
1113/// Select instructions that use an alloca and are subsequently loaded can be
1114/// rewritten to load both input pointers and then select between the result,
1115/// allowing the load of the alloca to be promoted.
1116/// From this:
1117/// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1118/// %V = load i32* %P2
1119/// to:
1120/// %V1 = load i32* %Alloca -> will be mem2reg'd
1121/// %V2 = load i32* %Other
1122/// %V = select i1 %cond, i32 %V1, i32 %V2
1123///
1124/// We can do this to a select if its only uses are loads and if the operand
1125/// to the select can be loaded unconditionally.
Chandler Carruth90a735d2013-07-19 07:21:28 +00001126static bool isSafeSelectToSpeculate(SelectInst &SI, const DataLayout *DL = 0) {
Chandler Carruthf0546402013-07-18 07:15:00 +00001127 Value *TValue = SI.getTrueValue();
1128 Value *FValue = SI.getFalseValue();
1129 bool TDerefable = TValue->isDereferenceablePointer();
1130 bool FDerefable = FValue->isDereferenceablePointer();
1131
1132 for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end(); UI != UE;
1133 ++UI) {
1134 LoadInst *LI = dyn_cast<LoadInst>(*UI);
1135 if (LI == 0 || !LI->isSimple())
1136 return false;
1137
1138 // Both operands to the select need to be dereferencable, either
1139 // absolutely (e.g. allocas) or at this point because we can see other
1140 // accesses to it.
1141 if (!TDerefable &&
Chandler Carruth90a735d2013-07-19 07:21:28 +00001142 !isSafeToLoadUnconditionally(TValue, LI, LI->getAlignment(), DL))
Chandler Carruthf0546402013-07-18 07:15:00 +00001143 return false;
1144 if (!FDerefable &&
Chandler Carruth90a735d2013-07-19 07:21:28 +00001145 !isSafeToLoadUnconditionally(FValue, LI, LI->getAlignment(), DL))
Chandler Carruthf0546402013-07-18 07:15:00 +00001146 return false;
1147 }
1148
1149 return true;
1150}
1151
1152static void speculateSelectInstLoads(SelectInst &SI) {
1153 DEBUG(dbgs() << " original: " << SI << "\n");
1154
1155 IRBuilderTy IRB(&SI);
1156 Value *TV = SI.getTrueValue();
1157 Value *FV = SI.getFalseValue();
1158 // Replace the loads of the select with a select of two loads.
1159 while (!SI.use_empty()) {
1160 LoadInst *LI = cast<LoadInst>(*SI.use_begin());
1161 assert(LI->isSimple() && "We only speculate simple loads");
1162
1163 IRB.SetInsertPoint(LI);
1164 LoadInst *TL =
Chandler Carruthe3899f22013-07-15 17:36:21 +00001165 IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
Chandler Carruthf0546402013-07-18 07:15:00 +00001166 LoadInst *FL =
Chandler Carruthe3899f22013-07-15 17:36:21 +00001167 IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
Chandler Carruthf0546402013-07-18 07:15:00 +00001168 NumLoadsSpeculated += 2;
Chandler Carruthe3899f22013-07-15 17:36:21 +00001169
Chandler Carruthf0546402013-07-18 07:15:00 +00001170 // Transfer alignment and TBAA info if present.
1171 TL->setAlignment(LI->getAlignment());
1172 FL->setAlignment(LI->getAlignment());
1173 if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1174 TL->setMetadata(LLVMContext::MD_tbaa, Tag);
1175 FL->setMetadata(LLVMContext::MD_tbaa, Tag);
Chandler Carruthe3899f22013-07-15 17:36:21 +00001176 }
Chandler Carruthf0546402013-07-18 07:15:00 +00001177
1178 Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1179 LI->getName() + ".sroa.speculated");
1180
1181 DEBUG(dbgs() << " speculated to: " << *V << "\n");
1182 LI->replaceAllUsesWith(V);
1183 LI->eraseFromParent();
Chandler Carruthe3899f22013-07-15 17:36:21 +00001184 }
Chandler Carruthf0546402013-07-18 07:15:00 +00001185 SI.eraseFromParent();
Chandler Carruth90c4a3a2012-10-05 01:29:06 +00001186}
1187
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001188/// \brief Build a GEP out of a base pointer and indices.
1189///
1190/// This will return the BasePtr if that is valid, or build a new GEP
1191/// instruction using the IRBuilder if GEP-ing is needed.
Chandler Carruthd177f862013-03-20 07:30:36 +00001192static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001193 SmallVectorImpl<Value *> &Indices) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001194 if (Indices.empty())
1195 return BasePtr;
1196
1197 // A single zero index is a no-op, so check for this and avoid building a GEP
1198 // in that case.
1199 if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1200 return BasePtr;
1201
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001202 return IRB.CreateInBoundsGEP(BasePtr, Indices, "idx");
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001203}
1204
1205/// \brief Get a natural GEP off of the BasePtr walking through Ty toward
1206/// TargetTy without changing the offset of the pointer.
1207///
1208/// This routine assumes we've already established a properly offset GEP with
1209/// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1210/// zero-indices down through type layers until we find one the same as
1211/// TargetTy. If we can't find one with the same type, we at least try to use
1212/// one with the same size. If none of that works, we just produce the GEP as
1213/// indicated by Indices to have the correct offset.
Chandler Carruth90a735d2013-07-19 07:21:28 +00001214static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001215 Value *BasePtr, Type *Ty, Type *TargetTy,
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001216 SmallVectorImpl<Value *> &Indices) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001217 if (Ty == TargetTy)
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001218 return buildGEP(IRB, BasePtr, Indices);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001219
1220 // See if we can descend into a struct and locate a field with the correct
1221 // type.
1222 unsigned NumLayers = 0;
1223 Type *ElementTy = Ty;
1224 do {
1225 if (ElementTy->isPointerTy())
1226 break;
1227 if (SequentialType *SeqTy = dyn_cast<SequentialType>(ElementTy)) {
1228 ElementTy = SeqTy->getElementType();
Chandler Carruth40617f52012-10-17 07:22:16 +00001229 // Note that we use the default address space as this index is over an
1230 // array or a vector, not a pointer.
Chandler Carruth90a735d2013-07-19 07:21:28 +00001231 Indices.push_back(IRB.getInt(APInt(DL.getPointerSizeInBits(0), 0)));
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001232 } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
Chandler Carruth503eb2b2012-10-09 01:58:35 +00001233 if (STy->element_begin() == STy->element_end())
1234 break; // Nothing left to descend into.
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001235 ElementTy = *STy->element_begin();
1236 Indices.push_back(IRB.getInt32(0));
1237 } else {
1238 break;
1239 }
1240 ++NumLayers;
1241 } while (ElementTy != TargetTy);
1242 if (ElementTy != TargetTy)
1243 Indices.erase(Indices.end() - NumLayers, Indices.end());
1244
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001245 return buildGEP(IRB, BasePtr, Indices);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001246}
1247
1248/// \brief Recursively compute indices for a natural GEP.
1249///
1250/// This is the recursive step for getNaturalGEPWithOffset that walks down the
1251/// element types adding appropriate indices for the GEP.
Chandler Carruth90a735d2013-07-19 07:21:28 +00001252static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL,
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001253 Value *Ptr, Type *Ty, APInt &Offset,
1254 Type *TargetTy,
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001255 SmallVectorImpl<Value *> &Indices) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001256 if (Offset == 0)
Chandler Carruth90a735d2013-07-19 07:21:28 +00001257 return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001258
1259 // We can't recurse through pointer types.
1260 if (Ty->isPointerTy())
1261 return 0;
1262
Chandler Carruthdd3cea82012-09-14 10:30:40 +00001263 // We try to analyze GEPs over vectors here, but note that these GEPs are
1264 // extremely poorly defined currently. The long-term goal is to remove GEPing
1265 // over a vector from the IR completely.
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001266 if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
Chandler Carruth90a735d2013-07-19 07:21:28 +00001267 unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType());
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001268 if (ElementSizeInBits % 8)
Chandler Carruthdd3cea82012-09-14 10:30:40 +00001269 return 0; // GEPs over non-multiple of 8 size vector elements are invalid.
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001270 APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
Chandler Carruth6fab42a2012-10-17 09:23:48 +00001271 APInt NumSkippedElements = Offset.sdiv(ElementSize);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001272 if (NumSkippedElements.ugt(VecTy->getNumElements()))
1273 return 0;
1274 Offset -= NumSkippedElements * ElementSize;
1275 Indices.push_back(IRB.getInt(NumSkippedElements));
Chandler Carruth90a735d2013-07-19 07:21:28 +00001276 return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001277 Offset, TargetTy, Indices);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001278 }
1279
1280 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1281 Type *ElementTy = ArrTy->getElementType();
Chandler Carruth90a735d2013-07-19 07:21:28 +00001282 APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
Chandler Carruth6fab42a2012-10-17 09:23:48 +00001283 APInt NumSkippedElements = Offset.sdiv(ElementSize);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001284 if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1285 return 0;
1286
1287 Offset -= NumSkippedElements * ElementSize;
1288 Indices.push_back(IRB.getInt(NumSkippedElements));
Chandler Carruth90a735d2013-07-19 07:21:28 +00001289 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001290 Indices);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001291 }
1292
1293 StructType *STy = dyn_cast<StructType>(Ty);
1294 if (!STy)
1295 return 0;
1296
Chandler Carruth90a735d2013-07-19 07:21:28 +00001297 const StructLayout *SL = DL.getStructLayout(STy);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001298 uint64_t StructOffset = Offset.getZExtValue();
Chandler Carruthcabd96c2012-09-14 10:30:42 +00001299 if (StructOffset >= SL->getSizeInBytes())
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001300 return 0;
1301 unsigned Index = SL->getElementContainingOffset(StructOffset);
1302 Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1303 Type *ElementTy = STy->getElementType(Index);
Chandler Carruth90a735d2013-07-19 07:21:28 +00001304 if (Offset.uge(DL.getTypeAllocSize(ElementTy)))
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001305 return 0; // The offset points into alignment padding.
1306
1307 Indices.push_back(IRB.getInt32(Index));
Chandler Carruth90a735d2013-07-19 07:21:28 +00001308 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001309 Indices);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001310}
1311
1312/// \brief Get a natural GEP from a base pointer to a particular offset and
1313/// resulting in a particular type.
1314///
1315/// The goal is to produce a "natural" looking GEP that works with the existing
1316/// composite types to arrive at the appropriate offset and element type for
1317/// a pointer. TargetTy is the element type the returned GEP should point-to if
1318/// possible. We recurse by decreasing Offset, adding the appropriate index to
1319/// Indices, and setting Ty to the result subtype.
1320///
Chandler Carruth93a21e72012-09-14 10:18:49 +00001321/// If no natural GEP can be constructed, this function returns null.
Chandler Carruth90a735d2013-07-19 07:21:28 +00001322static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001323 Value *Ptr, APInt Offset, Type *TargetTy,
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001324 SmallVectorImpl<Value *> &Indices) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001325 PointerType *Ty = cast<PointerType>(Ptr->getType());
1326
1327 // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1328 // an i8.
1329 if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8))
1330 return 0;
1331
1332 Type *ElementTy = Ty->getElementType();
Chandler Carruth3f882d42012-09-18 22:37:19 +00001333 if (!ElementTy->isSized())
1334 return 0; // We can't GEP through an unsized element.
Chandler Carruth90a735d2013-07-19 07:21:28 +00001335 APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001336 if (ElementSize == 0)
1337 return 0; // Zero-length arrays can't help us build a natural GEP.
Chandler Carruth6fab42a2012-10-17 09:23:48 +00001338 APInt NumSkippedElements = Offset.sdiv(ElementSize);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001339
1340 Offset -= NumSkippedElements * ElementSize;
1341 Indices.push_back(IRB.getInt(NumSkippedElements));
Chandler Carruth90a735d2013-07-19 07:21:28 +00001342 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001343 Indices);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001344}
1345
1346/// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
1347/// resulting pointer has PointerTy.
1348///
1349/// This tries very hard to compute a "natural" GEP which arrives at the offset
1350/// and produces the pointer type desired. Where it cannot, it will try to use
1351/// the natural GEP to arrive at the offset and bitcast to the type. Where that
1352/// fails, it will try to use an existing i8* and GEP to the byte offset and
1353/// bitcast to the type.
1354///
1355/// The strategy for finding the more natural GEPs is to peel off layers of the
1356/// pointer, walking back through bit casts and GEPs, searching for a base
1357/// pointer from which we can compute a natural GEP with the desired
Jakub Staszak086f6cd2013-02-19 22:02:21 +00001358/// properties. The algorithm tries to fold as many constant indices into
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001359/// a single GEP as possible, thus making each GEP more independent of the
1360/// surrounding code.
Chandler Carruth90a735d2013-07-19 07:21:28 +00001361static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL,
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001362 Value *Ptr, APInt Offset, Type *PointerTy) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001363 // Even though we don't look through PHI nodes, we could be called on an
1364 // instruction in an unreachable block, which may be on a cycle.
1365 SmallPtrSet<Value *, 4> Visited;
1366 Visited.insert(Ptr);
1367 SmallVector<Value *, 4> Indices;
1368
1369 // We may end up computing an offset pointer that has the wrong type. If we
1370 // never are able to compute one directly that has the correct type, we'll
1371 // fall back to it, so keep it around here.
1372 Value *OffsetPtr = 0;
1373
1374 // Remember any i8 pointer we come across to re-use if we need to do a raw
1375 // byte offset.
1376 Value *Int8Ptr = 0;
1377 APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1378
1379 Type *TargetTy = PointerTy->getPointerElementType();
1380
1381 do {
1382 // First fold any existing GEPs into the offset.
1383 while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1384 APInt GEPOffset(Offset.getBitWidth(), 0);
Chandler Carruth90a735d2013-07-19 07:21:28 +00001385 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001386 break;
1387 Offset += GEPOffset;
1388 Ptr = GEP->getPointerOperand();
1389 if (!Visited.insert(Ptr))
1390 break;
1391 }
1392
1393 // See if we can perform a natural GEP here.
1394 Indices.clear();
Chandler Carruth90a735d2013-07-19 07:21:28 +00001395 if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001396 Indices)) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001397 if (P->getType() == PointerTy) {
1398 // Zap any offset pointer that we ended up computing in previous rounds.
1399 if (OffsetPtr && OffsetPtr->use_empty())
1400 if (Instruction *I = dyn_cast<Instruction>(OffsetPtr))
1401 I->eraseFromParent();
1402 return P;
1403 }
1404 if (!OffsetPtr) {
1405 OffsetPtr = P;
1406 }
1407 }
1408
1409 // Stash this pointer if we've found an i8*.
1410 if (Ptr->getType()->isIntegerTy(8)) {
1411 Int8Ptr = Ptr;
1412 Int8PtrOffset = Offset;
1413 }
1414
1415 // Peel off a layer of the pointer and update the offset appropriately.
1416 if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1417 Ptr = cast<Operator>(Ptr)->getOperand(0);
1418 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1419 if (GA->mayBeOverridden())
1420 break;
1421 Ptr = GA->getAliasee();
1422 } else {
1423 break;
1424 }
1425 assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1426 } while (Visited.insert(Ptr));
1427
1428 if (!OffsetPtr) {
1429 if (!Int8Ptr) {
1430 Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001431 "raw_cast");
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001432 Int8PtrOffset = Offset;
1433 }
1434
1435 OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr :
1436 IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001437 "raw_idx");
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001438 }
1439 Ptr = OffsetPtr;
1440
1441 // On the off chance we were targeting i8*, guard the bitcast here.
1442 if (Ptr->getType() != PointerTy)
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001443 Ptr = IRB.CreateBitCast(Ptr, PointerTy, "cast");
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001444
1445 return Ptr;
1446}
1447
Chandler Carruthaa6afbb2012-10-15 08:40:22 +00001448/// \brief Test whether we can convert a value from the old to the new type.
1449///
1450/// This predicate should be used to guard calls to convertValue in order to
1451/// ensure that we only try to convert viable values. The strategy is that we
1452/// will peel off single element struct and array wrappings to get to an
1453/// underlying value, and convert that value.
1454static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1455 if (OldTy == NewTy)
1456 return true;
Chandler Carrutha1c54bb2013-03-14 11:32:24 +00001457 if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy))
1458 if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy))
1459 if (NewITy->getBitWidth() >= OldITy->getBitWidth())
1460 return true;
Chandler Carruthaa6afbb2012-10-15 08:40:22 +00001461 if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
1462 return false;
1463 if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1464 return false;
1465
Benjamin Kramer56262592013-09-22 11:24:58 +00001466 // We can convert pointers to integers and vice-versa. Same for vectors
Benjamin Kramer90901a32013-09-21 20:36:04 +00001467 // of pointers and integers.
1468 OldTy = OldTy->getScalarType();
1469 NewTy = NewTy->getScalarType();
Chandler Carruthaa6afbb2012-10-15 08:40:22 +00001470 if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1471 if (NewTy->isPointerTy() && OldTy->isPointerTy())
1472 return true;
1473 if (NewTy->isIntegerTy() || OldTy->isIntegerTy())
1474 return true;
1475 return false;
1476 }
1477
1478 return true;
1479}
1480
1481/// \brief Generic routine to convert an SSA value to a value of a different
1482/// type.
1483///
1484/// This will try various different casting techniques, such as bitcasts,
1485/// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1486/// two types for viability with this routine.
Chandler Carruthd177f862013-03-20 07:30:36 +00001487static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
Benjamin Kramer90901a32013-09-21 20:36:04 +00001488 Type *NewTy) {
1489 Type *OldTy = V->getType();
1490 assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type");
1491
1492 if (OldTy == NewTy)
Chandler Carruthaa6afbb2012-10-15 08:40:22 +00001493 return V;
Benjamin Kramer90901a32013-09-21 20:36:04 +00001494
1495 if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy))
1496 if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy))
Chandler Carrutha1c54bb2013-03-14 11:32:24 +00001497 if (NewITy->getBitWidth() > OldITy->getBitWidth())
1498 return IRB.CreateZExt(V, NewITy);
Chandler Carruthaa6afbb2012-10-15 08:40:22 +00001499
Benjamin Kramer90901a32013-09-21 20:36:04 +00001500 // See if we need inttoptr for this type pair. A cast involving both scalars
1501 // and vectors requires and additional bitcast.
1502 if (OldTy->getScalarType()->isIntegerTy() &&
1503 NewTy->getScalarType()->isPointerTy()) {
1504 // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
1505 if (OldTy->isVectorTy() && !NewTy->isVectorTy())
1506 return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1507 NewTy);
1508
1509 // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
1510 if (!OldTy->isVectorTy() && NewTy->isVectorTy())
1511 return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1512 NewTy);
1513
1514 return IRB.CreateIntToPtr(V, NewTy);
1515 }
1516
1517 // See if we need ptrtoint for this type pair. A cast involving both scalars
1518 // and vectors requires and additional bitcast.
1519 if (OldTy->getScalarType()->isPointerTy() &&
1520 NewTy->getScalarType()->isIntegerTy()) {
1521 // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
1522 if (OldTy->isVectorTy() && !NewTy->isVectorTy())
1523 return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1524 NewTy);
1525
1526 // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
1527 if (!OldTy->isVectorTy() && NewTy->isVectorTy())
1528 return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1529 NewTy);
1530
1531 return IRB.CreatePtrToInt(V, NewTy);
1532 }
1533
1534 return IRB.CreateBitCast(V, NewTy);
Chandler Carruthaa6afbb2012-10-15 08:40:22 +00001535}
1536
Chandler Carruth9f21fe12013-07-19 09:13:58 +00001537/// \brief Test whether the given slice use can be promoted to a vector.
Chandler Carruthf0546402013-07-18 07:15:00 +00001538///
1539/// This function is called to test each entry in a partioning which is slated
Chandler Carruth9f21fe12013-07-19 09:13:58 +00001540/// for a single slice.
1541static bool isVectorPromotionViableForSlice(
1542 const DataLayout &DL, AllocaSlices &S, uint64_t SliceBeginOffset,
1543 uint64_t SliceEndOffset, VectorType *Ty, uint64_t ElementSize,
1544 AllocaSlices::const_iterator I) {
1545 // First validate the slice offsets.
Chandler Carruthf0546402013-07-18 07:15:00 +00001546 uint64_t BeginOffset =
Chandler Carruth9f21fe12013-07-19 09:13:58 +00001547 std::max(I->beginOffset(), SliceBeginOffset) - SliceBeginOffset;
Chandler Carruthf0546402013-07-18 07:15:00 +00001548 uint64_t BeginIndex = BeginOffset / ElementSize;
1549 if (BeginIndex * ElementSize != BeginOffset ||
1550 BeginIndex >= Ty->getNumElements())
1551 return false;
1552 uint64_t EndOffset =
Chandler Carruth9f21fe12013-07-19 09:13:58 +00001553 std::min(I->endOffset(), SliceEndOffset) - SliceBeginOffset;
Chandler Carruthf0546402013-07-18 07:15:00 +00001554 uint64_t EndIndex = EndOffset / ElementSize;
1555 if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements())
1556 return false;
1557
1558 assert(EndIndex > BeginIndex && "Empty vector!");
1559 uint64_t NumElements = EndIndex - BeginIndex;
Chandler Carruth9f21fe12013-07-19 09:13:58 +00001560 Type *SliceTy =
Chandler Carruthf0546402013-07-18 07:15:00 +00001561 (NumElements == 1) ? Ty->getElementType()
1562 : VectorType::get(Ty->getElementType(), NumElements);
1563
1564 Type *SplitIntTy =
1565 Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
1566
1567 Use *U = I->getUse();
1568
1569 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1570 if (MI->isVolatile())
1571 return false;
1572 if (!I->isSplittable())
1573 return false; // Skip any unsplittable intrinsics.
1574 } else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
1575 // Disable vector promotion when there are loads or stores of an FCA.
1576 return false;
1577 } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1578 if (LI->isVolatile())
1579 return false;
1580 Type *LTy = LI->getType();
Chandler Carruth9f21fe12013-07-19 09:13:58 +00001581 if (SliceBeginOffset > I->beginOffset() ||
1582 SliceEndOffset < I->endOffset()) {
Chandler Carruthf0546402013-07-18 07:15:00 +00001583 assert(LTy->isIntegerTy());
1584 LTy = SplitIntTy;
1585 }
Chandler Carruth9f21fe12013-07-19 09:13:58 +00001586 if (!canConvertValue(DL, SliceTy, LTy))
Chandler Carruthf0546402013-07-18 07:15:00 +00001587 return false;
1588 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1589 if (SI->isVolatile())
1590 return false;
1591 Type *STy = SI->getValueOperand()->getType();
Chandler Carruth9f21fe12013-07-19 09:13:58 +00001592 if (SliceBeginOffset > I->beginOffset() ||
1593 SliceEndOffset < I->endOffset()) {
Chandler Carruthf0546402013-07-18 07:15:00 +00001594 assert(STy->isIntegerTy());
1595 STy = SplitIntTy;
1596 }
Chandler Carruth9f21fe12013-07-19 09:13:58 +00001597 if (!canConvertValue(DL, STy, SliceTy))
Chandler Carruthf0546402013-07-18 07:15:00 +00001598 return false;
Chandler Carruth1ed848d2013-07-19 10:57:32 +00001599 } else {
1600 return false;
Chandler Carruthf0546402013-07-18 07:15:00 +00001601 }
1602
1603 return true;
1604}
1605
Chandler Carruth9f21fe12013-07-19 09:13:58 +00001606/// \brief Test whether the given alloca partitioning and range of slices can be
1607/// promoted to a vector.
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001608///
1609/// This is a quick test to check whether we can rewrite a particular alloca
1610/// partition (and its newly formed alloca) into a vector alloca with only
1611/// whole-vector loads and stores such that it could be promoted to a vector
1612/// SSA value. We only can ensure this for a limited set of operations, and we
1613/// don't want to do the rewrites unless we are confident that the result will
1614/// be promotable, so we have an early test here.
Chandler Carruth9f21fe12013-07-19 09:13:58 +00001615static bool
1616isVectorPromotionViable(const DataLayout &DL, Type *AllocaTy, AllocaSlices &S,
1617 uint64_t SliceBeginOffset, uint64_t SliceEndOffset,
1618 AllocaSlices::const_iterator I,
1619 AllocaSlices::const_iterator E,
1620 ArrayRef<AllocaSlices::iterator> SplitUses) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001621 VectorType *Ty = dyn_cast<VectorType>(AllocaTy);
1622 if (!Ty)
1623 return false;
1624
Chandler Carruth90a735d2013-07-19 07:21:28 +00001625 uint64_t ElementSize = DL.getTypeSizeInBits(Ty->getScalarType());
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001626
1627 // While the definition of LLVM vectors is bitpacked, we don't support sizes
1628 // that aren't byte sized.
1629 if (ElementSize % 8)
1630 return false;
Chandler Carruth90a735d2013-07-19 07:21:28 +00001631 assert((DL.getTypeSizeInBits(Ty) % 8) == 0 &&
Benjamin Kramerc003a452013-01-01 16:13:35 +00001632 "vector size not a multiple of element size?");
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001633 ElementSize /= 8;
1634
Chandler Carruthf0546402013-07-18 07:15:00 +00001635 for (; I != E; ++I)
Chandler Carruth9f21fe12013-07-19 09:13:58 +00001636 if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset,
1637 SliceEndOffset, Ty, ElementSize, I))
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001638 return false;
1639
Chandler Carruth9f21fe12013-07-19 09:13:58 +00001640 for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(),
1641 SUE = SplitUses.end();
Chandler Carruthf0546402013-07-18 07:15:00 +00001642 SUI != SUE; ++SUI)
Chandler Carruth9f21fe12013-07-19 09:13:58 +00001643 if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset,
1644 SliceEndOffset, Ty, ElementSize, *SUI))
Chandler Carruthe3899f22013-07-15 17:36:21 +00001645 return false;
Chandler Carruthf0546402013-07-18 07:15:00 +00001646
1647 return true;
1648}
1649
Chandler Carruth9f21fe12013-07-19 09:13:58 +00001650/// \brief Test whether a slice of an alloca is valid for integer widening.
Chandler Carruthf0546402013-07-18 07:15:00 +00001651///
1652/// This implements the necessary checking for the \c isIntegerWideningViable
Chandler Carruth9f21fe12013-07-19 09:13:58 +00001653/// test below on a single slice of the alloca.
1654static bool isIntegerWideningViableForSlice(const DataLayout &DL,
1655 Type *AllocaTy,
1656 uint64_t AllocBeginOffset,
1657 uint64_t Size, AllocaSlices &S,
1658 AllocaSlices::const_iterator I,
1659 bool &WholeAllocaOp) {
Chandler Carruthf0546402013-07-18 07:15:00 +00001660 uint64_t RelBegin = I->beginOffset() - AllocBeginOffset;
1661 uint64_t RelEnd = I->endOffset() - AllocBeginOffset;
1662
1663 // We can't reasonably handle cases where the load or store extends past
1664 // the end of the aloca's type and into its padding.
1665 if (RelEnd > Size)
1666 return false;
1667
1668 Use *U = I->getUse();
1669
1670 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1671 if (LI->isVolatile())
1672 return false;
1673 if (RelBegin == 0 && RelEnd == Size)
1674 WholeAllocaOp = true;
1675 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
Chandler Carruth90a735d2013-07-19 07:21:28 +00001676 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
Chandler Carruthe3899f22013-07-15 17:36:21 +00001677 return false;
Chandler Carruthf0546402013-07-18 07:15:00 +00001678 } else if (RelBegin != 0 || RelEnd != Size ||
Chandler Carruth90a735d2013-07-19 07:21:28 +00001679 !canConvertValue(DL, AllocaTy, LI->getType())) {
Chandler Carruthf0546402013-07-18 07:15:00 +00001680 // Non-integer loads need to be convertible from the alloca type so that
1681 // they are promotable.
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001682 return false;
1683 }
Chandler Carruthf0546402013-07-18 07:15:00 +00001684 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1685 Type *ValueTy = SI->getValueOperand()->getType();
1686 if (SI->isVolatile())
1687 return false;
1688 if (RelBegin == 0 && RelEnd == Size)
1689 WholeAllocaOp = true;
1690 if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
Chandler Carruth90a735d2013-07-19 07:21:28 +00001691 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
Chandler Carruthf0546402013-07-18 07:15:00 +00001692 return false;
1693 } else if (RelBegin != 0 || RelEnd != Size ||
Chandler Carruth90a735d2013-07-19 07:21:28 +00001694 !canConvertValue(DL, ValueTy, AllocaTy)) {
Chandler Carruthf0546402013-07-18 07:15:00 +00001695 // Non-integer stores need to be convertible to the alloca type so that
1696 // they are promotable.
1697 return false;
1698 }
1699 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1700 if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
1701 return false;
1702 if (!I->isSplittable())
1703 return false; // Skip any unsplittable intrinsics.
1704 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
1705 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1706 II->getIntrinsicID() != Intrinsic::lifetime_end)
1707 return false;
1708 } else {
1709 return false;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001710 }
Chandler Carruthf0546402013-07-18 07:15:00 +00001711
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001712 return true;
1713}
1714
Chandler Carruth435c4e02012-10-15 08:40:30 +00001715/// \brief Test whether the given alloca partition's integer operations can be
1716/// widened to promotable ones.
Chandler Carruth92924fd2012-09-24 00:34:20 +00001717///
Chandler Carruth435c4e02012-10-15 08:40:30 +00001718/// This is a quick test to check whether we can rewrite the integer loads and
1719/// stores to a particular alloca into wider loads and stores and be able to
1720/// promote the resulting alloca.
Chandler Carruthf0546402013-07-18 07:15:00 +00001721static bool
Chandler Carruth90a735d2013-07-19 07:21:28 +00001722isIntegerWideningViable(const DataLayout &DL, Type *AllocaTy,
Chandler Carruth9f21fe12013-07-19 09:13:58 +00001723 uint64_t AllocBeginOffset, AllocaSlices &S,
1724 AllocaSlices::const_iterator I,
1725 AllocaSlices::const_iterator E,
1726 ArrayRef<AllocaSlices::iterator> SplitUses) {
Chandler Carruth90a735d2013-07-19 07:21:28 +00001727 uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy);
Benjamin Kramer47534c72012-12-01 11:53:32 +00001728 // Don't create integer types larger than the maximum bitwidth.
1729 if (SizeInBits > IntegerType::MAX_INT_BITS)
1730 return false;
Chandler Carruth435c4e02012-10-15 08:40:30 +00001731
1732 // Don't try to handle allocas with bit-padding.
Chandler Carruth90a735d2013-07-19 07:21:28 +00001733 if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy))
Chandler Carruth92924fd2012-09-24 00:34:20 +00001734 return false;
1735
Chandler Carruth58d05562012-10-25 04:37:07 +00001736 // We need to ensure that an integer type with the appropriate bitwidth can
1737 // be converted to the alloca type, whatever that is. We don't want to force
1738 // the alloca itself to have an integer type if there is a more suitable one.
1739 Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
Chandler Carruth90a735d2013-07-19 07:21:28 +00001740 if (!canConvertValue(DL, AllocaTy, IntTy) ||
1741 !canConvertValue(DL, IntTy, AllocaTy))
Chandler Carruth58d05562012-10-25 04:37:07 +00001742 return false;
1743
Chandler Carruth90a735d2013-07-19 07:21:28 +00001744 uint64_t Size = DL.getTypeStoreSize(AllocaTy);
Chandler Carruth435c4e02012-10-15 08:40:30 +00001745
Chandler Carruthf0546402013-07-18 07:15:00 +00001746 // While examining uses, we ensure that the alloca has a covering load or
1747 // store. We don't want to widen the integer operations only to fail to
1748 // promote due to some other unsplittable entry (which we may make splittable
Chandler Carruth5955c9e2013-07-19 07:12:23 +00001749 // later). However, if there are only splittable uses, go ahead and assume
1750 // that we cover the alloca.
Chandler Carruth90a735d2013-07-19 07:21:28 +00001751 bool WholeAllocaOp = (I != E) ? false : DL.isLegalInteger(SizeInBits);
Chandler Carruth43c8b462012-10-04 10:39:28 +00001752
Chandler Carruthf0546402013-07-18 07:15:00 +00001753 for (; I != E; ++I)
Chandler Carruth9f21fe12013-07-19 09:13:58 +00001754 if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size,
1755 S, I, WholeAllocaOp))
Chandler Carruth43c8b462012-10-04 10:39:28 +00001756 return false;
1757
Chandler Carruth9f21fe12013-07-19 09:13:58 +00001758 for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(),
1759 SUE = SplitUses.end();
Chandler Carruthf0546402013-07-18 07:15:00 +00001760 SUI != SUE; ++SUI)
Chandler Carruth9f21fe12013-07-19 09:13:58 +00001761 if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size,
1762 S, *SUI, WholeAllocaOp))
Chandler Carruth92924fd2012-09-24 00:34:20 +00001763 return false;
Chandler Carruthf0546402013-07-18 07:15:00 +00001764
Chandler Carruth92924fd2012-09-24 00:34:20 +00001765 return WholeAllocaOp;
1766}
1767
Chandler Carruthd177f862013-03-20 07:30:36 +00001768static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
Chandler Carruth59ff93af2012-10-18 09:56:08 +00001769 IntegerType *Ty, uint64_t Offset,
1770 const Twine &Name) {
Chandler Carruth18db7952012-11-20 01:12:50 +00001771 DEBUG(dbgs() << " start: " << *V << "\n");
Chandler Carruth59ff93af2012-10-18 09:56:08 +00001772 IntegerType *IntTy = cast<IntegerType>(V->getType());
1773 assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
1774 "Element extends past full value");
1775 uint64_t ShAmt = 8*Offset;
1776 if (DL.isBigEndian())
1777 ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
Chandler Carruth18db7952012-11-20 01:12:50 +00001778 if (ShAmt) {
Chandler Carruth59ff93af2012-10-18 09:56:08 +00001779 V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
Chandler Carruth18db7952012-11-20 01:12:50 +00001780 DEBUG(dbgs() << " shifted: " << *V << "\n");
1781 }
Chandler Carruth59ff93af2012-10-18 09:56:08 +00001782 assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
1783 "Cannot extract to a larger integer!");
Chandler Carruth18db7952012-11-20 01:12:50 +00001784 if (Ty != IntTy) {
Chandler Carruth59ff93af2012-10-18 09:56:08 +00001785 V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
Chandler Carruth18db7952012-11-20 01:12:50 +00001786 DEBUG(dbgs() << " trunced: " << *V << "\n");
1787 }
Chandler Carruth59ff93af2012-10-18 09:56:08 +00001788 return V;
1789}
1790
Chandler Carruthd177f862013-03-20 07:30:36 +00001791static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
Chandler Carruth59ff93af2012-10-18 09:56:08 +00001792 Value *V, uint64_t Offset, const Twine &Name) {
1793 IntegerType *IntTy = cast<IntegerType>(Old->getType());
1794 IntegerType *Ty = cast<IntegerType>(V->getType());
1795 assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
1796 "Cannot insert a larger integer!");
Chandler Carruth18db7952012-11-20 01:12:50 +00001797 DEBUG(dbgs() << " start: " << *V << "\n");
1798 if (Ty != IntTy) {
Chandler Carruth59ff93af2012-10-18 09:56:08 +00001799 V = IRB.CreateZExt(V, IntTy, Name + ".ext");
Chandler Carruth18db7952012-11-20 01:12:50 +00001800 DEBUG(dbgs() << " extended: " << *V << "\n");
1801 }
Chandler Carruth59ff93af2012-10-18 09:56:08 +00001802 assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
1803 "Element store outside of alloca store");
1804 uint64_t ShAmt = 8*Offset;
1805 if (DL.isBigEndian())
1806 ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
Chandler Carruth18db7952012-11-20 01:12:50 +00001807 if (ShAmt) {
Chandler Carruth59ff93af2012-10-18 09:56:08 +00001808 V = IRB.CreateShl(V, ShAmt, Name + ".shift");
Chandler Carruth18db7952012-11-20 01:12:50 +00001809 DEBUG(dbgs() << " shifted: " << *V << "\n");
1810 }
Chandler Carruth59ff93af2012-10-18 09:56:08 +00001811
1812 if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
1813 APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
1814 Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
Chandler Carruth18db7952012-11-20 01:12:50 +00001815 DEBUG(dbgs() << " masked: " << *Old << "\n");
Chandler Carruth59ff93af2012-10-18 09:56:08 +00001816 V = IRB.CreateOr(Old, V, Name + ".insert");
Chandler Carruth18db7952012-11-20 01:12:50 +00001817 DEBUG(dbgs() << " inserted: " << *V << "\n");
Chandler Carruth59ff93af2012-10-18 09:56:08 +00001818 }
1819 return V;
1820}
1821
Chandler Carruthd177f862013-03-20 07:30:36 +00001822static Value *extractVector(IRBuilderTy &IRB, Value *V,
Chandler Carruthb6bc8742012-12-17 13:07:30 +00001823 unsigned BeginIndex, unsigned EndIndex,
1824 const Twine &Name) {
1825 VectorType *VecTy = cast<VectorType>(V->getType());
1826 unsigned NumElements = EndIndex - BeginIndex;
1827 assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
1828
1829 if (NumElements == VecTy->getNumElements())
1830 return V;
1831
1832 if (NumElements == 1) {
1833 V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
1834 Name + ".extract");
1835 DEBUG(dbgs() << " extract: " << *V << "\n");
1836 return V;
1837 }
1838
1839 SmallVector<Constant*, 8> Mask;
1840 Mask.reserve(NumElements);
1841 for (unsigned i = BeginIndex; i != EndIndex; ++i)
1842 Mask.push_back(IRB.getInt32(i));
1843 V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
1844 ConstantVector::get(Mask),
1845 Name + ".extract");
1846 DEBUG(dbgs() << " shuffle: " << *V << "\n");
1847 return V;
1848}
1849
Chandler Carruthd177f862013-03-20 07:30:36 +00001850static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
Chandler Carruthce4562b2012-12-17 13:41:21 +00001851 unsigned BeginIndex, const Twine &Name) {
1852 VectorType *VecTy = cast<VectorType>(Old->getType());
1853 assert(VecTy && "Can only insert a vector into a vector");
1854
1855 VectorType *Ty = dyn_cast<VectorType>(V->getType());
1856 if (!Ty) {
1857 // Single element to insert.
1858 V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
1859 Name + ".insert");
1860 DEBUG(dbgs() << " insert: " << *V << "\n");
1861 return V;
1862 }
1863
1864 assert(Ty->getNumElements() <= VecTy->getNumElements() &&
1865 "Too many elements!");
1866 if (Ty->getNumElements() == VecTy->getNumElements()) {
1867 assert(V->getType() == VecTy && "Vector type mismatch");
1868 return V;
1869 }
1870 unsigned EndIndex = BeginIndex + Ty->getNumElements();
1871
1872 // When inserting a smaller vector into the larger to store, we first
1873 // use a shuffle vector to widen it with undef elements, and then
1874 // a second shuffle vector to select between the loaded vector and the
1875 // incoming vector.
1876 SmallVector<Constant*, 8> Mask;
1877 Mask.reserve(VecTy->getNumElements());
1878 for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
1879 if (i >= BeginIndex && i < EndIndex)
1880 Mask.push_back(IRB.getInt32(i - BeginIndex));
1881 else
1882 Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
1883 V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
1884 ConstantVector::get(Mask),
1885 Name + ".expand");
Nadav Rotem1e211912013-05-01 19:53:30 +00001886 DEBUG(dbgs() << " shuffle: " << *V << "\n");
Chandler Carruthce4562b2012-12-17 13:41:21 +00001887
1888 Mask.clear();
1889 for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
Nadav Rotem1e211912013-05-01 19:53:30 +00001890 Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
1891
1892 V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend");
1893
1894 DEBUG(dbgs() << " blend: " << *V << "\n");
Chandler Carruthce4562b2012-12-17 13:41:21 +00001895 return V;
1896}
1897
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001898namespace {
Chandler Carruth9f21fe12013-07-19 09:13:58 +00001899/// \brief Visitor to rewrite instructions using p particular slice of an alloca
1900/// to use a new alloca.
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001901///
1902/// Also implements the rewriting to vector-based accesses when the partition
1903/// passes the isVectorPromotionViable predicate. Most of the rewriting logic
1904/// lives here.
Chandler Carruth9f21fe12013-07-19 09:13:58 +00001905class AllocaSliceRewriter : public InstVisitor<AllocaSliceRewriter, bool> {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001906 // Befriend the base class so it can delegate to private visit methods.
Chandler Carruth9f21fe12013-07-19 09:13:58 +00001907 friend class llvm::InstVisitor<AllocaSliceRewriter, bool>;
1908 typedef llvm::InstVisitor<AllocaSliceRewriter, bool> Base;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001909
Chandler Carruth90a735d2013-07-19 07:21:28 +00001910 const DataLayout &DL;
Chandler Carruth9f21fe12013-07-19 09:13:58 +00001911 AllocaSlices &S;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001912 SROA &Pass;
1913 AllocaInst &OldAI, &NewAI;
1914 const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
Chandler Carruth891fec02012-10-13 02:41:05 +00001915 Type *NewAllocaTy;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001916
1917 // If we are rewriting an alloca partition which can be written as pure
1918 // vector operations, we stash extra information here. When VecTy is
Jakub Staszak086f6cd2013-02-19 22:02:21 +00001919 // non-null, we have some strict guarantees about the rewritten alloca:
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001920 // - The new alloca is exactly the size of the vector type here.
1921 // - The accesses all either map to the entire vector or to a single
1922 // element.
1923 // - The set of accessing instructions is only one of those handled above
1924 // in isVectorPromotionViable. Generally these are the same access kinds
1925 // which are promotable via mem2reg.
1926 VectorType *VecTy;
1927 Type *ElementTy;
1928 uint64_t ElementSize;
1929
Chandler Carruth92924fd2012-09-24 00:34:20 +00001930 // This is a convenience and flag variable that will be null unless the new
Chandler Carruth435c4e02012-10-15 08:40:30 +00001931 // alloca's integer operations should be widened to this integer type due to
1932 // passing isIntegerWideningViable above. If it is non-null, the desired
Chandler Carruth92924fd2012-09-24 00:34:20 +00001933 // integer type will be stored here for easy access during rewriting.
Chandler Carruth435c4e02012-10-15 08:40:30 +00001934 IntegerType *IntTy;
Chandler Carruth92924fd2012-09-24 00:34:20 +00001935
Chandler Carruth9f21fe12013-07-19 09:13:58 +00001936 // The offset of the slice currently being rewritten.
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001937 uint64_t BeginOffset, EndOffset;
Chandler Carruthf0546402013-07-18 07:15:00 +00001938 bool IsSplittable;
Chandler Carrutha1c54bb2013-03-14 11:32:24 +00001939 bool IsSplit;
Chandler Carruth54e8f0b2012-10-01 01:49:22 +00001940 Use *OldUse;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001941 Instruction *OldPtr;
1942
Chandler Carruth83ea1952013-07-24 09:47:28 +00001943 // Output members carrying state about the result of visiting and rewriting
1944 // the slice of the alloca.
1945 bool IsUsedByRewrittenSpeculatableInstructions;
1946
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001947 // Utility IR builder, whose name prefix is setup for each visited use, and
1948 // the insertion point is set to point to the user.
1949 IRBuilderTy IRB;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001950
1951public:
Chandler Carruth9f21fe12013-07-19 09:13:58 +00001952 AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &S, SROA &Pass,
1953 AllocaInst &OldAI, AllocaInst &NewAI,
1954 uint64_t NewBeginOffset, uint64_t NewEndOffset,
1955 bool IsVectorPromotable = false,
1956 bool IsIntegerPromotable = false)
1957 : DL(DL), S(S), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
Chandler Carruthf0546402013-07-18 07:15:00 +00001958 NewAllocaBeginOffset(NewBeginOffset), NewAllocaEndOffset(NewEndOffset),
1959 NewAllocaTy(NewAI.getAllocatedType()),
1960 VecTy(IsVectorPromotable ? cast<VectorType>(NewAllocaTy) : 0),
1961 ElementTy(VecTy ? VecTy->getElementType() : 0),
Chandler Carruth90a735d2013-07-19 07:21:28 +00001962 ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0),
Chandler Carruthf0546402013-07-18 07:15:00 +00001963 IntTy(IsIntegerPromotable
1964 ? Type::getIntNTy(
1965 NewAI.getContext(),
Chandler Carruth90a735d2013-07-19 07:21:28 +00001966 DL.getTypeSizeInBits(NewAI.getAllocatedType()))
Chandler Carruthf0546402013-07-18 07:15:00 +00001967 : 0),
1968 BeginOffset(), EndOffset(), IsSplittable(), IsSplit(), OldUse(),
Chandler Carruth83ea1952013-07-24 09:47:28 +00001969 OldPtr(), IsUsedByRewrittenSpeculatableInstructions(false),
1970 IRB(NewAI.getContext(), ConstantFolder()) {
Chandler Carruthf0546402013-07-18 07:15:00 +00001971 if (VecTy) {
Chandler Carruth90a735d2013-07-19 07:21:28 +00001972 assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 &&
Chandler Carruthf0546402013-07-18 07:15:00 +00001973 "Only multiple-of-8 sized vector elements are viable");
1974 ++NumVectorized;
1975 }
1976 assert((!IsVectorPromotable && !IsIntegerPromotable) ||
1977 IsVectorPromotable != IsIntegerPromotable);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001978 }
1979
Chandler Carruth9f21fe12013-07-19 09:13:58 +00001980 bool visit(AllocaSlices::const_iterator I) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001981 bool CanSROA = true;
Chandler Carruthf0546402013-07-18 07:15:00 +00001982 BeginOffset = I->beginOffset();
1983 EndOffset = I->endOffset();
1984 IsSplittable = I->isSplittable();
1985 IsSplit =
1986 BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001987
Chandler Carruthf0546402013-07-18 07:15:00 +00001988 OldUse = I->getUse();
1989 OldPtr = cast<Instruction>(OldUse->get());
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00001990
Chandler Carruthf0546402013-07-18 07:15:00 +00001991 Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
1992 IRB.SetInsertPoint(OldUserI);
1993 IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
1994 IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
1995
1996 CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
1997 if (VecTy || IntTy)
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001998 assert(CanSROA);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00001999 return CanSROA;
2000 }
2001
Chandler Carruth83ea1952013-07-24 09:47:28 +00002002 /// \brief Query whether this slice is used by speculatable instructions after
2003 /// rewriting.
2004 ///
2005 /// These instructions (PHIs and Selects currently) require the alloca slice
2006 /// to run back through the rewriter. Thus, they are promotable, but not on
2007 /// this iteration. This is distinct from a slice which is unpromotable for
2008 /// some other reason, in which case we don't even want to perform the
2009 /// speculation. This can be querried at any time and reflects whether (at
2010 /// that point) a visit call has rewritten a speculatable instruction on the
2011 /// current slice.
2012 bool isUsedByRewrittenSpeculatableInstructions() const {
2013 return IsUsedByRewrittenSpeculatableInstructions;
2014 }
2015
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002016private:
Chandler Carruthf0546402013-07-18 07:15:00 +00002017 // Make sure the other visit overloads are visible.
2018 using Base::visit;
2019
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002020 // Every instruction which can end up as a user must have a rewrite rule.
2021 bool visitInstruction(Instruction &I) {
2022 DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n");
2023 llvm_unreachable("No rewrite rule for this instruction!");
2024 }
2025
Chandler Carruthf0546402013-07-18 07:15:00 +00002026 Value *getAdjustedAllocaPtr(IRBuilderTy &IRB, uint64_t Offset,
2027 Type *PointerTy) {
2028 assert(Offset >= NewAllocaBeginOffset);
Chandler Carruth90a735d2013-07-19 07:21:28 +00002029 return getAdjustedPtr(IRB, DL, &NewAI, APInt(DL.getPointerSizeInBits(),
Chandler Carruthf0546402013-07-18 07:15:00 +00002030 Offset - NewAllocaBeginOffset),
2031 PointerTy);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002032 }
2033
Chandler Carruth4b2b38d2012-10-03 08:14:02 +00002034 /// \brief Compute suitable alignment to access an offset into the new alloca.
2035 unsigned getOffsetAlign(uint64_t Offset) {
Chandler Carruth176ca712012-10-01 12:16:54 +00002036 unsigned NewAIAlign = NewAI.getAlignment();
2037 if (!NewAIAlign)
Chandler Carruth90a735d2013-07-19 07:21:28 +00002038 NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType());
Chandler Carruth176ca712012-10-01 12:16:54 +00002039 return MinAlign(NewAIAlign, Offset);
2040 }
Chandler Carruth4b2b38d2012-10-03 08:14:02 +00002041
Chandler Carruth4b2b38d2012-10-03 08:14:02 +00002042 /// \brief Compute suitable alignment to access a type at an offset of the
2043 /// new alloca.
2044 ///
2045 /// \returns zero if the type's ABI alignment is a suitable alignment,
2046 /// otherwise returns the maximal suitable alignment.
2047 unsigned getOffsetTypeAlign(Type *Ty, uint64_t Offset) {
2048 unsigned Align = getOffsetAlign(Offset);
Chandler Carruth90a735d2013-07-19 07:21:28 +00002049 return Align == DL.getABITypeAlignment(Ty) ? 0 : Align;
Chandler Carruth4b2b38d2012-10-03 08:14:02 +00002050 }
2051
Chandler Carruth845b73c2012-11-21 08:16:30 +00002052 unsigned getIndex(uint64_t Offset) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002053 assert(VecTy && "Can only call getIndex when rewriting a vector");
2054 uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2055 assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2056 uint32_t Index = RelOffset / ElementSize;
2057 assert(Index * ElementSize == RelOffset);
Chandler Carruth845b73c2012-11-21 08:16:30 +00002058 return Index;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002059 }
2060
2061 void deleteIfTriviallyDead(Value *V) {
2062 Instruction *I = cast<Instruction>(V);
2063 if (isInstructionTriviallyDead(I))
Chandler Carruth18db7952012-11-20 01:12:50 +00002064 Pass.DeadInsts.insert(I);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002065 }
2066
Chandler Carruthf0546402013-07-18 07:15:00 +00002067 Value *rewriteVectorizedLoadInst(uint64_t NewBeginOffset,
2068 uint64_t NewEndOffset) {
2069 unsigned BeginIndex = getIndex(NewBeginOffset);
2070 unsigned EndIndex = getIndex(NewEndOffset);
Chandler Carruth769445e2012-12-17 12:50:21 +00002071 assert(EndIndex > BeginIndex && "Empty vector!");
Chandler Carruthb6bc8742012-12-17 13:07:30 +00002072
2073 Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002074 "load");
2075 return extractVector(IRB, V, BeginIndex, EndIndex, "vec");
Chandler Carruth769445e2012-12-17 12:50:21 +00002076 }
2077
Chandler Carruthf0546402013-07-18 07:15:00 +00002078 Value *rewriteIntegerLoad(LoadInst &LI, uint64_t NewBeginOffset,
2079 uint64_t NewEndOffset) {
Chandler Carruth59ff93af2012-10-18 09:56:08 +00002080 assert(IntTy && "We cannot insert an integer to the alloca");
Chandler Carruth92924fd2012-09-24 00:34:20 +00002081 assert(!LI.isVolatile());
Chandler Carruth59ff93af2012-10-18 09:56:08 +00002082 Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002083 "load");
Chandler Carruth90a735d2013-07-19 07:21:28 +00002084 V = convertValue(DL, IRB, V, IntTy);
Chandler Carruthf0546402013-07-18 07:15:00 +00002085 assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2086 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2087 if (Offset > 0 || NewEndOffset < NewAllocaEndOffset)
Chandler Carruth90a735d2013-07-19 07:21:28 +00002088 V = extractInteger(DL, IRB, V, cast<IntegerType>(LI.getType()), Offset,
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002089 "extract");
Chandler Carruth18db7952012-11-20 01:12:50 +00002090 return V;
Chandler Carruth92924fd2012-09-24 00:34:20 +00002091 }
2092
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002093 bool visitLoadInst(LoadInst &LI) {
2094 DEBUG(dbgs() << " original: " << LI << "\n");
2095 Value *OldOp = LI.getOperand(0);
2096 assert(OldOp == OldPtr);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002097
Chandler Carruthf0546402013-07-18 07:15:00 +00002098 // Compute the intersecting offset range.
2099 assert(BeginOffset < NewAllocaEndOffset);
2100 assert(EndOffset > NewAllocaBeginOffset);
2101 uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2102 uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2103
2104 uint64_t Size = NewEndOffset - NewBeginOffset;
Chandler Carruth3e994a22012-11-20 10:02:19 +00002105
Chandler Carrutha1c54bb2013-03-14 11:32:24 +00002106 Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), Size * 8)
2107 : LI.getType();
Chandler Carruth18db7952012-11-20 01:12:50 +00002108 bool IsPtrAdjusted = false;
2109 Value *V;
2110 if (VecTy) {
Chandler Carruthf0546402013-07-18 07:15:00 +00002111 V = rewriteVectorizedLoadInst(NewBeginOffset, NewEndOffset);
Chandler Carruth18db7952012-11-20 01:12:50 +00002112 } else if (IntTy && LI.getType()->isIntegerTy()) {
Chandler Carruthf0546402013-07-18 07:15:00 +00002113 V = rewriteIntegerLoad(LI, NewBeginOffset, NewEndOffset);
2114 } else if (NewBeginOffset == NewAllocaBeginOffset &&
Chandler Carruth90a735d2013-07-19 07:21:28 +00002115 canConvertValue(DL, NewAllocaTy, LI.getType())) {
Chandler Carruth18db7952012-11-20 01:12:50 +00002116 V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002117 LI.isVolatile(), "load");
Chandler Carruth18db7952012-11-20 01:12:50 +00002118 } else {
2119 Type *LTy = TargetTy->getPointerTo();
Chandler Carruthf0546402013-07-18 07:15:00 +00002120 V = IRB.CreateAlignedLoad(
2121 getAdjustedAllocaPtr(IRB, NewBeginOffset, LTy),
2122 getOffsetTypeAlign(TargetTy, NewBeginOffset - NewAllocaBeginOffset),
2123 LI.isVolatile(), "load");
Chandler Carruth18db7952012-11-20 01:12:50 +00002124 IsPtrAdjusted = true;
2125 }
Chandler Carruth90a735d2013-07-19 07:21:28 +00002126 V = convertValue(DL, IRB, V, TargetTy);
Chandler Carruth18db7952012-11-20 01:12:50 +00002127
Chandler Carrutha1c54bb2013-03-14 11:32:24 +00002128 if (IsSplit) {
Chandler Carruth58d05562012-10-25 04:37:07 +00002129 assert(!LI.isVolatile());
2130 assert(LI.getType()->isIntegerTy() &&
2131 "Only integer type loads and stores are split");
Chandler Carruth90a735d2013-07-19 07:21:28 +00002132 assert(Size < DL.getTypeStoreSize(LI.getType()) &&
Chandler Carrutha1c54bb2013-03-14 11:32:24 +00002133 "Split load isn't smaller than original load");
Chandler Carruth58d05562012-10-25 04:37:07 +00002134 assert(LI.getType()->getIntegerBitWidth() ==
Chandler Carruth90a735d2013-07-19 07:21:28 +00002135 DL.getTypeStoreSizeInBits(LI.getType()) &&
Chandler Carruth58d05562012-10-25 04:37:07 +00002136 "Non-byte-multiple bit width");
Chandler Carruth58d05562012-10-25 04:37:07 +00002137 // Move the insertion point just past the load so that we can refer to it.
2138 IRB.SetInsertPoint(llvm::next(BasicBlock::iterator(&LI)));
Chandler Carruth58d05562012-10-25 04:37:07 +00002139 // Create a placeholder value with the same type as LI to use as the
2140 // basis for the new value. This allows us to replace the uses of LI with
2141 // the computed value, and then replace the placeholder with LI, leaving
2142 // LI only used for this computation.
2143 Value *Placeholder
Jakub Staszak4e45abf2012-11-01 01:10:43 +00002144 = new LoadInst(UndefValue::get(LI.getType()->getPointerTo()));
Chandler Carruth90a735d2013-07-19 07:21:28 +00002145 V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset,
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002146 "insert");
Chandler Carruth58d05562012-10-25 04:37:07 +00002147 LI.replaceAllUsesWith(V);
2148 Placeholder->replaceAllUsesWith(&LI);
Jakub Staszak4e45abf2012-11-01 01:10:43 +00002149 delete Placeholder;
Chandler Carruth18db7952012-11-20 01:12:50 +00002150 } else {
2151 LI.replaceAllUsesWith(V);
Chandler Carruth58d05562012-10-25 04:37:07 +00002152 }
2153
Chandler Carruth18db7952012-11-20 01:12:50 +00002154 Pass.DeadInsts.insert(&LI);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002155 deleteIfTriviallyDead(OldOp);
Chandler Carruth18db7952012-11-20 01:12:50 +00002156 DEBUG(dbgs() << " to: " << *V << "\n");
2157 return !LI.isVolatile() && !IsPtrAdjusted;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002158 }
2159
Chandler Carruthf0546402013-07-18 07:15:00 +00002160 bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp,
2161 uint64_t NewBeginOffset,
2162 uint64_t NewEndOffset) {
Bob Wilsonacfc01d2013-06-25 19:09:50 +00002163 if (V->getType() != VecTy) {
Chandler Carruthf0546402013-07-18 07:15:00 +00002164 unsigned BeginIndex = getIndex(NewBeginOffset);
2165 unsigned EndIndex = getIndex(NewEndOffset);
Bob Wilsonacfc01d2013-06-25 19:09:50 +00002166 assert(EndIndex > BeginIndex && "Empty vector!");
2167 unsigned NumElements = EndIndex - BeginIndex;
2168 assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
Chandler Carruth9f21fe12013-07-19 09:13:58 +00002169 Type *SliceTy =
2170 (NumElements == 1) ? ElementTy
2171 : VectorType::get(ElementTy, NumElements);
2172 if (V->getType() != SliceTy)
2173 V = convertValue(DL, IRB, V, SliceTy);
Chandler Carruth845b73c2012-11-21 08:16:30 +00002174
Bob Wilsonacfc01d2013-06-25 19:09:50 +00002175 // Mix in the existing elements.
2176 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2177 "load");
2178 V = insertVector(IRB, Old, V, BeginIndex, "vec");
2179 }
Chandler Carruth871ba722012-09-26 10:27:46 +00002180 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
Chandler Carruth18db7952012-11-20 01:12:50 +00002181 Pass.DeadInsts.insert(&SI);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002182
2183 (void)Store;
2184 DEBUG(dbgs() << " to: " << *Store << "\n");
2185 return true;
2186 }
2187
Chandler Carruthf0546402013-07-18 07:15:00 +00002188 bool rewriteIntegerStore(Value *V, StoreInst &SI,
2189 uint64_t NewBeginOffset, uint64_t NewEndOffset) {
Chandler Carruth59ff93af2012-10-18 09:56:08 +00002190 assert(IntTy && "We cannot extract an integer from the alloca");
Chandler Carruth92924fd2012-09-24 00:34:20 +00002191 assert(!SI.isVolatile());
Chandler Carruth90a735d2013-07-19 07:21:28 +00002192 if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
Chandler Carruth59ff93af2012-10-18 09:56:08 +00002193 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002194 "oldload");
Chandler Carruth90a735d2013-07-19 07:21:28 +00002195 Old = convertValue(DL, IRB, Old, IntTy);
Chandler Carruth59ff93af2012-10-18 09:56:08 +00002196 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2197 uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
Chandler Carruth90a735d2013-07-19 07:21:28 +00002198 V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset,
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002199 "insert");
Chandler Carruth59ff93af2012-10-18 09:56:08 +00002200 }
Chandler Carruth90a735d2013-07-19 07:21:28 +00002201 V = convertValue(DL, IRB, V, NewAllocaTy);
Chandler Carruth59ff93af2012-10-18 09:56:08 +00002202 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
Chandler Carruth18db7952012-11-20 01:12:50 +00002203 Pass.DeadInsts.insert(&SI);
Chandler Carruth92924fd2012-09-24 00:34:20 +00002204 (void)Store;
2205 DEBUG(dbgs() << " to: " << *Store << "\n");
2206 return true;
2207 }
2208
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002209 bool visitStoreInst(StoreInst &SI) {
2210 DEBUG(dbgs() << " original: " << SI << "\n");
2211 Value *OldOp = SI.getOperand(1);
2212 assert(OldOp == OldPtr);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002213
Chandler Carruth18db7952012-11-20 01:12:50 +00002214 Value *V = SI.getValueOperand();
Chandler Carruth891fec02012-10-13 02:41:05 +00002215
Chandler Carruthac8317f2012-10-04 12:33:50 +00002216 // Strip all inbounds GEPs and pointer casts to try to dig out any root
2217 // alloca that should be re-examined after promoting this alloca.
Chandler Carruth18db7952012-11-20 01:12:50 +00002218 if (V->getType()->isPointerTy())
2219 if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
Chandler Carruthac8317f2012-10-04 12:33:50 +00002220 Pass.PostPromotionWorklist.insert(AI);
2221
Chandler Carruthf0546402013-07-18 07:15:00 +00002222 // Compute the intersecting offset range.
2223 assert(BeginOffset < NewAllocaEndOffset);
2224 assert(EndOffset > NewAllocaBeginOffset);
2225 uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2226 uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2227
2228 uint64_t Size = NewEndOffset - NewBeginOffset;
Chandler Carruth90a735d2013-07-19 07:21:28 +00002229 if (Size < DL.getTypeStoreSize(V->getType())) {
Chandler Carruth18db7952012-11-20 01:12:50 +00002230 assert(!SI.isVolatile());
2231 assert(V->getType()->isIntegerTy() &&
2232 "Only integer type loads and stores are split");
2233 assert(V->getType()->getIntegerBitWidth() ==
Chandler Carruth90a735d2013-07-19 07:21:28 +00002234 DL.getTypeStoreSizeInBits(V->getType()) &&
Chandler Carruth18db7952012-11-20 01:12:50 +00002235 "Non-byte-multiple bit width");
Chandler Carruth18db7952012-11-20 01:12:50 +00002236 IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), Size * 8);
Chandler Carruth90a735d2013-07-19 07:21:28 +00002237 V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset,
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002238 "extract");
Chandler Carruth891fec02012-10-13 02:41:05 +00002239 }
2240
Chandler Carruth18db7952012-11-20 01:12:50 +00002241 if (VecTy)
Chandler Carruthf0546402013-07-18 07:15:00 +00002242 return rewriteVectorizedStoreInst(V, SI, OldOp, NewBeginOffset,
2243 NewEndOffset);
Chandler Carruth18db7952012-11-20 01:12:50 +00002244 if (IntTy && V->getType()->isIntegerTy())
Chandler Carruthf0546402013-07-18 07:15:00 +00002245 return rewriteIntegerStore(V, SI, NewBeginOffset, NewEndOffset);
Chandler Carruth435c4e02012-10-15 08:40:30 +00002246
Chandler Carruth18db7952012-11-20 01:12:50 +00002247 StoreInst *NewSI;
Chandler Carruthf0546402013-07-18 07:15:00 +00002248 if (NewBeginOffset == NewAllocaBeginOffset &&
2249 NewEndOffset == NewAllocaEndOffset &&
Chandler Carruth90a735d2013-07-19 07:21:28 +00002250 canConvertValue(DL, V->getType(), NewAllocaTy)) {
2251 V = convertValue(DL, IRB, V, NewAllocaTy);
Chandler Carruth18db7952012-11-20 01:12:50 +00002252 NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2253 SI.isVolatile());
2254 } else {
Chandler Carruthf0546402013-07-18 07:15:00 +00002255 Value *NewPtr = getAdjustedAllocaPtr(IRB, NewBeginOffset,
2256 V->getType()->getPointerTo());
2257 NewSI = IRB.CreateAlignedStore(
2258 V, NewPtr, getOffsetTypeAlign(
2259 V->getType(), NewBeginOffset - NewAllocaBeginOffset),
2260 SI.isVolatile());
Chandler Carruth18db7952012-11-20 01:12:50 +00002261 }
2262 (void)NewSI;
2263 Pass.DeadInsts.insert(&SI);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002264 deleteIfTriviallyDead(OldOp);
Chandler Carruth18db7952012-11-20 01:12:50 +00002265
2266 DEBUG(dbgs() << " to: " << *NewSI << "\n");
2267 return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002268 }
2269
Chandler Carruth514f34f2012-12-17 04:07:30 +00002270 /// \brief Compute an integer value from splatting an i8 across the given
2271 /// number of bytes.
2272 ///
2273 /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
2274 /// call this routine.
Jakub Staszak086f6cd2013-02-19 22:02:21 +00002275 /// FIXME: Heed the advice above.
Chandler Carruth514f34f2012-12-17 04:07:30 +00002276 ///
2277 /// \param V The i8 value to splat.
2278 /// \param Size The number of bytes in the output (assuming i8 is one byte)
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002279 Value *getIntegerSplat(Value *V, unsigned Size) {
Chandler Carruth514f34f2012-12-17 04:07:30 +00002280 assert(Size > 0 && "Expected a positive number of bytes.");
2281 IntegerType *VTy = cast<IntegerType>(V->getType());
2282 assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
2283 if (Size == 1)
2284 return V;
2285
2286 Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8);
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002287 V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, "zext"),
Chandler Carruth514f34f2012-12-17 04:07:30 +00002288 ConstantExpr::getUDiv(
2289 Constant::getAllOnesValue(SplatIntTy),
2290 ConstantExpr::getZExt(
2291 Constant::getAllOnesValue(V->getType()),
2292 SplatIntTy)),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002293 "isplat");
Chandler Carruth514f34f2012-12-17 04:07:30 +00002294 return V;
2295 }
2296
Chandler Carruthccca5042012-12-17 04:07:37 +00002297 /// \brief Compute a vector splat for a given element value.
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002298 Value *getVectorSplat(Value *V, unsigned NumElements) {
2299 V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
Chandler Carruthccca5042012-12-17 04:07:37 +00002300 DEBUG(dbgs() << " splat: " << *V << "\n");
2301 return V;
2302 }
2303
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002304 bool visitMemSetInst(MemSetInst &II) {
2305 DEBUG(dbgs() << " original: " << II << "\n");
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002306 assert(II.getRawDest() == OldPtr);
2307
2308 // If the memset has a variable size, it cannot be split, just adjust the
2309 // pointer to the new alloca.
2310 if (!isa<Constant>(II.getLength())) {
Chandler Carruthf0546402013-07-18 07:15:00 +00002311 assert(!IsSplit);
2312 assert(BeginOffset >= NewAllocaBeginOffset);
2313 II.setDest(
2314 getAdjustedAllocaPtr(IRB, BeginOffset, II.getRawDest()->getType()));
Chandler Carruth208124f2012-09-26 10:59:22 +00002315 Type *CstTy = II.getAlignmentCst()->getType();
Chandler Carruthf0546402013-07-18 07:15:00 +00002316 II.setAlignment(ConstantInt::get(CstTy, getOffsetAlign(BeginOffset)));
Chandler Carruth208124f2012-09-26 10:59:22 +00002317
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002318 deleteIfTriviallyDead(OldPtr);
2319 return false;
2320 }
2321
2322 // Record this instruction for deletion.
Chandler Carruth18db7952012-11-20 01:12:50 +00002323 Pass.DeadInsts.insert(&II);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002324
2325 Type *AllocaTy = NewAI.getAllocatedType();
2326 Type *ScalarTy = AllocaTy->getScalarType();
2327
Chandler Carruthf0546402013-07-18 07:15:00 +00002328 // Compute the intersecting offset range.
2329 assert(BeginOffset < NewAllocaEndOffset);
2330 assert(EndOffset > NewAllocaBeginOffset);
2331 uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2332 uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
Chandler Carruth9f21fe12013-07-19 09:13:58 +00002333 uint64_t SliceOffset = NewBeginOffset - NewAllocaBeginOffset;
Chandler Carruthf0546402013-07-18 07:15:00 +00002334
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002335 // If this doesn't map cleanly onto the alloca type, and that type isn't
2336 // a single value type, just emit a memset.
Chandler Carruth9d966a22012-10-15 10:24:40 +00002337 if (!VecTy && !IntTy &&
Chandler Carruthf0546402013-07-18 07:15:00 +00002338 (BeginOffset > NewAllocaBeginOffset ||
2339 EndOffset < NewAllocaEndOffset ||
Chandler Carruth9d966a22012-10-15 10:24:40 +00002340 !AllocaTy->isSingleValueType() ||
Chandler Carruth90a735d2013-07-19 07:21:28 +00002341 !DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy)) ||
2342 DL.getTypeSizeInBits(ScalarTy)%8 != 0)) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002343 Type *SizeTy = II.getLength()->getType();
Chandler Carruthf0546402013-07-18 07:15:00 +00002344 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2345 CallInst *New = IRB.CreateMemSet(
2346 getAdjustedAllocaPtr(IRB, NewBeginOffset, II.getRawDest()->getType()),
Chandler Carruth9f21fe12013-07-19 09:13:58 +00002347 II.getValue(), Size, getOffsetAlign(SliceOffset), II.isVolatile());
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002348 (void)New;
2349 DEBUG(dbgs() << " to: " << *New << "\n");
2350 return false;
2351 }
2352
2353 // If we can represent this as a simple value, we have to build the actual
2354 // value to store, which requires expanding the byte present in memset to
2355 // a sensible representation for the alloca type. This is essentially
Chandler Carruthccca5042012-12-17 04:07:37 +00002356 // splatting the byte to a sufficiently wide integer, splatting it across
2357 // any desired vector width, and bitcasting to the final type.
Benjamin Kramerc003a452013-01-01 16:13:35 +00002358 Value *V;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002359
Chandler Carruthccca5042012-12-17 04:07:37 +00002360 if (VecTy) {
2361 // If this is a memset of a vectorized alloca, insert it.
2362 assert(ElementTy == ScalarTy);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002363
Chandler Carruthf0546402013-07-18 07:15:00 +00002364 unsigned BeginIndex = getIndex(NewBeginOffset);
2365 unsigned EndIndex = getIndex(NewEndOffset);
Chandler Carruthccca5042012-12-17 04:07:37 +00002366 assert(EndIndex > BeginIndex && "Empty vector!");
2367 unsigned NumElements = EndIndex - BeginIndex;
2368 assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2369
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002370 Value *Splat =
Chandler Carruth90a735d2013-07-19 07:21:28 +00002371 getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8);
2372 Splat = convertValue(DL, IRB, Splat, ElementTy);
Chandler Carruthcacda252012-12-17 14:03:01 +00002373 if (NumElements > 1)
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002374 Splat = getVectorSplat(Splat, NumElements);
Chandler Carruthccca5042012-12-17 04:07:37 +00002375
Chandler Carruthce4562b2012-12-17 13:41:21 +00002376 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002377 "oldload");
2378 V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
Chandler Carruthccca5042012-12-17 04:07:37 +00002379 } else if (IntTy) {
2380 // If this is a memset on an alloca where we can widen stores, insert the
2381 // set integer.
Chandler Carruth9d966a22012-10-15 10:24:40 +00002382 assert(!II.isVolatile());
Chandler Carruthccca5042012-12-17 04:07:37 +00002383
Chandler Carruthf0546402013-07-18 07:15:00 +00002384 uint64_t Size = NewEndOffset - NewBeginOffset;
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002385 V = getIntegerSplat(II.getValue(), Size);
Chandler Carruthccca5042012-12-17 04:07:37 +00002386
2387 if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
2388 EndOffset != NewAllocaBeginOffset)) {
2389 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002390 "oldload");
Chandler Carruth90a735d2013-07-19 07:21:28 +00002391 Old = convertValue(DL, IRB, Old, IntTy);
Chandler Carruthf0546402013-07-18 07:15:00 +00002392 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
Chandler Carruth90a735d2013-07-19 07:21:28 +00002393 V = insertInteger(DL, IRB, Old, V, Offset, "insert");
Chandler Carruthccca5042012-12-17 04:07:37 +00002394 } else {
2395 assert(V->getType() == IntTy &&
2396 "Wrong type for an alloca wide integer!");
2397 }
Chandler Carruth90a735d2013-07-19 07:21:28 +00002398 V = convertValue(DL, IRB, V, AllocaTy);
Chandler Carruthccca5042012-12-17 04:07:37 +00002399 } else {
2400 // Established these invariants above.
Chandler Carruthf0546402013-07-18 07:15:00 +00002401 assert(NewBeginOffset == NewAllocaBeginOffset);
2402 assert(NewEndOffset == NewAllocaEndOffset);
Chandler Carruthccca5042012-12-17 04:07:37 +00002403
Chandler Carruth90a735d2013-07-19 07:21:28 +00002404 V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8);
Chandler Carruthccca5042012-12-17 04:07:37 +00002405 if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002406 V = getVectorSplat(V, AllocaVecTy->getNumElements());
Chandler Carruth95e1fb82012-12-17 13:51:03 +00002407
Chandler Carruth90a735d2013-07-19 07:21:28 +00002408 V = convertValue(DL, IRB, V, AllocaTy);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002409 }
2410
Chandler Carruth95e1fb82012-12-17 13:51:03 +00002411 Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
Chandler Carruth871ba722012-09-26 10:27:46 +00002412 II.isVolatile());
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002413 (void)New;
2414 DEBUG(dbgs() << " to: " << *New << "\n");
2415 return !II.isVolatile();
2416 }
2417
2418 bool visitMemTransferInst(MemTransferInst &II) {
2419 // Rewriting of memory transfer instructions can be a bit tricky. We break
2420 // them into two categories: split intrinsics and unsplit intrinsics.
2421
2422 DEBUG(dbgs() << " original: " << II << "\n");
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002423
Chandler Carruthf0546402013-07-18 07:15:00 +00002424 // Compute the intersecting offset range.
2425 assert(BeginOffset < NewAllocaEndOffset);
2426 assert(EndOffset > NewAllocaBeginOffset);
2427 uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2428 uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2429
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002430 assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr);
2431 bool IsDest = II.getRawDest() == OldPtr;
2432
Chandler Carruth176ca712012-10-01 12:16:54 +00002433 // Compute the relative offset within the transfer.
Chandler Carruth90a735d2013-07-19 07:21:28 +00002434 unsigned IntPtrWidth = DL.getPointerSizeInBits();
Chandler Carruthf0546402013-07-18 07:15:00 +00002435 APInt RelOffset(IntPtrWidth, NewBeginOffset - BeginOffset);
Chandler Carruth176ca712012-10-01 12:16:54 +00002436
2437 unsigned Align = II.getAlignment();
Chandler Carruth9f21fe12013-07-19 09:13:58 +00002438 uint64_t SliceOffset = NewBeginOffset - NewAllocaBeginOffset;
Chandler Carruth176ca712012-10-01 12:16:54 +00002439 if (Align > 1)
Chandler Carruth9f21fe12013-07-19 09:13:58 +00002440 Align =
2441 MinAlign(RelOffset.zextOrTrunc(64).getZExtValue(),
2442 MinAlign(II.getAlignment(), getOffsetAlign(SliceOffset)));
Chandler Carruth176ca712012-10-01 12:16:54 +00002443
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002444 // For unsplit intrinsics, we simply modify the source and destination
2445 // pointers in place. This isn't just an optimization, it is a matter of
2446 // correctness. With unsplit intrinsics we may be dealing with transfers
2447 // within a single alloca before SROA ran, or with transfers that have
2448 // a variable length. We may also be dealing with memmove instead of
2449 // memcpy, and so simply updating the pointers is the necessary for us to
2450 // update both source and dest of a single call.
Chandler Carruthf0546402013-07-18 07:15:00 +00002451 if (!IsSplittable) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002452 Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource();
2453 if (IsDest)
Chandler Carruthf0546402013-07-18 07:15:00 +00002454 II.setDest(
2455 getAdjustedAllocaPtr(IRB, BeginOffset, II.getRawDest()->getType()));
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002456 else
Chandler Carruthf0546402013-07-18 07:15:00 +00002457 II.setSource(getAdjustedAllocaPtr(IRB, BeginOffset,
2458 II.getRawSource()->getType()));
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002459
Chandler Carruth208124f2012-09-26 10:59:22 +00002460 Type *CstTy = II.getAlignmentCst()->getType();
Chandler Carruth176ca712012-10-01 12:16:54 +00002461 II.setAlignment(ConstantInt::get(CstTy, Align));
Chandler Carruth208124f2012-09-26 10:59:22 +00002462
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002463 DEBUG(dbgs() << " to: " << II << "\n");
2464 deleteIfTriviallyDead(OldOp);
2465 return false;
2466 }
2467 // For split transfer intrinsics we have an incredibly useful assurance:
2468 // the source and destination do not reside within the same alloca, and at
2469 // least one of them does not escape. This means that we can replace
2470 // memmove with memcpy, and we don't need to worry about all manner of
2471 // downsides to splitting and transforming the operations.
2472
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002473 // If this doesn't map cleanly onto the alloca type, and that type isn't
2474 // a single value type, just emit a memcpy.
2475 bool EmitMemCpy
Chandler Carruthf0546402013-07-18 07:15:00 +00002476 = !VecTy && !IntTy && (BeginOffset > NewAllocaBeginOffset ||
2477 EndOffset < NewAllocaEndOffset ||
Chandler Carruth49c8eea2012-10-15 10:24:43 +00002478 !NewAI.getAllocatedType()->isSingleValueType());
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002479
2480 // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2481 // size hasn't been shrunk based on analysis of the viable range, this is
2482 // a no-op.
2483 if (EmitMemCpy && &OldAI == &NewAI) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002484 // Ensure the start lines up.
Chandler Carruthf0546402013-07-18 07:15:00 +00002485 assert(NewBeginOffset == BeginOffset);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002486
2487 // Rewrite the size as needed.
Chandler Carruthf0546402013-07-18 07:15:00 +00002488 if (NewEndOffset != EndOffset)
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002489 II.setLength(ConstantInt::get(II.getLength()->getType(),
Chandler Carruthf0546402013-07-18 07:15:00 +00002490 NewEndOffset - NewBeginOffset));
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002491 return false;
2492 }
2493 // Record this instruction for deletion.
Chandler Carruth18db7952012-11-20 01:12:50 +00002494 Pass.DeadInsts.insert(&II);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002495
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002496 // Strip all inbounds GEPs and pointer casts to try to dig out any root
2497 // alloca that should be re-examined after rewriting this instruction.
Chandler Carruth21eb4e92012-12-17 14:51:24 +00002498 Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002499 if (AllocaInst *AI
2500 = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets()))
Chandler Carruth4bd8f662012-09-26 07:41:40 +00002501 Pass.Worklist.insert(AI);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002502
2503 if (EmitMemCpy) {
Chandler Carruth21eb4e92012-12-17 14:51:24 +00002504 Type *OtherPtrTy = IsDest ? II.getRawSource()->getType()
2505 : II.getRawDest()->getType();
2506
2507 // Compute the other pointer, folding as much as possible to produce
2508 // a single, simple GEP in most cases.
Chandler Carruth90a735d2013-07-19 07:21:28 +00002509 OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, RelOffset, OtherPtrTy);
Chandler Carruth21eb4e92012-12-17 14:51:24 +00002510
Chandler Carruthf0546402013-07-18 07:15:00 +00002511 Value *OurPtr = getAdjustedAllocaPtr(
2512 IRB, NewBeginOffset,
2513 IsDest ? II.getRawDest()->getType() : II.getRawSource()->getType());
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002514 Type *SizeTy = II.getLength()->getType();
Chandler Carruthf0546402013-07-18 07:15:00 +00002515 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002516
2517 CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr,
2518 IsDest ? OtherPtr : OurPtr,
Chandler Carruth871ba722012-09-26 10:27:46 +00002519 Size, Align, II.isVolatile());
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002520 (void)New;
2521 DEBUG(dbgs() << " to: " << *New << "\n");
2522 return false;
2523 }
2524
Chandler Carruth08e5f492012-10-03 08:26:28 +00002525 // Note that we clamp the alignment to 1 here as a 0 alignment for a memcpy
2526 // is equivalent to 1, but that isn't true if we end up rewriting this as
2527 // a load or store.
2528 if (!Align)
2529 Align = 1;
2530
Chandler Carruthf0546402013-07-18 07:15:00 +00002531 bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
2532 NewEndOffset == NewAllocaEndOffset;
2533 uint64_t Size = NewEndOffset - NewBeginOffset;
2534 unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
2535 unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
Chandler Carruth21eb4e92012-12-17 14:51:24 +00002536 unsigned NumElements = EndIndex - BeginIndex;
2537 IntegerType *SubIntTy
2538 = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : 0;
2539
2540 Type *OtherPtrTy = NewAI.getType();
2541 if (VecTy && !IsWholeAlloca) {
2542 if (NumElements == 1)
2543 OtherPtrTy = VecTy->getElementType();
2544 else
2545 OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements);
2546
2547 OtherPtrTy = OtherPtrTy->getPointerTo();
2548 } else if (IntTy && !IsWholeAlloca) {
2549 OtherPtrTy = SubIntTy->getPointerTo();
2550 }
2551
Chandler Carruth90a735d2013-07-19 07:21:28 +00002552 Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, RelOffset, OtherPtrTy);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002553 Value *DstPtr = &NewAI;
2554 if (!IsDest)
2555 std::swap(SrcPtr, DstPtr);
2556
2557 Value *Src;
Chandler Carruth21eb4e92012-12-17 14:51:24 +00002558 if (VecTy && !IsWholeAlloca && !IsDest) {
2559 Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002560 "load");
2561 Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
Chandler Carruth49c8eea2012-10-15 10:24:43 +00002562 } else if (IntTy && !IsWholeAlloca && !IsDest) {
Chandler Carruth59ff93af2012-10-18 09:56:08 +00002563 Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002564 "load");
Chandler Carruth90a735d2013-07-19 07:21:28 +00002565 Src = convertValue(DL, IRB, Src, IntTy);
Chandler Carruthf0546402013-07-18 07:15:00 +00002566 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
Chandler Carruth90a735d2013-07-19 07:21:28 +00002567 Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002568 } else {
Chandler Carruth871ba722012-09-26 10:27:46 +00002569 Src = IRB.CreateAlignedLoad(SrcPtr, Align, II.isVolatile(),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002570 "copyload");
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002571 }
2572
Chandler Carruth21eb4e92012-12-17 14:51:24 +00002573 if (VecTy && !IsWholeAlloca && IsDest) {
2574 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002575 "oldload");
2576 Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
Chandler Carruth21eb4e92012-12-17 14:51:24 +00002577 } else if (IntTy && !IsWholeAlloca && IsDest) {
Chandler Carruth59ff93af2012-10-18 09:56:08 +00002578 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002579 "oldload");
Chandler Carruth90a735d2013-07-19 07:21:28 +00002580 Old = convertValue(DL, IRB, Old, IntTy);
Chandler Carruthf0546402013-07-18 07:15:00 +00002581 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
Chandler Carruth90a735d2013-07-19 07:21:28 +00002582 Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
2583 Src = convertValue(DL, IRB, Src, NewAllocaTy);
Chandler Carruth49c8eea2012-10-15 10:24:43 +00002584 }
2585
Chandler Carruth871ba722012-09-26 10:27:46 +00002586 StoreInst *Store = cast<StoreInst>(
2587 IRB.CreateAlignedStore(Src, DstPtr, Align, II.isVolatile()));
2588 (void)Store;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002589 DEBUG(dbgs() << " to: " << *Store << "\n");
2590 return !II.isVolatile();
2591 }
2592
2593 bool visitIntrinsicInst(IntrinsicInst &II) {
2594 assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
2595 II.getIntrinsicID() == Intrinsic::lifetime_end);
2596 DEBUG(dbgs() << " original: " << II << "\n");
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002597 assert(II.getArgOperand(1) == OldPtr);
2598
Chandler Carruthf0546402013-07-18 07:15:00 +00002599 // Compute the intersecting offset range.
2600 assert(BeginOffset < NewAllocaEndOffset);
2601 assert(EndOffset > NewAllocaBeginOffset);
2602 uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2603 uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2604
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002605 // Record this instruction for deletion.
Chandler Carruth18db7952012-11-20 01:12:50 +00002606 Pass.DeadInsts.insert(&II);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002607
2608 ConstantInt *Size
2609 = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
Chandler Carruthf0546402013-07-18 07:15:00 +00002610 NewEndOffset - NewBeginOffset);
2611 Value *Ptr =
2612 getAdjustedAllocaPtr(IRB, NewBeginOffset, II.getArgOperand(1)->getType());
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002613 Value *New;
2614 if (II.getIntrinsicID() == Intrinsic::lifetime_start)
2615 New = IRB.CreateLifetimeStart(Ptr, Size);
2616 else
2617 New = IRB.CreateLifetimeEnd(Ptr, Size);
2618
Edwin Vane82f80d42013-01-29 17:42:24 +00002619 (void)New;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002620 DEBUG(dbgs() << " to: " << *New << "\n");
2621 return true;
2622 }
2623
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002624 bool visitPHINode(PHINode &PN) {
2625 DEBUG(dbgs() << " original: " << PN << "\n");
Chandler Carruthf0546402013-07-18 07:15:00 +00002626 assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
2627 assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
Chandler Carruth82a57542012-10-01 10:54:05 +00002628
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002629 // We would like to compute a new pointer in only one place, but have it be
2630 // as local as possible to the PHI. To do that, we re-use the location of
2631 // the old pointer, which necessarily must be in the right position to
2632 // dominate the PHI.
Jakub Staszakcb132fa2013-07-22 22:10:43 +00002633 IRBuilderTy PtrBuilder(OldPtr);
Chandler Carruth34f0c7f2013-03-21 09:52:18 +00002634 PtrBuilder.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) +
2635 ".");
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002636
Chandler Carruthf0546402013-07-18 07:15:00 +00002637 Value *NewPtr =
2638 getAdjustedAllocaPtr(PtrBuilder, BeginOffset, OldPtr->getType());
Chandler Carruth82a57542012-10-01 10:54:05 +00002639 // Replace the operands which were using the old pointer.
Benjamin Kramer7ddd7052012-10-20 12:04:57 +00002640 std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002641
Chandler Carruth82a57542012-10-01 10:54:05 +00002642 DEBUG(dbgs() << " to: " << PN << "\n");
2643 deleteIfTriviallyDead(OldPtr);
Chandler Carruthf0546402013-07-18 07:15:00 +00002644
2645 // Check whether we can speculate this PHI node, and if so remember that
Chandler Carruth83ea1952013-07-24 09:47:28 +00002646 // fact and queue it up for another iteration after the speculation
2647 // occurs.
Chandler Carruth90a735d2013-07-19 07:21:28 +00002648 if (isSafePHIToSpeculate(PN, &DL)) {
Chandler Carruthf0546402013-07-18 07:15:00 +00002649 Pass.SpeculatablePHIs.insert(&PN);
Chandler Carruth83ea1952013-07-24 09:47:28 +00002650 IsUsedByRewrittenSpeculatableInstructions = true;
Chandler Carruthf0546402013-07-18 07:15:00 +00002651 return true;
2652 }
2653
2654 return false; // PHIs can't be promoted on their own.
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002655 }
2656
2657 bool visitSelectInst(SelectInst &SI) {
2658 DEBUG(dbgs() << " original: " << SI << "\n");
Benjamin Kramer0212dc22013-04-21 17:48:39 +00002659 assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
2660 "Pointer isn't an operand!");
Chandler Carruthf0546402013-07-18 07:15:00 +00002661 assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
2662 assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
Chandler Carruth82a57542012-10-01 10:54:05 +00002663
Chandler Carruthf0546402013-07-18 07:15:00 +00002664 Value *NewPtr = getAdjustedAllocaPtr(IRB, BeginOffset, OldPtr->getType());
Benjamin Kramer0212dc22013-04-21 17:48:39 +00002665 // Replace the operands which were using the old pointer.
2666 if (SI.getOperand(1) == OldPtr)
2667 SI.setOperand(1, NewPtr);
2668 if (SI.getOperand(2) == OldPtr)
2669 SI.setOperand(2, NewPtr);
2670
Chandler Carruth82a57542012-10-01 10:54:05 +00002671 DEBUG(dbgs() << " to: " << SI << "\n");
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002672 deleteIfTriviallyDead(OldPtr);
Chandler Carruthf0546402013-07-18 07:15:00 +00002673
2674 // Check whether we can speculate this select instruction, and if so
Chandler Carruth83ea1952013-07-24 09:47:28 +00002675 // remember that fact and queue it up for another iteration after the
2676 // speculation occurs.
Chandler Carruth90a735d2013-07-19 07:21:28 +00002677 if (isSafeSelectToSpeculate(SI, &DL)) {
Chandler Carruthf0546402013-07-18 07:15:00 +00002678 Pass.SpeculatableSelects.insert(&SI);
Chandler Carruth83ea1952013-07-24 09:47:28 +00002679 IsUsedByRewrittenSpeculatableInstructions = true;
Chandler Carruthf0546402013-07-18 07:15:00 +00002680 return true;
2681 }
2682
2683 return false; // Selects can't be promoted on their own.
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002684 }
2685
2686};
2687}
2688
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002689namespace {
2690/// \brief Visitor to rewrite aggregate loads and stores as scalar.
2691///
2692/// This pass aggressively rewrites all aggregate loads and stores on
2693/// a particular pointer (or any pointer derived from it which we can identify)
2694/// with scalar loads and stores.
2695class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
2696 // Befriend the base class so it can delegate to private visit methods.
2697 friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>;
2698
Chandler Carruth90a735d2013-07-19 07:21:28 +00002699 const DataLayout &DL;
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002700
2701 /// Queue of pointer uses to analyze and potentially rewrite.
2702 SmallVector<Use *, 8> Queue;
2703
2704 /// Set to prevent us from cycling with phi nodes and loops.
2705 SmallPtrSet<User *, 8> Visited;
2706
2707 /// The current pointer use being rewritten. This is used to dig up the used
2708 /// value (as opposed to the user).
2709 Use *U;
2710
2711public:
Chandler Carruth90a735d2013-07-19 07:21:28 +00002712 AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {}
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002713
2714 /// Rewrite loads and stores through a pointer and all pointers derived from
2715 /// it.
2716 bool rewrite(Instruction &I) {
2717 DEBUG(dbgs() << " Rewriting FCA loads and stores...\n");
2718 enqueueUsers(I);
2719 bool Changed = false;
2720 while (!Queue.empty()) {
2721 U = Queue.pop_back_val();
2722 Changed |= visit(cast<Instruction>(U->getUser()));
2723 }
2724 return Changed;
2725 }
2726
2727private:
2728 /// Enqueue all the users of the given instruction for further processing.
2729 /// This uses a set to de-duplicate users.
2730 void enqueueUsers(Instruction &I) {
2731 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
2732 ++UI)
2733 if (Visited.insert(*UI))
2734 Queue.push_back(&UI.getUse());
2735 }
2736
2737 // Conservative default is to not rewrite anything.
2738 bool visitInstruction(Instruction &I) { return false; }
2739
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002740 /// \brief Generic recursive split emission class.
Benjamin Kramer73a9e4a2012-09-18 17:06:32 +00002741 template <typename Derived>
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002742 class OpSplitter {
2743 protected:
2744 /// The builder used to form new instructions.
Chandler Carruthd177f862013-03-20 07:30:36 +00002745 IRBuilderTy IRB;
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002746 /// The indices which to be used with insert- or extractvalue to select the
2747 /// appropriate value within the aggregate.
2748 SmallVector<unsigned, 4> Indices;
2749 /// The indices to a GEP instruction which will move Ptr to the correct slot
2750 /// within the aggregate.
2751 SmallVector<Value *, 4> GEPIndices;
2752 /// The base pointer of the original op, used as a base for GEPing the
2753 /// split operations.
2754 Value *Ptr;
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002755
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002756 /// Initialize the splitter with an insertion point, Ptr and start with a
2757 /// single zero GEP index.
2758 OpSplitter(Instruction *InsertionPoint, Value *Ptr)
Benjamin Kramer73a9e4a2012-09-18 17:06:32 +00002759 : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002760
2761 public:
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002762 /// \brief Generic recursive split emission routine.
2763 ///
2764 /// This method recursively splits an aggregate op (load or store) into
2765 /// scalar or vector ops. It splits recursively until it hits a single value
2766 /// and emits that single value operation via the template argument.
2767 ///
2768 /// The logic of this routine relies on GEPs and insertvalue and
2769 /// extractvalue all operating with the same fundamental index list, merely
2770 /// formatted differently (GEPs need actual values).
2771 ///
2772 /// \param Ty The type being split recursively into smaller ops.
2773 /// \param Agg The aggregate value being built up or stored, depending on
2774 /// whether this is splitting a load or a store respectively.
2775 void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
2776 if (Ty->isSingleValueType())
Benjamin Kramer73a9e4a2012-09-18 17:06:32 +00002777 return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002778
2779 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2780 unsigned OldSize = Indices.size();
2781 (void)OldSize;
2782 for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
2783 ++Idx) {
2784 assert(Indices.size() == OldSize && "Did not return to the old size");
2785 Indices.push_back(Idx);
2786 GEPIndices.push_back(IRB.getInt32(Idx));
2787 emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
2788 GEPIndices.pop_back();
2789 Indices.pop_back();
2790 }
2791 return;
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002792 }
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002793
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002794 if (StructType *STy = dyn_cast<StructType>(Ty)) {
2795 unsigned OldSize = Indices.size();
2796 (void)OldSize;
2797 for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
2798 ++Idx) {
2799 assert(Indices.size() == OldSize && "Did not return to the old size");
2800 Indices.push_back(Idx);
2801 GEPIndices.push_back(IRB.getInt32(Idx));
2802 emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
2803 GEPIndices.pop_back();
2804 Indices.pop_back();
2805 }
2806 return;
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002807 }
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002808
2809 llvm_unreachable("Only arrays and structs are aggregate loadable types");
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002810 }
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002811 };
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002812
Benjamin Kramer73a9e4a2012-09-18 17:06:32 +00002813 struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002814 LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr)
Benjamin Kramera59ef572012-09-18 17:11:47 +00002815 : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002816
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002817 /// Emit a leaf load of a single value. This is called at the leaves of the
2818 /// recursive emission to actually load values.
Benjamin Kramer73a9e4a2012-09-18 17:06:32 +00002819 void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002820 assert(Ty->isSingleValueType());
2821 // Load the single value and insert it using the indices.
Jakub Staszak3c6583a2013-02-19 22:14:45 +00002822 Value *GEP = IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep");
2823 Value *Load = IRB.CreateLoad(GEP, Name + ".load");
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002824 Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
2825 DEBUG(dbgs() << " to: " << *Load << "\n");
2826 }
2827 };
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002828
2829 bool visitLoadInst(LoadInst &LI) {
2830 assert(LI.getPointerOperand() == *U);
2831 if (!LI.isSimple() || LI.getType()->isSingleValueType())
2832 return false;
2833
2834 // We have an aggregate being loaded, split it apart.
2835 DEBUG(dbgs() << " original: " << LI << "\n");
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002836 LoadOpSplitter Splitter(&LI, *U);
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002837 Value *V = UndefValue::get(LI.getType());
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002838 Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002839 LI.replaceAllUsesWith(V);
2840 LI.eraseFromParent();
2841 return true;
2842 }
2843
Benjamin Kramer73a9e4a2012-09-18 17:06:32 +00002844 struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002845 StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr)
Benjamin Kramera59ef572012-09-18 17:11:47 +00002846 : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002847
2848 /// Emit a leaf store of a single value. This is called at the leaves of the
2849 /// recursive emission to actually produce stores.
Benjamin Kramer73a9e4a2012-09-18 17:06:32 +00002850 void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002851 assert(Ty->isSingleValueType());
2852 // Extract the single value and store it using the indices.
2853 Value *Store = IRB.CreateStore(
2854 IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
2855 IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"));
2856 (void)Store;
2857 DEBUG(dbgs() << " to: " << *Store << "\n");
2858 }
2859 };
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002860
2861 bool visitStoreInst(StoreInst &SI) {
2862 if (!SI.isSimple() || SI.getPointerOperand() != *U)
2863 return false;
2864 Value *V = SI.getValueOperand();
2865 if (V->getType()->isSingleValueType())
2866 return false;
2867
2868 // We have an aggregate being stored, split it apart.
2869 DEBUG(dbgs() << " original: " << SI << "\n");
Benjamin Kramer65f8c882012-09-18 16:20:46 +00002870 StoreOpSplitter Splitter(&SI, *U);
2871 Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00002872 SI.eraseFromParent();
2873 return true;
2874 }
2875
2876 bool visitBitCastInst(BitCastInst &BC) {
2877 enqueueUsers(BC);
2878 return false;
2879 }
2880
2881 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
2882 enqueueUsers(GEPI);
2883 return false;
2884 }
2885
2886 bool visitPHINode(PHINode &PN) {
2887 enqueueUsers(PN);
2888 return false;
2889 }
2890
2891 bool visitSelectInst(SelectInst &SI) {
2892 enqueueUsers(SI);
2893 return false;
2894 }
2895};
2896}
2897
Chandler Carruthba931992012-10-13 10:49:33 +00002898/// \brief Strip aggregate type wrapping.
2899///
2900/// This removes no-op aggregate types wrapping an underlying type. It will
2901/// strip as many layers of types as it can without changing either the type
2902/// size or the allocated size.
2903static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
2904 if (Ty->isSingleValueType())
2905 return Ty;
2906
2907 uint64_t AllocSize = DL.getTypeAllocSize(Ty);
2908 uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
2909
2910 Type *InnerTy;
2911 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
2912 InnerTy = ArrTy->getElementType();
2913 } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
2914 const StructLayout *SL = DL.getStructLayout(STy);
2915 unsigned Index = SL->getElementContainingOffset(0);
2916 InnerTy = STy->getElementType(Index);
2917 } else {
2918 return Ty;
2919 }
2920
2921 if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
2922 TypeSize > DL.getTypeSizeInBits(InnerTy))
2923 return Ty;
2924
2925 return stripAggregateTypeWrapping(DL, InnerTy);
2926}
2927
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002928/// \brief Try to find a partition of the aggregate type passed in for a given
2929/// offset and size.
2930///
2931/// This recurses through the aggregate type and tries to compute a subtype
2932/// based on the offset and size. When the offset and size span a sub-section
Chandler Carruth054a40a2012-09-14 11:08:31 +00002933/// of an array, it will even compute a new array type for that sub-section,
2934/// and the same for structs.
2935///
2936/// Note that this routine is very strict and tries to find a partition of the
2937/// type which produces the *exact* right offset and size. It is not forgiving
2938/// when the size or offset cause either end of type-based partition to be off.
2939/// Also, this is a best-effort routine. It is reasonable to give up and not
2940/// return a type if necessary.
Chandler Carruth90a735d2013-07-19 07:21:28 +00002941static Type *getTypePartition(const DataLayout &DL, Type *Ty,
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002942 uint64_t Offset, uint64_t Size) {
Chandler Carruth90a735d2013-07-19 07:21:28 +00002943 if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size)
2944 return stripAggregateTypeWrapping(DL, Ty);
2945 if (Offset > DL.getTypeAllocSize(Ty) ||
2946 (DL.getTypeAllocSize(Ty) - Offset) < Size)
Chandler Carruth58d05562012-10-25 04:37:07 +00002947 return 0;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002948
2949 if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
2950 // We can't partition pointers...
2951 if (SeqTy->isPointerTy())
2952 return 0;
2953
2954 Type *ElementTy = SeqTy->getElementType();
Chandler Carruth90a735d2013-07-19 07:21:28 +00002955 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002956 uint64_t NumSkippedElements = Offset / ElementSize;
Jakub Staszak4f9d1e82013-03-24 09:56:28 +00002957 if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy)) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002958 if (NumSkippedElements >= ArrTy->getNumElements())
2959 return 0;
Jakub Staszak4f9d1e82013-03-24 09:56:28 +00002960 } else if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy)) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002961 if (NumSkippedElements >= VecTy->getNumElements())
2962 return 0;
Jakub Staszak4f9d1e82013-03-24 09:56:28 +00002963 }
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002964 Offset -= NumSkippedElements * ElementSize;
2965
2966 // First check if we need to recurse.
2967 if (Offset > 0 || Size < ElementSize) {
2968 // Bail if the partition ends in a different array element.
2969 if ((Offset + Size) > ElementSize)
2970 return 0;
2971 // Recurse through the element type trying to peel off offset bytes.
Chandler Carruth90a735d2013-07-19 07:21:28 +00002972 return getTypePartition(DL, ElementTy, Offset, Size);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002973 }
2974 assert(Offset == 0);
2975
2976 if (Size == ElementSize)
Chandler Carruth90a735d2013-07-19 07:21:28 +00002977 return stripAggregateTypeWrapping(DL, ElementTy);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002978 assert(Size > ElementSize);
2979 uint64_t NumElements = Size / ElementSize;
2980 if (NumElements * ElementSize != Size)
2981 return 0;
2982 return ArrayType::get(ElementTy, NumElements);
2983 }
2984
2985 StructType *STy = dyn_cast<StructType>(Ty);
2986 if (!STy)
2987 return 0;
2988
Chandler Carruth90a735d2013-07-19 07:21:28 +00002989 const StructLayout *SL = DL.getStructLayout(STy);
Chandler Carruth054a40a2012-09-14 11:08:31 +00002990 if (Offset >= SL->getSizeInBytes())
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002991 return 0;
2992 uint64_t EndOffset = Offset + Size;
2993 if (EndOffset > SL->getSizeInBytes())
2994 return 0;
2995
2996 unsigned Index = SL->getElementContainingOffset(Offset);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00002997 Offset -= SL->getElementOffset(Index);
2998
2999 Type *ElementTy = STy->getElementType(Index);
Chandler Carruth90a735d2013-07-19 07:21:28 +00003000 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003001 if (Offset >= ElementSize)
3002 return 0; // The offset points into alignment padding.
3003
3004 // See if any partition must be contained by the element.
3005 if (Offset > 0 || Size < ElementSize) {
3006 if ((Offset + Size) > ElementSize)
3007 return 0;
Chandler Carruth90a735d2013-07-19 07:21:28 +00003008 return getTypePartition(DL, ElementTy, Offset, Size);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003009 }
3010 assert(Offset == 0);
3011
3012 if (Size == ElementSize)
Chandler Carruth90a735d2013-07-19 07:21:28 +00003013 return stripAggregateTypeWrapping(DL, ElementTy);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003014
3015 StructType::element_iterator EI = STy->element_begin() + Index,
3016 EE = STy->element_end();
3017 if (EndOffset < SL->getSizeInBytes()) {
3018 unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
3019 if (Index == EndIndex)
3020 return 0; // Within a single element and its padding.
Chandler Carruth054a40a2012-09-14 11:08:31 +00003021
3022 // Don't try to form "natural" types if the elements don't line up with the
3023 // expected size.
3024 // FIXME: We could potentially recurse down through the last element in the
3025 // sub-struct to find a natural end point.
3026 if (SL->getElementOffset(EndIndex) != EndOffset)
3027 return 0;
3028
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003029 assert(Index < EndIndex);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003030 EE = STy->element_begin() + EndIndex;
3031 }
3032
3033 // Try to build up a sub-structure.
Benjamin Kramer7ddd7052012-10-20 12:04:57 +00003034 StructType *SubTy = StructType::get(STy->getContext(), makeArrayRef(EI, EE),
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003035 STy->isPacked());
Chandler Carruth90a735d2013-07-19 07:21:28 +00003036 const StructLayout *SubSL = DL.getStructLayout(SubTy);
Chandler Carruth054a40a2012-09-14 11:08:31 +00003037 if (Size != SubSL->getSizeInBytes())
3038 return 0; // The sub-struct doesn't have quite the size needed.
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003039
Chandler Carruth054a40a2012-09-14 11:08:31 +00003040 return SubTy;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003041}
3042
3043/// \brief Rewrite an alloca partition's users.
3044///
3045/// This routine drives both of the rewriting goals of the SROA pass. It tries
3046/// to rewrite uses of an alloca partition to be conducive for SSA value
3047/// promotion. If the partition needs a new, more refined alloca, this will
3048/// build that new alloca, preserving as much type information as possible, and
3049/// rewrite the uses of the old alloca to point at the new one and have the
3050/// appropriate new offsets. It also evaluates how successful the rewrite was
3051/// at enabling promotion and if it was successful queues the alloca to be
3052/// promoted.
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003053bool SROA::rewritePartition(AllocaInst &AI, AllocaSlices &S,
3054 AllocaSlices::iterator B, AllocaSlices::iterator E,
3055 int64_t BeginOffset, int64_t EndOffset,
3056 ArrayRef<AllocaSlices::iterator> SplitUses) {
Chandler Carruthf0546402013-07-18 07:15:00 +00003057 assert(BeginOffset < EndOffset);
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003058 uint64_t SliceSize = EndOffset - BeginOffset;
Chandler Carruth82a57542012-10-01 10:54:05 +00003059
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003060 // Try to compute a friendly type for this partition of the alloca. This
3061 // won't always succeed, in which case we fall back to a legal integer type
3062 // or an i8 array of an appropriate size.
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003063 Type *SliceTy = 0;
Chandler Carruthf0546402013-07-18 07:15:00 +00003064 if (Type *CommonUseTy = findCommonType(B, E, EndOffset))
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003065 if (DL->getTypeAllocSize(CommonUseTy) >= SliceSize)
3066 SliceTy = CommonUseTy;
3067 if (!SliceTy)
Chandler Carruth90a735d2013-07-19 07:21:28 +00003068 if (Type *TypePartitionTy = getTypePartition(*DL, AI.getAllocatedType(),
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003069 BeginOffset, SliceSize))
3070 SliceTy = TypePartitionTy;
3071 if ((!SliceTy || (SliceTy->isArrayTy() &&
3072 SliceTy->getArrayElementType()->isIntegerTy())) &&
3073 DL->isLegalInteger(SliceSize * 8))
3074 SliceTy = Type::getIntNTy(*C, SliceSize * 8);
3075 if (!SliceTy)
3076 SliceTy = ArrayType::get(Type::getInt8Ty(*C), SliceSize);
3077 assert(DL->getTypeAllocSize(SliceTy) >= SliceSize);
Chandler Carruthf0546402013-07-18 07:15:00 +00003078
3079 bool IsVectorPromotable = isVectorPromotionViable(
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003080 *DL, SliceTy, S, BeginOffset, EndOffset, B, E, SplitUses);
Chandler Carruthf0546402013-07-18 07:15:00 +00003081
3082 bool IsIntegerPromotable =
3083 !IsVectorPromotable &&
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003084 isIntegerWideningViable(*DL, SliceTy, BeginOffset, S, B, E, SplitUses);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003085
3086 // Check for the case where we're going to rewrite to a new alloca of the
3087 // exact same type as the original, and with the same access offsets. In that
3088 // case, re-use the existing alloca, but still run through the rewriter to
Jakub Staszak086f6cd2013-02-19 22:02:21 +00003089 // perform phi and select speculation.
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003090 AllocaInst *NewAI;
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003091 if (SliceTy == AI.getAllocatedType()) {
Chandler Carruthf0546402013-07-18 07:15:00 +00003092 assert(BeginOffset == 0 &&
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003093 "Non-zero begin offset but same alloca type");
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003094 NewAI = &AI;
Chandler Carruthf0546402013-07-18 07:15:00 +00003095 // FIXME: We should be able to bail at this point with "nothing changed".
3096 // FIXME: We might want to defer PHI speculation until after here.
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003097 } else {
Chandler Carruth903790e2012-09-29 10:41:21 +00003098 unsigned Alignment = AI.getAlignment();
3099 if (!Alignment) {
3100 // The minimum alignment which users can rely on when the explicit
3101 // alignment is omitted or zero is that required by the ABI for this
3102 // type.
Chandler Carruth90a735d2013-07-19 07:21:28 +00003103 Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
Chandler Carruth903790e2012-09-29 10:41:21 +00003104 }
Chandler Carruthf0546402013-07-18 07:15:00 +00003105 Alignment = MinAlign(Alignment, BeginOffset);
Chandler Carruth903790e2012-09-29 10:41:21 +00003106 // If we will get at least this much alignment from the type alone, leave
3107 // the alloca's alignment unconstrained.
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003108 if (Alignment <= DL->getABITypeAlignment(SliceTy))
Chandler Carruth903790e2012-09-29 10:41:21 +00003109 Alignment = 0;
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003110 NewAI = new AllocaInst(SliceTy, 0, Alignment,
3111 AI.getName() + ".sroa." + Twine(B - S.begin()), &AI);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003112 ++NumNewAllocas;
3113 }
3114
3115 DEBUG(dbgs() << "Rewriting alloca partition "
Chandler Carruthf0546402013-07-18 07:15:00 +00003116 << "[" << BeginOffset << "," << EndOffset << ") to: " << *NewAI
3117 << "\n");
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003118
Chandler Carruthf0546402013-07-18 07:15:00 +00003119 // Track the high watermark on several worklists that are only relevant for
3120 // promoted allocas. We will reset it to this point if the alloca is not in
3121 // fact scheduled for promotion.
Chandler Carruthac8317f2012-10-04 12:33:50 +00003122 unsigned PPWOldSize = PostPromotionWorklist.size();
Chandler Carruthf0546402013-07-18 07:15:00 +00003123 unsigned SPOldSize = SpeculatablePHIs.size();
3124 unsigned SSOldSize = SpeculatableSelects.size();
Chandler Carruth6c321c12013-07-19 10:57:36 +00003125 unsigned NumUses = 0;
Chandler Carruth6c321c12013-07-19 10:57:36 +00003126
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003127 AllocaSliceRewriter Rewriter(*DL, S, *this, AI, *NewAI, BeginOffset,
3128 EndOffset, IsVectorPromotable,
3129 IsIntegerPromotable);
Chandler Carruthf0546402013-07-18 07:15:00 +00003130 bool Promotable = true;
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003131 for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(),
3132 SUE = SplitUses.end();
Chandler Carruthf0546402013-07-18 07:15:00 +00003133 SUI != SUE; ++SUI) {
3134 DEBUG(dbgs() << " rewriting split ");
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003135 DEBUG(S.printSlice(dbgs(), *SUI, ""));
Chandler Carruthf0546402013-07-18 07:15:00 +00003136 Promotable &= Rewriter.visit(*SUI);
Chandler Carruth6c321c12013-07-19 10:57:36 +00003137 ++NumUses;
Chandler Carruthf0546402013-07-18 07:15:00 +00003138 }
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003139 for (AllocaSlices::iterator I = B; I != E; ++I) {
Chandler Carruthf0546402013-07-18 07:15:00 +00003140 DEBUG(dbgs() << " rewriting ");
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003141 DEBUG(S.printSlice(dbgs(), I, ""));
Chandler Carruthf0546402013-07-18 07:15:00 +00003142 Promotable &= Rewriter.visit(I);
Chandler Carruth6c321c12013-07-19 10:57:36 +00003143 ++NumUses;
Chandler Carruthf0546402013-07-18 07:15:00 +00003144 }
3145
Chandler Carruth6c321c12013-07-19 10:57:36 +00003146 NumAllocaPartitionUses += NumUses;
3147 MaxUsesPerAllocaPartition =
3148 std::max<unsigned>(NumUses, MaxUsesPerAllocaPartition);
Chandler Carruth6c321c12013-07-19 10:57:36 +00003149
Chandler Carruth83ea1952013-07-24 09:47:28 +00003150 if (Promotable && !Rewriter.isUsedByRewrittenSpeculatableInstructions()) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003151 DEBUG(dbgs() << " and queuing for promotion\n");
3152 PromotableAllocas.push_back(NewAI);
Chandler Carruth58e25d32013-07-24 12:12:17 +00003153 } else if (NewAI != &AI ||
3154 (Promotable &&
3155 Rewriter.isUsedByRewrittenSpeculatableInstructions())) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003156 // If we can't promote the alloca, iterate on it to check for new
3157 // refinements exposed by splitting the current alloca. Don't iterate on an
3158 // alloca which didn't actually change and didn't get promoted.
Chandler Carruth58e25d32013-07-24 12:12:17 +00003159 //
3160 // Alternatively, if we could promote the alloca but have speculatable
3161 // instructions then we will speculate them after finishing our processing
3162 // of the original alloca. Mark the new one for re-visiting in the next
3163 // iteration so the speculated operations can be rewritten.
3164 //
Chandler Carruthf0546402013-07-18 07:15:00 +00003165 // FIXME: We should actually track whether the rewriter changed anything.
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003166 Worklist.insert(NewAI);
3167 }
Chandler Carruthac8317f2012-10-04 12:33:50 +00003168
3169 // Drop any post-promotion work items if promotion didn't happen.
Chandler Carruthf0546402013-07-18 07:15:00 +00003170 if (!Promotable) {
Chandler Carruthac8317f2012-10-04 12:33:50 +00003171 while (PostPromotionWorklist.size() > PPWOldSize)
3172 PostPromotionWorklist.pop_back();
Chandler Carruthf0546402013-07-18 07:15:00 +00003173 while (SpeculatablePHIs.size() > SPOldSize)
3174 SpeculatablePHIs.pop_back();
3175 while (SpeculatableSelects.size() > SSOldSize)
3176 SpeculatableSelects.pop_back();
3177 }
Chandler Carruthac8317f2012-10-04 12:33:50 +00003178
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003179 return true;
3180}
3181
Chandler Carruthf0546402013-07-18 07:15:00 +00003182namespace {
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003183struct IsSliceEndLessOrEqualTo {
3184 uint64_t UpperBound;
Chandler Carruthf0546402013-07-18 07:15:00 +00003185
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003186 IsSliceEndLessOrEqualTo(uint64_t UpperBound) : UpperBound(UpperBound) {}
Chandler Carruthf0546402013-07-18 07:15:00 +00003187
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003188 bool operator()(const AllocaSlices::iterator &I) {
3189 return I->endOffset() <= UpperBound;
3190 }
3191};
Chandler Carruthf0546402013-07-18 07:15:00 +00003192}
3193
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003194static void
3195removeFinishedSplitUses(SmallVectorImpl<AllocaSlices::iterator> &SplitUses,
3196 uint64_t &MaxSplitUseEndOffset, uint64_t Offset) {
Chandler Carruthf0546402013-07-18 07:15:00 +00003197 if (Offset >= MaxSplitUseEndOffset) {
3198 SplitUses.clear();
3199 MaxSplitUseEndOffset = 0;
3200 return;
3201 }
3202
3203 size_t SplitUsesOldSize = SplitUses.size();
3204 SplitUses.erase(std::remove_if(SplitUses.begin(), SplitUses.end(),
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003205 IsSliceEndLessOrEqualTo(Offset)),
Chandler Carruthf0546402013-07-18 07:15:00 +00003206 SplitUses.end());
3207 if (SplitUsesOldSize == SplitUses.size())
3208 return;
3209
3210 // Recompute the max. While this is linear, so is remove_if.
3211 MaxSplitUseEndOffset = 0;
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003212 for (SmallVectorImpl<AllocaSlices::iterator>::iterator
Chandler Carruthf0546402013-07-18 07:15:00 +00003213 SUI = SplitUses.begin(),
3214 SUE = SplitUses.end();
3215 SUI != SUE; ++SUI)
3216 MaxSplitUseEndOffset = std::max((*SUI)->endOffset(), MaxSplitUseEndOffset);
3217}
3218
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003219/// \brief Walks the slices of an alloca and form partitions based on them,
3220/// rewriting each of their uses.
3221bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &S) {
3222 if (S.begin() == S.end())
Chandler Carruthf0546402013-07-18 07:15:00 +00003223 return false;
3224
Chandler Carruth6c321c12013-07-19 10:57:36 +00003225 unsigned NumPartitions = 0;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003226 bool Changed = false;
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003227 SmallVector<AllocaSlices::iterator, 4> SplitUses;
Chandler Carruthf0546402013-07-18 07:15:00 +00003228 uint64_t MaxSplitUseEndOffset = 0;
3229
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003230 uint64_t BeginOffset = S.begin()->beginOffset();
Chandler Carruthf0546402013-07-18 07:15:00 +00003231
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003232 for (AllocaSlices::iterator SI = S.begin(), SJ = llvm::next(SI), SE = S.end();
3233 SI != SE; SI = SJ) {
3234 uint64_t MaxEndOffset = SI->endOffset();
Chandler Carruthf0546402013-07-18 07:15:00 +00003235
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003236 if (!SI->isSplittable()) {
3237 // When we're forming an unsplittable region, it must always start at the
3238 // first slice and will extend through its end.
3239 assert(BeginOffset == SI->beginOffset());
Chandler Carruthf0546402013-07-18 07:15:00 +00003240
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003241 // Form a partition including all of the overlapping slices with this
3242 // unsplittable slice.
3243 while (SJ != SE && SJ->beginOffset() < MaxEndOffset) {
3244 if (!SJ->isSplittable())
3245 MaxEndOffset = std::max(MaxEndOffset, SJ->endOffset());
3246 ++SJ;
Chandler Carruthf0546402013-07-18 07:15:00 +00003247 }
3248 } else {
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003249 assert(SI->isSplittable()); // Established above.
Chandler Carruthf0546402013-07-18 07:15:00 +00003250
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003251 // Collect all of the overlapping splittable slices.
3252 while (SJ != SE && SJ->beginOffset() < MaxEndOffset &&
3253 SJ->isSplittable()) {
3254 MaxEndOffset = std::max(MaxEndOffset, SJ->endOffset());
3255 ++SJ;
Chandler Carruthf0546402013-07-18 07:15:00 +00003256 }
3257
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003258 // Back up MaxEndOffset and SJ if we ended the span early when
3259 // encountering an unsplittable slice.
3260 if (SJ != SE && SJ->beginOffset() < MaxEndOffset) {
3261 assert(!SJ->isSplittable());
3262 MaxEndOffset = SJ->beginOffset();
Chandler Carruthf0546402013-07-18 07:15:00 +00003263 }
3264 }
3265
3266 // Check if we have managed to move the end offset forward yet. If so,
3267 // we'll have to rewrite uses and erase old split uses.
3268 if (BeginOffset < MaxEndOffset) {
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003269 // Rewrite a sequence of overlapping slices.
3270 Changed |=
3271 rewritePartition(AI, S, SI, SJ, BeginOffset, MaxEndOffset, SplitUses);
Chandler Carruth6c321c12013-07-19 10:57:36 +00003272 ++NumPartitions;
Chandler Carruthf0546402013-07-18 07:15:00 +00003273
3274 removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset, MaxEndOffset);
3275 }
3276
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003277 // Accumulate all the splittable slices from the [SI,SJ) region which
Chandler Carruthf0546402013-07-18 07:15:00 +00003278 // overlap going forward.
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003279 for (AllocaSlices::iterator SK = SI; SK != SJ; ++SK)
3280 if (SK->isSplittable() && SK->endOffset() > MaxEndOffset) {
3281 SplitUses.push_back(SK);
3282 MaxSplitUseEndOffset = std::max(SK->endOffset(), MaxSplitUseEndOffset);
Chandler Carruthf0546402013-07-18 07:15:00 +00003283 }
3284
3285 // If we're already at the end and we have no split uses, we're done.
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003286 if (SJ == SE && SplitUses.empty())
Chandler Carruthf0546402013-07-18 07:15:00 +00003287 break;
3288
3289 // If we have no split uses or no gap in offsets, we're ready to move to
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003290 // the next slice.
3291 if (SplitUses.empty() || (SJ != SE && MaxEndOffset == SJ->beginOffset())) {
3292 BeginOffset = SJ->beginOffset();
Chandler Carruthf0546402013-07-18 07:15:00 +00003293 continue;
3294 }
3295
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003296 // Even if we have split slices, if the next slice is splittable and the
3297 // split slices reach it, we can simply set up the beginning offset of the
3298 // next iteration to bridge between them.
3299 if (SJ != SE && SJ->isSplittable() &&
3300 MaxSplitUseEndOffset > SJ->beginOffset()) {
Chandler Carruthf0546402013-07-18 07:15:00 +00003301 BeginOffset = MaxEndOffset;
3302 continue;
3303 }
3304
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003305 // Otherwise, we have a tail of split slices. Rewrite them with an empty
3306 // range of slices.
Chandler Carruthf0546402013-07-18 07:15:00 +00003307 uint64_t PostSplitEndOffset =
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003308 SJ == SE ? MaxSplitUseEndOffset : SJ->beginOffset();
Chandler Carruthf0546402013-07-18 07:15:00 +00003309
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003310 Changed |= rewritePartition(AI, S, SJ, SJ, MaxEndOffset, PostSplitEndOffset,
3311 SplitUses);
Chandler Carruth6c321c12013-07-19 10:57:36 +00003312 ++NumPartitions;
Chandler Carruth6c321c12013-07-19 10:57:36 +00003313
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003314 if (SJ == SE)
Chandler Carruthf0546402013-07-18 07:15:00 +00003315 break; // Skip the rest, we don't need to do any cleanup.
3316
3317 removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset,
3318 PostSplitEndOffset);
3319
3320 // Now just reset the begin offset for the next iteration.
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003321 BeginOffset = SJ->beginOffset();
Chandler Carruthf0546402013-07-18 07:15:00 +00003322 }
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003323
Chandler Carruth6c321c12013-07-19 10:57:36 +00003324 NumAllocaPartitions += NumPartitions;
3325 MaxPartitionsPerAlloca =
3326 std::max<unsigned>(NumPartitions, MaxPartitionsPerAlloca);
Chandler Carruth6c321c12013-07-19 10:57:36 +00003327
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003328 return Changed;
3329}
3330
3331/// \brief Analyze an alloca for SROA.
3332///
3333/// This analyzes the alloca to ensure we can reason about it, builds
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003334/// the slices of the alloca, and then hands it off to be split and
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003335/// rewritten as needed.
3336bool SROA::runOnAlloca(AllocaInst &AI) {
3337 DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
3338 ++NumAllocasAnalyzed;
3339
3340 // Special case dead allocas, as they're trivial.
3341 if (AI.use_empty()) {
3342 AI.eraseFromParent();
3343 return true;
3344 }
3345
3346 // Skip alloca forms that this analysis can't handle.
3347 if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
Chandler Carruth90a735d2013-07-19 07:21:28 +00003348 DL->getTypeAllocSize(AI.getAllocatedType()) == 0)
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003349 return false;
3350
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00003351 bool Changed = false;
3352
3353 // First, split any FCA loads and stores touching this alloca to promote
3354 // better splitting and promotion opportunities.
Chandler Carruth90a735d2013-07-19 07:21:28 +00003355 AggLoadStoreRewriter AggRewriter(*DL);
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00003356 Changed |= AggRewriter.rewrite(AI);
3357
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003358 // Build the slices using a recursive instruction-visiting builder.
3359 AllocaSlices S(*DL, AI);
3360 DEBUG(S.print(dbgs()));
3361 if (S.isEscaped())
Chandler Carruth42cb9cb2012-09-18 12:57:43 +00003362 return Changed;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003363
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003364 // Delete all the dead users of this alloca before splitting and rewriting it.
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003365 for (AllocaSlices::dead_user_iterator DI = S.dead_user_begin(),
3366 DE = S.dead_user_end();
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003367 DI != DE; ++DI) {
3368 Changed = true;
3369 (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType()));
Chandler Carruth18db7952012-11-20 01:12:50 +00003370 DeadInsts.insert(*DI);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003371 }
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003372 for (AllocaSlices::dead_op_iterator DO = S.dead_op_begin(),
3373 DE = S.dead_op_end();
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003374 DO != DE; ++DO) {
3375 Value *OldV = **DO;
3376 // Clobber the use with an undef value.
3377 **DO = UndefValue::get(OldV->getType());
3378 if (Instruction *OldI = dyn_cast<Instruction>(OldV))
3379 if (isInstructionTriviallyDead(OldI)) {
3380 Changed = true;
Chandler Carruth18db7952012-11-20 01:12:50 +00003381 DeadInsts.insert(OldI);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003382 }
3383 }
3384
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003385 // No slices to split. Leave the dead alloca for a later pass to clean up.
3386 if (S.begin() == S.end())
Chandler Carruthe5b7a2c2012-10-05 01:29:09 +00003387 return Changed;
3388
Chandler Carruth9f21fe12013-07-19 09:13:58 +00003389 Changed |= splitAlloca(AI, S);
Chandler Carruthf0546402013-07-18 07:15:00 +00003390
3391 DEBUG(dbgs() << " Speculating PHIs\n");
3392 while (!SpeculatablePHIs.empty())
3393 speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val());
3394
3395 DEBUG(dbgs() << " Speculating Selects\n");
3396 while (!SpeculatableSelects.empty())
3397 speculateSelectInstLoads(*SpeculatableSelects.pop_back_val());
3398
3399 return Changed;
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003400}
3401
Chandler Carruth19450da2012-09-14 10:26:38 +00003402/// \brief Delete the dead instructions accumulated in this run.
3403///
3404/// Recursively deletes the dead instructions we've accumulated. This is done
3405/// at the very end to maximize locality of the recursive delete and to
3406/// minimize the problems of invalidated instruction pointers as such pointers
3407/// are used heavily in the intermediate stages of the algorithm.
3408///
3409/// We also record the alloca instructions deleted here so that they aren't
3410/// subsequently handed to mem2reg to promote.
3411void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003412 while (!DeadInsts.empty()) {
3413 Instruction *I = DeadInsts.pop_back_val();
3414 DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
3415
Chandler Carruth58d05562012-10-25 04:37:07 +00003416 I->replaceAllUsesWith(UndefValue::get(I->getType()));
3417
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003418 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
3419 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
3420 // Zero out the operand and see if it becomes trivially dead.
3421 *OI = 0;
3422 if (isInstructionTriviallyDead(U))
Chandler Carruth18db7952012-11-20 01:12:50 +00003423 DeadInsts.insert(U);
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003424 }
3425
3426 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3427 DeletedAllocas.insert(AI);
3428
3429 ++NumDeleted;
3430 I->eraseFromParent();
3431 }
3432}
3433
Chandler Carruthcd7c8cd2013-07-29 09:06:53 +00003434static void enqueueUsersInWorklist(Instruction &I,
Chandler Carruth45b136f2013-08-11 01:03:18 +00003435 SmallVectorImpl<Instruction *> &Worklist,
3436 SmallPtrSet<Instruction *, 8> &Visited) {
Chandler Carruthcd7c8cd2013-07-29 09:06:53 +00003437 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
3438 ++UI)
Chandler Carruth45b136f2013-08-11 01:03:18 +00003439 if (Visited.insert(cast<Instruction>(*UI)))
3440 Worklist.push_back(cast<Instruction>(*UI));
Chandler Carruthcd7c8cd2013-07-29 09:06:53 +00003441}
3442
Chandler Carruth70b44c52012-09-15 11:43:14 +00003443/// \brief Promote the allocas, using the best available technique.
3444///
3445/// This attempts to promote whatever allocas have been identified as viable in
3446/// the PromotableAllocas list. If that list is empty, there is nothing to do.
3447/// If there is a domtree available, we attempt to promote using the full power
3448/// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is
3449/// based on the SSAUpdater utilities. This function returns whether any
Jakub Staszak086f6cd2013-02-19 22:02:21 +00003450/// promotion occurred.
Chandler Carruth70b44c52012-09-15 11:43:14 +00003451bool SROA::promoteAllocas(Function &F) {
3452 if (PromotableAllocas.empty())
3453 return false;
3454
3455 NumPromoted += PromotableAllocas.size();
3456
3457 if (DT && !ForceSSAUpdater) {
3458 DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
Nick Lewyckyc7776f72013-08-13 22:51:58 +00003459 PromoteMemToReg(PromotableAllocas, *DT);
Chandler Carruth70b44c52012-09-15 11:43:14 +00003460 PromotableAllocas.clear();
3461 return true;
3462 }
3463
3464 DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n");
3465 SSAUpdater SSA;
3466 DIBuilder DIB(*F.getParent());
Chandler Carruth45b136f2013-08-11 01:03:18 +00003467 SmallVector<Instruction *, 64> Insts;
Chandler Carruth70b44c52012-09-15 11:43:14 +00003468
Chandler Carruthcd7c8cd2013-07-29 09:06:53 +00003469 // We need a worklist to walk the uses of each alloca.
Chandler Carruth45b136f2013-08-11 01:03:18 +00003470 SmallVector<Instruction *, 8> Worklist;
3471 SmallPtrSet<Instruction *, 8> Visited;
Chandler Carruthcd7c8cd2013-07-29 09:06:53 +00003472 SmallVector<Instruction *, 32> DeadInsts;
3473
Chandler Carruth70b44c52012-09-15 11:43:14 +00003474 for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) {
3475 AllocaInst *AI = PromotableAllocas[Idx];
Chandler Carruth45b136f2013-08-11 01:03:18 +00003476 Insts.clear();
3477 Worklist.clear();
3478 Visited.clear();
Chandler Carruthcd7c8cd2013-07-29 09:06:53 +00003479
Chandler Carruth45b136f2013-08-11 01:03:18 +00003480 enqueueUsersInWorklist(*AI, Worklist, Visited);
Chandler Carruthcd7c8cd2013-07-29 09:06:53 +00003481
Chandler Carruth45b136f2013-08-11 01:03:18 +00003482 while (!Worklist.empty()) {
3483 Instruction *I = Worklist.pop_back_val();
Chandler Carruthcd7c8cd2013-07-29 09:06:53 +00003484
Chandler Carruth70b44c52012-09-15 11:43:14 +00003485 // FIXME: Currently the SSAUpdater infrastructure doesn't reason about
3486 // lifetime intrinsics and so we strip them (and the bitcasts+GEPs
3487 // leading to them) here. Eventually it should use them to optimize the
3488 // scalar values produced.
Chandler Carruth45b136f2013-08-11 01:03:18 +00003489 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
Chandler Carruth70b44c52012-09-15 11:43:14 +00003490 assert(II->getIntrinsicID() == Intrinsic::lifetime_start ||
3491 II->getIntrinsicID() == Intrinsic::lifetime_end);
3492 II->eraseFromParent();
3493 continue;
3494 }
3495
Chandler Carruthcd7c8cd2013-07-29 09:06:53 +00003496 // Push the loads and stores we find onto the list. SROA will already
3497 // have validated that all loads and stores are viable candidates for
3498 // promotion.
Chandler Carruth45b136f2013-08-11 01:03:18 +00003499 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
Chandler Carruthcd7c8cd2013-07-29 09:06:53 +00003500 assert(LI->getType() == AI->getAllocatedType());
3501 Insts.push_back(LI);
3502 continue;
3503 }
Chandler Carruth45b136f2013-08-11 01:03:18 +00003504 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
Chandler Carruthcd7c8cd2013-07-29 09:06:53 +00003505 assert(SI->getValueOperand()->getType() == AI->getAllocatedType());
3506 Insts.push_back(SI);
3507 continue;
3508 }
3509
3510 // For everything else, we know that only no-op bitcasts and GEPs will
3511 // make it this far, just recurse through them and recall them for later
3512 // removal.
Chandler Carruth45b136f2013-08-11 01:03:18 +00003513 DeadInsts.push_back(I);
3514 enqueueUsersInWorklist(*I, Worklist, Visited);
Chandler Carruth70b44c52012-09-15 11:43:14 +00003515 }
3516 AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts);
Chandler Carruthcd7c8cd2013-07-29 09:06:53 +00003517 while (!DeadInsts.empty())
3518 DeadInsts.pop_back_val()->eraseFromParent();
3519 AI->eraseFromParent();
Chandler Carruth70b44c52012-09-15 11:43:14 +00003520 }
3521
3522 PromotableAllocas.clear();
3523 return true;
3524}
3525
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003526namespace {
3527 /// \brief A predicate to test whether an alloca belongs to a set.
3528 class IsAllocaInSet {
3529 typedef SmallPtrSet<AllocaInst *, 4> SetType;
3530 const SetType &Set;
3531
3532 public:
Chandler Carruth3f57b822012-10-03 00:03:00 +00003533 typedef AllocaInst *argument_type;
3534
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003535 IsAllocaInSet(const SetType &Set) : Set(Set) {}
Chandler Carruth3f57b822012-10-03 00:03:00 +00003536 bool operator()(AllocaInst *AI) const { return Set.count(AI); }
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003537 };
3538}
3539
3540bool SROA::runOnFunction(Function &F) {
3541 DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
3542 C = &F.getContext();
Chandler Carruth90a735d2013-07-19 07:21:28 +00003543 DL = getAnalysisIfAvailable<DataLayout>();
3544 if (!DL) {
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003545 DEBUG(dbgs() << " Skipping SROA -- no target data!\n");
3546 return false;
3547 }
Chandler Carruth70b44c52012-09-15 11:43:14 +00003548 DT = getAnalysisIfAvailable<DominatorTree>();
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003549
3550 BasicBlock &EntryBB = F.getEntryBlock();
3551 for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end());
3552 I != E; ++I)
3553 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3554 Worklist.insert(AI);
3555
3556 bool Changed = false;
Chandler Carruth19450da2012-09-14 10:26:38 +00003557 // A set of deleted alloca instruction pointers which should be removed from
3558 // the list of promotable allocas.
3559 SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
3560
Chandler Carruthac8317f2012-10-04 12:33:50 +00003561 do {
3562 while (!Worklist.empty()) {
3563 Changed |= runOnAlloca(*Worklist.pop_back_val());
3564 deleteDeadInstructions(DeletedAllocas);
Chandler Carruthb09f0a32012-10-02 22:46:45 +00003565
Chandler Carruthac8317f2012-10-04 12:33:50 +00003566 // Remove the deleted allocas from various lists so that we don't try to
3567 // continue processing them.
3568 if (!DeletedAllocas.empty()) {
3569 Worklist.remove_if(IsAllocaInSet(DeletedAllocas));
3570 PostPromotionWorklist.remove_if(IsAllocaInSet(DeletedAllocas));
3571 PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(),
3572 PromotableAllocas.end(),
3573 IsAllocaInSet(DeletedAllocas)),
3574 PromotableAllocas.end());
3575 DeletedAllocas.clear();
3576 }
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003577 }
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003578
Chandler Carruthac8317f2012-10-04 12:33:50 +00003579 Changed |= promoteAllocas(F);
3580
3581 Worklist = PostPromotionWorklist;
3582 PostPromotionWorklist.clear();
3583 } while (!Worklist.empty());
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003584
3585 return Changed;
3586}
3587
3588void SROA::getAnalysisUsage(AnalysisUsage &AU) const {
Chandler Carruth70b44c52012-09-15 11:43:14 +00003589 if (RequiresDomTree)
3590 AU.addRequired<DominatorTree>();
Chandler Carruth1b398ae2012-09-14 09:22:59 +00003591 AU.setPreservesCFG();
3592}