blob: 68e1a6724366bc2397dc5e66d4fd85d43caa3680 [file] [log] [blame]
Chandler Carruth664e3542013-01-07 01:37:14 +00001//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// X86 target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "x86tti"
18#include "X86.h"
19#include "X86TargetMachine.h"
Chandler Carruthd3e73552013-01-07 03:08:10 +000020#include "llvm/Analysis/TargetTransformInfo.h"
Chandler Carruth664e3542013-01-07 01:37:14 +000021#include "llvm/Support/Debug.h"
22#include "llvm/Target/TargetLowering.h"
Renato Golind4c392e2013-01-24 23:01:00 +000023#include "llvm/Target/CostTable.h"
Chandler Carruth664e3542013-01-07 01:37:14 +000024using namespace llvm;
25
26// Declare the pass initialization routine locally as target-specific passes
27// don't havve a target-wide initialization entry point, and so we rely on the
28// pass constructor initialization.
29namespace llvm {
30void initializeX86TTIPass(PassRegistry &);
31}
32
33namespace {
34
35class X86TTI : public ImmutablePass, public TargetTransformInfo {
Chandler Carruth664e3542013-01-07 01:37:14 +000036 const X86Subtarget *ST;
37 const X86TargetLowering *TLI;
38
39 /// Estimate the overhead of scalarizing an instruction. Insert and Extract
40 /// are set if the result needs to be inserted and/or extracted from vectors.
41 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
42
43public:
Nadav Rotem02dd93e2013-06-27 17:54:10 +000044 X86TTI() : ImmutablePass(ID), ST(0), TLI(0) {
Chandler Carruth664e3542013-01-07 01:37:14 +000045 llvm_unreachable("This pass cannot be directly constructed");
46 }
47
48 X86TTI(const X86TargetMachine *TM)
Nadav Rotem02dd93e2013-06-27 17:54:10 +000049 : ImmutablePass(ID), ST(TM->getSubtargetImpl()),
Chandler Carruth664e3542013-01-07 01:37:14 +000050 TLI(TM->getTargetLowering()) {
51 initializeX86TTIPass(*PassRegistry::getPassRegistry());
52 }
53
54 virtual void initializePass() {
55 pushTTIStack(this);
56 }
57
58 virtual void finalizePass() {
59 popTTIStack();
60 }
61
62 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
63 TargetTransformInfo::getAnalysisUsage(AU);
64 }
65
66 /// Pass identification.
67 static char ID;
68
69 /// Provide necessary pointer adjustments for the two base classes.
70 virtual void *getAdjustedAnalysisPointer(const void *ID) {
71 if (ID == &TargetTransformInfo::ID)
72 return (TargetTransformInfo*)this;
73 return this;
74 }
75
76 /// \name Scalar TTI Implementations
77 /// @{
Chandler Carruth50a36cd2013-01-07 03:16:03 +000078 virtual PopcntSupportKind getPopcntSupport(unsigned TyWidth) const;
Chandler Carruth664e3542013-01-07 01:37:14 +000079
80 /// @}
81
82 /// \name Vector TTI Implementations
83 /// @{
84
85 virtual unsigned getNumberOfRegisters(bool Vector) const;
Nadav Rotemb1791a72013-01-09 22:29:00 +000086 virtual unsigned getRegisterBitWidth(bool Vector) const;
Nadav Rotemb696c362013-01-09 01:15:42 +000087 virtual unsigned getMaximumUnrollFactor() const;
Arnold Schwaighoferb9773872013-04-04 23:26:21 +000088 virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
89 OperandValueKind,
90 OperandValueKind) const;
Chandler Carruth664e3542013-01-07 01:37:14 +000091 virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
92 int Index, Type *SubTp) const;
93 virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
94 Type *Src) const;
95 virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
96 Type *CondTy) const;
97 virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
98 unsigned Index) const;
99 virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
100 unsigned Alignment,
101 unsigned AddressSpace) const;
102
103 /// @}
104};
105
106} // end anonymous namespace
107
108INITIALIZE_AG_PASS(X86TTI, TargetTransformInfo, "x86tti",
109 "X86 Target Transform Info", true, true, false)
110char X86TTI::ID = 0;
111
112ImmutablePass *
113llvm::createX86TargetTransformInfoPass(const X86TargetMachine *TM) {
114 return new X86TTI(TM);
115}
116
117
118//===----------------------------------------------------------------------===//
119//
120// X86 cost model.
121//
122//===----------------------------------------------------------------------===//
123
Chandler Carruth50a36cd2013-01-07 03:16:03 +0000124X86TTI::PopcntSupportKind X86TTI::getPopcntSupport(unsigned TyWidth) const {
Chandler Carruth664e3542013-01-07 01:37:14 +0000125 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
126 // TODO: Currently the __builtin_popcount() implementation using SSE3
127 // instructions is inefficient. Once the problem is fixed, we should
128 // call ST->hasSSE3() instead of ST->hasSSE4().
Chandler Carruth50a36cd2013-01-07 03:16:03 +0000129 return ST->hasSSE41() ? PSK_FastHardware : PSK_Software;
Chandler Carruth664e3542013-01-07 01:37:14 +0000130}
131
132unsigned X86TTI::getNumberOfRegisters(bool Vector) const {
Nadav Rotemb1791a72013-01-09 22:29:00 +0000133 if (Vector && !ST->hasSSE1())
134 return 0;
135
Chandler Carruth664e3542013-01-07 01:37:14 +0000136 if (ST->is64Bit())
137 return 16;
138 return 8;
139}
140
Nadav Rotemb1791a72013-01-09 22:29:00 +0000141unsigned X86TTI::getRegisterBitWidth(bool Vector) const {
142 if (Vector) {
143 if (ST->hasAVX()) return 256;
144 if (ST->hasSSE1()) return 128;
145 return 0;
146 }
147
148 if (ST->is64Bit())
149 return 64;
150 return 32;
151
152}
153
Nadav Rotemb696c362013-01-09 01:15:42 +0000154unsigned X86TTI::getMaximumUnrollFactor() const {
155 if (ST->isAtom())
156 return 1;
157
158 // Sandybridge and Haswell have multiple execution ports and pipelined
159 // vector units.
160 if (ST->hasAVX())
161 return 4;
162
163 return 2;
164}
165
Arnold Schwaighoferb9773872013-04-04 23:26:21 +0000166unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
167 OperandValueKind Op1Info,
168 OperandValueKind Op2Info) const {
Chandler Carruth664e3542013-01-07 01:37:14 +0000169 // Legalize the type.
170 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
171
172 int ISD = TLI->InstructionOpcodeToISD(Opcode);
173 assert(ISD && "Invalid opcode");
174
Michael Liao70dd7f92013-03-20 22:01:10 +0000175 static const CostTblEntry<MVT> AVX2CostTable[] = {
176 // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
177 // customize them to detect the cases where shift amount is a scalar one.
178 { ISD::SHL, MVT::v4i32, 1 },
179 { ISD::SRL, MVT::v4i32, 1 },
180 { ISD::SRA, MVT::v4i32, 1 },
181 { ISD::SHL, MVT::v8i32, 1 },
182 { ISD::SRL, MVT::v8i32, 1 },
183 { ISD::SRA, MVT::v8i32, 1 },
184 { ISD::SHL, MVT::v2i64, 1 },
185 { ISD::SRL, MVT::v2i64, 1 },
186 { ISD::SHL, MVT::v4i64, 1 },
187 { ISD::SRL, MVT::v4i64, 1 },
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000188
189 { ISD::SHL, MVT::v32i8, 42 }, // cmpeqb sequence.
190 { ISD::SHL, MVT::v16i16, 16*10 }, // Scalarized.
191
192 { ISD::SRL, MVT::v32i8, 32*10 }, // Scalarized.
193 { ISD::SRL, MVT::v16i16, 8*10 }, // Scalarized.
194
195 { ISD::SRA, MVT::v32i8, 32*10 }, // Scalarized.
196 { ISD::SRA, MVT::v16i16, 16*10 }, // Scalarized.
197 { ISD::SRA, MVT::v4i64, 4*10 }, // Scalarized.
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000198
199 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
200 { ISD::SDIV, MVT::v32i8, 32*20 },
201 { ISD::SDIV, MVT::v16i16, 16*20 },
202 { ISD::SDIV, MVT::v8i32, 8*20 },
203 { ISD::SDIV, MVT::v4i64, 4*20 },
204 { ISD::UDIV, MVT::v32i8, 32*20 },
205 { ISD::UDIV, MVT::v16i16, 16*20 },
206 { ISD::UDIV, MVT::v8i32, 8*20 },
207 { ISD::UDIV, MVT::v4i64, 4*20 },
Michael Liao70dd7f92013-03-20 22:01:10 +0000208 };
209
210 // Look for AVX2 lowering tricks.
211 if (ST->hasAVX2()) {
212 int Idx = CostTableLookup<MVT>(AVX2CostTable, array_lengthof(AVX2CostTable),
213 ISD, LT.second);
214 if (Idx != -1)
215 return LT.first * AVX2CostTable[Idx].Cost;
216 }
217
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000218 static const CostTblEntry<MVT> SSE2UniformConstCostTable[] = {
219 // We don't correctly identify costs of casts because they are marked as
220 // custom.
221 // Constant splats are cheaper for the following instructions.
222 { ISD::SHL, MVT::v16i8, 1 }, // psllw.
223 { ISD::SHL, MVT::v8i16, 1 }, // psllw.
224 { ISD::SHL, MVT::v4i32, 1 }, // pslld
225 { ISD::SHL, MVT::v2i64, 1 }, // psllq.
226
227 { ISD::SRL, MVT::v16i8, 1 }, // psrlw.
228 { ISD::SRL, MVT::v8i16, 1 }, // psrlw.
229 { ISD::SRL, MVT::v4i32, 1 }, // psrld.
230 { ISD::SRL, MVT::v2i64, 1 }, // psrlq.
231
232 { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb.
233 { ISD::SRA, MVT::v8i16, 1 }, // psraw.
234 { ISD::SRA, MVT::v4i32, 1 }, // psrad.
235 };
236
237 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
238 ST->hasSSE2()) {
239 int Idx = CostTableLookup<MVT>(SSE2UniformConstCostTable,
240 array_lengthof(SSE2UniformConstCostTable),
241 ISD, LT.second);
242 if (Idx != -1)
243 return LT.first * SSE2UniformConstCostTable[Idx].Cost;
244 }
245
246
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000247 static const CostTblEntry<MVT> SSE2CostTable[] = {
248 // We don't correctly identify costs of casts because they are marked as
249 // custom.
250 // For some cases, where the shift amount is a scalar we would be able
251 // to generate better code. Unfortunately, when this is the case the value
252 // (the splat) will get hoisted out of the loop, thereby making it invisible
253 // to ISel. The cost model must return worst case assumptions because it is
254 // used for vectorization and we don't want to make vectorized code worse
255 // than scalar code.
256 { ISD::SHL, MVT::v16i8, 30 }, // cmpeqb sequence.
257 { ISD::SHL, MVT::v8i16, 8*10 }, // Scalarized.
258 { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul.
259 { ISD::SHL, MVT::v2i64, 2*10 }, // Scalarized.
260
261 { ISD::SRL, MVT::v16i8, 16*10 }, // Scalarized.
262 { ISD::SRL, MVT::v8i16, 8*10 }, // Scalarized.
263 { ISD::SRL, MVT::v4i32, 4*10 }, // Scalarized.
264 { ISD::SRL, MVT::v2i64, 2*10 }, // Scalarized.
265
266 { ISD::SRA, MVT::v16i8, 16*10 }, // Scalarized.
267 { ISD::SRA, MVT::v8i16, 8*10 }, // Scalarized.
268 { ISD::SRA, MVT::v4i32, 4*10 }, // Scalarized.
269 { ISD::SRA, MVT::v2i64, 2*10 }, // Scalarized.
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000270
271 // It is not a good idea to vectorize division. We have to scalarize it and
272 // in the process we will often end up having to spilling regular
273 // registers. The overhead of division is going to dominate most kernels
274 // anyways so try hard to prevent vectorization of division - it is
275 // generally a bad idea. Assume somewhat arbitrarily that we have to be able
276 // to hide "20 cycles" for each lane.
277 { ISD::SDIV, MVT::v16i8, 16*20 },
278 { ISD::SDIV, MVT::v8i16, 8*20 },
279 { ISD::SDIV, MVT::v4i32, 4*20 },
280 { ISD::SDIV, MVT::v2i64, 2*20 },
281 { ISD::UDIV, MVT::v16i8, 16*20 },
282 { ISD::UDIV, MVT::v8i16, 8*20 },
283 { ISD::UDIV, MVT::v4i32, 4*20 },
284 { ISD::UDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000285 };
286
287 if (ST->hasSSE2()) {
288 int Idx = CostTableLookup<MVT>(SSE2CostTable, array_lengthof(SSE2CostTable),
289 ISD, LT.second);
290 if (Idx != -1)
291 return LT.first * SSE2CostTable[Idx].Cost;
292 }
293
Renato Golind4c392e2013-01-24 23:01:00 +0000294 static const CostTblEntry<MVT> AVX1CostTable[] = {
Renato Goline1fb0592013-01-20 20:57:20 +0000295 // We don't have to scalarize unsupported ops. We can issue two half-sized
296 // operations and we only need to extract the upper YMM half.
297 // Two ops + 1 extract + 1 insert = 4.
298 { ISD::MUL, MVT::v8i32, 4 },
299 { ISD::SUB, MVT::v8i32, 4 },
300 { ISD::ADD, MVT::v8i32, 4 },
Renato Goline1fb0592013-01-20 20:57:20 +0000301 { ISD::SUB, MVT::v4i64, 4 },
302 { ISD::ADD, MVT::v4i64, 4 },
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000303 // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
304 // are lowered as a series of long multiplies(3), shifts(4) and adds(2)
305 // Because we believe v4i64 to be a legal type, we must also include the
306 // split factor of two in the cost table. Therefore, the cost here is 18
307 // instead of 9.
308 { ISD::MUL, MVT::v4i64, 18 },
309 };
Chandler Carruth664e3542013-01-07 01:37:14 +0000310
311 // Look for AVX1 lowering tricks.
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000312 if (ST->hasAVX() && !ST->hasAVX2()) {
313 int Idx = CostTableLookup<MVT>(AVX1CostTable, array_lengthof(AVX1CostTable),
314 ISD, LT.second);
Renato Goline1fb0592013-01-20 20:57:20 +0000315 if (Idx != -1)
316 return LT.first * AVX1CostTable[Idx].Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +0000317 }
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000318
319 // Custom lowering of vectors.
320 static const CostTblEntry<MVT> CustomLowered[] = {
321 // A v2i64/v4i64 and multiply is custom lowered as a series of long
322 // multiplies(3), shifts(4) and adds(2).
323 { ISD::MUL, MVT::v2i64, 9 },
324 { ISD::MUL, MVT::v4i64, 9 },
325 };
326 int Idx = CostTableLookup<MVT>(CustomLowered, array_lengthof(CustomLowered),
327 ISD, LT.second);
328 if (Idx != -1)
329 return LT.first * CustomLowered[Idx].Cost;
330
331 // Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle,
332 // 2x pmuludq, 2x shuffle.
333 if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() &&
334 !ST->hasSSE41())
335 return 6;
336
Chandler Carruth664e3542013-01-07 01:37:14 +0000337 // Fallback to the default implementation.
Arnold Schwaighoferb9773872013-04-04 23:26:21 +0000338 return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info,
339 Op2Info);
Chandler Carruth664e3542013-01-07 01:37:14 +0000340}
341
342unsigned X86TTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
343 Type *SubTp) const {
344 // We only estimate the cost of reverse shuffles.
Chandler Carruth2109f472013-01-07 03:20:02 +0000345 if (Kind != SK_Reverse)
Chandler Carruth664e3542013-01-07 01:37:14 +0000346 return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
347
348 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
349 unsigned Cost = 1;
350 if (LT.second.getSizeInBits() > 128)
351 Cost = 3; // Extract + insert + copy.
352
353 // Multiple by the number of parts.
354 return Cost * LT.first;
355}
356
357unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
358 int ISD = TLI->InstructionOpcodeToISD(Opcode);
359 assert(ISD && "Invalid opcode");
360
Arnold Schwaighoferf47d2d72013-04-08 18:05:48 +0000361 std::pair<unsigned, MVT> LTSrc = TLI->getTypeLegalizationCost(Src);
362 std::pair<unsigned, MVT> LTDest = TLI->getTypeLegalizationCost(Dst);
363
364 static const TypeConversionCostTblEntry<MVT> SSE2ConvTbl[] = {
365 // These are somewhat magic numbers justified by looking at the output of
366 // Intel's IACA, running some kernels and making sure when we take
367 // legalization into account the throughput will be overestimated.
368 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
369 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
370 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
371 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
372 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
373 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
374 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
375 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
376 // There are faster sequences for float conversions.
377 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
378 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
379 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
380 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
381 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
382 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
383 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
384 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
385 };
386
387 if (ST->hasSSE2() && !ST->hasAVX()) {
388 int Idx = ConvertCostTableLookup<MVT>(SSE2ConvTbl,
389 array_lengthof(SSE2ConvTbl),
390 ISD, LTDest.second, LTSrc.second);
391 if (Idx != -1)
392 return LTSrc.first * SSE2ConvTbl[Idx].Cost;
393 }
394
Chandler Carruth664e3542013-01-07 01:37:14 +0000395 EVT SrcTy = TLI->getValueType(Src);
396 EVT DstTy = TLI->getValueType(Dst);
397
Arnold Schwaighoferc0c7ff42013-04-17 20:04:53 +0000398 // The function getSimpleVT only handles simple value types.
399 if (!SrcTy.isSimple() || !DstTy.isSimple())
400 return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
401
Renato Golind4c392e2013-01-24 23:01:00 +0000402 static const TypeConversionCostTblEntry<MVT> AVXConversionTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +0000403 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
404 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
405 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
406 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
407 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 },
408 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +0000409
410 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
411 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 },
412 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
413 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
414 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
415 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
416 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 },
417 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
418 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
419 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 },
420 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 },
421 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
422
423 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
424 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 },
425 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
426 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 },
427 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
428 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 },
429 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
430 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 },
431 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
432 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
433 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
434 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
435
Renato Goline1fb0592013-01-20 20:57:20 +0000436 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 1 },
437 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 },
438 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 6 },
439 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 9 },
Elena Demikhovsky0ccdd132013-02-20 12:42:54 +0000440 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 8 },
Nadav Rotem0f1bc602013-03-19 18:38:27 +0000441 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 6 },
442 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 },
Renato Goline1fb0592013-01-20 20:57:20 +0000443 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 3 },
Chandler Carruth664e3542013-01-07 01:37:14 +0000444 };
445
446 if (ST->hasAVX()) {
Renato Golind4c392e2013-01-24 23:01:00 +0000447 int Idx = ConvertCostTableLookup<MVT>(AVXConversionTbl,
Renato Goline1fb0592013-01-20 20:57:20 +0000448 array_lengthof(AVXConversionTbl),
449 ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT());
450 if (Idx != -1)
451 return AVXConversionTbl[Idx].Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +0000452 }
453
454 return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
455}
456
457unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
458 Type *CondTy) const {
459 // Legalize the type.
460 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
461
462 MVT MTy = LT.second;
463
464 int ISD = TLI->InstructionOpcodeToISD(Opcode);
465 assert(ISD && "Invalid opcode");
466
Renato Golind4c392e2013-01-24 23:01:00 +0000467 static const CostTblEntry<MVT> SSE42CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +0000468 { ISD::SETCC, MVT::v2f64, 1 },
469 { ISD::SETCC, MVT::v4f32, 1 },
470 { ISD::SETCC, MVT::v2i64, 1 },
471 { ISD::SETCC, MVT::v4i32, 1 },
472 { ISD::SETCC, MVT::v8i16, 1 },
473 { ISD::SETCC, MVT::v16i8, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +0000474 };
475
Renato Golind4c392e2013-01-24 23:01:00 +0000476 static const CostTblEntry<MVT> AVX1CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +0000477 { ISD::SETCC, MVT::v4f64, 1 },
478 { ISD::SETCC, MVT::v8f32, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +0000479 // AVX1 does not support 8-wide integer compare.
Renato Goline1fb0592013-01-20 20:57:20 +0000480 { ISD::SETCC, MVT::v4i64, 4 },
481 { ISD::SETCC, MVT::v8i32, 4 },
482 { ISD::SETCC, MVT::v16i16, 4 },
483 { ISD::SETCC, MVT::v32i8, 4 },
Chandler Carruth664e3542013-01-07 01:37:14 +0000484 };
485
Renato Golind4c392e2013-01-24 23:01:00 +0000486 static const CostTblEntry<MVT> AVX2CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +0000487 { ISD::SETCC, MVT::v4i64, 1 },
488 { ISD::SETCC, MVT::v8i32, 1 },
489 { ISD::SETCC, MVT::v16i16, 1 },
490 { ISD::SETCC, MVT::v32i8, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +0000491 };
492
493 if (ST->hasAVX2()) {
Nadav Rotem7d6c6252013-06-18 20:41:52 +0000494 int Idx = CostTableLookup<MVT>(AVX2CostTbl, array_lengthof(AVX2CostTbl),
495 ISD, MTy);
Renato Goline1fb0592013-01-20 20:57:20 +0000496 if (Idx != -1)
497 return LT.first * AVX2CostTbl[Idx].Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +0000498 }
499
500 if (ST->hasAVX()) {
Nadav Rotem7d6c6252013-06-18 20:41:52 +0000501 int Idx = CostTableLookup<MVT>(AVX1CostTbl, array_lengthof(AVX1CostTbl),
502 ISD, MTy);
Renato Goline1fb0592013-01-20 20:57:20 +0000503 if (Idx != -1)
504 return LT.first * AVX1CostTbl[Idx].Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +0000505 }
506
507 if (ST->hasSSE42()) {
Nadav Rotem7d6c6252013-06-18 20:41:52 +0000508 int Idx = CostTableLookup<MVT>(SSE42CostTbl, array_lengthof(SSE42CostTbl),
509 ISD, MTy);
Renato Goline1fb0592013-01-20 20:57:20 +0000510 if (Idx != -1)
511 return LT.first * SSE42CostTbl[Idx].Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +0000512 }
513
514 return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
515}
516
517unsigned X86TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
518 unsigned Index) const {
519 assert(Val->isVectorTy() && "This must be a vector type");
520
521 if (Index != -1U) {
522 // Legalize the type.
523 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
524
525 // This type is legalized to a scalar type.
526 if (!LT.second.isVector())
527 return 0;
528
529 // The type may be split. Normalize the index to the new type.
530 unsigned Width = LT.second.getVectorNumElements();
531 Index = Index % Width;
532
533 // Floating point scalars are already located in index #0.
534 if (Val->getScalarType()->isFloatingPointTy() && Index == 0)
535 return 0;
536 }
537
538 return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
539}
540
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +0000541unsigned X86TTI::getScalarizationOverhead(Type *Ty, bool Insert,
542 bool Extract) const {
543 assert (Ty->isVectorTy() && "Can only scalarize vectors");
544 unsigned Cost = 0;
545
546 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
547 if (Insert)
548 Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
549 if (Extract)
550 Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
551 }
552
553 return Cost;
554}
555
Chandler Carruth664e3542013-01-07 01:37:14 +0000556unsigned X86TTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
557 unsigned AddressSpace) const {
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +0000558 // Handle non power of two vectors such as <3 x float>
559 if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
560 unsigned NumElem = VTy->getVectorNumElements();
561
562 // Handle a few common cases:
563 // <3 x float>
564 if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
565 // Cost = 64 bit store + extract + 32 bit store.
566 return 3;
567
568 // <3 x double>
569 if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
570 // Cost = 128 bit store + unpack + 64 bit store.
571 return 3;
572
573 // Assume that all other non power-of-two numbers are scalarized.
574 if (!isPowerOf2_32(NumElem)) {
575 unsigned Cost = TargetTransformInfo::getMemoryOpCost(Opcode,
576 VTy->getScalarType(),
577 Alignment,
578 AddressSpace);
579 unsigned SplitCost = getScalarizationOverhead(Src,
580 Opcode == Instruction::Load,
581 Opcode==Instruction::Store);
582 return NumElem * Cost + SplitCost;
583 }
584 }
585
Chandler Carruth664e3542013-01-07 01:37:14 +0000586 // Legalize the type.
587 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
588 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
589 "Invalid Opcode");
590
591 // Each load/store unit costs 1.
592 unsigned Cost = LT.first * 1;
593
594 // On Sandybridge 256bit load/stores are double pumped
595 // (but not on Haswell).
596 if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2())
597 Cost*=2;
598
599 return Cost;
600}