blob: 131fd5cf7aeb42917de373845432e42f453a4d43 [file] [log] [blame]
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SystemZTargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "systemz-lower"
15
16#include "SystemZISelLowering.h"
17#include "SystemZCallingConv.h"
18#include "SystemZConstantPoolValue.h"
19#include "SystemZMachineFunctionInfo.h"
20#include "SystemZTargetMachine.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
25
26using namespace llvm;
27
28// Classify VT as either 32 or 64 bit.
29static bool is32Bit(EVT VT) {
30 switch (VT.getSimpleVT().SimpleTy) {
31 case MVT::i32:
32 return true;
33 case MVT::i64:
34 return false;
35 default:
36 llvm_unreachable("Unsupported type");
37 }
38}
39
40// Return a version of MachineOperand that can be safely used before the
41// final use.
42static MachineOperand earlyUseOperand(MachineOperand Op) {
43 if (Op.isReg())
44 Op.setIsKill(false);
45 return Op;
46}
47
48SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm)
49 : TargetLowering(tm, new TargetLoweringObjectFileELF()),
50 Subtarget(*tm.getSubtargetImpl()), TM(tm) {
51 MVT PtrVT = getPointerTy();
52
53 // Set up the register classes.
54 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
55 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
56 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
57 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
58 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
59
60 // Compute derived properties from the register classes
61 computeRegisterProperties();
62
63 // Set up special registers.
64 setExceptionPointerRegister(SystemZ::R6D);
65 setExceptionSelectorRegister(SystemZ::R7D);
66 setStackPointerRegisterToSaveRestore(SystemZ::R15D);
67
68 // TODO: It may be better to default to latency-oriented scheduling, however
69 // LLVM's current latency-oriented scheduler can't handle physreg definitions
Richard Sandiford14a44492013-05-22 13:38:45 +000070 // such as SystemZ has with CC, so set this to the register-pressure
Ulrich Weigand5f613df2013-05-06 16:15:19 +000071 // scheduler, because it can.
72 setSchedulingPreference(Sched::RegPressure);
73
74 setBooleanContents(ZeroOrOneBooleanContent);
75 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
76
77 // Instructions are strings of 2-byte aligned 2-byte values.
78 setMinFunctionAlignment(2);
79
80 // Handle operations that are handled in a similar way for all types.
81 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
82 I <= MVT::LAST_FP_VALUETYPE;
83 ++I) {
84 MVT VT = MVT::SimpleValueType(I);
85 if (isTypeLegal(VT)) {
86 // Expand SETCC(X, Y, COND) into SELECT_CC(X, Y, 1, 0, COND).
87 setOperationAction(ISD::SETCC, VT, Expand);
88
89 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
90 setOperationAction(ISD::SELECT, VT, Expand);
91
92 // Lower SELECT_CC and BR_CC into separate comparisons and branches.
93 setOperationAction(ISD::SELECT_CC, VT, Custom);
94 setOperationAction(ISD::BR_CC, VT, Custom);
95 }
96 }
97
98 // Expand jump table branches as address arithmetic followed by an
99 // indirect jump.
100 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
101
102 // Expand BRCOND into a BR_CC (see above).
103 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
104
105 // Handle integer types.
106 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
107 I <= MVT::LAST_INTEGER_VALUETYPE;
108 ++I) {
109 MVT VT = MVT::SimpleValueType(I);
110 if (isTypeLegal(VT)) {
111 // Expand individual DIV and REMs into DIVREMs.
112 setOperationAction(ISD::SDIV, VT, Expand);
113 setOperationAction(ISD::UDIV, VT, Expand);
114 setOperationAction(ISD::SREM, VT, Expand);
115 setOperationAction(ISD::UREM, VT, Expand);
116 setOperationAction(ISD::SDIVREM, VT, Custom);
117 setOperationAction(ISD::UDIVREM, VT, Custom);
118
119 // Expand ATOMIC_LOAD and ATOMIC_STORE using ATOMIC_CMP_SWAP.
120 // FIXME: probably much too conservative.
121 setOperationAction(ISD::ATOMIC_LOAD, VT, Expand);
122 setOperationAction(ISD::ATOMIC_STORE, VT, Expand);
123
124 // No special instructions for these.
125 setOperationAction(ISD::CTPOP, VT, Expand);
126 setOperationAction(ISD::CTTZ, VT, Expand);
127 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
128 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
129 setOperationAction(ISD::ROTR, VT, Expand);
130
Richard Sandiford7d86e472013-08-21 09:34:56 +0000131 // Use *MUL_LOHI where possible instead of MULH*.
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000132 setOperationAction(ISD::MULHS, VT, Expand);
133 setOperationAction(ISD::MULHU, VT, Expand);
Richard Sandiford7d86e472013-08-21 09:34:56 +0000134 setOperationAction(ISD::SMUL_LOHI, VT, Custom);
135 setOperationAction(ISD::UMUL_LOHI, VT, Custom);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000136
137 // We have instructions for signed but not unsigned FP conversion.
138 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
139 }
140 }
141
142 // Type legalization will convert 8- and 16-bit atomic operations into
143 // forms that operate on i32s (but still keeping the original memory VT).
144 // Lower them into full i32 operations.
145 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom);
146 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom);
147 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
148 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
149 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom);
150 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom);
151 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
152 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom);
153 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom);
154 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
155 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
156 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
157
158 // We have instructions for signed but not unsigned FP conversion.
159 // Handle unsigned 32-bit types as signed 64-bit types.
160 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
161 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
162
163 // We have native support for a 64-bit CTLZ, via FLOGR.
164 setOperationAction(ISD::CTLZ, MVT::i32, Promote);
165 setOperationAction(ISD::CTLZ, MVT::i64, Legal);
166
167 // Give LowerOperation the chance to replace 64-bit ORs with subregs.
168 setOperationAction(ISD::OR, MVT::i64, Custom);
169
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000170 // FIXME: Can we support these natively?
171 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
172 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
173 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
174
175 // We have native instructions for i8, i16 and i32 extensions, but not i1.
176 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
177 setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
178 setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
179 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
180
181 // Handle the various types of symbolic address.
182 setOperationAction(ISD::ConstantPool, PtrVT, Custom);
183 setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
184 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
185 setOperationAction(ISD::BlockAddress, PtrVT, Custom);
186 setOperationAction(ISD::JumpTable, PtrVT, Custom);
187
188 // We need to handle dynamic allocations specially because of the
189 // 160-byte area at the bottom of the stack.
190 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
191
192 // Use custom expanders so that we can force the function to use
193 // a frame pointer.
194 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom);
195 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
196
Richard Sandiford03481332013-08-23 11:36:42 +0000197 // Handle prefetches with PFD or PFDRL.
198 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
199
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000200 // Handle floating-point types.
201 for (unsigned I = MVT::FIRST_FP_VALUETYPE;
202 I <= MVT::LAST_FP_VALUETYPE;
203 ++I) {
204 MVT VT = MVT::SimpleValueType(I);
205 if (isTypeLegal(VT)) {
206 // We can use FI for FRINT.
207 setOperationAction(ISD::FRINT, VT, Legal);
208
Richard Sandifordaf5f66a2013-08-21 09:04:20 +0000209 // We can use the extended form of FI for other rounding operations.
210 if (Subtarget.hasFPExtension()) {
211 setOperationAction(ISD::FNEARBYINT, VT, Legal);
212 setOperationAction(ISD::FFLOOR, VT, Legal);
213 setOperationAction(ISD::FCEIL, VT, Legal);
214 setOperationAction(ISD::FTRUNC, VT, Legal);
215 setOperationAction(ISD::FROUND, VT, Legal);
216 }
217
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000218 // No special instructions for these.
219 setOperationAction(ISD::FSIN, VT, Expand);
220 setOperationAction(ISD::FCOS, VT, Expand);
221 setOperationAction(ISD::FREM, VT, Expand);
222 }
223 }
224
225 // We have fused multiply-addition for f32 and f64 but not f128.
226 setOperationAction(ISD::FMA, MVT::f32, Legal);
227 setOperationAction(ISD::FMA, MVT::f64, Legal);
228 setOperationAction(ISD::FMA, MVT::f128, Expand);
229
230 // Needed so that we don't try to implement f128 constant loads using
231 // a load-and-extend of a f80 constant (in cases where the constant
232 // would fit in an f80).
233 setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
234
235 // Floating-point truncation and stores need to be done separately.
236 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
237 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
238 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
239
240 // We have 64-bit FPR<->GPR moves, but need special handling for
241 // 32-bit forms.
242 setOperationAction(ISD::BITCAST, MVT::i32, Custom);
243 setOperationAction(ISD::BITCAST, MVT::f32, Custom);
244
245 // VASTART and VACOPY need to deal with the SystemZ-specific varargs
246 // structure, but VAEND is a no-op.
247 setOperationAction(ISD::VASTART, MVT::Other, Custom);
248 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
249 setOperationAction(ISD::VAEND, MVT::Other, Expand);
Richard Sandifordd131ff82013-07-08 09:35:23 +0000250
251 // We want to use MVC in preference to even a single load/store pair.
252 MaxStoresPerMemcpy = 0;
253 MaxStoresPerMemcpyOptSize = 0;
Richard Sandiford47660c12013-07-09 09:32:42 +0000254
255 // The main memset sequence is a byte store followed by an MVC.
256 // Two STC or MV..I stores win over that, but the kind of fused stores
257 // generated by target-independent code don't when the byte value is
258 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better
259 // than "STC;MVC". Handle the choice in target-specific code instead.
260 MaxStoresPerMemset = 0;
261 MaxStoresPerMemsetOptSize = 0;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000262}
263
Stephen Lin73de7bf2013-07-09 18:16:56 +0000264bool
265SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
266 VT = VT.getScalarType();
267
268 if (!VT.isSimple())
269 return false;
270
271 switch (VT.getSimpleVT().SimpleTy) {
272 case MVT::f32:
273 case MVT::f64:
274 return true;
275 case MVT::f128:
276 return false;
277 default:
278 break;
279 }
280
281 return false;
282}
283
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000284bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
285 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
286 return Imm.isZero() || Imm.isNegZero();
287}
288
Richard Sandiford46af5a22013-05-30 09:45:42 +0000289bool SystemZTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
290 bool *Fast) const {
291 // Unaligned accesses should never be slower than the expanded version.
292 // We check specifically for aligned accesses in the few cases where
293 // they are required.
294 if (Fast)
295 *Fast = true;
296 return true;
297}
298
Richard Sandiford791bea42013-07-31 12:58:26 +0000299bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM,
300 Type *Ty) const {
301 // Punt on globals for now, although they can be used in limited
302 // RELATIVE LONG cases.
303 if (AM.BaseGV)
304 return false;
305
306 // Require a 20-bit signed offset.
307 if (!isInt<20>(AM.BaseOffs))
308 return false;
309
310 // Indexing is OK but no scale factor can be applied.
311 return AM.Scale == 0 || AM.Scale == 1;
312}
313
Richard Sandiford709bda62013-08-19 12:42:31 +0000314bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
315 if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
316 return false;
317 unsigned FromBits = FromType->getPrimitiveSizeInBits();
318 unsigned ToBits = ToType->getPrimitiveSizeInBits();
319 return FromBits > ToBits;
320}
321
322bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
323 if (!FromVT.isInteger() || !ToVT.isInteger())
324 return false;
325 unsigned FromBits = FromVT.getSizeInBits();
326 unsigned ToBits = ToVT.getSizeInBits();
327 return FromBits > ToBits;
328}
329
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000330//===----------------------------------------------------------------------===//
331// Inline asm support
332//===----------------------------------------------------------------------===//
333
334TargetLowering::ConstraintType
335SystemZTargetLowering::getConstraintType(const std::string &Constraint) const {
336 if (Constraint.size() == 1) {
337 switch (Constraint[0]) {
338 case 'a': // Address register
339 case 'd': // Data register (equivalent to 'r')
340 case 'f': // Floating-point register
341 case 'r': // General-purpose register
342 return C_RegisterClass;
343
344 case 'Q': // Memory with base and unsigned 12-bit displacement
345 case 'R': // Likewise, plus an index
346 case 'S': // Memory with base and signed 20-bit displacement
347 case 'T': // Likewise, plus an index
348 case 'm': // Equivalent to 'T'.
349 return C_Memory;
350
351 case 'I': // Unsigned 8-bit constant
352 case 'J': // Unsigned 12-bit constant
353 case 'K': // Signed 16-bit constant
354 case 'L': // Signed 20-bit displacement (on all targets we support)
355 case 'M': // 0x7fffffff
356 return C_Other;
357
358 default:
359 break;
360 }
361 }
362 return TargetLowering::getConstraintType(Constraint);
363}
364
365TargetLowering::ConstraintWeight SystemZTargetLowering::
366getSingleConstraintMatchWeight(AsmOperandInfo &info,
367 const char *constraint) const {
368 ConstraintWeight weight = CW_Invalid;
369 Value *CallOperandVal = info.CallOperandVal;
370 // If we don't have a value, we can't do a match,
371 // but allow it at the lowest weight.
372 if (CallOperandVal == NULL)
373 return CW_Default;
374 Type *type = CallOperandVal->getType();
375 // Look at the constraint type.
376 switch (*constraint) {
377 default:
378 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
379 break;
380
381 case 'a': // Address register
382 case 'd': // Data register (equivalent to 'r')
383 case 'r': // General-purpose register
384 if (CallOperandVal->getType()->isIntegerTy())
385 weight = CW_Register;
386 break;
387
388 case 'f': // Floating-point register
389 if (type->isFloatingPointTy())
390 weight = CW_Register;
391 break;
392
393 case 'I': // Unsigned 8-bit constant
394 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
395 if (isUInt<8>(C->getZExtValue()))
396 weight = CW_Constant;
397 break;
398
399 case 'J': // Unsigned 12-bit constant
400 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
401 if (isUInt<12>(C->getZExtValue()))
402 weight = CW_Constant;
403 break;
404
405 case 'K': // Signed 16-bit constant
406 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
407 if (isInt<16>(C->getSExtValue()))
408 weight = CW_Constant;
409 break;
410
411 case 'L': // Signed 20-bit displacement (on all targets we support)
412 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
413 if (isInt<20>(C->getSExtValue()))
414 weight = CW_Constant;
415 break;
416
417 case 'M': // 0x7fffffff
418 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
419 if (C->getZExtValue() == 0x7fffffff)
420 weight = CW_Constant;
421 break;
422 }
423 return weight;
424}
425
Richard Sandifordb8204052013-07-12 09:08:12 +0000426// Parse a "{tNNN}" register constraint for which the register type "t"
427// has already been verified. MC is the class associated with "t" and
428// Map maps 0-based register numbers to LLVM register numbers.
429static std::pair<unsigned, const TargetRegisterClass *>
430parseRegisterNumber(const std::string &Constraint,
431 const TargetRegisterClass *RC, const unsigned *Map) {
432 assert(*(Constraint.end()-1) == '}' && "Missing '}'");
433 if (isdigit(Constraint[2])) {
434 std::string Suffix(Constraint.data() + 2, Constraint.size() - 2);
435 unsigned Index = atoi(Suffix.c_str());
436 if (Index < 16 && Map[Index])
437 return std::make_pair(Map[Index], RC);
438 }
439 return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
440}
441
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000442std::pair<unsigned, const TargetRegisterClass *> SystemZTargetLowering::
Chad Rosier295bd432013-06-22 18:37:38 +0000443getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000444 if (Constraint.size() == 1) {
445 // GCC Constraint Letters
446 switch (Constraint[0]) {
447 default: break;
448 case 'd': // Data register (equivalent to 'r')
449 case 'r': // General-purpose register
450 if (VT == MVT::i64)
451 return std::make_pair(0U, &SystemZ::GR64BitRegClass);
452 else if (VT == MVT::i128)
453 return std::make_pair(0U, &SystemZ::GR128BitRegClass);
454 return std::make_pair(0U, &SystemZ::GR32BitRegClass);
455
456 case 'a': // Address register
457 if (VT == MVT::i64)
458 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
459 else if (VT == MVT::i128)
460 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
461 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
462
463 case 'f': // Floating-point register
464 if (VT == MVT::f64)
465 return std::make_pair(0U, &SystemZ::FP64BitRegClass);
466 else if (VT == MVT::f128)
467 return std::make_pair(0U, &SystemZ::FP128BitRegClass);
468 return std::make_pair(0U, &SystemZ::FP32BitRegClass);
469 }
470 }
Richard Sandifordb8204052013-07-12 09:08:12 +0000471 if (Constraint[0] == '{') {
472 // We need to override the default register parsing for GPRs and FPRs
473 // because the interpretation depends on VT. The internal names of
474 // the registers are also different from the external names
475 // (F0D and F0S instead of F0, etc.).
476 if (Constraint[1] == 'r') {
477 if (VT == MVT::i32)
478 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
479 SystemZMC::GR32Regs);
480 if (VT == MVT::i128)
481 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
482 SystemZMC::GR128Regs);
483 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
484 SystemZMC::GR64Regs);
485 }
486 if (Constraint[1] == 'f') {
487 if (VT == MVT::f32)
488 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
489 SystemZMC::FP32Regs);
490 if (VT == MVT::f128)
491 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
492 SystemZMC::FP128Regs);
493 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
494 SystemZMC::FP64Regs);
495 }
496 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000497 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
498}
499
500void SystemZTargetLowering::
501LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
502 std::vector<SDValue> &Ops,
503 SelectionDAG &DAG) const {
504 // Only support length 1 constraints for now.
505 if (Constraint.length() == 1) {
506 switch (Constraint[0]) {
507 case 'I': // Unsigned 8-bit constant
508 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
509 if (isUInt<8>(C->getZExtValue()))
510 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
511 Op.getValueType()));
512 return;
513
514 case 'J': // Unsigned 12-bit constant
515 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
516 if (isUInt<12>(C->getZExtValue()))
517 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
518 Op.getValueType()));
519 return;
520
521 case 'K': // Signed 16-bit constant
522 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
523 if (isInt<16>(C->getSExtValue()))
524 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
525 Op.getValueType()));
526 return;
527
528 case 'L': // Signed 20-bit displacement (on all targets we support)
529 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
530 if (isInt<20>(C->getSExtValue()))
531 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
532 Op.getValueType()));
533 return;
534
535 case 'M': // 0x7fffffff
536 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
537 if (C->getZExtValue() == 0x7fffffff)
538 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
539 Op.getValueType()));
540 return;
541 }
542 }
543 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
544}
545
546//===----------------------------------------------------------------------===//
547// Calling conventions
548//===----------------------------------------------------------------------===//
549
550#include "SystemZGenCallingConv.inc"
551
Richard Sandiford709bda62013-08-19 12:42:31 +0000552bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
553 Type *ToType) const {
554 return isTruncateFree(FromType, ToType);
555}
556
557bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
558 if (!CI->isTailCall())
559 return false;
560 return true;
561}
562
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000563// Value is a value that has been passed to us in the location described by VA
564// (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining
565// any loads onto Chain.
Andrew Trickef9de2a2013-05-25 02:42:55 +0000566static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL,
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000567 CCValAssign &VA, SDValue Chain,
568 SDValue Value) {
569 // If the argument has been promoted from a smaller type, insert an
570 // assertion to capture this.
571 if (VA.getLocInfo() == CCValAssign::SExt)
572 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
573 DAG.getValueType(VA.getValVT()));
574 else if (VA.getLocInfo() == CCValAssign::ZExt)
575 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
576 DAG.getValueType(VA.getValVT()));
577
578 if (VA.isExtInLoc())
579 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
580 else if (VA.getLocInfo() == CCValAssign::Indirect)
581 Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value,
582 MachinePointerInfo(), false, false, false, 0);
583 else
584 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
585 return Value;
586}
587
588// Value is a value of type VA.getValVT() that we need to copy into
589// the location described by VA. Return a copy of Value converted to
590// VA.getValVT(). The caller is responsible for handling indirect values.
Andrew Trickef9de2a2013-05-25 02:42:55 +0000591static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL,
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000592 CCValAssign &VA, SDValue Value) {
593 switch (VA.getLocInfo()) {
594 case CCValAssign::SExt:
595 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
596 case CCValAssign::ZExt:
597 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
598 case CCValAssign::AExt:
599 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
600 case CCValAssign::Full:
601 return Value;
602 default:
603 llvm_unreachable("Unhandled getLocInfo()");
604 }
605}
606
607SDValue SystemZTargetLowering::
608LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
609 const SmallVectorImpl<ISD::InputArg> &Ins,
Andrew Trickef9de2a2013-05-25 02:42:55 +0000610 SDLoc DL, SelectionDAG &DAG,
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000611 SmallVectorImpl<SDValue> &InVals) const {
612 MachineFunction &MF = DAG.getMachineFunction();
613 MachineFrameInfo *MFI = MF.getFrameInfo();
614 MachineRegisterInfo &MRI = MF.getRegInfo();
615 SystemZMachineFunctionInfo *FuncInfo =
616 MF.getInfo<SystemZMachineFunctionInfo>();
617 const SystemZFrameLowering *TFL =
618 static_cast<const SystemZFrameLowering *>(TM.getFrameLowering());
619
620 // Assign locations to all of the incoming arguments.
621 SmallVector<CCValAssign, 16> ArgLocs;
622 CCState CCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
623 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
624
625 unsigned NumFixedGPRs = 0;
626 unsigned NumFixedFPRs = 0;
627 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
628 SDValue ArgValue;
629 CCValAssign &VA = ArgLocs[I];
630 EVT LocVT = VA.getLocVT();
631 if (VA.isRegLoc()) {
632 // Arguments passed in registers
633 const TargetRegisterClass *RC;
634 switch (LocVT.getSimpleVT().SimpleTy) {
635 default:
636 // Integers smaller than i64 should be promoted to i64.
637 llvm_unreachable("Unexpected argument type");
638 case MVT::i32:
639 NumFixedGPRs += 1;
640 RC = &SystemZ::GR32BitRegClass;
641 break;
642 case MVT::i64:
643 NumFixedGPRs += 1;
644 RC = &SystemZ::GR64BitRegClass;
645 break;
646 case MVT::f32:
647 NumFixedFPRs += 1;
648 RC = &SystemZ::FP32BitRegClass;
649 break;
650 case MVT::f64:
651 NumFixedFPRs += 1;
652 RC = &SystemZ::FP64BitRegClass;
653 break;
654 }
655
656 unsigned VReg = MRI.createVirtualRegister(RC);
657 MRI.addLiveIn(VA.getLocReg(), VReg);
658 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
659 } else {
660 assert(VA.isMemLoc() && "Argument not register or memory");
661
662 // Create the frame index object for this incoming parameter.
663 int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
664 VA.getLocMemOffset(), true);
665
666 // Create the SelectionDAG nodes corresponding to a load
667 // from this parameter. Unpromoted ints and floats are
668 // passed as right-justified 8-byte values.
669 EVT PtrVT = getPointerTy();
670 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
671 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
672 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4));
673 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
674 MachinePointerInfo::getFixedStack(FI),
675 false, false, false, 0);
676 }
677
678 // Convert the value of the argument register into the value that's
679 // being passed.
680 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
681 }
682
683 if (IsVarArg) {
684 // Save the number of non-varargs registers for later use by va_start, etc.
685 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
686 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
687
688 // Likewise the address (in the form of a frame index) of where the
689 // first stack vararg would be. The 1-byte size here is arbitrary.
690 int64_t StackSize = CCInfo.getNextStackOffset();
691 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
692
693 // ...and a similar frame index for the caller-allocated save area
694 // that will be used to store the incoming registers.
695 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
696 unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
697 FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
698
699 // Store the FPR varargs in the reserved frame slots. (We store the
700 // GPRs as part of the prologue.)
701 if (NumFixedFPRs < SystemZ::NumArgFPRs) {
702 SDValue MemOps[SystemZ::NumArgFPRs];
703 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
704 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
705 int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
706 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
707 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
708 &SystemZ::FP64BitRegClass);
709 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
710 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
711 MachinePointerInfo::getFixedStack(FI),
712 false, false, 0);
713
714 }
715 // Join the stores, which are independent of one another.
716 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
717 &MemOps[NumFixedFPRs],
718 SystemZ::NumArgFPRs - NumFixedFPRs);
719 }
720 }
721
722 return Chain;
723}
724
Richard Sandiford709bda62013-08-19 12:42:31 +0000725static bool canUseSiblingCall(CCState ArgCCInfo,
726 SmallVectorImpl<CCValAssign> &ArgLocs) {
727 // Punt if there are any indirect or stack arguments, or if the call
728 // needs the call-saved argument register R6.
729 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
730 CCValAssign &VA = ArgLocs[I];
731 if (VA.getLocInfo() == CCValAssign::Indirect)
732 return false;
733 if (!VA.isRegLoc())
734 return false;
735 unsigned Reg = VA.getLocReg();
736 if (Reg == SystemZ::R6W || Reg == SystemZ::R6D)
737 return false;
738 }
739 return true;
740}
741
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000742SDValue
743SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
744 SmallVectorImpl<SDValue> &InVals) const {
745 SelectionDAG &DAG = CLI.DAG;
Andrew Trickef9de2a2013-05-25 02:42:55 +0000746 SDLoc &DL = CLI.DL;
Craig Topperb94011f2013-07-14 04:42:23 +0000747 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
748 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
749 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000750 SDValue Chain = CLI.Chain;
751 SDValue Callee = CLI.Callee;
Richard Sandiford709bda62013-08-19 12:42:31 +0000752 bool &IsTailCall = CLI.IsTailCall;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000753 CallingConv::ID CallConv = CLI.CallConv;
754 bool IsVarArg = CLI.IsVarArg;
755 MachineFunction &MF = DAG.getMachineFunction();
756 EVT PtrVT = getPointerTy();
757
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000758 // Analyze the operands of the call, assigning locations to each operand.
759 SmallVector<CCValAssign, 16> ArgLocs;
760 CCState ArgCCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
761 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
762
Richard Sandiford709bda62013-08-19 12:42:31 +0000763 // We don't support GuaranteedTailCallOpt, only automatically-detected
764 // sibling calls.
765 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs))
766 IsTailCall = false;
767
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000768 // Get a count of how many bytes are to be pushed on the stack.
769 unsigned NumBytes = ArgCCInfo.getNextStackOffset();
770
771 // Mark the start of the call.
Richard Sandiford709bda62013-08-19 12:42:31 +0000772 if (!IsTailCall)
773 Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true),
774 DL);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000775
776 // Copy argument values to their designated locations.
777 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
778 SmallVector<SDValue, 8> MemOpChains;
779 SDValue StackPtr;
780 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
781 CCValAssign &VA = ArgLocs[I];
782 SDValue ArgValue = OutVals[I];
783
784 if (VA.getLocInfo() == CCValAssign::Indirect) {
785 // Store the argument in a stack slot and pass its address.
786 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
787 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
788 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot,
789 MachinePointerInfo::getFixedStack(FI),
790 false, false, 0));
791 ArgValue = SpillSlot;
792 } else
793 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
794
795 if (VA.isRegLoc())
796 // Queue up the argument copies and emit them at the end.
797 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
798 else {
799 assert(VA.isMemLoc() && "Argument not register or memory");
800
801 // Work out the address of the stack slot. Unpromoted ints and
802 // floats are passed as right-justified 8-byte values.
803 if (!StackPtr.getNode())
804 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
805 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
806 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
807 Offset += 4;
808 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
809 DAG.getIntPtrConstant(Offset));
810
811 // Emit the store.
812 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
813 MachinePointerInfo(),
814 false, false, 0));
815 }
816 }
817
818 // Join the stores, which are independent of one another.
819 if (!MemOpChains.empty())
820 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
821 &MemOpChains[0], MemOpChains.size());
822
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000823 // Accept direct calls by converting symbolic call addresses to the
Richard Sandiford709bda62013-08-19 12:42:31 +0000824 // associated Target* opcodes. Force %r1 to be used for indirect
825 // tail calls.
826 SDValue Glue;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000827 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
828 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
829 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
830 } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
831 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
832 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
Richard Sandiford709bda62013-08-19 12:42:31 +0000833 } else if (IsTailCall) {
834 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
835 Glue = Chain.getValue(1);
836 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
837 }
838
839 // Build a sequence of copy-to-reg nodes, chained and glued together.
840 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
841 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
842 RegsToPass[I].second, Glue);
843 Glue = Chain.getValue(1);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000844 }
845
846 // The first call operand is the chain and the second is the target address.
847 SmallVector<SDValue, 8> Ops;
848 Ops.push_back(Chain);
849 Ops.push_back(Callee);
850
851 // Add argument registers to the end of the list so that they are
852 // known live into the call.
853 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
854 Ops.push_back(DAG.getRegister(RegsToPass[I].first,
855 RegsToPass[I].second.getValueType()));
856
857 // Glue the call to the argument copies, if any.
858 if (Glue.getNode())
859 Ops.push_back(Glue);
860
861 // Emit the call.
862 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Richard Sandiford709bda62013-08-19 12:42:31 +0000863 if (IsTailCall)
864 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, &Ops[0], Ops.size());
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000865 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, &Ops[0], Ops.size());
866 Glue = Chain.getValue(1);
867
868 // Mark the end of the call, which is glued to the call itself.
869 Chain = DAG.getCALLSEQ_END(Chain,
870 DAG.getConstant(NumBytes, PtrVT, true),
871 DAG.getConstant(0, PtrVT, true),
Andrew Trickad6d08a2013-05-29 22:03:55 +0000872 Glue, DL);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000873 Glue = Chain.getValue(1);
874
875 // Assign locations to each value returned by this call.
876 SmallVector<CCValAssign, 16> RetLocs;
877 CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
878 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
879
880 // Copy all of the result registers out of their specified physreg.
881 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
882 CCValAssign &VA = RetLocs[I];
883
884 // Copy the value out, gluing the copy to the end of the call sequence.
885 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
886 VA.getLocVT(), Glue);
887 Chain = RetValue.getValue(1);
888 Glue = RetValue.getValue(2);
889
890 // Convert the value of the return register into the value that's
891 // being returned.
892 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
893 }
894
895 return Chain;
896}
897
898SDValue
899SystemZTargetLowering::LowerReturn(SDValue Chain,
900 CallingConv::ID CallConv, bool IsVarArg,
901 const SmallVectorImpl<ISD::OutputArg> &Outs,
902 const SmallVectorImpl<SDValue> &OutVals,
Andrew Trickef9de2a2013-05-25 02:42:55 +0000903 SDLoc DL, SelectionDAG &DAG) const {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000904 MachineFunction &MF = DAG.getMachineFunction();
905
906 // Assign locations to each returned value.
907 SmallVector<CCValAssign, 16> RetLocs;
908 CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
909 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
910
911 // Quick exit for void returns
912 if (RetLocs.empty())
913 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
914
915 // Copy the result values into the output registers.
916 SDValue Glue;
917 SmallVector<SDValue, 4> RetOps;
918 RetOps.push_back(Chain);
919 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
920 CCValAssign &VA = RetLocs[I];
921 SDValue RetValue = OutVals[I];
922
923 // Make the return register live on exit.
924 assert(VA.isRegLoc() && "Can only return in registers!");
925
926 // Promote the value as required.
927 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
928
929 // Chain and glue the copies together.
930 unsigned Reg = VA.getLocReg();
931 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
932 Glue = Chain.getValue(1);
933 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
934 }
935
936 // Update chain and glue.
937 RetOps[0] = Chain;
938 if (Glue.getNode())
939 RetOps.push_back(Glue);
940
941 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other,
942 RetOps.data(), RetOps.size());
943}
944
945// CC is a comparison that will be implemented using an integer or
946// floating-point comparison. Return the condition code mask for
947// a branch on true. In the integer case, CCMASK_CMP_UO is set for
948// unsigned comparisons and clear for signed ones. In the floating-point
949// case, CCMASK_CMP_UO has its normal mask meaning (unordered).
950static unsigned CCMaskForCondCode(ISD::CondCode CC) {
951#define CONV(X) \
952 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
953 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
954 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
955
956 switch (CC) {
957 default:
958 llvm_unreachable("Invalid integer condition!");
959
960 CONV(EQ);
961 CONV(NE);
962 CONV(GT);
963 CONV(GE);
964 CONV(LT);
965 CONV(LE);
966
967 case ISD::SETO: return SystemZ::CCMASK_CMP_O;
968 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
969 }
970#undef CONV
971}
972
973// If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1
Richard Sandiforda0757082013-08-01 10:29:45 +0000974// can be converted to a comparison against zero, adjust the operands
975// as necessary.
976static void adjustZeroCmp(SelectionDAG &DAG, bool &IsUnsigned,
977 SDValue &CmpOp0, SDValue &CmpOp1,
978 unsigned &CCMask) {
979 if (IsUnsigned)
980 return;
981
982 ConstantSDNode *ConstOp1 = dyn_cast<ConstantSDNode>(CmpOp1.getNode());
983 if (!ConstOp1)
984 return;
985
986 int64_t Value = ConstOp1->getSExtValue();
987 if ((Value == -1 && CCMask == SystemZ::CCMASK_CMP_GT) ||
988 (Value == -1 && CCMask == SystemZ::CCMASK_CMP_LE) ||
989 (Value == 1 && CCMask == SystemZ::CCMASK_CMP_LT) ||
990 (Value == 1 && CCMask == SystemZ::CCMASK_CMP_GE)) {
991 CCMask ^= SystemZ::CCMASK_CMP_EQ;
992 CmpOp1 = DAG.getConstant(0, CmpOp1.getValueType());
993 }
994}
995
996// If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000997// is suitable for CLI(Y), CHHSI or CLHHSI, adjust the operands as necessary.
998static void adjustSubwordCmp(SelectionDAG &DAG, bool &IsUnsigned,
999 SDValue &CmpOp0, SDValue &CmpOp1,
1000 unsigned &CCMask) {
1001 // For us to make any changes, it must a comparison between a single-use
1002 // load and a constant.
1003 if (!CmpOp0.hasOneUse() ||
1004 CmpOp0.getOpcode() != ISD::LOAD ||
1005 CmpOp1.getOpcode() != ISD::Constant)
1006 return;
1007
1008 // We must have an 8- or 16-bit load.
1009 LoadSDNode *Load = cast<LoadSDNode>(CmpOp0);
1010 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1011 if (NumBits != 8 && NumBits != 16)
1012 return;
1013
1014 // The load must be an extending one and the constant must be within the
1015 // range of the unextended value.
1016 ConstantSDNode *Constant = cast<ConstantSDNode>(CmpOp1);
1017 uint64_t Value = Constant->getZExtValue();
1018 uint64_t Mask = (1 << NumBits) - 1;
1019 if (Load->getExtensionType() == ISD::SEXTLOAD) {
1020 int64_t SignedValue = Constant->getSExtValue();
Aaron Ballmanb4284e62013-05-16 16:03:36 +00001021 if (uint64_t(SignedValue) + (1ULL << (NumBits - 1)) > Mask)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001022 return;
1023 // Unsigned comparison between two sign-extended values is equivalent
1024 // to unsigned comparison between two zero-extended values.
1025 if (IsUnsigned)
1026 Value &= Mask;
1027 else if (CCMask == SystemZ::CCMASK_CMP_EQ ||
1028 CCMask == SystemZ::CCMASK_CMP_NE)
1029 // Any choice of IsUnsigned is OK for equality comparisons.
1030 // We could use either CHHSI or CLHHSI for 16-bit comparisons,
1031 // but since we use CLHHSI for zero extensions, it seems better
1032 // to be consistent and do the same here.
1033 Value &= Mask, IsUnsigned = true;
1034 else if (NumBits == 8) {
1035 // Try to treat the comparison as unsigned, so that we can use CLI.
1036 // Adjust CCMask and Value as necessary.
1037 if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_LT)
1038 // Test whether the high bit of the byte is set.
1039 Value = 127, CCMask = SystemZ::CCMASK_CMP_GT, IsUnsigned = true;
Richard Sandiforda0757082013-08-01 10:29:45 +00001040 else if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_GE)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001041 // Test whether the high bit of the byte is clear.
1042 Value = 128, CCMask = SystemZ::CCMASK_CMP_LT, IsUnsigned = true;
1043 else
1044 // No instruction exists for this combination.
1045 return;
1046 }
1047 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1048 if (Value > Mask)
1049 return;
1050 // Signed comparison between two zero-extended values is equivalent
1051 // to unsigned comparison.
1052 IsUnsigned = true;
1053 } else
1054 return;
1055
1056 // Make sure that the first operand is an i32 of the right extension type.
1057 ISD::LoadExtType ExtType = IsUnsigned ? ISD::ZEXTLOAD : ISD::SEXTLOAD;
1058 if (CmpOp0.getValueType() != MVT::i32 ||
1059 Load->getExtensionType() != ExtType)
Andrew Trickef9de2a2013-05-25 02:42:55 +00001060 CmpOp0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001061 Load->getChain(), Load->getBasePtr(),
1062 Load->getPointerInfo(), Load->getMemoryVT(),
1063 Load->isVolatile(), Load->isNonTemporal(),
1064 Load->getAlignment());
1065
1066 // Make sure that the second operand is an i32 with the right value.
1067 if (CmpOp1.getValueType() != MVT::i32 ||
1068 Value != Constant->getZExtValue())
1069 CmpOp1 = DAG.getConstant(Value, MVT::i32);
1070}
1071
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001072// Return true if Op is either an unextended load, or a load suitable
1073// for integer register-memory comparisons of type ICmpType.
1074static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
Richard Sandiford24e597b2013-08-23 11:27:19 +00001075 LoadSDNode *Load = dyn_cast<LoadSDNode>(Op.getNode());
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001076 if (Load) {
1077 // There are no instructions to compare a register with a memory byte.
1078 if (Load->getMemoryVT() == MVT::i8)
1079 return false;
1080 // Otherwise decide on extension type.
Richard Sandiford24e597b2013-08-23 11:27:19 +00001081 switch (Load->getExtensionType()) {
1082 case ISD::NON_EXTLOAD:
Richard Sandiford24e597b2013-08-23 11:27:19 +00001083 return true;
1084 case ISD::SEXTLOAD:
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001085 return ICmpType != SystemZICMP::UnsignedOnly;
Richard Sandiford24e597b2013-08-23 11:27:19 +00001086 case ISD::ZEXTLOAD:
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001087 return ICmpType != SystemZICMP::SignedOnly;
Richard Sandiford24e597b2013-08-23 11:27:19 +00001088 default:
1089 break;
1090 }
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001091 }
Richard Sandiford24e597b2013-08-23 11:27:19 +00001092 return false;
1093}
1094
1095// Return true if it is better to swap comparison operands Op0 and Op1.
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001096// ICmpType is the type of an integer comparison.
Richard Sandiford24e597b2013-08-23 11:27:19 +00001097static bool shouldSwapCmpOperands(SDValue Op0, SDValue Op1,
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001098 unsigned ICmpType) {
Richard Sandiford24e597b2013-08-23 11:27:19 +00001099 // Leave f128 comparisons alone, since they have no memory forms.
1100 if (Op0.getValueType() == MVT::f128)
1101 return false;
1102
1103 // Always keep a floating-point constant second, since comparisons with
1104 // zero can use LOAD TEST and comparisons with other constants make a
1105 // natural memory operand.
1106 if (isa<ConstantFPSDNode>(Op1))
1107 return false;
1108
1109 // Never swap comparisons with zero since there are many ways to optimize
1110 // those later.
1111 ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
1112 if (COp1 && COp1->getZExtValue() == 0)
1113 return false;
1114
1115 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1116 // In that case we generally prefer the memory to be second.
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001117 if ((isNaturalMemoryOperand(Op0, ICmpType) && Op0.hasOneUse()) &&
1118 !(isNaturalMemoryOperand(Op1, ICmpType) && Op1.hasOneUse())) {
Richard Sandiford24e597b2013-08-23 11:27:19 +00001119 // The only exceptions are when the second operand is a constant and
1120 // we can use things like CHHSI.
1121 if (!COp1)
1122 return true;
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001123 // The unsigned memory-immediate instructions can handle 16-bit
1124 // unsigned integers.
1125 if (ICmpType != SystemZICMP::SignedOnly &&
1126 isUInt<16>(COp1->getZExtValue()))
1127 return false;
1128 // The signed memory-immediate instructions can handle 16-bit
1129 // signed integers.
1130 if (ICmpType != SystemZICMP::UnsignedOnly &&
1131 isInt<16>(COp1->getSExtValue()))
1132 return false;
Richard Sandiford24e597b2013-08-23 11:27:19 +00001133 return true;
1134 }
1135 return false;
1136}
1137
Richard Sandiford030c1652013-09-13 09:09:50 +00001138// Return true if shift operation N has an in-range constant shift value.
1139// Store it in ShiftVal if so.
1140static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
1141 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
1142 if (!Shift)
1143 return false;
1144
1145 uint64_t Amount = Shift->getZExtValue();
1146 if (Amount >= N.getValueType().getSizeInBits())
1147 return false;
1148
1149 ShiftVal = Amount;
1150 return true;
1151}
1152
1153// Check whether an AND with Mask is suitable for a TEST UNDER MASK
1154// instruction and whether the CC value is descriptive enough to handle
1155// a comparison of type Opcode between the AND result and CmpVal.
1156// CCMask says which comparison result is being tested and BitSize is
1157// the number of bits in the operands. If TEST UNDER MASK can be used,
1158// return the corresponding CC mask, otherwise return 0.
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001159static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
1160 uint64_t Mask, uint64_t CmpVal,
1161 unsigned ICmpType) {
Richard Sandiford113c8702013-09-03 15:38:35 +00001162 assert(Mask != 0 && "ANDs with zero should have been removed by now");
1163
Richard Sandiford030c1652013-09-13 09:09:50 +00001164 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
1165 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
1166 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
1167 return 0;
1168
Richard Sandiford113c8702013-09-03 15:38:35 +00001169 // Work out the masks for the lowest and highest bits.
1170 unsigned HighShift = 63 - countLeadingZeros(Mask);
1171 uint64_t High = uint64_t(1) << HighShift;
1172 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
1173
1174 // Signed ordered comparisons are effectively unsigned if the sign
1175 // bit is dropped.
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001176 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
Richard Sandiford113c8702013-09-03 15:38:35 +00001177
1178 // Check for equality comparisons with 0, or the equivalent.
1179 if (CmpVal == 0) {
1180 if (CCMask == SystemZ::CCMASK_CMP_EQ)
1181 return SystemZ::CCMASK_TM_ALL_0;
1182 if (CCMask == SystemZ::CCMASK_CMP_NE)
1183 return SystemZ::CCMASK_TM_SOME_1;
1184 }
1185 if (EffectivelyUnsigned && CmpVal <= Low) {
1186 if (CCMask == SystemZ::CCMASK_CMP_LT)
1187 return SystemZ::CCMASK_TM_ALL_0;
1188 if (CCMask == SystemZ::CCMASK_CMP_GE)
1189 return SystemZ::CCMASK_TM_SOME_1;
1190 }
1191 if (EffectivelyUnsigned && CmpVal < Low) {
1192 if (CCMask == SystemZ::CCMASK_CMP_LE)
1193 return SystemZ::CCMASK_TM_ALL_0;
1194 if (CCMask == SystemZ::CCMASK_CMP_GT)
1195 return SystemZ::CCMASK_TM_SOME_1;
1196 }
1197
1198 // Check for equality comparisons with the mask, or the equivalent.
1199 if (CmpVal == Mask) {
1200 if (CCMask == SystemZ::CCMASK_CMP_EQ)
1201 return SystemZ::CCMASK_TM_ALL_1;
1202 if (CCMask == SystemZ::CCMASK_CMP_NE)
1203 return SystemZ::CCMASK_TM_SOME_0;
1204 }
1205 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
1206 if (CCMask == SystemZ::CCMASK_CMP_GT)
1207 return SystemZ::CCMASK_TM_ALL_1;
1208 if (CCMask == SystemZ::CCMASK_CMP_LE)
1209 return SystemZ::CCMASK_TM_SOME_0;
1210 }
1211 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
1212 if (CCMask == SystemZ::CCMASK_CMP_GE)
1213 return SystemZ::CCMASK_TM_ALL_1;
1214 if (CCMask == SystemZ::CCMASK_CMP_LT)
1215 return SystemZ::CCMASK_TM_SOME_0;
1216 }
1217
1218 // Check for ordered comparisons with the top bit.
1219 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
1220 if (CCMask == SystemZ::CCMASK_CMP_LE)
1221 return SystemZ::CCMASK_TM_MSB_0;
1222 if (CCMask == SystemZ::CCMASK_CMP_GT)
1223 return SystemZ::CCMASK_TM_MSB_1;
1224 }
1225 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
1226 if (CCMask == SystemZ::CCMASK_CMP_LT)
1227 return SystemZ::CCMASK_TM_MSB_0;
1228 if (CCMask == SystemZ::CCMASK_CMP_GE)
1229 return SystemZ::CCMASK_TM_MSB_1;
1230 }
1231
1232 // If there are just two bits, we can do equality checks for Low and High
1233 // as well.
1234 if (Mask == Low + High) {
1235 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
1236 return SystemZ::CCMASK_TM_MIXED_MSB_0;
1237 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
1238 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
1239 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
1240 return SystemZ::CCMASK_TM_MIXED_MSB_1;
1241 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
1242 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
1243 }
1244
1245 // Looks like we've exhausted our options.
1246 return 0;
1247}
1248
Richard Sandiforda9eb9972013-09-10 10:20:32 +00001249// See whether the comparison (Opcode CmpOp0, CmpOp1, ICmpType) can be
1250// implemented as a TEST UNDER MASK instruction when the condition being
1251// tested is as described by CCValid and CCMask. Update the arguments
1252// with the TM version if so.
Richard Sandiford030c1652013-09-13 09:09:50 +00001253static void adjustForTestUnderMask(SelectionDAG &DAG, unsigned &Opcode,
1254 SDValue &CmpOp0, SDValue &CmpOp1,
1255 unsigned &CCValid, unsigned &CCMask,
1256 unsigned &ICmpType) {
Richard Sandiford113c8702013-09-03 15:38:35 +00001257 // Check that we have a comparison with a constant.
Richard Sandiford35b9be22013-08-28 10:31:43 +00001258 ConstantSDNode *ConstCmpOp1 = dyn_cast<ConstantSDNode>(CmpOp1);
Richard Sandiford113c8702013-09-03 15:38:35 +00001259 if (!ConstCmpOp1)
Richard Sandiford35b9be22013-08-28 10:31:43 +00001260 return;
Richard Sandiford030c1652013-09-13 09:09:50 +00001261 uint64_t CmpVal = ConstCmpOp1->getZExtValue();
Richard Sandiford35b9be22013-08-28 10:31:43 +00001262
1263 // Check whether the nonconstant input is an AND with a constant mask.
1264 if (CmpOp0.getOpcode() != ISD::AND)
1265 return;
1266 SDValue AndOp0 = CmpOp0.getOperand(0);
1267 SDValue AndOp1 = CmpOp0.getOperand(1);
1268 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(AndOp1.getNode());
1269 if (!Mask)
1270 return;
Richard Sandiford35b9be22013-08-28 10:31:43 +00001271 uint64_t MaskVal = Mask->getZExtValue();
Richard Sandiford35b9be22013-08-28 10:31:43 +00001272
Richard Sandiford113c8702013-09-03 15:38:35 +00001273 // Check whether the combination of mask, comparison value and comparison
1274 // type are suitable.
1275 unsigned BitSize = CmpOp0.getValueType().getSizeInBits();
Richard Sandiford030c1652013-09-13 09:09:50 +00001276 unsigned NewCCMask, ShiftVal;
1277 if (ICmpType != SystemZICMP::SignedOnly &&
1278 AndOp0.getOpcode() == ISD::SHL &&
1279 isSimpleShift(AndOp0, ShiftVal) &&
1280 (NewCCMask = getTestUnderMaskCond(BitSize, CCMask, MaskVal >> ShiftVal,
1281 CmpVal >> ShiftVal,
1282 SystemZICMP::Any))) {
1283 AndOp0 = AndOp0.getOperand(0);
1284 AndOp1 = DAG.getConstant(MaskVal >> ShiftVal, AndOp0.getValueType());
1285 } else if (ICmpType != SystemZICMP::SignedOnly &&
1286 AndOp0.getOpcode() == ISD::SRL &&
1287 isSimpleShift(AndOp0, ShiftVal) &&
1288 (NewCCMask = getTestUnderMaskCond(BitSize, CCMask,
1289 MaskVal << ShiftVal,
1290 CmpVal << ShiftVal,
1291 SystemZICMP::UnsignedOnly))) {
1292 AndOp0 = AndOp0.getOperand(0);
1293 AndOp1 = DAG.getConstant(MaskVal << ShiftVal, AndOp0.getValueType());
1294 } else {
1295 NewCCMask = getTestUnderMaskCond(BitSize, CCMask, MaskVal, CmpVal,
1296 ICmpType);
1297 if (!NewCCMask)
1298 return;
1299 }
Richard Sandiford113c8702013-09-03 15:38:35 +00001300
Richard Sandiford35b9be22013-08-28 10:31:43 +00001301 // Go ahead and make the change.
1302 Opcode = SystemZISD::TM;
1303 CmpOp0 = AndOp0;
1304 CmpOp1 = AndOp1;
Richard Sandiforda9eb9972013-09-10 10:20:32 +00001305 ICmpType = (bool(NewCCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
1306 bool(NewCCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
Richard Sandiford35b9be22013-08-28 10:31:43 +00001307 CCValid = SystemZ::CCMASK_TM;
Richard Sandiford113c8702013-09-03 15:38:35 +00001308 CCMask = NewCCMask;
Richard Sandiford35b9be22013-08-28 10:31:43 +00001309}
1310
Richard Sandiford3d768e32013-07-31 12:30:20 +00001311// Return a target node that compares CmpOp0 with CmpOp1 and stores a
1312// 2-bit result in CC. Set CCValid to the CCMASK_* of all possible
1313// 2-bit results and CCMask to the subset of those results that are
1314// associated with Cond.
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001315static SDValue emitCmp(const SystemZTargetMachine &TM, SelectionDAG &DAG,
1316 SDLoc DL, SDValue CmpOp0, SDValue CmpOp1,
1317 ISD::CondCode Cond, unsigned &CCValid,
Richard Sandiford3d768e32013-07-31 12:30:20 +00001318 unsigned &CCMask) {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001319 bool IsUnsigned = false;
Richard Sandiford3d768e32013-07-31 12:30:20 +00001320 CCMask = CCMaskForCondCode(Cond);
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001321 unsigned Opcode, ICmpType = 0;
1322 if (CmpOp0.getValueType().isFloatingPoint()) {
Richard Sandiford3d768e32013-07-31 12:30:20 +00001323 CCValid = SystemZ::CCMASK_FCMP;
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001324 Opcode = SystemZISD::FCMP;
1325 } else {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001326 IsUnsigned = CCMask & SystemZ::CCMASK_CMP_UO;
Richard Sandiford3d768e32013-07-31 12:30:20 +00001327 CCValid = SystemZ::CCMASK_ICMP;
1328 CCMask &= CCValid;
Richard Sandiforda0757082013-08-01 10:29:45 +00001329 adjustZeroCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001330 adjustSubwordCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask);
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001331 Opcode = SystemZISD::ICMP;
1332 // Choose the type of comparison. Equality and inequality tests can
1333 // use either signed or unsigned comparisons. The choice also doesn't
1334 // matter if both sign bits are known to be clear. In those cases we
1335 // want to give the main isel code the freedom to choose whichever
1336 // form fits best.
1337 if (CCMask == SystemZ::CCMASK_CMP_EQ ||
1338 CCMask == SystemZ::CCMASK_CMP_NE ||
1339 (DAG.SignBitIsZero(CmpOp0) && DAG.SignBitIsZero(CmpOp1)))
1340 ICmpType = SystemZICMP::Any;
1341 else if (IsUnsigned)
1342 ICmpType = SystemZICMP::UnsignedOnly;
1343 else
1344 ICmpType = SystemZICMP::SignedOnly;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001345 }
1346
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001347 if (shouldSwapCmpOperands(CmpOp0, CmpOp1, ICmpType)) {
Richard Sandiford24e597b2013-08-23 11:27:19 +00001348 std::swap(CmpOp0, CmpOp1);
1349 CCMask = ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1350 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1351 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1352 (CCMask & SystemZ::CCMASK_CMP_UO));
1353 }
1354
Richard Sandiford030c1652013-09-13 09:09:50 +00001355 adjustForTestUnderMask(DAG, Opcode, CmpOp0, CmpOp1, CCValid, CCMask,
1356 ICmpType);
Richard Sandiforda9eb9972013-09-10 10:20:32 +00001357 if (Opcode == SystemZISD::ICMP || Opcode == SystemZISD::TM)
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001358 return DAG.getNode(Opcode, DL, MVT::Glue, CmpOp0, CmpOp1,
1359 DAG.getConstant(ICmpType, MVT::i32));
Richard Sandiford35b9be22013-08-28 10:31:43 +00001360 return DAG.getNode(Opcode, DL, MVT::Glue, CmpOp0, CmpOp1);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001361}
1362
Richard Sandiford7d86e472013-08-21 09:34:56 +00001363// Implement a 32-bit *MUL_LOHI operation by extending both operands to
1364// 64 bits. Extend is the extension type to use. Store the high part
1365// in Hi and the low part in Lo.
1366static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL,
1367 unsigned Extend, SDValue Op0, SDValue Op1,
1368 SDValue &Hi, SDValue &Lo) {
1369 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
1370 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
1371 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
1372 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, MVT::i64));
1373 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
1374 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
1375}
1376
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001377// Lower a binary operation that produces two VT results, one in each
1378// half of a GR128 pair. Op0 and Op1 are the VT operands to the operation,
1379// Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
1380// on the extended Op0 and (unextended) Op1. Store the even register result
1381// in Even and the odd register result in Odd.
Andrew Trickef9de2a2013-05-25 02:42:55 +00001382static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT,
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001383 unsigned Extend, unsigned Opcode,
1384 SDValue Op0, SDValue Op1,
1385 SDValue &Even, SDValue &Odd) {
1386 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
1387 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
1388 SDValue(In128, 0), Op1);
1389 bool Is32Bit = is32Bit(VT);
1390 SDValue SubReg0 = DAG.getTargetConstant(SystemZ::even128(Is32Bit), VT);
1391 SDValue SubReg1 = DAG.getTargetConstant(SystemZ::odd128(Is32Bit), VT);
1392 SDNode *Reg0 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
1393 VT, Result, SubReg0);
1394 SDNode *Reg1 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
1395 VT, Result, SubReg1);
1396 Even = SDValue(Reg0, 0);
1397 Odd = SDValue(Reg1, 0);
1398}
1399
1400SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1401 SDValue Chain = Op.getOperand(0);
1402 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1403 SDValue CmpOp0 = Op.getOperand(2);
1404 SDValue CmpOp1 = Op.getOperand(3);
1405 SDValue Dest = Op.getOperand(4);
Andrew Trickef9de2a2013-05-25 02:42:55 +00001406 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001407
Richard Sandiford3d768e32013-07-31 12:30:20 +00001408 unsigned CCValid, CCMask;
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001409 SDValue Flags = emitCmp(TM, DAG, DL, CmpOp0, CmpOp1, CC, CCValid, CCMask);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001410 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
Richard Sandiford3d768e32013-07-31 12:30:20 +00001411 Chain, DAG.getConstant(CCValid, MVT::i32),
1412 DAG.getConstant(CCMask, MVT::i32), Dest, Flags);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001413}
1414
1415SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
1416 SelectionDAG &DAG) const {
1417 SDValue CmpOp0 = Op.getOperand(0);
1418 SDValue CmpOp1 = Op.getOperand(1);
1419 SDValue TrueOp = Op.getOperand(2);
1420 SDValue FalseOp = Op.getOperand(3);
1421 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
Andrew Trickef9de2a2013-05-25 02:42:55 +00001422 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001423
Richard Sandiford3d768e32013-07-31 12:30:20 +00001424 unsigned CCValid, CCMask;
Richard Sandiford5bc670b2013-09-06 11:51:39 +00001425 SDValue Flags = emitCmp(TM, DAG, DL, CmpOp0, CmpOp1, CC, CCValid, CCMask);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001426
Richard Sandiford3d768e32013-07-31 12:30:20 +00001427 SmallVector<SDValue, 5> Ops;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001428 Ops.push_back(TrueOp);
1429 Ops.push_back(FalseOp);
Richard Sandiford3d768e32013-07-31 12:30:20 +00001430 Ops.push_back(DAG.getConstant(CCValid, MVT::i32));
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001431 Ops.push_back(DAG.getConstant(CCMask, MVT::i32));
1432 Ops.push_back(Flags);
1433
1434 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
1435 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, &Ops[0], Ops.size());
1436}
1437
1438SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
1439 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00001440 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001441 const GlobalValue *GV = Node->getGlobal();
1442 int64_t Offset = Node->getOffset();
1443 EVT PtrVT = getPointerTy();
1444 Reloc::Model RM = TM.getRelocationModel();
1445 CodeModel::Model CM = TM.getCodeModel();
1446
1447 SDValue Result;
1448 if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) {
1449 // Make sure that the offset is aligned to a halfword. If it isn't,
1450 // create an "anchor" at the previous 12-bit boundary.
1451 // FIXME check whether there is a better way of handling this.
1452 if (Offset & 1) {
1453 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
1454 Offset & ~uint64_t(0xfff));
1455 Offset &= 0xfff;
1456 } else {
1457 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Offset);
1458 Offset = 0;
1459 }
1460 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1461 } else {
1462 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
1463 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1464 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
1465 MachinePointerInfo::getGOT(), false, false, false, 0);
1466 }
1467
1468 // If there was a non-zero offset that we didn't fold, create an explicit
1469 // addition for it.
1470 if (Offset != 0)
1471 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
1472 DAG.getConstant(Offset, PtrVT));
1473
1474 return Result;
1475}
1476
1477SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
1478 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00001479 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001480 const GlobalValue *GV = Node->getGlobal();
1481 EVT PtrVT = getPointerTy();
1482 TLSModel::Model model = TM.getTLSModel(GV);
1483
1484 if (model != TLSModel::LocalExec)
1485 llvm_unreachable("only local-exec TLS mode supported");
1486
1487 // The high part of the thread pointer is in access register 0.
1488 SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1489 DAG.getConstant(0, MVT::i32));
1490 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
1491
1492 // The low part of the thread pointer is in access register 1.
1493 SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1494 DAG.getConstant(1, MVT::i32));
1495 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
1496
1497 // Merge them into a single 64-bit address.
1498 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
1499 DAG.getConstant(32, PtrVT));
1500 SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
1501
1502 // Get the offset of GA from the thread pointer.
1503 SystemZConstantPoolValue *CPV =
1504 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
1505
1506 // Force the offset into the constant pool and load it from there.
1507 SDValue CPAddr = DAG.getConstantPool(CPV, PtrVT, 8);
1508 SDValue Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
1509 CPAddr, MachinePointerInfo::getConstantPool(),
1510 false, false, false, 0);
1511
1512 // Add the base and offset together.
1513 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
1514}
1515
1516SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
1517 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00001518 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001519 const BlockAddress *BA = Node->getBlockAddress();
1520 int64_t Offset = Node->getOffset();
1521 EVT PtrVT = getPointerTy();
1522
1523 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
1524 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1525 return Result;
1526}
1527
1528SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
1529 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00001530 SDLoc DL(JT);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001531 EVT PtrVT = getPointerTy();
1532 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1533
1534 // Use LARL to load the address of the table.
1535 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1536}
1537
1538SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
1539 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00001540 SDLoc DL(CP);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001541 EVT PtrVT = getPointerTy();
1542
1543 SDValue Result;
1544 if (CP->isMachineConstantPoolEntry())
1545 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1546 CP->getAlignment());
1547 else
1548 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1549 CP->getAlignment(), CP->getOffset());
1550
1551 // Use LARL to load the address of the constant pool entry.
1552 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1553}
1554
1555SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
1556 SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00001557 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001558 SDValue In = Op.getOperand(0);
1559 EVT InVT = In.getValueType();
1560 EVT ResVT = Op.getValueType();
1561
1562 SDValue SubReg32 = DAG.getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
1563 SDValue Shift32 = DAG.getConstant(32, MVT::i64);
1564 if (InVT == MVT::i32 && ResVT == MVT::f32) {
1565 SDValue In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
1566 SDValue Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, Shift32);
1567 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Shift);
1568 SDNode *Out = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
1569 MVT::f32, Out64, SubReg32);
1570 return SDValue(Out, 0);
1571 }
1572 if (InVT == MVT::f32 && ResVT == MVT::i32) {
1573 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
1574 SDNode *In64 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
1575 MVT::f64, SDValue(U64, 0), In, SubReg32);
1576 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, SDValue(In64, 0));
1577 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, Shift32);
1578 SDValue Out = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
1579 return Out;
1580 }
1581 llvm_unreachable("Unexpected bitcast combination");
1582}
1583
1584SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
1585 SelectionDAG &DAG) const {
1586 MachineFunction &MF = DAG.getMachineFunction();
1587 SystemZMachineFunctionInfo *FuncInfo =
1588 MF.getInfo<SystemZMachineFunctionInfo>();
1589 EVT PtrVT = getPointerTy();
1590
1591 SDValue Chain = Op.getOperand(0);
1592 SDValue Addr = Op.getOperand(1);
1593 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
Andrew Trickef9de2a2013-05-25 02:42:55 +00001594 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001595
1596 // The initial values of each field.
1597 const unsigned NumFields = 4;
1598 SDValue Fields[NumFields] = {
1599 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT),
1600 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT),
1601 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
1602 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
1603 };
1604
1605 // Store each field into its respective slot.
1606 SDValue MemOps[NumFields];
1607 unsigned Offset = 0;
1608 for (unsigned I = 0; I < NumFields; ++I) {
1609 SDValue FieldAddr = Addr;
1610 if (Offset != 0)
1611 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
1612 DAG.getIntPtrConstant(Offset));
1613 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
1614 MachinePointerInfo(SV, Offset),
1615 false, false, 0);
1616 Offset += 8;
1617 }
1618 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps, NumFields);
1619}
1620
1621SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
1622 SelectionDAG &DAG) const {
1623 SDValue Chain = Op.getOperand(0);
1624 SDValue DstPtr = Op.getOperand(1);
1625 SDValue SrcPtr = Op.getOperand(2);
1626 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
1627 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
Andrew Trickef9de2a2013-05-25 02:42:55 +00001628 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001629
1630 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32),
1631 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
1632 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
1633}
1634
1635SDValue SystemZTargetLowering::
1636lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
1637 SDValue Chain = Op.getOperand(0);
1638 SDValue Size = Op.getOperand(1);
Andrew Trickef9de2a2013-05-25 02:42:55 +00001639 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001640
1641 unsigned SPReg = getStackPointerRegisterToSaveRestore();
1642
1643 // Get a reference to the stack pointer.
1644 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
1645
1646 // Get the new stack pointer value.
1647 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size);
1648
1649 // Copy the new stack pointer back.
1650 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
1651
1652 // The allocated data lives above the 160 bytes allocated for the standard
1653 // frame, plus any outgoing stack arguments. We don't know how much that
1654 // amounts to yet, so emit a special ADJDYNALLOC placeholder.
1655 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
1656 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
1657
1658 SDValue Ops[2] = { Result, Chain };
1659 return DAG.getMergeValues(Ops, 2, DL);
1660}
1661
Richard Sandiford7d86e472013-08-21 09:34:56 +00001662SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
1663 SelectionDAG &DAG) const {
1664 EVT VT = Op.getValueType();
1665 SDLoc DL(Op);
1666 SDValue Ops[2];
1667 if (is32Bit(VT))
1668 // Just do a normal 64-bit multiplication and extract the results.
1669 // We define this so that it can be used for constant division.
1670 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
1671 Op.getOperand(1), Ops[1], Ops[0]);
1672 else {
1673 // Do a full 128-bit multiplication based on UMUL_LOHI64:
1674 //
1675 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
1676 //
1677 // but using the fact that the upper halves are either all zeros
1678 // or all ones:
1679 //
1680 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
1681 //
1682 // and grouping the right terms together since they are quicker than the
1683 // multiplication:
1684 //
1685 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
1686 SDValue C63 = DAG.getConstant(63, MVT::i64);
1687 SDValue LL = Op.getOperand(0);
1688 SDValue RL = Op.getOperand(1);
1689 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
1690 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
1691 // UMUL_LOHI64 returns the low result in the odd register and the high
1692 // result in the even register. SMUL_LOHI is defined to return the
1693 // low half first, so the results are in reverse order.
1694 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
1695 LL, RL, Ops[1], Ops[0]);
1696 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
1697 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
1698 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
1699 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
1700 }
1701 return DAG.getMergeValues(Ops, 2, DL);
1702}
1703
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001704SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
1705 SelectionDAG &DAG) const {
1706 EVT VT = Op.getValueType();
Andrew Trickef9de2a2013-05-25 02:42:55 +00001707 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001708 SDValue Ops[2];
Richard Sandiford7d86e472013-08-21 09:34:56 +00001709 if (is32Bit(VT))
1710 // Just do a normal 64-bit multiplication and extract the results.
1711 // We define this so that it can be used for constant division.
1712 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
1713 Op.getOperand(1), Ops[1], Ops[0]);
1714 else
1715 // UMUL_LOHI64 returns the low result in the odd register and the high
1716 // result in the even register. UMUL_LOHI is defined to return the
1717 // low half first, so the results are in reverse order.
1718 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
1719 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001720 return DAG.getMergeValues(Ops, 2, DL);
1721}
1722
1723SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
1724 SelectionDAG &DAG) const {
1725 SDValue Op0 = Op.getOperand(0);
1726 SDValue Op1 = Op.getOperand(1);
1727 EVT VT = Op.getValueType();
Andrew Trickef9de2a2013-05-25 02:42:55 +00001728 SDLoc DL(Op);
Richard Sandiforde6e78852013-07-02 15:40:22 +00001729 unsigned Opcode;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001730
1731 // We use DSGF for 32-bit division.
1732 if (is32Bit(VT)) {
1733 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
Richard Sandiforde6e78852013-07-02 15:40:22 +00001734 Opcode = SystemZISD::SDIVREM32;
1735 } else if (DAG.ComputeNumSignBits(Op1) > 32) {
1736 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
1737 Opcode = SystemZISD::SDIVREM32;
1738 } else
1739 Opcode = SystemZISD::SDIVREM64;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001740
1741 // DSG(F) takes a 64-bit dividend, so the even register in the GR128
1742 // input is "don't care". The instruction returns the remainder in
1743 // the even register and the quotient in the odd register.
1744 SDValue Ops[2];
Richard Sandiforde6e78852013-07-02 15:40:22 +00001745 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001746 Op0, Op1, Ops[1], Ops[0]);
1747 return DAG.getMergeValues(Ops, 2, DL);
1748}
1749
1750SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
1751 SelectionDAG &DAG) const {
1752 EVT VT = Op.getValueType();
Andrew Trickef9de2a2013-05-25 02:42:55 +00001753 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001754
1755 // DL(G) uses a double-width dividend, so we need to clear the even
1756 // register in the GR128 input. The instruction returns the remainder
1757 // in the even register and the quotient in the odd register.
1758 SDValue Ops[2];
1759 if (is32Bit(VT))
1760 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
1761 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
1762 else
1763 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
1764 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
1765 return DAG.getMergeValues(Ops, 2, DL);
1766}
1767
1768SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
1769 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
1770
1771 // Get the known-zero masks for each operand.
1772 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
1773 APInt KnownZero[2], KnownOne[2];
1774 DAG.ComputeMaskedBits(Ops[0], KnownZero[0], KnownOne[0]);
1775 DAG.ComputeMaskedBits(Ops[1], KnownZero[1], KnownOne[1]);
1776
1777 // See if the upper 32 bits of one operand and the lower 32 bits of the
1778 // other are known zero. They are the low and high operands respectively.
1779 uint64_t Masks[] = { KnownZero[0].getZExtValue(),
1780 KnownZero[1].getZExtValue() };
1781 unsigned High, Low;
1782 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
1783 High = 1, Low = 0;
1784 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
1785 High = 0, Low = 1;
1786 else
1787 return Op;
1788
1789 SDValue LowOp = Ops[Low];
1790 SDValue HighOp = Ops[High];
1791
1792 // If the high part is a constant, we're better off using IILH.
1793 if (HighOp.getOpcode() == ISD::Constant)
1794 return Op;
1795
1796 // If the low part is a constant that is outside the range of LHI,
1797 // then we're better off using IILF.
1798 if (LowOp.getOpcode() == ISD::Constant) {
1799 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
1800 if (!isInt<16>(Value))
1801 return Op;
1802 }
1803
1804 // Check whether the high part is an AND that doesn't change the
1805 // high 32 bits and just masks out low bits. We can skip it if so.
1806 if (HighOp.getOpcode() == ISD::AND &&
1807 HighOp.getOperand(1).getOpcode() == ISD::Constant) {
1808 ConstantSDNode *MaskNode = cast<ConstantSDNode>(HighOp.getOperand(1));
1809 uint64_t Mask = MaskNode->getZExtValue() | Masks[High];
1810 if ((Mask >> 32) == 0xffffffff)
1811 HighOp = HighOp.getOperand(0);
1812 }
1813
1814 // Take advantage of the fact that all GR32 operations only change the
1815 // low 32 bits by truncating Low to an i32 and inserting it directly
1816 // using a subreg. The interesting cases are those where the truncation
1817 // can be folded.
Andrew Trickef9de2a2013-05-25 02:42:55 +00001818 SDLoc DL(Op);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001819 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
1820 SDValue SubReg32 = DAG.getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
1821 SDNode *Result = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
1822 MVT::i64, HighOp, Low32, SubReg32);
1823 return SDValue(Result, 0);
1824}
1825
1826// Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first
1827// two into the fullword ATOMIC_LOADW_* operation given by Opcode.
1828SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
1829 SelectionDAG &DAG,
1830 unsigned Opcode) const {
1831 AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
1832
1833 // 32-bit operations need no code outside the main loop.
1834 EVT NarrowVT = Node->getMemoryVT();
1835 EVT WideVT = MVT::i32;
1836 if (NarrowVT == WideVT)
1837 return Op;
1838
1839 int64_t BitSize = NarrowVT.getSizeInBits();
1840 SDValue ChainIn = Node->getChain();
1841 SDValue Addr = Node->getBasePtr();
1842 SDValue Src2 = Node->getVal();
1843 MachineMemOperand *MMO = Node->getMemOperand();
Andrew Trickef9de2a2013-05-25 02:42:55 +00001844 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001845 EVT PtrVT = Addr.getValueType();
1846
1847 // Convert atomic subtracts of constants into additions.
1848 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
1849 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Src2)) {
1850 Opcode = SystemZISD::ATOMIC_LOADW_ADD;
1851 Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType());
1852 }
1853
1854 // Get the address of the containing word.
1855 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
1856 DAG.getConstant(-4, PtrVT));
1857
1858 // Get the number of bits that the word must be rotated left in order
1859 // to bring the field to the top bits of a GR32.
1860 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
1861 DAG.getConstant(3, PtrVT));
1862 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
1863
1864 // Get the complementing shift amount, for rotating a field in the top
1865 // bits back to its proper position.
1866 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
1867 DAG.getConstant(0, WideVT), BitShift);
1868
1869 // Extend the source operand to 32 bits and prepare it for the inner loop.
1870 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
1871 // operations require the source to be shifted in advance. (This shift
1872 // can be folded if the source is constant.) For AND and NAND, the lower
1873 // bits must be set, while for other opcodes they should be left clear.
1874 if (Opcode != SystemZISD::ATOMIC_SWAPW)
1875 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
1876 DAG.getConstant(32 - BitSize, WideVT));
1877 if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
1878 Opcode == SystemZISD::ATOMIC_LOADW_NAND)
1879 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
1880 DAG.getConstant(uint32_t(-1) >> BitSize, WideVT));
1881
1882 // Construct the ATOMIC_LOADW_* node.
1883 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
1884 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
1885 DAG.getConstant(BitSize, WideVT) };
1886 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
1887 array_lengthof(Ops),
1888 NarrowVT, MMO);
1889
1890 // Rotate the result of the final CS so that the field is in the lower
1891 // bits of a GR32, then truncate it.
1892 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
1893 DAG.getConstant(BitSize, WideVT));
1894 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
1895
1896 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
1897 return DAG.getMergeValues(RetOps, 2, DL);
1898}
1899
1900// Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two
1901// into a fullword ATOMIC_CMP_SWAPW operation.
1902SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
1903 SelectionDAG &DAG) const {
1904 AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
1905
1906 // We have native support for 32-bit compare and swap.
1907 EVT NarrowVT = Node->getMemoryVT();
1908 EVT WideVT = MVT::i32;
1909 if (NarrowVT == WideVT)
1910 return Op;
1911
1912 int64_t BitSize = NarrowVT.getSizeInBits();
1913 SDValue ChainIn = Node->getOperand(0);
1914 SDValue Addr = Node->getOperand(1);
1915 SDValue CmpVal = Node->getOperand(2);
1916 SDValue SwapVal = Node->getOperand(3);
1917 MachineMemOperand *MMO = Node->getMemOperand();
Andrew Trickef9de2a2013-05-25 02:42:55 +00001918 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001919 EVT PtrVT = Addr.getValueType();
1920
1921 // Get the address of the containing word.
1922 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
1923 DAG.getConstant(-4, PtrVT));
1924
1925 // Get the number of bits that the word must be rotated left in order
1926 // to bring the field to the top bits of a GR32.
1927 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
1928 DAG.getConstant(3, PtrVT));
1929 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
1930
1931 // Get the complementing shift amount, for rotating a field in the top
1932 // bits back to its proper position.
1933 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
1934 DAG.getConstant(0, WideVT), BitShift);
1935
1936 // Construct the ATOMIC_CMP_SWAPW node.
1937 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
1938 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
1939 NegBitShift, DAG.getConstant(BitSize, WideVT) };
1940 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
1941 VTList, Ops, array_lengthof(Ops),
1942 NarrowVT, MMO);
1943 return AtomicOp;
1944}
1945
1946SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
1947 SelectionDAG &DAG) const {
1948 MachineFunction &MF = DAG.getMachineFunction();
1949 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
Andrew Trickef9de2a2013-05-25 02:42:55 +00001950 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001951 SystemZ::R15D, Op.getValueType());
1952}
1953
1954SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
1955 SelectionDAG &DAG) const {
1956 MachineFunction &MF = DAG.getMachineFunction();
1957 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
Andrew Trickef9de2a2013-05-25 02:42:55 +00001958 return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op),
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001959 SystemZ::R15D, Op.getOperand(1));
1960}
1961
Richard Sandiford03481332013-08-23 11:36:42 +00001962SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
1963 SelectionDAG &DAG) const {
1964 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
1965 if (!IsData)
1966 // Just preserve the chain.
1967 return Op.getOperand(0);
1968
1969 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
1970 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
1971 MemIntrinsicSDNode *Node = cast<MemIntrinsicSDNode>(Op.getNode());
1972 SDValue Ops[] = {
1973 Op.getOperand(0),
1974 DAG.getConstant(Code, MVT::i32),
1975 Op.getOperand(1)
1976 };
1977 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, SDLoc(Op),
1978 Node->getVTList(), Ops, array_lengthof(Ops),
1979 Node->getMemoryVT(), Node->getMemOperand());
1980}
1981
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001982SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
1983 SelectionDAG &DAG) const {
1984 switch (Op.getOpcode()) {
1985 case ISD::BR_CC:
1986 return lowerBR_CC(Op, DAG);
1987 case ISD::SELECT_CC:
1988 return lowerSELECT_CC(Op, DAG);
1989 case ISD::GlobalAddress:
1990 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
1991 case ISD::GlobalTLSAddress:
1992 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
1993 case ISD::BlockAddress:
1994 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
1995 case ISD::JumpTable:
1996 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
1997 case ISD::ConstantPool:
1998 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
1999 case ISD::BITCAST:
2000 return lowerBITCAST(Op, DAG);
2001 case ISD::VASTART:
2002 return lowerVASTART(Op, DAG);
2003 case ISD::VACOPY:
2004 return lowerVACOPY(Op, DAG);
2005 case ISD::DYNAMIC_STACKALLOC:
2006 return lowerDYNAMIC_STACKALLOC(Op, DAG);
Richard Sandiford7d86e472013-08-21 09:34:56 +00002007 case ISD::SMUL_LOHI:
2008 return lowerSMUL_LOHI(Op, DAG);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002009 case ISD::UMUL_LOHI:
2010 return lowerUMUL_LOHI(Op, DAG);
2011 case ISD::SDIVREM:
2012 return lowerSDIVREM(Op, DAG);
2013 case ISD::UDIVREM:
2014 return lowerUDIVREM(Op, DAG);
2015 case ISD::OR:
2016 return lowerOR(Op, DAG);
2017 case ISD::ATOMIC_SWAP:
2018 return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_SWAPW);
2019 case ISD::ATOMIC_LOAD_ADD:
2020 return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
2021 case ISD::ATOMIC_LOAD_SUB:
2022 return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
2023 case ISD::ATOMIC_LOAD_AND:
2024 return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
2025 case ISD::ATOMIC_LOAD_OR:
2026 return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
2027 case ISD::ATOMIC_LOAD_XOR:
2028 return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
2029 case ISD::ATOMIC_LOAD_NAND:
2030 return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
2031 case ISD::ATOMIC_LOAD_MIN:
2032 return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
2033 case ISD::ATOMIC_LOAD_MAX:
2034 return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
2035 case ISD::ATOMIC_LOAD_UMIN:
2036 return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
2037 case ISD::ATOMIC_LOAD_UMAX:
2038 return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
2039 case ISD::ATOMIC_CMP_SWAP:
2040 return lowerATOMIC_CMP_SWAP(Op, DAG);
2041 case ISD::STACKSAVE:
2042 return lowerSTACKSAVE(Op, DAG);
2043 case ISD::STACKRESTORE:
2044 return lowerSTACKRESTORE(Op, DAG);
Richard Sandiford03481332013-08-23 11:36:42 +00002045 case ISD::PREFETCH:
2046 return lowerPREFETCH(Op, DAG);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002047 default:
2048 llvm_unreachable("Unexpected node to lower");
2049 }
2050}
2051
2052const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
2053#define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
2054 switch (Opcode) {
2055 OPCODE(RET_FLAG);
2056 OPCODE(CALL);
Richard Sandiford709bda62013-08-19 12:42:31 +00002057 OPCODE(SIBCALL);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002058 OPCODE(PCREL_WRAPPER);
Richard Sandiford5bc670b2013-09-06 11:51:39 +00002059 OPCODE(ICMP);
2060 OPCODE(FCMP);
Richard Sandiford35b9be22013-08-28 10:31:43 +00002061 OPCODE(TM);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002062 OPCODE(BR_CCMASK);
2063 OPCODE(SELECT_CCMASK);
2064 OPCODE(ADJDYNALLOC);
2065 OPCODE(EXTRACT_ACCESS);
2066 OPCODE(UMUL_LOHI64);
2067 OPCODE(SDIVREM64);
2068 OPCODE(UDIVREM32);
2069 OPCODE(UDIVREM64);
Richard Sandifordd131ff82013-07-08 09:35:23 +00002070 OPCODE(MVC);
Richard Sandiford5e318f02013-08-27 09:54:29 +00002071 OPCODE(MVC_LOOP);
Richard Sandiford178273a2013-09-05 10:36:45 +00002072 OPCODE(NC);
2073 OPCODE(NC_LOOP);
2074 OPCODE(OC);
2075 OPCODE(OC_LOOP);
2076 OPCODE(XC);
2077 OPCODE(XC_LOOP);
Richard Sandiford761703a2013-08-12 10:17:33 +00002078 OPCODE(CLC);
Richard Sandiford5e318f02013-08-27 09:54:29 +00002079 OPCODE(CLC_LOOP);
Richard Sandifordca232712013-08-16 11:21:54 +00002080 OPCODE(STRCMP);
Richard Sandifordbb83a502013-08-16 11:29:37 +00002081 OPCODE(STPCPY);
Richard Sandiford0dec06a2013-08-16 11:41:43 +00002082 OPCODE(SEARCH_STRING);
Richard Sandiford564681c2013-08-12 10:28:10 +00002083 OPCODE(IPM);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002084 OPCODE(ATOMIC_SWAPW);
2085 OPCODE(ATOMIC_LOADW_ADD);
2086 OPCODE(ATOMIC_LOADW_SUB);
2087 OPCODE(ATOMIC_LOADW_AND);
2088 OPCODE(ATOMIC_LOADW_OR);
2089 OPCODE(ATOMIC_LOADW_XOR);
2090 OPCODE(ATOMIC_LOADW_NAND);
2091 OPCODE(ATOMIC_LOADW_MIN);
2092 OPCODE(ATOMIC_LOADW_MAX);
2093 OPCODE(ATOMIC_LOADW_UMIN);
2094 OPCODE(ATOMIC_LOADW_UMAX);
2095 OPCODE(ATOMIC_CMP_SWAPW);
Richard Sandiford03481332013-08-23 11:36:42 +00002096 OPCODE(PREFETCH);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002097 }
2098 return NULL;
2099#undef OPCODE
2100}
2101
2102//===----------------------------------------------------------------------===//
2103// Custom insertion
2104//===----------------------------------------------------------------------===//
2105
2106// Create a new basic block after MBB.
2107static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
2108 MachineFunction &MF = *MBB->getParent();
2109 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
2110 MF.insert(llvm::next(MachineFunction::iterator(MBB)), NewMBB);
2111 return NewMBB;
2112}
2113
Richard Sandifordbe133a82013-08-28 09:01:51 +00002114// Split MBB after MI and return the new block (the one that contains
2115// instructions after MI).
2116static MachineBasicBlock *splitBlockAfter(MachineInstr *MI,
2117 MachineBasicBlock *MBB) {
2118 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
2119 NewMBB->splice(NewMBB->begin(), MBB,
2120 llvm::next(MachineBasicBlock::iterator(MI)),
2121 MBB->end());
2122 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2123 return NewMBB;
2124}
2125
Richard Sandiford5e318f02013-08-27 09:54:29 +00002126// Split MBB before MI and return the new block (the one that contains MI).
2127static MachineBasicBlock *splitBlockBefore(MachineInstr *MI,
2128 MachineBasicBlock *MBB) {
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002129 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
Richard Sandiford5e318f02013-08-27 09:54:29 +00002130 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002131 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
2132 return NewMBB;
2133}
2134
Richard Sandiford5e318f02013-08-27 09:54:29 +00002135// Force base value Base into a register before MI. Return the register.
2136static unsigned forceReg(MachineInstr *MI, MachineOperand &Base,
2137 const SystemZInstrInfo *TII) {
2138 if (Base.isReg())
2139 return Base.getReg();
2140
2141 MachineBasicBlock *MBB = MI->getParent();
2142 MachineFunction &MF = *MBB->getParent();
2143 MachineRegisterInfo &MRI = MF.getRegInfo();
2144
2145 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
2146 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg)
2147 .addOperand(Base).addImm(0).addReg(0);
2148 return Reg;
2149}
2150
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002151// Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
2152MachineBasicBlock *
2153SystemZTargetLowering::emitSelect(MachineInstr *MI,
2154 MachineBasicBlock *MBB) const {
2155 const SystemZInstrInfo *TII = TM.getInstrInfo();
2156
2157 unsigned DestReg = MI->getOperand(0).getReg();
2158 unsigned TrueReg = MI->getOperand(1).getReg();
2159 unsigned FalseReg = MI->getOperand(2).getReg();
Richard Sandiford3d768e32013-07-31 12:30:20 +00002160 unsigned CCValid = MI->getOperand(3).getImm();
2161 unsigned CCMask = MI->getOperand(4).getImm();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002162 DebugLoc DL = MI->getDebugLoc();
2163
2164 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00002165 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002166 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
2167
2168 // StartMBB:
Richard Sandiford0fb90ab2013-05-28 10:41:11 +00002169 // BRC CCMask, JoinMBB
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002170 // # fallthrough to FalseMBB
2171 MBB = StartMBB;
Richard Sandiford3d768e32013-07-31 12:30:20 +00002172 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2173 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002174 MBB->addSuccessor(JoinMBB);
2175 MBB->addSuccessor(FalseMBB);
2176
2177 // FalseMBB:
2178 // # fallthrough to JoinMBB
2179 MBB = FalseMBB;
2180 MBB->addSuccessor(JoinMBB);
2181
2182 // JoinMBB:
2183 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
2184 // ...
2185 MBB = JoinMBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00002186 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002187 .addReg(TrueReg).addMBB(StartMBB)
2188 .addReg(FalseReg).addMBB(FalseMBB);
2189
2190 MI->eraseFromParent();
2191 return JoinMBB;
2192}
2193
Richard Sandifordb86a8342013-06-27 09:27:40 +00002194// Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
2195// StoreOpcode is the store to use and Invert says whether the store should
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002196// happen when the condition is false rather than true. If a STORE ON
2197// CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
Richard Sandifordb86a8342013-06-27 09:27:40 +00002198MachineBasicBlock *
2199SystemZTargetLowering::emitCondStore(MachineInstr *MI,
2200 MachineBasicBlock *MBB,
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002201 unsigned StoreOpcode, unsigned STOCOpcode,
2202 bool Invert) const {
Richard Sandifordb86a8342013-06-27 09:27:40 +00002203 const SystemZInstrInfo *TII = TM.getInstrInfo();
2204
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002205 unsigned SrcReg = MI->getOperand(0).getReg();
2206 MachineOperand Base = MI->getOperand(1);
2207 int64_t Disp = MI->getOperand(2).getImm();
2208 unsigned IndexReg = MI->getOperand(3).getReg();
Richard Sandiford3d768e32013-07-31 12:30:20 +00002209 unsigned CCValid = MI->getOperand(4).getImm();
2210 unsigned CCMask = MI->getOperand(5).getImm();
Richard Sandifordb86a8342013-06-27 09:27:40 +00002211 DebugLoc DL = MI->getDebugLoc();
2212
2213 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
2214
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002215 // Use STOCOpcode if possible. We could use different store patterns in
2216 // order to avoid matching the index register, but the performance trade-offs
2217 // might be more complicated in that case.
2218 if (STOCOpcode && !IndexReg && TM.getSubtargetImpl()->hasLoadStoreOnCond()) {
2219 if (Invert)
Richard Sandiford3d768e32013-07-31 12:30:20 +00002220 CCMask ^= CCValid;
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002221 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
Richard Sandifordfd7f4ae2013-08-01 10:39:40 +00002222 .addReg(SrcReg).addOperand(Base).addImm(Disp)
2223 .addImm(CCValid).addImm(CCMask);
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002224 MI->eraseFromParent();
2225 return MBB;
2226 }
2227
Richard Sandifordb86a8342013-06-27 09:27:40 +00002228 // Get the condition needed to branch around the store.
2229 if (!Invert)
Richard Sandiford3d768e32013-07-31 12:30:20 +00002230 CCMask ^= CCValid;
Richard Sandifordb86a8342013-06-27 09:27:40 +00002231
2232 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00002233 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
Richard Sandifordb86a8342013-06-27 09:27:40 +00002234 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
2235
2236 // StartMBB:
2237 // BRC CCMask, JoinMBB
2238 // # fallthrough to FalseMBB
Richard Sandifordb86a8342013-06-27 09:27:40 +00002239 MBB = StartMBB;
Richard Sandiford3d768e32013-07-31 12:30:20 +00002240 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2241 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
Richard Sandifordb86a8342013-06-27 09:27:40 +00002242 MBB->addSuccessor(JoinMBB);
2243 MBB->addSuccessor(FalseMBB);
2244
2245 // FalseMBB:
2246 // store %SrcReg, %Disp(%Index,%Base)
2247 // # fallthrough to JoinMBB
2248 MBB = FalseMBB;
2249 BuildMI(MBB, DL, TII->get(StoreOpcode))
2250 .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
2251 MBB->addSuccessor(JoinMBB);
2252
2253 MI->eraseFromParent();
2254 return JoinMBB;
2255}
2256
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002257// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
2258// or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that
2259// performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
2260// BitSize is the width of the field in bits, or 0 if this is a partword
2261// ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
2262// is one of the operands. Invert says whether the field should be
2263// inverted after performing BinOpcode (e.g. for NAND).
2264MachineBasicBlock *
2265SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
2266 MachineBasicBlock *MBB,
2267 unsigned BinOpcode,
2268 unsigned BitSize,
2269 bool Invert) const {
2270 const SystemZInstrInfo *TII = TM.getInstrInfo();
2271 MachineFunction &MF = *MBB->getParent();
2272 MachineRegisterInfo &MRI = MF.getRegInfo();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002273 bool IsSubWord = (BitSize < 32);
2274
2275 // Extract the operands. Base can be a register or a frame index.
2276 // Src2 can be a register or immediate.
2277 unsigned Dest = MI->getOperand(0).getReg();
2278 MachineOperand Base = earlyUseOperand(MI->getOperand(1));
2279 int64_t Disp = MI->getOperand(2).getImm();
2280 MachineOperand Src2 = earlyUseOperand(MI->getOperand(3));
2281 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2282 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2283 DebugLoc DL = MI->getDebugLoc();
2284 if (IsSubWord)
2285 BitSize = MI->getOperand(6).getImm();
2286
2287 // Subword operations use 32-bit registers.
2288 const TargetRegisterClass *RC = (BitSize <= 32 ?
2289 &SystemZ::GR32BitRegClass :
2290 &SystemZ::GR64BitRegClass);
2291 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
2292 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2293
2294 // Get the right opcodes for the displacement.
2295 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
2296 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2297 assert(LOpcode && CSOpcode && "Displacement out of range");
2298
2299 // Create virtual registers for temporary results.
2300 unsigned OrigVal = MRI.createVirtualRegister(RC);
2301 unsigned OldVal = MRI.createVirtualRegister(RC);
2302 unsigned NewVal = (BinOpcode || IsSubWord ?
2303 MRI.createVirtualRegister(RC) : Src2.getReg());
2304 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2305 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2306
2307 // Insert a basic block for the main loop.
2308 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00002309 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002310 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
2311
2312 // StartMBB:
2313 // ...
2314 // %OrigVal = L Disp(%Base)
2315 // # fall through to LoopMMB
2316 MBB = StartMBB;
2317 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2318 .addOperand(Base).addImm(Disp).addReg(0);
2319 MBB->addSuccessor(LoopMBB);
2320
2321 // LoopMBB:
2322 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
2323 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2324 // %RotatedNewVal = OP %RotatedOldVal, %Src2
2325 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
2326 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
2327 // JNE LoopMBB
2328 // # fall through to DoneMMB
2329 MBB = LoopMBB;
2330 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2331 .addReg(OrigVal).addMBB(StartMBB)
2332 .addReg(Dest).addMBB(LoopMBB);
2333 if (IsSubWord)
2334 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2335 .addReg(OldVal).addReg(BitShift).addImm(0);
2336 if (Invert) {
2337 // Perform the operation normally and then invert every bit of the field.
2338 unsigned Tmp = MRI.createVirtualRegister(RC);
2339 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
2340 .addReg(RotatedOldVal).addOperand(Src2);
2341 if (BitSize < 32)
2342 // XILF with the upper BitSize bits set.
2343 BuildMI(MBB, DL, TII->get(SystemZ::XILF32), RotatedNewVal)
2344 .addReg(Tmp).addImm(uint32_t(~0 << (32 - BitSize)));
2345 else if (BitSize == 32)
2346 // XILF with every bit set.
2347 BuildMI(MBB, DL, TII->get(SystemZ::XILF32), RotatedNewVal)
2348 .addReg(Tmp).addImm(~uint32_t(0));
2349 else {
2350 // Use LCGR and add -1 to the result, which is more compact than
2351 // an XILF, XILH pair.
2352 unsigned Tmp2 = MRI.createVirtualRegister(RC);
2353 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
2354 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
2355 .addReg(Tmp2).addImm(-1);
2356 }
2357 } else if (BinOpcode)
2358 // A simply binary operation.
2359 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
2360 .addReg(RotatedOldVal).addOperand(Src2);
2361 else if (IsSubWord)
2362 // Use RISBG to rotate Src2 into position and use it to replace the
2363 // field in RotatedOldVal.
2364 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
2365 .addReg(RotatedOldVal).addReg(Src2.getReg())
2366 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
2367 if (IsSubWord)
2368 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2369 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2370 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2371 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
Richard Sandiford3d768e32013-07-31 12:30:20 +00002372 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2373 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002374 MBB->addSuccessor(LoopMBB);
2375 MBB->addSuccessor(DoneMBB);
2376
2377 MI->eraseFromParent();
2378 return DoneMBB;
2379}
2380
2381// Implement EmitInstrWithCustomInserter for pseudo
2382// ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the
2383// instruction that should be used to compare the current field with the
2384// minimum or maximum value. KeepOldMask is the BRC condition-code mask
2385// for when the current field should be kept. BitSize is the width of
2386// the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
2387MachineBasicBlock *
2388SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI,
2389 MachineBasicBlock *MBB,
2390 unsigned CompareOpcode,
2391 unsigned KeepOldMask,
2392 unsigned BitSize) const {
2393 const SystemZInstrInfo *TII = TM.getInstrInfo();
2394 MachineFunction &MF = *MBB->getParent();
2395 MachineRegisterInfo &MRI = MF.getRegInfo();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002396 bool IsSubWord = (BitSize < 32);
2397
2398 // Extract the operands. Base can be a register or a frame index.
2399 unsigned Dest = MI->getOperand(0).getReg();
2400 MachineOperand Base = earlyUseOperand(MI->getOperand(1));
2401 int64_t Disp = MI->getOperand(2).getImm();
2402 unsigned Src2 = MI->getOperand(3).getReg();
2403 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2404 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2405 DebugLoc DL = MI->getDebugLoc();
2406 if (IsSubWord)
2407 BitSize = MI->getOperand(6).getImm();
2408
2409 // Subword operations use 32-bit registers.
2410 const TargetRegisterClass *RC = (BitSize <= 32 ?
2411 &SystemZ::GR32BitRegClass :
2412 &SystemZ::GR64BitRegClass);
2413 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
2414 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2415
2416 // Get the right opcodes for the displacement.
2417 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
2418 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2419 assert(LOpcode && CSOpcode && "Displacement out of range");
2420
2421 // Create virtual registers for temporary results.
2422 unsigned OrigVal = MRI.createVirtualRegister(RC);
2423 unsigned OldVal = MRI.createVirtualRegister(RC);
2424 unsigned NewVal = MRI.createVirtualRegister(RC);
2425 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2426 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
2427 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2428
2429 // Insert 3 basic blocks for the loop.
2430 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00002431 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002432 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
2433 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
2434 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
2435
2436 // StartMBB:
2437 // ...
2438 // %OrigVal = L Disp(%Base)
2439 // # fall through to LoopMMB
2440 MBB = StartMBB;
2441 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2442 .addOperand(Base).addImm(Disp).addReg(0);
2443 MBB->addSuccessor(LoopMBB);
2444
2445 // LoopMBB:
2446 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
2447 // %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2448 // CompareOpcode %RotatedOldVal, %Src2
Richard Sandiford312425f2013-05-20 14:23:08 +00002449 // BRC KeepOldMask, UpdateMBB
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002450 MBB = LoopMBB;
2451 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2452 .addReg(OrigVal).addMBB(StartMBB)
2453 .addReg(Dest).addMBB(UpdateMBB);
2454 if (IsSubWord)
2455 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2456 .addReg(OldVal).addReg(BitShift).addImm(0);
Richard Sandiford8a757bb2013-07-31 12:11:07 +00002457 BuildMI(MBB, DL, TII->get(CompareOpcode))
2458 .addReg(RotatedOldVal).addReg(Src2);
2459 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
Richard Sandiford3d768e32013-07-31 12:30:20 +00002460 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002461 MBB->addSuccessor(UpdateMBB);
2462 MBB->addSuccessor(UseAltMBB);
2463
2464 // UseAltMBB:
2465 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
2466 // # fall through to UpdateMMB
2467 MBB = UseAltMBB;
2468 if (IsSubWord)
2469 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
2470 .addReg(RotatedOldVal).addReg(Src2)
2471 .addImm(32).addImm(31 + BitSize).addImm(0);
2472 MBB->addSuccessor(UpdateMBB);
2473
2474 // UpdateMBB:
2475 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
2476 // [ %RotatedAltVal, UseAltMBB ]
2477 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
2478 // %Dest = CS %OldVal, %NewVal, Disp(%Base)
2479 // JNE LoopMBB
2480 // # fall through to DoneMMB
2481 MBB = UpdateMBB;
2482 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
2483 .addReg(RotatedOldVal).addMBB(LoopMBB)
2484 .addReg(RotatedAltVal).addMBB(UseAltMBB);
2485 if (IsSubWord)
2486 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2487 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2488 BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2489 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
Richard Sandiford3d768e32013-07-31 12:30:20 +00002490 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2491 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002492 MBB->addSuccessor(LoopMBB);
2493 MBB->addSuccessor(DoneMBB);
2494
2495 MI->eraseFromParent();
2496 return DoneMBB;
2497}
2498
2499// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
2500// instruction MI.
2501MachineBasicBlock *
2502SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI,
2503 MachineBasicBlock *MBB) const {
2504 const SystemZInstrInfo *TII = TM.getInstrInfo();
2505 MachineFunction &MF = *MBB->getParent();
2506 MachineRegisterInfo &MRI = MF.getRegInfo();
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002507
2508 // Extract the operands. Base can be a register or a frame index.
2509 unsigned Dest = MI->getOperand(0).getReg();
2510 MachineOperand Base = earlyUseOperand(MI->getOperand(1));
2511 int64_t Disp = MI->getOperand(2).getImm();
2512 unsigned OrigCmpVal = MI->getOperand(3).getReg();
2513 unsigned OrigSwapVal = MI->getOperand(4).getReg();
2514 unsigned BitShift = MI->getOperand(5).getReg();
2515 unsigned NegBitShift = MI->getOperand(6).getReg();
2516 int64_t BitSize = MI->getOperand(7).getImm();
2517 DebugLoc DL = MI->getDebugLoc();
2518
2519 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
2520
2521 // Get the right opcodes for the displacement.
2522 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp);
2523 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
2524 assert(LOpcode && CSOpcode && "Displacement out of range");
2525
2526 // Create virtual registers for temporary results.
2527 unsigned OrigOldVal = MRI.createVirtualRegister(RC);
2528 unsigned OldVal = MRI.createVirtualRegister(RC);
2529 unsigned CmpVal = MRI.createVirtualRegister(RC);
2530 unsigned SwapVal = MRI.createVirtualRegister(RC);
2531 unsigned StoreVal = MRI.createVirtualRegister(RC);
2532 unsigned RetryOldVal = MRI.createVirtualRegister(RC);
2533 unsigned RetryCmpVal = MRI.createVirtualRegister(RC);
2534 unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
2535
2536 // Insert 2 basic blocks for the loop.
2537 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00002538 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002539 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
2540 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB);
2541
2542 // StartMBB:
2543 // ...
2544 // %OrigOldVal = L Disp(%Base)
2545 // # fall through to LoopMMB
2546 MBB = StartMBB;
2547 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
2548 .addOperand(Base).addImm(Disp).addReg(0);
2549 MBB->addSuccessor(LoopMBB);
2550
2551 // LoopMBB:
2552 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
2553 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
2554 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
2555 // %Dest = RLL %OldVal, BitSize(%BitShift)
2556 // ^^ The low BitSize bits contain the field
2557 // of interest.
2558 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
2559 // ^^ Replace the upper 32-BitSize bits of the
2560 // comparison value with those that we loaded,
2561 // so that we can use a full word comparison.
Richard Sandiford8a757bb2013-07-31 12:11:07 +00002562 // CR %Dest, %RetryCmpVal
2563 // JNE DoneMBB
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002564 // # Fall through to SetMBB
2565 MBB = LoopMBB;
2566 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2567 .addReg(OrigOldVal).addMBB(StartMBB)
2568 .addReg(RetryOldVal).addMBB(SetMBB);
2569 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
2570 .addReg(OrigCmpVal).addMBB(StartMBB)
2571 .addReg(RetryCmpVal).addMBB(SetMBB);
2572 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
2573 .addReg(OrigSwapVal).addMBB(StartMBB)
2574 .addReg(RetrySwapVal).addMBB(SetMBB);
2575 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
2576 .addReg(OldVal).addReg(BitShift).addImm(BitSize);
2577 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
2578 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
Richard Sandiford8a757bb2013-07-31 12:11:07 +00002579 BuildMI(MBB, DL, TII->get(SystemZ::CR))
2580 .addReg(Dest).addReg(RetryCmpVal);
2581 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
Richard Sandiford3d768e32013-07-31 12:30:20 +00002582 .addImm(SystemZ::CCMASK_ICMP)
2583 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002584 MBB->addSuccessor(DoneMBB);
2585 MBB->addSuccessor(SetMBB);
2586
2587 // SetMBB:
2588 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
2589 // ^^ Replace the upper 32-BitSize bits of the new
2590 // value with those that we loaded.
2591 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift)
2592 // ^^ Rotate the new field to its proper position.
2593 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
2594 // JNE LoopMBB
2595 // # fall through to ExitMMB
2596 MBB = SetMBB;
2597 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
2598 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
2599 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
2600 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
2601 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
2602 .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
Richard Sandiford3d768e32013-07-31 12:30:20 +00002603 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2604 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002605 MBB->addSuccessor(LoopMBB);
2606 MBB->addSuccessor(DoneMBB);
2607
2608 MI->eraseFromParent();
2609 return DoneMBB;
2610}
2611
2612// Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true
2613// if the high register of the GR128 value must be cleared or false if
2614// it's "don't care". SubReg is subreg_odd32 when extending a GR32
2615// and subreg_odd when extending a GR64.
2616MachineBasicBlock *
2617SystemZTargetLowering::emitExt128(MachineInstr *MI,
2618 MachineBasicBlock *MBB,
2619 bool ClearEven, unsigned SubReg) const {
2620 const SystemZInstrInfo *TII = TM.getInstrInfo();
2621 MachineFunction &MF = *MBB->getParent();
2622 MachineRegisterInfo &MRI = MF.getRegInfo();
2623 DebugLoc DL = MI->getDebugLoc();
2624
2625 unsigned Dest = MI->getOperand(0).getReg();
2626 unsigned Src = MI->getOperand(1).getReg();
2627 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
2628
2629 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
2630 if (ClearEven) {
2631 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
2632 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
2633
2634 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
2635 .addImm(0);
2636 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
2637 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_high);
2638 In128 = NewIn128;
2639 }
2640 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
2641 .addReg(In128).addReg(Src).addImm(SubReg);
2642
2643 MI->eraseFromParent();
2644 return MBB;
2645}
2646
Richard Sandifordd131ff82013-07-08 09:35:23 +00002647MachineBasicBlock *
Richard Sandiford564681c2013-08-12 10:28:10 +00002648SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI,
2649 MachineBasicBlock *MBB,
2650 unsigned Opcode) const {
Richard Sandifordd131ff82013-07-08 09:35:23 +00002651 const SystemZInstrInfo *TII = TM.getInstrInfo();
Richard Sandiford5e318f02013-08-27 09:54:29 +00002652 MachineFunction &MF = *MBB->getParent();
2653 MachineRegisterInfo &MRI = MF.getRegInfo();
Richard Sandifordd131ff82013-07-08 09:35:23 +00002654 DebugLoc DL = MI->getDebugLoc();
2655
Richard Sandiford5e318f02013-08-27 09:54:29 +00002656 MachineOperand DestBase = earlyUseOperand(MI->getOperand(0));
Richard Sandifordd131ff82013-07-08 09:35:23 +00002657 uint64_t DestDisp = MI->getOperand(1).getImm();
Richard Sandiford5e318f02013-08-27 09:54:29 +00002658 MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2));
Richard Sandifordd131ff82013-07-08 09:35:23 +00002659 uint64_t SrcDisp = MI->getOperand(3).getImm();
2660 uint64_t Length = MI->getOperand(4).getImm();
2661
Richard Sandifordbe133a82013-08-28 09:01:51 +00002662 // When generating more than one CLC, all but the last will need to
2663 // branch to the end when a difference is found.
2664 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
2665 splitBlockAfter(MI, MBB) : 0);
2666
Richard Sandiford5e318f02013-08-27 09:54:29 +00002667 // Check for the loop form, in which operand 5 is the trip count.
2668 if (MI->getNumExplicitOperands() > 5) {
2669 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
2670
2671 uint64_t StartCountReg = MI->getOperand(5).getReg();
2672 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII);
2673 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg :
2674 forceReg(MI, DestBase, TII));
2675
2676 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
2677 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC);
2678 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
2679 MRI.createVirtualRegister(RC));
2680 uint64_t NextSrcReg = MRI.createVirtualRegister(RC);
2681 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
2682 MRI.createVirtualRegister(RC));
2683
2684 RC = &SystemZ::GR64BitRegClass;
2685 uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
2686 uint64_t NextCountReg = MRI.createVirtualRegister(RC);
2687
2688 MachineBasicBlock *StartMBB = MBB;
2689 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
2690 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
Richard Sandifordbe133a82013-08-28 09:01:51 +00002691 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
Richard Sandiford5e318f02013-08-27 09:54:29 +00002692
2693 // StartMBB:
2694 // # fall through to LoopMMB
2695 MBB->addSuccessor(LoopMBB);
2696
2697 // LoopMBB:
2698 // %ThisDestReg = phi [ %StartDestReg, StartMBB ],
Richard Sandifordbe133a82013-08-28 09:01:51 +00002699 // [ %NextDestReg, NextMBB ]
Richard Sandiford5e318f02013-08-27 09:54:29 +00002700 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
Richard Sandifordbe133a82013-08-28 09:01:51 +00002701 // [ %NextSrcReg, NextMBB ]
Richard Sandiford5e318f02013-08-27 09:54:29 +00002702 // %ThisCountReg = phi [ %StartCountReg, StartMBB ],
Richard Sandifordbe133a82013-08-28 09:01:51 +00002703 // [ %NextCountReg, NextMBB ]
2704 // ( PFD 2, 768+DestDisp(%ThisDestReg) )
Richard Sandiford5e318f02013-08-27 09:54:29 +00002705 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
Richard Sandifordbe133a82013-08-28 09:01:51 +00002706 // ( JLH EndMBB )
2707 //
2708 // The prefetch is used only for MVC. The JLH is used only for CLC.
2709 MBB = LoopMBB;
2710
2711 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
2712 .addReg(StartDestReg).addMBB(StartMBB)
2713 .addReg(NextDestReg).addMBB(NextMBB);
2714 if (!HaveSingleBase)
2715 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
2716 .addReg(StartSrcReg).addMBB(StartMBB)
2717 .addReg(NextSrcReg).addMBB(NextMBB);
2718 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
2719 .addReg(StartCountReg).addMBB(StartMBB)
2720 .addReg(NextCountReg).addMBB(NextMBB);
2721 if (Opcode == SystemZ::MVC)
2722 BuildMI(MBB, DL, TII->get(SystemZ::PFD))
2723 .addImm(SystemZ::PFD_WRITE)
2724 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
2725 BuildMI(MBB, DL, TII->get(Opcode))
2726 .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
2727 .addReg(ThisSrcReg).addImm(SrcDisp);
2728 if (EndMBB) {
2729 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2730 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
2731 .addMBB(EndMBB);
2732 MBB->addSuccessor(EndMBB);
2733 MBB->addSuccessor(NextMBB);
2734 }
2735
2736 // NextMBB:
Richard Sandiford5e318f02013-08-27 09:54:29 +00002737 // %NextDestReg = LA 256(%ThisDestReg)
2738 // %NextSrcReg = LA 256(%ThisSrcReg)
2739 // %NextCountReg = AGHI %ThisCountReg, -1
2740 // CGHI %NextCountReg, 0
2741 // JLH LoopMBB
2742 // # fall through to DoneMMB
2743 //
2744 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
Richard Sandifordbe133a82013-08-28 09:01:51 +00002745 MBB = NextMBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00002746
Richard Sandiford5e318f02013-08-27 09:54:29 +00002747 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
2748 .addReg(ThisDestReg).addImm(256).addReg(0);
2749 if (!HaveSingleBase)
2750 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
2751 .addReg(ThisSrcReg).addImm(256).addReg(0);
2752 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
2753 .addReg(ThisCountReg).addImm(-1);
2754 BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
2755 .addReg(NextCountReg).addImm(0);
2756 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2757 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
2758 .addMBB(LoopMBB);
2759 MBB->addSuccessor(LoopMBB);
2760 MBB->addSuccessor(DoneMBB);
2761
2762 DestBase = MachineOperand::CreateReg(NextDestReg, false);
2763 SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
2764 Length &= 255;
2765 MBB = DoneMBB;
2766 }
2767 // Handle any remaining bytes with straight-line code.
2768 while (Length > 0) {
2769 uint64_t ThisLength = std::min(Length, uint64_t(256));
2770 // The previous iteration might have created out-of-range displacements.
2771 // Apply them using LAY if so.
2772 if (!isUInt<12>(DestDisp)) {
2773 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
2774 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
2775 .addOperand(DestBase).addImm(DestDisp).addReg(0);
2776 DestBase = MachineOperand::CreateReg(Reg, false);
2777 DestDisp = 0;
2778 }
2779 if (!isUInt<12>(SrcDisp)) {
2780 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
2781 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
2782 .addOperand(SrcBase).addImm(SrcDisp).addReg(0);
2783 SrcBase = MachineOperand::CreateReg(Reg, false);
2784 SrcDisp = 0;
2785 }
2786 BuildMI(*MBB, MI, DL, TII->get(Opcode))
2787 .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength)
2788 .addOperand(SrcBase).addImm(SrcDisp);
2789 DestDisp += ThisLength;
2790 SrcDisp += ThisLength;
2791 Length -= ThisLength;
Richard Sandifordbe133a82013-08-28 09:01:51 +00002792 // If there's another CLC to go, branch to the end if a difference
2793 // was found.
2794 if (EndMBB && Length > 0) {
2795 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
2796 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2797 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
2798 .addMBB(EndMBB);
2799 MBB->addSuccessor(EndMBB);
2800 MBB->addSuccessor(NextMBB);
2801 MBB = NextMBB;
2802 }
2803 }
2804 if (EndMBB) {
2805 MBB->addSuccessor(EndMBB);
2806 MBB = EndMBB;
2807 MBB->addLiveIn(SystemZ::CC);
Richard Sandiford5e318f02013-08-27 09:54:29 +00002808 }
Richard Sandifordd131ff82013-07-08 09:35:23 +00002809
2810 MI->eraseFromParent();
2811 return MBB;
2812}
2813
Richard Sandifordca232712013-08-16 11:21:54 +00002814// Decompose string pseudo-instruction MI into a loop that continually performs
2815// Opcode until CC != 3.
2816MachineBasicBlock *
2817SystemZTargetLowering::emitStringWrapper(MachineInstr *MI,
2818 MachineBasicBlock *MBB,
2819 unsigned Opcode) const {
2820 const SystemZInstrInfo *TII = TM.getInstrInfo();
2821 MachineFunction &MF = *MBB->getParent();
2822 MachineRegisterInfo &MRI = MF.getRegInfo();
2823 DebugLoc DL = MI->getDebugLoc();
2824
2825 uint64_t End1Reg = MI->getOperand(0).getReg();
2826 uint64_t Start1Reg = MI->getOperand(1).getReg();
2827 uint64_t Start2Reg = MI->getOperand(2).getReg();
2828 uint64_t CharReg = MI->getOperand(3).getReg();
2829
2830 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
2831 uint64_t This1Reg = MRI.createVirtualRegister(RC);
2832 uint64_t This2Reg = MRI.createVirtualRegister(RC);
2833 uint64_t End2Reg = MRI.createVirtualRegister(RC);
2834
2835 MachineBasicBlock *StartMBB = MBB;
Richard Sandiford5e318f02013-08-27 09:54:29 +00002836 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
Richard Sandifordca232712013-08-16 11:21:54 +00002837 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
2838
2839 // StartMBB:
Richard Sandifordca232712013-08-16 11:21:54 +00002840 // # fall through to LoopMMB
Richard Sandifordca232712013-08-16 11:21:54 +00002841 MBB->addSuccessor(LoopMBB);
2842
2843 // LoopMBB:
2844 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
2845 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
Richard Sandiford6f6d5512013-08-20 09:38:48 +00002846 // R0W = %CharReg
Richard Sandifordca232712013-08-16 11:21:54 +00002847 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0W
2848 // JO LoopMBB
2849 // # fall through to DoneMMB
Richard Sandiford6f6d5512013-08-20 09:38:48 +00002850 //
2851 // The load of R0W can be hoisted by post-RA LICM.
Richard Sandifordca232712013-08-16 11:21:54 +00002852 MBB = LoopMBB;
Richard Sandifordca232712013-08-16 11:21:54 +00002853
2854 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
2855 .addReg(Start1Reg).addMBB(StartMBB)
2856 .addReg(End1Reg).addMBB(LoopMBB);
2857 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
2858 .addReg(Start2Reg).addMBB(StartMBB)
2859 .addReg(End2Reg).addMBB(LoopMBB);
Richard Sandiford6f6d5512013-08-20 09:38:48 +00002860 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0W).addReg(CharReg);
Richard Sandifordca232712013-08-16 11:21:54 +00002861 BuildMI(MBB, DL, TII->get(Opcode))
2862 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
2863 .addReg(This1Reg).addReg(This2Reg);
2864 BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2865 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
2866 MBB->addSuccessor(LoopMBB);
2867 MBB->addSuccessor(DoneMBB);
2868
2869 DoneMBB->addLiveIn(SystemZ::CC);
2870
2871 MI->eraseFromParent();
2872 return DoneMBB;
2873}
2874
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002875MachineBasicBlock *SystemZTargetLowering::
2876EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const {
2877 switch (MI->getOpcode()) {
2878 case SystemZ::Select32:
2879 case SystemZ::SelectF32:
2880 case SystemZ::Select64:
2881 case SystemZ::SelectF64:
2882 case SystemZ::SelectF128:
2883 return emitSelect(MI, MBB);
2884
Richard Sandifordb86a8342013-06-27 09:27:40 +00002885 case SystemZ::CondStore8_32:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002886 return emitCondStore(MI, MBB, SystemZ::STC32, 0, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00002887 case SystemZ::CondStore8_32Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002888 return emitCondStore(MI, MBB, SystemZ::STC32, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00002889 case SystemZ::CondStore16_32:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002890 return emitCondStore(MI, MBB, SystemZ::STH32, 0, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00002891 case SystemZ::CondStore16_32Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002892 return emitCondStore(MI, MBB, SystemZ::STH32, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00002893 case SystemZ::CondStore32_32:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002894 return emitCondStore(MI, MBB, SystemZ::ST32, SystemZ::STOC32, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00002895 case SystemZ::CondStore32_32Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002896 return emitCondStore(MI, MBB, SystemZ::ST32, SystemZ::STOC32, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00002897 case SystemZ::CondStore8:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002898 return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00002899 case SystemZ::CondStore8Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002900 return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00002901 case SystemZ::CondStore16:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002902 return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00002903 case SystemZ::CondStore16Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002904 return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00002905 case SystemZ::CondStore32:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002906 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00002907 case SystemZ::CondStore32Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002908 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00002909 case SystemZ::CondStore64:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002910 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00002911 case SystemZ::CondStore64Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002912 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00002913 case SystemZ::CondStoreF32:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002914 return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00002915 case SystemZ::CondStoreF32Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002916 return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00002917 case SystemZ::CondStoreF64:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002918 return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
Richard Sandifordb86a8342013-06-27 09:27:40 +00002919 case SystemZ::CondStoreF64Inv:
Richard Sandiforda68e6f52013-07-25 08:57:02 +00002920 return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
Richard Sandifordb86a8342013-06-27 09:27:40 +00002921
Ulrich Weigand5f613df2013-05-06 16:15:19 +00002922 case SystemZ::AEXT128_64:
2923 return emitExt128(MI, MBB, false, SystemZ::subreg_low);
2924 case SystemZ::ZEXT128_32:
2925 return emitExt128(MI, MBB, true, SystemZ::subreg_low32);
2926 case SystemZ::ZEXT128_64:
2927 return emitExt128(MI, MBB, true, SystemZ::subreg_low);
2928
2929 case SystemZ::ATOMIC_SWAPW:
2930 return emitAtomicLoadBinary(MI, MBB, 0, 0);
2931 case SystemZ::ATOMIC_SWAP_32:
2932 return emitAtomicLoadBinary(MI, MBB, 0, 32);
2933 case SystemZ::ATOMIC_SWAP_64:
2934 return emitAtomicLoadBinary(MI, MBB, 0, 64);
2935
2936 case SystemZ::ATOMIC_LOADW_AR:
2937 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
2938 case SystemZ::ATOMIC_LOADW_AFI:
2939 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
2940 case SystemZ::ATOMIC_LOAD_AR:
2941 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
2942 case SystemZ::ATOMIC_LOAD_AHI:
2943 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
2944 case SystemZ::ATOMIC_LOAD_AFI:
2945 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
2946 case SystemZ::ATOMIC_LOAD_AGR:
2947 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
2948 case SystemZ::ATOMIC_LOAD_AGHI:
2949 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
2950 case SystemZ::ATOMIC_LOAD_AGFI:
2951 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
2952
2953 case SystemZ::ATOMIC_LOADW_SR:
2954 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
2955 case SystemZ::ATOMIC_LOAD_SR:
2956 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
2957 case SystemZ::ATOMIC_LOAD_SGR:
2958 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
2959
2960 case SystemZ::ATOMIC_LOADW_NR:
2961 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
2962 case SystemZ::ATOMIC_LOADW_NILH:
2963 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 0);
2964 case SystemZ::ATOMIC_LOAD_NR:
2965 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
2966 case SystemZ::ATOMIC_LOAD_NILL32:
2967 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL32, 32);
2968 case SystemZ::ATOMIC_LOAD_NILH32:
2969 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 32);
2970 case SystemZ::ATOMIC_LOAD_NILF32:
2971 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF32, 32);
2972 case SystemZ::ATOMIC_LOAD_NGR:
2973 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
2974 case SystemZ::ATOMIC_LOAD_NILL:
2975 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 64);
2976 case SystemZ::ATOMIC_LOAD_NILH:
2977 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 64);
2978 case SystemZ::ATOMIC_LOAD_NIHL:
2979 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL, 64);
2980 case SystemZ::ATOMIC_LOAD_NIHH:
2981 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH, 64);
2982 case SystemZ::ATOMIC_LOAD_NILF:
2983 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 64);
2984 case SystemZ::ATOMIC_LOAD_NIHF:
2985 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF, 64);
2986
2987 case SystemZ::ATOMIC_LOADW_OR:
2988 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
2989 case SystemZ::ATOMIC_LOADW_OILH:
2990 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH32, 0);
2991 case SystemZ::ATOMIC_LOAD_OR:
2992 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
2993 case SystemZ::ATOMIC_LOAD_OILL32:
2994 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL32, 32);
2995 case SystemZ::ATOMIC_LOAD_OILH32:
2996 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH32, 32);
2997 case SystemZ::ATOMIC_LOAD_OILF32:
2998 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF32, 32);
2999 case SystemZ::ATOMIC_LOAD_OGR:
3000 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
3001 case SystemZ::ATOMIC_LOAD_OILL:
3002 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 64);
3003 case SystemZ::ATOMIC_LOAD_OILH:
3004 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 64);
3005 case SystemZ::ATOMIC_LOAD_OIHL:
3006 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL, 64);
3007 case SystemZ::ATOMIC_LOAD_OIHH:
3008 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH, 64);
3009 case SystemZ::ATOMIC_LOAD_OILF:
3010 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 64);
3011 case SystemZ::ATOMIC_LOAD_OIHF:
3012 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF, 64);
3013
3014 case SystemZ::ATOMIC_LOADW_XR:
3015 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
3016 case SystemZ::ATOMIC_LOADW_XILF:
3017 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF32, 0);
3018 case SystemZ::ATOMIC_LOAD_XR:
3019 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
3020 case SystemZ::ATOMIC_LOAD_XILF32:
3021 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF32, 32);
3022 case SystemZ::ATOMIC_LOAD_XGR:
3023 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
3024 case SystemZ::ATOMIC_LOAD_XILF:
3025 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 64);
3026 case SystemZ::ATOMIC_LOAD_XIHF:
3027 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF, 64);
3028
3029 case SystemZ::ATOMIC_LOADW_NRi:
3030 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
3031 case SystemZ::ATOMIC_LOADW_NILHi:
3032 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 0, true);
3033 case SystemZ::ATOMIC_LOAD_NRi:
3034 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
3035 case SystemZ::ATOMIC_LOAD_NILL32i:
3036 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL32, 32, true);
3037 case SystemZ::ATOMIC_LOAD_NILH32i:
3038 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 32, true);
3039 case SystemZ::ATOMIC_LOAD_NILF32i:
3040 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF32, 32, true);
3041 case SystemZ::ATOMIC_LOAD_NGRi:
3042 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
3043 case SystemZ::ATOMIC_LOAD_NILLi:
3044 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 64, true);
3045 case SystemZ::ATOMIC_LOAD_NILHi:
3046 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 64, true);
3047 case SystemZ::ATOMIC_LOAD_NIHLi:
3048 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL, 64, true);
3049 case SystemZ::ATOMIC_LOAD_NIHHi:
3050 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH, 64, true);
3051 case SystemZ::ATOMIC_LOAD_NILFi:
3052 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 64, true);
3053 case SystemZ::ATOMIC_LOAD_NIHFi:
3054 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF, 64, true);
3055
3056 case SystemZ::ATOMIC_LOADW_MIN:
3057 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3058 SystemZ::CCMASK_CMP_LE, 0);
3059 case SystemZ::ATOMIC_LOAD_MIN_32:
3060 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3061 SystemZ::CCMASK_CMP_LE, 32);
3062 case SystemZ::ATOMIC_LOAD_MIN_64:
3063 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
3064 SystemZ::CCMASK_CMP_LE, 64);
3065
3066 case SystemZ::ATOMIC_LOADW_MAX:
3067 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3068 SystemZ::CCMASK_CMP_GE, 0);
3069 case SystemZ::ATOMIC_LOAD_MAX_32:
3070 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
3071 SystemZ::CCMASK_CMP_GE, 32);
3072 case SystemZ::ATOMIC_LOAD_MAX_64:
3073 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
3074 SystemZ::CCMASK_CMP_GE, 64);
3075
3076 case SystemZ::ATOMIC_LOADW_UMIN:
3077 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3078 SystemZ::CCMASK_CMP_LE, 0);
3079 case SystemZ::ATOMIC_LOAD_UMIN_32:
3080 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3081 SystemZ::CCMASK_CMP_LE, 32);
3082 case SystemZ::ATOMIC_LOAD_UMIN_64:
3083 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
3084 SystemZ::CCMASK_CMP_LE, 64);
3085
3086 case SystemZ::ATOMIC_LOADW_UMAX:
3087 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3088 SystemZ::CCMASK_CMP_GE, 0);
3089 case SystemZ::ATOMIC_LOAD_UMAX_32:
3090 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
3091 SystemZ::CCMASK_CMP_GE, 32);
3092 case SystemZ::ATOMIC_LOAD_UMAX_64:
3093 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
3094 SystemZ::CCMASK_CMP_GE, 64);
3095
3096 case SystemZ::ATOMIC_CMP_SWAPW:
3097 return emitAtomicCmpSwapW(MI, MBB);
Richard Sandiford5e318f02013-08-27 09:54:29 +00003098 case SystemZ::MVCSequence:
3099 case SystemZ::MVCLoop:
Richard Sandiford564681c2013-08-12 10:28:10 +00003100 return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
Richard Sandiford178273a2013-09-05 10:36:45 +00003101 case SystemZ::NCSequence:
3102 case SystemZ::NCLoop:
3103 return emitMemMemWrapper(MI, MBB, SystemZ::NC);
3104 case SystemZ::OCSequence:
3105 case SystemZ::OCLoop:
3106 return emitMemMemWrapper(MI, MBB, SystemZ::OC);
3107 case SystemZ::XCSequence:
3108 case SystemZ::XCLoop:
3109 return emitMemMemWrapper(MI, MBB, SystemZ::XC);
Richard Sandiford5e318f02013-08-27 09:54:29 +00003110 case SystemZ::CLCSequence:
3111 case SystemZ::CLCLoop:
Richard Sandiford564681c2013-08-12 10:28:10 +00003112 return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
Richard Sandifordca232712013-08-16 11:21:54 +00003113 case SystemZ::CLSTLoop:
3114 return emitStringWrapper(MI, MBB, SystemZ::CLST);
Richard Sandifordbb83a502013-08-16 11:29:37 +00003115 case SystemZ::MVSTLoop:
3116 return emitStringWrapper(MI, MBB, SystemZ::MVST);
Richard Sandiford0dec06a2013-08-16 11:41:43 +00003117 case SystemZ::SRSTLoop:
3118 return emitStringWrapper(MI, MBB, SystemZ::SRST);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00003119 default:
3120 llvm_unreachable("Unexpected instr type to insert");
3121 }
3122}