blob: 41554fccdf087fc73690e5d2449952abb6f12f17 [file] [log] [blame]
Eugene Zelenko5adb96c2017-10-26 00:55:39 +00001//===- SeparateConstOffsetFromGEP.cpp -------------------------------------===//
Eli Benderskya108a652014-05-01 18:38:36 +00002//
Chandler Carruth2946cd72019-01-19 08:50:56 +00003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Eli Benderskya108a652014-05-01 18:38:36 +00006//
7//===----------------------------------------------------------------------===//
8//
9// Loop unrolling may create many similar GEPs for array accesses.
10// e.g., a 2-level loop
11//
12// float a[32][32]; // global variable
13//
14// for (int i = 0; i < 2; ++i) {
15// for (int j = 0; j < 2; ++j) {
16// ...
17// ... = a[x + i][y + j];
18// ...
19// }
20// }
21//
22// will probably be unrolled to:
23//
24// gep %a, 0, %x, %y; load
25// gep %a, 0, %x, %y + 1; load
26// gep %a, 0, %x + 1, %y; load
27// gep %a, 0, %x + 1, %y + 1; load
28//
29// LLVM's GVN does not use partial redundancy elimination yet, and is thus
30// unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs
31// significant slowdown in targets with limited addressing modes. For instance,
32// because the PTX target does not support the reg+reg addressing mode, the
33// NVPTX backend emits PTX code that literally computes the pointer address of
34// each GEP, wasting tons of registers. It emits the following PTX for the
35// first load and similar PTX for other loads.
36//
37// mov.u32 %r1, %x;
38// mov.u32 %r2, %y;
39// mul.wide.u32 %rl2, %r1, 128;
40// mov.u64 %rl3, a;
41// add.s64 %rl4, %rl3, %rl2;
42// mul.wide.u32 %rl5, %r2, 4;
43// add.s64 %rl6, %rl4, %rl5;
44// ld.global.f32 %f1, [%rl6];
45//
46// To reduce the register pressure, the optimization implemented in this file
47// merges the common part of a group of GEPs, so we can compute each pointer
48// address by adding a simple offset to the common part, saving many registers.
49//
50// It works by splitting each GEP into a variadic base and a constant offset.
51// The variadic base can be computed once and reused by multiple GEPs, and the
52// constant offsets can be nicely folded into the reg+immediate addressing mode
53// (supported by most targets) without using any extra register.
54//
55// For instance, we transform the four GEPs and four loads in the above example
56// into:
57//
58// base = gep a, 0, x, y
59// load base
60// laod base + 1 * sizeof(float)
61// load base + 32 * sizeof(float)
62// load base + 33 * sizeof(float)
63//
64// Given the transformed IR, a backend that supports the reg+immediate
65// addressing mode can easily fold the pointer arithmetics into the loads. For
66// example, the NVPTX backend can easily fold the pointer arithmetics into the
67// ld.global.f32 instructions, and the resultant PTX uses much fewer registers.
68//
69// mov.u32 %r1, %tid.x;
70// mov.u32 %r2, %tid.y;
71// mul.wide.u32 %rl2, %r1, 128;
72// mov.u64 %rl3, a;
73// add.s64 %rl4, %rl3, %rl2;
74// mul.wide.u32 %rl5, %r2, 4;
75// add.s64 %rl6, %rl4, %rl5;
76// ld.global.f32 %f1, [%rl6]; // so far the same as unoptimized PTX
77// ld.global.f32 %f2, [%rl6+4]; // much better
78// ld.global.f32 %f3, [%rl6+128]; // much better
79// ld.global.f32 %f4, [%rl6+132]; // much better
80//
Hao Liu1d2a0612014-11-19 06:24:44 +000081// Another improvement enabled by the LowerGEP flag is to lower a GEP with
82// multiple indices to either multiple GEPs with a single index or arithmetic
83// operations (depending on whether the target uses alias analysis in codegen).
84// Such transformation can have following benefits:
85// (1) It can always extract constants in the indices of structure type.
86// (2) After such Lowering, there are more optimization opportunities such as
87// CSE, LICM and CGP.
88//
89// E.g. The following GEPs have multiple indices:
90// BB1:
91// %p = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 3
92// load %p
93// ...
94// BB2:
95// %p2 = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 2
96// load %p2
97// ...
98//
Haicheng Wu5b106ef2017-12-19 18:49:21 +000099// We can not do CSE to the common part related to index "i64 %i". Lowering
Hao Liu1d2a0612014-11-19 06:24:44 +0000100// GEPs can achieve such goals.
101// If the target does not use alias analysis in codegen, this pass will
102// lower a GEP with multiple indices into arithmetic operations:
103// BB1:
104// %1 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity
105// %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity
106// %3 = add i64 %1, %2 ; CSE opportunity
107// %4 = mul i64 %j1, length_of_struct
108// %5 = add i64 %3, %4
109// %6 = add i64 %3, struct_field_3 ; Constant offset
110// %p = inttoptr i64 %6 to i32*
111// load %p
112// ...
113// BB2:
114// %7 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity
115// %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity
116// %9 = add i64 %7, %8 ; CSE opportunity
117// %10 = mul i64 %j2, length_of_struct
118// %11 = add i64 %9, %10
119// %12 = add i64 %11, struct_field_2 ; Constant offset
120// %p = inttoptr i64 %12 to i32*
121// load %p2
122// ...
123//
124// If the target uses alias analysis in codegen, this pass will lower a GEP
125// with multiple indices into multiple GEPs with a single index:
126// BB1:
127// %1 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity
128// %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity
129// %3 = getelementptr i8* %1, i64 %2 ; CSE opportunity
130// %4 = mul i64 %j1, length_of_struct
131// %5 = getelementptr i8* %3, i64 %4
132// %6 = getelementptr i8* %5, struct_field_3 ; Constant offset
133// %p = bitcast i8* %6 to i32*
134// load %p
135// ...
136// BB2:
137// %7 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity
138// %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity
139// %9 = getelementptr i8* %7, i64 %8 ; CSE opportunity
140// %10 = mul i64 %j2, length_of_struct
141// %11 = getelementptr i8* %9, i64 %10
142// %12 = getelementptr i8* %11, struct_field_2 ; Constant offset
143// %p2 = bitcast i8* %12 to i32*
144// load %p2
145// ...
146//
147// Lowering GEPs can also benefit other passes such as LICM and CGP.
148// LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple
149// indices if one of the index is variant. If we lower such GEP into invariant
150// parts and variant parts, LICM can hoist/sink those invariant parts.
151// CGP (CodeGen Prepare) tries to sink address calculations that match the
152// target's addressing modes. A GEP with multiple indices may not match and will
153// not be sunk. If we lower such GEP into smaller parts, CGP may sink some of
154// them. So we end up with a better addressing mode.
155//
Eli Benderskya108a652014-05-01 18:38:36 +0000156//===----------------------------------------------------------------------===//
157
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000158#include "llvm/ADT/APInt.h"
159#include "llvm/ADT/DenseMap.h"
160#include "llvm/ADT/DepthFirstIterator.h"
161#include "llvm/ADT/SmallVector.h"
Lawrence Hucac0b892015-09-23 19:25:30 +0000162#include "llvm/Analysis/LoopInfo.h"
163#include "llvm/Analysis/MemoryBuiltins.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +0000164#include "llvm/Analysis/ScalarEvolution.h"
Lawrence Hucac0b892015-09-23 19:25:30 +0000165#include "llvm/Analysis/TargetLibraryInfo.h"
Eli Benderskya108a652014-05-01 18:38:36 +0000166#include "llvm/Analysis/TargetTransformInfo.h"
David Blaikie31b98d22018-06-04 21:23:21 +0000167#include "llvm/Transforms/Utils/Local.h"
Eli Benderskya108a652014-05-01 18:38:36 +0000168#include "llvm/Analysis/ValueTracking.h"
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000169#include "llvm/IR/BasicBlock.h"
170#include "llvm/IR/Constant.h"
Eli Benderskya108a652014-05-01 18:38:36 +0000171#include "llvm/IR/Constants.h"
172#include "llvm/IR/DataLayout.h"
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000173#include "llvm/IR/DerivedTypes.h"
Jingyue Wuca321902015-05-14 23:53:19 +0000174#include "llvm/IR/Dominators.h"
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000175#include "llvm/IR/Function.h"
176#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +0000177#include "llvm/IR/IRBuilder.h"
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000178#include "llvm/IR/Instruction.h"
Eli Benderskya108a652014-05-01 18:38:36 +0000179#include "llvm/IR/Instructions.h"
Eli Benderskya108a652014-05-01 18:38:36 +0000180#include "llvm/IR/Module.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +0000181#include "llvm/IR/PatternMatch.h"
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000182#include "llvm/IR/Type.h"
183#include "llvm/IR/User.h"
184#include "llvm/IR/Value.h"
185#include "llvm/Pass.h"
186#include "llvm/Support/Casting.h"
Eli Benderskya108a652014-05-01 18:38:36 +0000187#include "llvm/Support/CommandLine.h"
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000188#include "llvm/Support/ErrorHandling.h"
Eli Benderskya108a652014-05-01 18:38:36 +0000189#include "llvm/Support/raw_ostream.h"
Hao Liu1d2a0612014-11-19 06:24:44 +0000190#include "llvm/Target/TargetMachine.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +0000191#include "llvm/Transforms/Scalar.h"
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000192#include <cassert>
193#include <cstdint>
194#include <string>
Eli Benderskya108a652014-05-01 18:38:36 +0000195
196using namespace llvm;
Jingyue Wu1238f342015-08-14 02:02:05 +0000197using namespace llvm::PatternMatch;
Eli Benderskya108a652014-05-01 18:38:36 +0000198
199static cl::opt<bool> DisableSeparateConstOffsetFromGEP(
200 "disable-separate-const-offset-from-gep", cl::init(false),
201 cl::desc("Do not separate the constant offset from a GEP instruction"),
202 cl::Hidden);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000203
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000204// Setting this flag may emit false positives when the input module already
205// contains dead instructions. Therefore, we set it only in unit tests that are
206// free of dead code.
207static cl::opt<bool>
208 VerifyNoDeadCode("reassociate-geps-verify-no-dead-code", cl::init(false),
209 cl::desc("Verify this pass produces no dead code"),
210 cl::Hidden);
Eli Benderskya108a652014-05-01 18:38:36 +0000211
212namespace {
213
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000214/// A helper class for separating a constant offset from a GEP index.
Eli Benderskya108a652014-05-01 18:38:36 +0000215///
216/// In real programs, a GEP index may be more complicated than a simple addition
217/// of something and a constant integer which can be trivially splitted. For
218/// example, to split ((a << 3) | 5) + b, we need to search deeper for the
Alp Tokerbeaca192014-05-15 01:52:21 +0000219/// constant offset, so that we can separate the index to (a << 3) + b and 5.
Eli Benderskya108a652014-05-01 18:38:36 +0000220///
221/// Therefore, this class looks into the expression that computes a given GEP
222/// index, and tries to find a constant integer that can be hoisted to the
223/// outermost level of the expression as an addition. Not every constant in an
224/// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a +
225/// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
226/// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
227class ConstantOffsetExtractor {
Jingyue Wuca321902015-05-14 23:53:19 +0000228public:
Hao Liu1d2a0612014-11-19 06:24:44 +0000229 /// Extracts a constant offset from the given GEP index. It returns the
Eli Benderskya108a652014-05-01 18:38:36 +0000230 /// new index representing the remainder (equal to the original index minus
Hao Liu1d2a0612014-11-19 06:24:44 +0000231 /// the constant offset), or nullptr if we cannot extract a constant offset.
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000232 /// \p Idx The given GEP index
233 /// \p GEP The given GEP
234 /// \p UserChainTail Outputs the tail of UserChain so that we can
235 /// garbage-collect unused instructions in UserChain.
Jingyue Wuca321902015-05-14 23:53:19 +0000236 static Value *Extract(Value *Idx, GetElementPtrInst *GEP,
237 User *&UserChainTail, const DominatorTree *DT);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000238
Hao Liu1d2a0612014-11-19 06:24:44 +0000239 /// Looks for a constant offset from the given GEP index without extracting
240 /// it. It returns the numeric value of the extracted constant offset (0 if
241 /// failed). The meaning of the arguments are the same as Extract.
Jingyue Wuca321902015-05-14 23:53:19 +0000242 static int64_t Find(Value *Idx, GetElementPtrInst *GEP,
243 const DominatorTree *DT);
Eli Benderskya108a652014-05-01 18:38:36 +0000244
Jingyue Wuca321902015-05-14 23:53:19 +0000245private:
246 ConstantOffsetExtractor(Instruction *InsertionPt, const DominatorTree *DT)
247 : IP(InsertionPt), DL(InsertionPt->getModule()->getDataLayout()), DT(DT) {
248 }
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000249
Jingyue Wu84465472014-06-05 22:07:33 +0000250 /// Searches the expression that computes V for a non-zero constant C s.t.
251 /// V can be reassociated into the form V' + C. If the searching is
252 /// successful, returns C and update UserChain as a def-use chain from C to V;
253 /// otherwise, UserChain is empty.
Eli Benderskya108a652014-05-01 18:38:36 +0000254 ///
Jingyue Wu84465472014-06-05 22:07:33 +0000255 /// \p V The given expression
256 /// \p SignExtended Whether V will be sign-extended in the computation of the
257 /// GEP index
258 /// \p ZeroExtended Whether V will be zero-extended in the computation of the
259 /// GEP index
260 /// \p NonNegative Whether V is guaranteed to be non-negative. For example,
261 /// an index of an inbounds GEP is guaranteed to be
262 /// non-negative. Levaraging this, we can better split
263 /// inbounds GEPs.
264 APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000265
Jingyue Wu84465472014-06-05 22:07:33 +0000266 /// A helper function to look into both operands of a binary operator.
267 APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended,
268 bool ZeroExtended);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000269
Jingyue Wu84465472014-06-05 22:07:33 +0000270 /// After finding the constant offset C from the GEP index I, we build a new
271 /// index I' s.t. I' + C = I. This function builds and returns the new
272 /// index I' according to UserChain produced by function "find".
273 ///
274 /// The building conceptually takes two steps:
275 /// 1) iteratively distribute s/zext towards the leaves of the expression tree
276 /// that computes I
277 /// 2) reassociate the expression tree to the form I' + C.
278 ///
279 /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute
280 /// sext to a, b and 5 so that we have
281 /// sext(a) + (sext(b) + 5).
282 /// Then, we reassociate it to
283 /// (sext(a) + sext(b)) + 5.
284 /// Given this form, we know I' is sext(a) + sext(b).
285 Value *rebuildWithoutConstOffset();
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000286
Jingyue Wu84465472014-06-05 22:07:33 +0000287 /// After the first step of rebuilding the GEP index without the constant
288 /// offset, distribute s/zext to the operands of all operators in UserChain.
289 /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) =>
290 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))).
291 ///
292 /// The function also updates UserChain to point to new subexpressions after
293 /// distributing s/zext. e.g., the old UserChain of the above example is
294 /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)),
295 /// and the new UserChain is
296 /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) ->
297 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))
298 ///
299 /// \p ChainIndex The index to UserChain. ChainIndex is initially
300 /// UserChain.size() - 1, and is decremented during
301 /// the recursion.
302 Value *distributeExtsAndCloneChain(unsigned ChainIndex);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000303
Jingyue Wu84465472014-06-05 22:07:33 +0000304 /// Reassociates the GEP index to the form I' + C and returns I'.
305 Value *removeConstOffset(unsigned ChainIndex);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000306
Jingyue Wu84465472014-06-05 22:07:33 +0000307 /// A helper function to apply ExtInsts, a list of s/zext, to value V.
308 /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function
309 /// returns "sext i32 (zext i16 V to i32) to i64".
310 Value *applyExts(Value *V);
Eli Benderskya108a652014-05-01 18:38:36 +0000311
Jingyue Wu84465472014-06-05 22:07:33 +0000312 /// A helper function that returns whether we can trace into the operands
313 /// of binary operator BO for a constant offset.
314 ///
315 /// \p SignExtended Whether BO is surrounded by sext
316 /// \p ZeroExtended Whether BO is surrounded by zext
317 /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound
318 /// array index.
319 bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO,
320 bool NonNegative);
Eli Benderskya108a652014-05-01 18:38:36 +0000321
322 /// The path from the constant offset to the old GEP index. e.g., if the GEP
323 /// index is "a * b + (c + 5)". After running function find, UserChain[0] will
324 /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
325 /// UserChain[2] will be the entire expression "a * b + (c + 5)".
326 ///
Jingyue Wu84465472014-06-05 22:07:33 +0000327 /// This path helps to rebuild the new GEP index.
Eli Benderskya108a652014-05-01 18:38:36 +0000328 SmallVector<User *, 8> UserChain;
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000329
Jingyue Wu84465472014-06-05 22:07:33 +0000330 /// A data structure used in rebuildWithoutConstOffset. Contains all
331 /// sext/zext instructions along UserChain.
332 SmallVector<CastInst *, 16> ExtInsts;
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000333
334 /// Insertion position of cloned instructions.
335 Instruction *IP;
336
Jingyue Wuca321902015-05-14 23:53:19 +0000337 const DataLayout &DL;
338 const DominatorTree *DT;
Eli Benderskya108a652014-05-01 18:38:36 +0000339};
340
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000341/// A pass that tries to split every GEP in the function into a variadic
Alp Tokerbeaca192014-05-15 01:52:21 +0000342/// base and a constant offset. It is a FunctionPass because searching for the
Eli Benderskya108a652014-05-01 18:38:36 +0000343/// constant offset may inspect other basic blocks.
344class SeparateConstOffsetFromGEP : public FunctionPass {
Jingyue Wuca321902015-05-14 23:53:19 +0000345public:
Eli Benderskya108a652014-05-01 18:38:36 +0000346 static char ID;
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000347
David Blaikie8ad9a972018-03-28 22:28:50 +0000348 SeparateConstOffsetFromGEP(bool LowerGEP = false)
349 : FunctionPass(ID), LowerGEP(LowerGEP) {
Eli Benderskya108a652014-05-01 18:38:36 +0000350 initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry());
351 }
352
353 void getAnalysisUsage(AnalysisUsage &AU) const override {
Jingyue Wuca321902015-05-14 23:53:19 +0000354 AU.addRequired<DominatorTreeWrapperPass>();
Chandler Carruth2f1fd162015-08-17 02:08:17 +0000355 AU.addRequired<ScalarEvolutionWrapperPass>();
Chandler Carruth705b1852015-01-31 03:43:40 +0000356 AU.addRequired<TargetTransformInfoWrapperPass>();
Lawrence Hucac0b892015-09-23 19:25:30 +0000357 AU.addRequired<LoopInfoWrapperPass>();
Jingyue Wu6e091c82015-02-01 02:33:02 +0000358 AU.setPreservesCFG();
Lawrence Hucac0b892015-09-23 19:25:30 +0000359 AU.addRequired<TargetLibraryInfoWrapperPass>();
Eli Benderskya108a652014-05-01 18:38:36 +0000360 }
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000361
Jingyue Wuca321902015-05-14 23:53:19 +0000362 bool doInitialization(Module &M) override {
363 DL = &M.getDataLayout();
364 return false;
365 }
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000366
Eli Benderskya108a652014-05-01 18:38:36 +0000367 bool runOnFunction(Function &F) override;
368
Jingyue Wuca321902015-05-14 23:53:19 +0000369private:
Eli Benderskya108a652014-05-01 18:38:36 +0000370 /// Tries to split the given GEP into a variadic base and a constant offset,
371 /// and returns true if the splitting succeeds.
372 bool splitGEP(GetElementPtrInst *GEP);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000373
Hao Liu1d2a0612014-11-19 06:24:44 +0000374 /// Lower a GEP with multiple indices into multiple GEPs with a single index.
375 /// Function splitGEP already split the original GEP into a variadic part and
376 /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
377 /// variadic part into a set of GEPs with a single index and applies
378 /// AccumulativeByteOffset to it.
379 /// \p Variadic The variadic part of the original GEP.
380 /// \p AccumulativeByteOffset The constant offset.
381 void lowerToSingleIndexGEPs(GetElementPtrInst *Variadic,
382 int64_t AccumulativeByteOffset);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000383
Hao Liu1d2a0612014-11-19 06:24:44 +0000384 /// Lower a GEP with multiple indices into ptrtoint+arithmetics+inttoptr form.
385 /// Function splitGEP already split the original GEP into a variadic part and
386 /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
387 /// variadic part into a set of arithmetic operations and applies
388 /// AccumulativeByteOffset to it.
389 /// \p Variadic The variadic part of the original GEP.
390 /// \p AccumulativeByteOffset The constant offset.
391 void lowerToArithmetics(GetElementPtrInst *Variadic,
392 int64_t AccumulativeByteOffset);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000393
Hao Liu1d2a0612014-11-19 06:24:44 +0000394 /// Finds the constant offset within each index and accumulates them. If
395 /// LowerGEP is true, it finds in indices of both sequential and structure
396 /// types, otherwise it only finds in sequential indices. The output
397 /// NeedsExtraction indicates whether we successfully find a non-zero constant
398 /// offset.
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000399 int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000400
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000401 /// Canonicalize array indices to pointer-size integers. This helps to
402 /// simplify the logic of splitting a GEP. For example, if a + b is a
403 /// pointer-size integer, we have
404 /// gep base, a + b = gep (gep base, a), b
405 /// However, this equality may not hold if the size of a + b is smaller than
406 /// the pointer size, because LLVM conceptually sign-extends GEP indices to
407 /// pointer size before computing the address
408 /// (http://llvm.org/docs/LangRef.html#id181).
409 ///
410 /// This canonicalization is very likely already done in clang and
411 /// instcombine. Therefore, the program will probably remain the same.
412 ///
Jingyue Wu5c7b1ae2014-06-08 23:49:34 +0000413 /// Returns true if the module changes.
414 ///
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000415 /// Verified in @i32_add in split-gep.ll
416 bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000417
Jingyue Wu1238f342015-08-14 02:02:05 +0000418 /// Optimize sext(a)+sext(b) to sext(a+b) when a+b can't sign overflow.
419 /// SeparateConstOffsetFromGEP distributes a sext to leaves before extracting
420 /// the constant offset. After extraction, it becomes desirable to reunion the
421 /// distributed sexts. For example,
422 ///
423 /// &a[sext(i +nsw (j +nsw 5)]
424 /// => distribute &a[sext(i) +nsw (sext(j) +nsw 5)]
425 /// => constant extraction &a[sext(i) + sext(j)] + 5
426 /// => reunion &a[sext(i +nsw j)] + 5
427 bool reuniteExts(Function &F);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000428
Jingyue Wu1238f342015-08-14 02:02:05 +0000429 /// A helper that reunites sexts in an instruction.
430 bool reuniteExts(Instruction *I);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000431
Jingyue Wu1238f342015-08-14 02:02:05 +0000432 /// Find the closest dominator of <Dominatee> that is equivalent to <Key>.
433 Instruction *findClosestMatchingDominator(const SCEV *Key,
434 Instruction *Dominatee);
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000435 /// Verify F is free of dead code.
436 void verifyNoDeadCode(Function &F);
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000437
Lawrence Hucac0b892015-09-23 19:25:30 +0000438 bool hasMoreThanOneUseInLoop(Value *v, Loop *L);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000439
Lawrence Hucac0b892015-09-23 19:25:30 +0000440 // Swap the index operand of two GEP.
441 void swapGEPOperand(GetElementPtrInst *First, GetElementPtrInst *Second);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000442
Lawrence Hucac0b892015-09-23 19:25:30 +0000443 // Check if it is safe to swap operand of two GEP.
444 bool isLegalToSwapOperand(GetElementPtrInst *First, GetElementPtrInst *Second,
445 Loop *CurLoop);
446
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000447 const DataLayout *DL = nullptr;
448 DominatorTree *DT = nullptr;
Jingyue Wu1238f342015-08-14 02:02:05 +0000449 ScalarEvolution *SE;
Lawrence Hucac0b892015-09-23 19:25:30 +0000450
451 LoopInfo *LI;
452 TargetLibraryInfo *TLI;
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000453
Hao Liu1d2a0612014-11-19 06:24:44 +0000454 /// Whether to lower a GEP with multiple indices into arithmetic operations or
455 /// multiple GEPs with a single index.
456 bool LowerGEP;
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000457
Jingyue Wu1238f342015-08-14 02:02:05 +0000458 DenseMap<const SCEV *, SmallVector<Instruction *, 2>> DominatingExprs;
Eli Benderskya108a652014-05-01 18:38:36 +0000459};
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000460
461} // end anonymous namespace
Eli Benderskya108a652014-05-01 18:38:36 +0000462
463char SeparateConstOffsetFromGEP::ID = 0;
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000464
Eli Benderskya108a652014-05-01 18:38:36 +0000465INITIALIZE_PASS_BEGIN(
466 SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
467 "Split GEPs to a variadic base and a constant offset for better CSE", false,
468 false)
Jingyue Wuca321902015-05-14 23:53:19 +0000469INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Chandler Carruth2f1fd162015-08-17 02:08:17 +0000470INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
Chandler Carruth705b1852015-01-31 03:43:40 +0000471INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
Lawrence Hucac0b892015-09-23 19:25:30 +0000472INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
473INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
Eli Benderskya108a652014-05-01 18:38:36 +0000474INITIALIZE_PASS_END(
475 SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
476 "Split GEPs to a variadic base and a constant offset for better CSE", false,
477 false)
478
David Blaikie8ad9a972018-03-28 22:28:50 +0000479FunctionPass *llvm::createSeparateConstOffsetFromGEPPass(bool LowerGEP) {
480 return new SeparateConstOffsetFromGEP(LowerGEP);
Eli Benderskya108a652014-05-01 18:38:36 +0000481}
482
Jingyue Wu84465472014-06-05 22:07:33 +0000483bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended,
484 bool ZeroExtended,
485 BinaryOperator *BO,
486 bool NonNegative) {
487 // We only consider ADD, SUB and OR, because a non-zero constant found in
488 // expressions composed of these operations can be easily hoisted as a
489 // constant offset by reassociation.
490 if (BO->getOpcode() != Instruction::Add &&
491 BO->getOpcode() != Instruction::Sub &&
492 BO->getOpcode() != Instruction::Or) {
493 return false;
494 }
495
496 Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
497 // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS
498 // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS).
Roman Lebedev25cbb622018-04-15 18:59:27 +0000499 // FIXME: this does not appear to be covered by any tests
500 // (with x86/aarch64 backends at least)
Jingyue Wuca321902015-05-14 23:53:19 +0000501 if (BO->getOpcode() == Instruction::Or &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000502 !haveNoCommonBitsSet(LHS, RHS, DL, nullptr, BO, DT))
Jingyue Wu84465472014-06-05 22:07:33 +0000503 return false;
504
505 // In addition, tracing into BO requires that its surrounding s/zext (if
506 // any) is distributable to both operands.
507 //
508 // Suppose BO = A op B.
509 // SignExtended | ZeroExtended | Distributable?
510 // --------------+--------------+----------------------------------
511 // 0 | 0 | true because no s/zext exists
512 // 0 | 1 | zext(BO) == zext(A) op zext(B)
513 // 1 | 0 | sext(BO) == sext(A) op sext(B)
514 // 1 | 1 | zext(sext(BO)) ==
515 // | | zext(sext(A)) op zext(sext(B))
Jingyue Wu01ceeb12014-06-08 20:19:38 +0000516 if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) {
Jingyue Wu84465472014-06-05 22:07:33 +0000517 // If a + b >= 0 and (a >= 0 or b >= 0), then
Jingyue Wu01ceeb12014-06-08 20:19:38 +0000518 // sext(a + b) = sext(a) + sext(b)
Jingyue Wu84465472014-06-05 22:07:33 +0000519 // even if the addition is not marked nsw.
520 //
521 // Leveraging this invarient, we can trace into an sext'ed inbound GEP
522 // index if the constant offset is non-negative.
523 //
524 // Verified in @sext_add in split-gep.ll.
525 if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) {
526 if (!ConstLHS->isNegative())
527 return true;
528 }
529 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) {
530 if (!ConstRHS->isNegative())
531 return true;
532 }
533 }
Jingyue Wu80a738d2014-05-27 18:00:00 +0000534
535 // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
536 // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
537 if (BO->getOpcode() == Instruction::Add ||
538 BO->getOpcode() == Instruction::Sub) {
Jingyue Wu84465472014-06-05 22:07:33 +0000539 if (SignExtended && !BO->hasNoSignedWrap())
540 return false;
541 if (ZeroExtended && !BO->hasNoUnsignedWrap())
542 return false;
Jingyue Wu80a738d2014-05-27 18:00:00 +0000543 }
544
Jingyue Wu84465472014-06-05 22:07:33 +0000545 return true;
Jingyue Wu80a738d2014-05-27 18:00:00 +0000546}
547
Jingyue Wu84465472014-06-05 22:07:33 +0000548APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO,
549 bool SignExtended,
550 bool ZeroExtended) {
551 // BO being non-negative does not shed light on whether its operands are
552 // non-negative. Clear the NonNegative flag here.
553 APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended,
554 /* NonNegative */ false);
Eli Benderskya108a652014-05-01 18:38:36 +0000555 // If we found a constant offset in the left operand, stop and return that.
556 // This shortcut might cause us to miss opportunities of combining the
557 // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
558 // However, such cases are probably already handled by -instcombine,
559 // given this pass runs after the standard optimizations.
560 if (ConstantOffset != 0) return ConstantOffset;
Jingyue Wu84465472014-06-05 22:07:33 +0000561 ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended,
562 /* NonNegative */ false);
Eli Benderskya108a652014-05-01 18:38:36 +0000563 // If U is a sub operator, negate the constant offset found in the right
564 // operand.
Jingyue Wu84465472014-06-05 22:07:33 +0000565 if (BO->getOpcode() == Instruction::Sub)
566 ConstantOffset = -ConstantOffset;
567 return ConstantOffset;
Eli Benderskya108a652014-05-01 18:38:36 +0000568}
569
Jingyue Wu84465472014-06-05 22:07:33 +0000570APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended,
571 bool ZeroExtended, bool NonNegative) {
572 // TODO(jingyue): We could trace into integer/pointer casts, such as
Eli Benderskya108a652014-05-01 18:38:36 +0000573 // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
574 // integers because it gives good enough results for our benchmarks.
Jingyue Wu84465472014-06-05 22:07:33 +0000575 unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
Eli Benderskya108a652014-05-01 18:38:36 +0000576
Jingyue Wu84465472014-06-05 22:07:33 +0000577 // We cannot do much with Values that are not a User, such as an Argument.
Eli Benderskya108a652014-05-01 18:38:36 +0000578 User *U = dyn_cast<User>(V);
Jingyue Wu84465472014-06-05 22:07:33 +0000579 if (U == nullptr) return APInt(BitWidth, 0);
Eli Benderskya108a652014-05-01 18:38:36 +0000580
Jingyue Wu84465472014-06-05 22:07:33 +0000581 APInt ConstantOffset(BitWidth, 0);
582 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Eli Benderskya108a652014-05-01 18:38:36 +0000583 // Hooray, we found it!
Jingyue Wu84465472014-06-05 22:07:33 +0000584 ConstantOffset = CI->getValue();
585 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
586 // Trace into subexpressions for more hoisting opportunities.
Jingyue Wuca321902015-05-14 23:53:19 +0000587 if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative))
Jingyue Wu84465472014-06-05 22:07:33 +0000588 ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended);
Artem Belevichc2cd5d52018-05-11 21:13:19 +0000589 } else if (isa<TruncInst>(V)) {
590 ConstantOffset =
591 find(U->getOperand(0), SignExtended, ZeroExtended, NonNegative)
592 .trunc(BitWidth);
Jingyue Wu84465472014-06-05 22:07:33 +0000593 } else if (isa<SExtInst>(V)) {
594 ConstantOffset = find(U->getOperand(0), /* SignExtended */ true,
595 ZeroExtended, NonNegative).sext(BitWidth);
596 } else if (isa<ZExtInst>(V)) {
597 // As an optimization, we can clear the SignExtended flag because
598 // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll.
599 //
600 // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0.
Jingyue Wu84465472014-06-05 22:07:33 +0000601 ConstantOffset =
602 find(U->getOperand(0), /* SignExtended */ false,
603 /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth);
Eli Benderskya108a652014-05-01 18:38:36 +0000604 }
Jingyue Wu84465472014-06-05 22:07:33 +0000605
606 // If we found a non-zero constant offset, add it to the path for
607 // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't
608 // help this optimization.
Eli Benderskya108a652014-05-01 18:38:36 +0000609 if (ConstantOffset != 0)
610 UserChain.push_back(U);
611 return ConstantOffset;
612}
613
Jingyue Wu84465472014-06-05 22:07:33 +0000614Value *ConstantOffsetExtractor::applyExts(Value *V) {
615 Value *Current = V;
616 // ExtInsts is built in the use-def order. Therefore, we apply them to V
617 // in the reversed order.
618 for (auto I = ExtInsts.rbegin(), E = ExtInsts.rend(); I != E; ++I) {
619 if (Constant *C = dyn_cast<Constant>(Current)) {
620 // If Current is a constant, apply s/zext using ConstantExpr::getCast.
621 // ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt.
622 Current = ConstantExpr::getCast((*I)->getOpcode(), C, (*I)->getType());
623 } else {
624 Instruction *Ext = (*I)->clone();
625 Ext->setOperand(0, Current);
626 Ext->insertBefore(IP);
627 Current = Ext;
628 }
Eli Benderskya108a652014-05-01 18:38:36 +0000629 }
Jingyue Wu84465472014-06-05 22:07:33 +0000630 return Current;
Eli Benderskya108a652014-05-01 18:38:36 +0000631}
632
Jingyue Wu84465472014-06-05 22:07:33 +0000633Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() {
634 distributeExtsAndCloneChain(UserChain.size() - 1);
635 // Remove all nullptrs (used to be s/zext) from UserChain.
636 unsigned NewSize = 0;
Benjamin Kramer135f7352016-06-26 12:28:59 +0000637 for (User *I : UserChain) {
638 if (I != nullptr) {
639 UserChain[NewSize] = I;
Jingyue Wu84465472014-06-05 22:07:33 +0000640 NewSize++;
641 }
Eli Benderskya108a652014-05-01 18:38:36 +0000642 }
Jingyue Wu84465472014-06-05 22:07:33 +0000643 UserChain.resize(NewSize);
644 return removeConstOffset(UserChain.size() - 1);
Eli Benderskya108a652014-05-01 18:38:36 +0000645}
646
Jingyue Wu84465472014-06-05 22:07:33 +0000647Value *
648ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) {
649 User *U = UserChain[ChainIndex];
650 if (ChainIndex == 0) {
651 assert(isa<ConstantInt>(U));
652 // If U is a ConstantInt, applyExts will return a ConstantInt as well.
653 return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U));
654 }
Eli Benderskya108a652014-05-01 18:38:36 +0000655
Jingyue Wu84465472014-06-05 22:07:33 +0000656 if (CastInst *Cast = dyn_cast<CastInst>(U)) {
Artem Belevichc2cd5d52018-05-11 21:13:19 +0000657 assert(
658 (isa<SExtInst>(Cast) || isa<ZExtInst>(Cast) || isa<TruncInst>(Cast)) &&
659 "Only following instructions can be traced: sext, zext & trunc");
Jingyue Wu84465472014-06-05 22:07:33 +0000660 ExtInsts.push_back(Cast);
661 UserChain[ChainIndex] = nullptr;
662 return distributeExtsAndCloneChain(ChainIndex - 1);
663 }
664
665 // Function find only trace into BinaryOperator and CastInst.
666 BinaryOperator *BO = cast<BinaryOperator>(U);
667 // OpNo = which operand of BO is UserChain[ChainIndex - 1]
668 unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
669 Value *TheOther = applyExts(BO->getOperand(1 - OpNo));
670 Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1);
671
672 BinaryOperator *NewBO = nullptr;
673 if (OpNo == 0) {
674 NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther,
675 BO->getName(), IP);
676 } else {
677 NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain,
678 BO->getName(), IP);
679 }
680 return UserChain[ChainIndex] = NewBO;
Eli Benderskya108a652014-05-01 18:38:36 +0000681}
682
Jingyue Wu84465472014-06-05 22:07:33 +0000683Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
684 if (ChainIndex == 0) {
685 assert(isa<ConstantInt>(UserChain[ChainIndex]));
686 return ConstantInt::getNullValue(UserChain[ChainIndex]->getType());
687 }
Eli Benderskya108a652014-05-01 18:38:36 +0000688
Jingyue Wu84465472014-06-05 22:07:33 +0000689 BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]);
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000690 assert(BO->getNumUses() <= 1 &&
691 "distributeExtsAndCloneChain clones each BinaryOperator in "
692 "UserChain, so no one should be used more than "
693 "once");
694
Jingyue Wu84465472014-06-05 22:07:33 +0000695 unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
696 assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]);
697 Value *NextInChain = removeConstOffset(ChainIndex - 1);
698 Value *TheOther = BO->getOperand(1 - OpNo);
699
700 // If NextInChain is 0 and not the LHS of a sub, we can simplify the
701 // sub-expression to be just TheOther.
702 if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) {
703 if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0))
704 return TheOther;
705 }
706
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000707 BinaryOperator::BinaryOps NewOp = BO->getOpcode();
Jingyue Wu84465472014-06-05 22:07:33 +0000708 if (BO->getOpcode() == Instruction::Or) {
709 // Rebuild "or" as "add", because "or" may be invalid for the new
Hiroshi Inouef2096492018-06-14 05:41:49 +0000710 // expression.
Jingyue Wu84465472014-06-05 22:07:33 +0000711 //
712 // For instance, given
713 // a | (b + 5) where a and b + 5 have no common bits,
714 // we can extract 5 as the constant offset.
715 //
716 // However, reusing the "or" in the new index would give us
717 // (a | b) + 5
718 // which does not equal a | (b + 5).
719 //
720 // Replacing the "or" with "add" is fine, because
721 // a | (b + 5) = a + (b + 5) = (a + b) + 5
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000722 NewOp = Instruction::Add;
Jingyue Wu84465472014-06-05 22:07:33 +0000723 }
724
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000725 BinaryOperator *NewBO;
726 if (OpNo == 0) {
727 NewBO = BinaryOperator::Create(NewOp, NextInChain, TheOther, "", IP);
728 } else {
729 NewBO = BinaryOperator::Create(NewOp, TheOther, NextInChain, "", IP);
730 }
731 NewBO->takeName(BO);
732 return NewBO;
Eli Benderskya108a652014-05-01 18:38:36 +0000733}
734
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000735Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP,
Jingyue Wuca321902015-05-14 23:53:19 +0000736 User *&UserChainTail,
737 const DominatorTree *DT) {
738 ConstantOffsetExtractor Extractor(GEP, DT);
Eli Benderskya108a652014-05-01 18:38:36 +0000739 // Find a non-zero constant offset first.
Jingyue Wu84465472014-06-05 22:07:33 +0000740 APInt ConstantOffset =
741 Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
742 GEP->isInBounds());
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000743 if (ConstantOffset == 0) {
744 UserChainTail = nullptr;
Hao Liu1d2a0612014-11-19 06:24:44 +0000745 return nullptr;
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000746 }
Hao Liu1d2a0612014-11-19 06:24:44 +0000747 // Separates the constant offset from the GEP index.
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000748 Value *IdxWithoutConstOffset = Extractor.rebuildWithoutConstOffset();
749 UserChainTail = Extractor.UserChain.back();
750 return IdxWithoutConstOffset;
Eli Benderskya108a652014-05-01 18:38:36 +0000751}
752
Jingyue Wuca321902015-05-14 23:53:19 +0000753int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP,
754 const DominatorTree *DT) {
Jingyue Wu84465472014-06-05 22:07:33 +0000755 // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
Jingyue Wuca321902015-05-14 23:53:19 +0000756 return ConstantOffsetExtractor(GEP, DT)
Jingyue Wu84465472014-06-05 22:07:33 +0000757 .find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
758 GEP->isInBounds())
759 .getSExtValue();
Eli Benderskya108a652014-05-01 18:38:36 +0000760}
761
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000762bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
763 GetElementPtrInst *GEP) {
764 bool Changed = false;
Jingyue Wuca321902015-05-14 23:53:19 +0000765 Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000766 gep_type_iterator GTI = gep_type_begin(*GEP);
767 for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
768 I != E; ++I, ++GTI) {
769 // Skip struct member indices which must be i32.
Peter Collingbourneab85225b2016-12-02 02:24:42 +0000770 if (GTI.isSequential()) {
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000771 if ((*I)->getType() != IntPtrTy) {
772 *I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP);
773 Changed = true;
774 }
775 }
776 }
777 return Changed;
778}
779
780int64_t
781SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
782 bool &NeedsExtraction) {
Eli Benderskya108a652014-05-01 18:38:36 +0000783 NeedsExtraction = false;
784 int64_t AccumulativeByteOffset = 0;
785 gep_type_iterator GTI = gep_type_begin(*GEP);
786 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
Peter Collingbourneab85225b2016-12-02 02:24:42 +0000787 if (GTI.isSequential()) {
Eli Benderskya108a652014-05-01 18:38:36 +0000788 // Tries to extract a constant offset from this GEP index.
789 int64_t ConstantOffset =
Jingyue Wuca321902015-05-14 23:53:19 +0000790 ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP, DT);
Eli Benderskya108a652014-05-01 18:38:36 +0000791 if (ConstantOffset != 0) {
792 NeedsExtraction = true;
793 // A GEP may have multiple indices. We accumulate the extracted
794 // constant offset to a byte offset, and later offset the remainder of
795 // the original GEP with this byte offset.
796 AccumulativeByteOffset +=
Jingyue Wuca321902015-05-14 23:53:19 +0000797 ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType());
Eli Benderskya108a652014-05-01 18:38:36 +0000798 }
Hao Liu1d2a0612014-11-19 06:24:44 +0000799 } else if (LowerGEP) {
Peter Collingbourneab85225b2016-12-02 02:24:42 +0000800 StructType *StTy = GTI.getStructType();
Hao Liu1d2a0612014-11-19 06:24:44 +0000801 uint64_t Field = cast<ConstantInt>(GEP->getOperand(I))->getZExtValue();
802 // Skip field 0 as the offset is always 0.
803 if (Field != 0) {
804 NeedsExtraction = true;
805 AccumulativeByteOffset +=
Jingyue Wuca321902015-05-14 23:53:19 +0000806 DL->getStructLayout(StTy)->getElementOffset(Field);
Hao Liu1d2a0612014-11-19 06:24:44 +0000807 }
Eli Benderskya108a652014-05-01 18:38:36 +0000808 }
809 }
810 return AccumulativeByteOffset;
811}
812
Hao Liu1d2a0612014-11-19 06:24:44 +0000813void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
814 GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) {
815 IRBuilder<> Builder(Variadic);
Jingyue Wuca321902015-05-14 23:53:19 +0000816 Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
Hao Liu1d2a0612014-11-19 06:24:44 +0000817
818 Type *I8PtrTy =
819 Builder.getInt8PtrTy(Variadic->getType()->getPointerAddressSpace());
820 Value *ResultPtr = Variadic->getOperand(0);
Lawrence Hucac0b892015-09-23 19:25:30 +0000821 Loop *L = LI->getLoopFor(Variadic->getParent());
822 // Check if the base is not loop invariant or used more than once.
823 bool isSwapCandidate =
824 L && L->isLoopInvariant(ResultPtr) &&
825 !hasMoreThanOneUseInLoop(ResultPtr, L);
826 Value *FirstResult = nullptr;
827
Hao Liu1d2a0612014-11-19 06:24:44 +0000828 if (ResultPtr->getType() != I8PtrTy)
829 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
830
831 gep_type_iterator GTI = gep_type_begin(*Variadic);
832 // Create an ugly GEP for each sequential index. We don't create GEPs for
833 // structure indices, as they are accumulated in the constant offset index.
834 for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
Peter Collingbourneab85225b2016-12-02 02:24:42 +0000835 if (GTI.isSequential()) {
Hao Liu1d2a0612014-11-19 06:24:44 +0000836 Value *Idx = Variadic->getOperand(I);
837 // Skip zero indices.
838 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
839 if (CI->isZero())
840 continue;
841
842 APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
Jingyue Wuca321902015-05-14 23:53:19 +0000843 DL->getTypeAllocSize(GTI.getIndexedType()));
Hao Liu1d2a0612014-11-19 06:24:44 +0000844 // Scale the index by element size.
845 if (ElementSize != 1) {
846 if (ElementSize.isPowerOf2()) {
847 Idx = Builder.CreateShl(
848 Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
849 } else {
850 Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
851 }
852 }
853 // Create an ugly GEP with a single index for each index.
David Blaikie93c54442015-04-03 19:41:44 +0000854 ResultPtr =
855 Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Idx, "uglygep");
Lawrence Hucac0b892015-09-23 19:25:30 +0000856 if (FirstResult == nullptr)
857 FirstResult = ResultPtr;
Hao Liu1d2a0612014-11-19 06:24:44 +0000858 }
859 }
860
861 // Create a GEP with the constant offset index.
862 if (AccumulativeByteOffset != 0) {
863 Value *Offset = ConstantInt::get(IntPtrTy, AccumulativeByteOffset);
David Blaikie93c54442015-04-03 19:41:44 +0000864 ResultPtr =
865 Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Offset, "uglygep");
Lawrence Hucac0b892015-09-23 19:25:30 +0000866 } else
867 isSwapCandidate = false;
868
869 // If we created a GEP with constant index, and the base is loop invariant,
870 // then we swap the first one with it, so LICM can move constant GEP out
871 // later.
Lawrence Hu84e6f1d2016-02-19 02:17:07 +0000872 GetElementPtrInst *FirstGEP = dyn_cast_or_null<GetElementPtrInst>(FirstResult);
873 GetElementPtrInst *SecondGEP = dyn_cast_or_null<GetElementPtrInst>(ResultPtr);
Lawrence Hucac0b892015-09-23 19:25:30 +0000874 if (isSwapCandidate && isLegalToSwapOperand(FirstGEP, SecondGEP, L))
875 swapGEPOperand(FirstGEP, SecondGEP);
876
Hao Liu1d2a0612014-11-19 06:24:44 +0000877 if (ResultPtr->getType() != Variadic->getType())
878 ResultPtr = Builder.CreateBitCast(ResultPtr, Variadic->getType());
879
880 Variadic->replaceAllUsesWith(ResultPtr);
881 Variadic->eraseFromParent();
882}
883
884void
885SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic,
886 int64_t AccumulativeByteOffset) {
887 IRBuilder<> Builder(Variadic);
Jingyue Wuca321902015-05-14 23:53:19 +0000888 Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
Hao Liu1d2a0612014-11-19 06:24:44 +0000889
890 Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy);
891 gep_type_iterator GTI = gep_type_begin(*Variadic);
892 // Create ADD/SHL/MUL arithmetic operations for each sequential indices. We
893 // don't create arithmetics for structure indices, as they are accumulated
894 // in the constant offset index.
895 for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
Peter Collingbourneab85225b2016-12-02 02:24:42 +0000896 if (GTI.isSequential()) {
Hao Liu1d2a0612014-11-19 06:24:44 +0000897 Value *Idx = Variadic->getOperand(I);
898 // Skip zero indices.
899 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
900 if (CI->isZero())
901 continue;
902
903 APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
Jingyue Wuca321902015-05-14 23:53:19 +0000904 DL->getTypeAllocSize(GTI.getIndexedType()));
Hao Liu1d2a0612014-11-19 06:24:44 +0000905 // Scale the index by element size.
906 if (ElementSize != 1) {
907 if (ElementSize.isPowerOf2()) {
908 Idx = Builder.CreateShl(
909 Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
910 } else {
911 Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
912 }
913 }
914 // Create an ADD for each index.
915 ResultPtr = Builder.CreateAdd(ResultPtr, Idx);
916 }
917 }
918
919 // Create an ADD for the constant offset index.
920 if (AccumulativeByteOffset != 0) {
921 ResultPtr = Builder.CreateAdd(
922 ResultPtr, ConstantInt::get(IntPtrTy, AccumulativeByteOffset));
923 }
924
925 ResultPtr = Builder.CreateIntToPtr(ResultPtr, Variadic->getType());
926 Variadic->replaceAllUsesWith(ResultPtr);
927 Variadic->eraseFromParent();
928}
929
Eli Benderskya108a652014-05-01 18:38:36 +0000930bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
931 // Skip vector GEPs.
932 if (GEP->getType()->isVectorTy())
933 return false;
934
935 // The backend can already nicely handle the case where all indices are
936 // constant.
937 if (GEP->hasAllConstantIndices())
938 return false;
939
Jingyue Wu0bdc0272014-07-16 23:25:00 +0000940 bool Changed = canonicalizeArrayIndicesToPointerSize(GEP);
Eli Benderskya108a652014-05-01 18:38:36 +0000941
Eli Benderskya108a652014-05-01 18:38:36 +0000942 bool NeedsExtraction;
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000943 int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction);
Eli Benderskya108a652014-05-01 18:38:36 +0000944
945 if (!NeedsExtraction)
946 return Changed;
David Blaikie8ad9a972018-03-28 22:28:50 +0000947
948 TargetTransformInfo &TTI =
949 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*GEP->getFunction());
950
Hao Liu1d2a0612014-11-19 06:24:44 +0000951 // If LowerGEP is disabled, before really splitting the GEP, check whether the
952 // backend supports the addressing mode we are about to produce. If no, this
953 // splitting probably won't be beneficial.
954 // If LowerGEP is enabled, even the extracted constant offset can not match
955 // the addressing mode, we can still do optimizations to other lowered parts
956 // of variable indices. Therefore, we don't check for addressing modes in that
957 // case.
958 if (!LowerGEP) {
Matt Arsenaulte81944f2015-06-07 20:17:44 +0000959 unsigned AddrSpace = GEP->getPointerAddressSpace();
Eduard Burtescu19eb0312016-01-19 17:28:00 +0000960 if (!TTI.isLegalAddressingMode(GEP->getResultElementType(),
Hao Liu1d2a0612014-11-19 06:24:44 +0000961 /*BaseGV=*/nullptr, AccumulativeByteOffset,
Matt Arsenaulte81944f2015-06-07 20:17:44 +0000962 /*HasBaseReg=*/true, /*Scale=*/0,
963 AddrSpace)) {
Hao Liu1d2a0612014-11-19 06:24:44 +0000964 return Changed;
965 }
Eli Benderskya108a652014-05-01 18:38:36 +0000966 }
967
Hao Liu1d2a0612014-11-19 06:24:44 +0000968 // Remove the constant offset in each sequential index. The resultant GEP
969 // computes the variadic base.
970 // Notice that we don't remove struct field indices here. If LowerGEP is
971 // disabled, a structure index is not accumulated and we still use the old
972 // one. If LowerGEP is enabled, a structure index is accumulated in the
973 // constant offset. LowerToSingleIndexGEPs or lowerToArithmetics will later
974 // handle the constant offset and won't need a new structure index.
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000975 gep_type_iterator GTI = gep_type_begin(*GEP);
Eli Benderskya108a652014-05-01 18:38:36 +0000976 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
Peter Collingbourneab85225b2016-12-02 02:24:42 +0000977 if (GTI.isSequential()) {
Hao Liu1d2a0612014-11-19 06:24:44 +0000978 // Splits this GEP index into a variadic part and a constant offset, and
979 // uses the variadic part as the new index.
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000980 Value *OldIdx = GEP->getOperand(I);
981 User *UserChainTail;
982 Value *NewIdx =
Jingyue Wuca321902015-05-14 23:53:19 +0000983 ConstantOffsetExtractor::Extract(OldIdx, GEP, UserChainTail, DT);
Hao Liu1d2a0612014-11-19 06:24:44 +0000984 if (NewIdx != nullptr) {
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000985 // Switches to the index with the constant offset removed.
Eli Benderskya108a652014-05-01 18:38:36 +0000986 GEP->setOperand(I, NewIdx);
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000987 // After switching to the new index, we can garbage-collect UserChain
988 // and the old index if they are not used.
989 RecursivelyDeleteTriviallyDeadInstructions(UserChainTail);
990 RecursivelyDeleteTriviallyDeadInstructions(OldIdx);
Eli Benderskya108a652014-05-01 18:38:36 +0000991 }
992 }
993 }
Hao Liu1d2a0612014-11-19 06:24:44 +0000994
Jingyue Wu84465472014-06-05 22:07:33 +0000995 // Clear the inbounds attribute because the new index may be off-bound.
996 // e.g.,
997 //
Jingyue Wu1238f342015-08-14 02:02:05 +0000998 // b = add i64 a, 5
999 // addr = gep inbounds float, float* p, i64 b
Jingyue Wu84465472014-06-05 22:07:33 +00001000 //
1001 // is transformed to:
1002 //
Jingyue Wu1238f342015-08-14 02:02:05 +00001003 // addr2 = gep float, float* p, i64 a ; inbounds removed
1004 // addr = gep inbounds float, float* addr2, i64 5
Jingyue Wu84465472014-06-05 22:07:33 +00001005 //
1006 // If a is -4, although the old index b is in bounds, the new index a is
1007 // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
1008 // inbounds keyword is not present, the offsets are added to the base
1009 // address with silently-wrapping two's complement arithmetic".
1010 // Therefore, the final code will be a semantically equivalent.
1011 //
1012 // TODO(jingyue): do some range analysis to keep as many inbounds as
1013 // possible. GEPs with inbounds are more friendly to alias analysis.
Jingyue Wu13a80ea2015-08-13 18:48:49 +00001014 bool GEPWasInBounds = GEP->isInBounds();
Jingyue Wu84465472014-06-05 22:07:33 +00001015 GEP->setIsInBounds(false);
Eli Benderskya108a652014-05-01 18:38:36 +00001016
Hao Liu1d2a0612014-11-19 06:24:44 +00001017 // Lowers a GEP to either GEPs with a single index or arithmetic operations.
1018 if (LowerGEP) {
1019 // As currently BasicAA does not analyze ptrtoint/inttoptr, do not lower to
1020 // arithmetic operations if the target uses alias analysis in codegen.
David Blaikie8ad9a972018-03-28 22:28:50 +00001021 if (TTI.useAA())
Hao Liu1d2a0612014-11-19 06:24:44 +00001022 lowerToSingleIndexGEPs(GEP, AccumulativeByteOffset);
1023 else
1024 lowerToArithmetics(GEP, AccumulativeByteOffset);
1025 return true;
1026 }
1027
1028 // No need to create another GEP if the accumulative byte offset is 0.
1029 if (AccumulativeByteOffset == 0)
1030 return true;
1031
Eli Benderskya108a652014-05-01 18:38:36 +00001032 // Offsets the base with the accumulative byte offset.
1033 //
1034 // %gep ; the base
1035 // ... %gep ...
1036 //
1037 // => add the offset
1038 //
1039 // %gep2 ; clone of %gep
Jingyue Wubbb6e4a2014-05-23 18:39:40 +00001040 // %new.gep = gep %gep2, <offset / sizeof(*%gep)>
Eli Benderskya108a652014-05-01 18:38:36 +00001041 // %gep ; will be removed
1042 // ... %gep ...
1043 //
1044 // => replace all uses of %gep with %new.gep and remove %gep
1045 //
1046 // %gep2 ; clone of %gep
Jingyue Wubbb6e4a2014-05-23 18:39:40 +00001047 // %new.gep = gep %gep2, <offset / sizeof(*%gep)>
Eli Benderskya108a652014-05-01 18:38:36 +00001048 // ... %new.gep ...
1049 //
Jingyue Wubbb6e4a2014-05-23 18:39:40 +00001050 // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an
1051 // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep):
1052 // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the
1053 // type of %gep.
Eli Benderskya108a652014-05-01 18:38:36 +00001054 //
Jingyue Wubbb6e4a2014-05-23 18:39:40 +00001055 // %gep2 ; clone of %gep
1056 // %0 = bitcast %gep2 to i8*
1057 // %uglygep = gep %0, <offset>
1058 // %new.gep = bitcast %uglygep to <type of %gep>
1059 // ... %new.gep ...
Eli Benderskya108a652014-05-01 18:38:36 +00001060 Instruction *NewGEP = GEP->clone();
1061 NewGEP->insertBefore(GEP);
Eli Benderskya108a652014-05-01 18:38:36 +00001062
Jingyue Wufe72fce2014-10-25 18:34:03 +00001063 // Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned =
1064 // unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is
1065 // used with unsigned integers later.
1066 int64_t ElementTypeSizeOfGEP = static_cast<int64_t>(
Eduard Burtescu19eb0312016-01-19 17:28:00 +00001067 DL->getTypeAllocSize(GEP->getResultElementType()));
Jingyue Wuca321902015-05-14 23:53:19 +00001068 Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
Jingyue Wubbb6e4a2014-05-23 18:39:40 +00001069 if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
Hiroshi Inouef2096492018-06-14 05:41:49 +00001070 // Very likely. As long as %gep is naturally aligned, the byte offset we
Jingyue Wubbb6e4a2014-05-23 18:39:40 +00001071 // extracted should be a multiple of sizeof(*%gep).
Jingyue Wufe72fce2014-10-25 18:34:03 +00001072 int64_t Index = AccumulativeByteOffset / ElementTypeSizeOfGEP;
David Blaikie741c8f82015-03-14 01:53:18 +00001073 NewGEP = GetElementPtrInst::Create(GEP->getResultElementType(), NewGEP,
1074 ConstantInt::get(IntPtrTy, Index, true),
1075 GEP->getName(), GEP);
Marek Olsak8e7d1492018-01-31 20:17:52 +00001076 NewGEP->copyMetadata(*GEP);
Jingyue Wu13a80ea2015-08-13 18:48:49 +00001077 // Inherit the inbounds attribute of the original GEP.
1078 cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds);
Jingyue Wubbb6e4a2014-05-23 18:39:40 +00001079 } else {
1080 // Unlikely but possible. For example,
1081 // #pragma pack(1)
1082 // struct S {
1083 // int a[3];
1084 // int64 b[8];
1085 // };
1086 // #pragma pack()
1087 //
1088 // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After
1089 // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is
1090 // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of
1091 // sizeof(int64).
1092 //
1093 // Emit an uglygep in this case.
1094 Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(),
1095 GEP->getPointerAddressSpace());
1096 NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP);
1097 NewGEP = GetElementPtrInst::Create(
David Blaikie741c8f82015-03-14 01:53:18 +00001098 Type::getInt8Ty(GEP->getContext()), NewGEP,
1099 ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true), "uglygep",
1100 GEP);
Marek Olsak8e7d1492018-01-31 20:17:52 +00001101 NewGEP->copyMetadata(*GEP);
Jingyue Wu13a80ea2015-08-13 18:48:49 +00001102 // Inherit the inbounds attribute of the original GEP.
1103 cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds);
Jingyue Wubbb6e4a2014-05-23 18:39:40 +00001104 if (GEP->getType() != I8PtrTy)
1105 NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP);
1106 }
1107
1108 GEP->replaceAllUsesWith(NewGEP);
Eli Benderskya108a652014-05-01 18:38:36 +00001109 GEP->eraseFromParent();
1110
1111 return true;
1112}
1113
1114bool SeparateConstOffsetFromGEP::runOnFunction(Function &F) {
Andrew Kayloraa641a52016-04-22 22:06:11 +00001115 if (skipFunction(F))
Jingyue Wu6c26bb62015-02-01 02:34:41 +00001116 return false;
1117
Eli Benderskya108a652014-05-01 18:38:36 +00001118 if (DisableSeparateConstOffsetFromGEP)
1119 return false;
1120
Jingyue Wuca321902015-05-14 23:53:19 +00001121 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Chandler Carruth2f1fd162015-08-17 02:08:17 +00001122 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
Lawrence Hucac0b892015-09-23 19:25:30 +00001123 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
Teresa Johnson9c27b592019-09-07 03:09:36 +00001124 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
Eli Benderskya108a652014-05-01 18:38:36 +00001125 bool Changed = false;
Benjamin Kramer135f7352016-06-26 12:28:59 +00001126 for (BasicBlock &B : F) {
1127 for (BasicBlock::iterator I = B.begin(), IE = B.end(); I != IE;)
Lawrence Hucac0b892015-09-23 19:25:30 +00001128 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I++))
Eli Benderskya108a652014-05-01 18:38:36 +00001129 Changed |= splitGEP(GEP);
Lawrence Hucac0b892015-09-23 19:25:30 +00001130 // No need to split GEP ConstantExprs because all its indices are constant
1131 // already.
Eli Benderskya108a652014-05-01 18:38:36 +00001132 }
Jingyue Wuf763c3f2015-04-21 19:53:18 +00001133
Jingyue Wu1238f342015-08-14 02:02:05 +00001134 Changed |= reuniteExts(F);
1135
Jingyue Wuf763c3f2015-04-21 19:53:18 +00001136 if (VerifyNoDeadCode)
1137 verifyNoDeadCode(F);
1138
Eli Benderskya108a652014-05-01 18:38:36 +00001139 return Changed;
1140}
Jingyue Wuf763c3f2015-04-21 19:53:18 +00001141
Jingyue Wu1238f342015-08-14 02:02:05 +00001142Instruction *SeparateConstOffsetFromGEP::findClosestMatchingDominator(
1143 const SCEV *Key, Instruction *Dominatee) {
1144 auto Pos = DominatingExprs.find(Key);
1145 if (Pos == DominatingExprs.end())
1146 return nullptr;
1147
1148 auto &Candidates = Pos->second;
1149 // Because we process the basic blocks in pre-order of the dominator tree, a
1150 // candidate that doesn't dominate the current instruction won't dominate any
1151 // future instruction either. Therefore, we pop it out of the stack. This
1152 // optimization makes the algorithm O(n).
1153 while (!Candidates.empty()) {
1154 Instruction *Candidate = Candidates.back();
1155 if (DT->dominates(Candidate, Dominatee))
1156 return Candidate;
1157 Candidates.pop_back();
1158 }
1159 return nullptr;
1160}
1161
1162bool SeparateConstOffsetFromGEP::reuniteExts(Instruction *I) {
1163 if (!SE->isSCEVable(I->getType()))
1164 return false;
1165
1166 // Dom: LHS+RHS
1167 // I: sext(LHS)+sext(RHS)
1168 // If Dom can't sign overflow and Dom dominates I, optimize I to sext(Dom).
1169 // TODO: handle zext
1170 Value *LHS = nullptr, *RHS = nullptr;
1171 if (match(I, m_Add(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS)))) ||
1172 match(I, m_Sub(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS))))) {
1173 if (LHS->getType() == RHS->getType()) {
1174 const SCEV *Key =
1175 SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
1176 if (auto *Dom = findClosestMatchingDominator(Key, I)) {
1177 Instruction *NewSExt = new SExtInst(Dom, I->getType(), "", I);
1178 NewSExt->takeName(I);
1179 I->replaceAllUsesWith(NewSExt);
1180 RecursivelyDeleteTriviallyDeadInstructions(I);
1181 return true;
1182 }
1183 }
1184 }
1185
1186 // Add I to DominatingExprs if it's an add/sub that can't sign overflow.
1187 if (match(I, m_NSWAdd(m_Value(LHS), m_Value(RHS))) ||
1188 match(I, m_NSWSub(m_Value(LHS), m_Value(RHS)))) {
Sanjoy Das08989c72017-04-30 19:41:19 +00001189 if (programUndefinedIfFullPoison(I)) {
Jingyue Wu1238f342015-08-14 02:02:05 +00001190 const SCEV *Key =
1191 SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
1192 DominatingExprs[Key].push_back(I);
1193 }
1194 }
1195 return false;
1196}
1197
1198bool SeparateConstOffsetFromGEP::reuniteExts(Function &F) {
1199 bool Changed = false;
1200 DominatingExprs.clear();
Daniel Berlin11da66f2016-08-19 22:18:38 +00001201 for (const auto Node : depth_first(DT)) {
1202 BasicBlock *BB = Node->getBlock();
1203 for (auto I = BB->begin(); I != BB->end(); ) {
1204 Instruction *Cur = &*I++;
1205 Changed |= reuniteExts(Cur);
1206 }
1207 }
Jingyue Wu1238f342015-08-14 02:02:05 +00001208 return Changed;
1209}
1210
Jingyue Wuf763c3f2015-04-21 19:53:18 +00001211void SeparateConstOffsetFromGEP::verifyNoDeadCode(Function &F) {
Benjamin Kramer135f7352016-06-26 12:28:59 +00001212 for (BasicBlock &B : F) {
1213 for (Instruction &I : B) {
Jingyue Wuf763c3f2015-04-21 19:53:18 +00001214 if (isInstructionTriviallyDead(&I)) {
1215 std::string ErrMessage;
1216 raw_string_ostream RSO(ErrMessage);
1217 RSO << "Dead instruction detected!\n" << I << "\n";
1218 llvm_unreachable(RSO.str().c_str());
1219 }
1220 }
1221 }
1222}
Lawrence Hucac0b892015-09-23 19:25:30 +00001223
1224bool SeparateConstOffsetFromGEP::isLegalToSwapOperand(
1225 GetElementPtrInst *FirstGEP, GetElementPtrInst *SecondGEP, Loop *CurLoop) {
1226 if (!FirstGEP || !FirstGEP->hasOneUse())
1227 return false;
1228
1229 if (!SecondGEP || FirstGEP->getParent() != SecondGEP->getParent())
1230 return false;
1231
1232 if (FirstGEP == SecondGEP)
1233 return false;
1234
1235 unsigned FirstNum = FirstGEP->getNumOperands();
1236 unsigned SecondNum = SecondGEP->getNumOperands();
1237 // Give up if the number of operands are not 2.
1238 if (FirstNum != SecondNum || FirstNum != 2)
1239 return false;
1240
1241 Value *FirstBase = FirstGEP->getOperand(0);
1242 Value *SecondBase = SecondGEP->getOperand(0);
1243 Value *FirstOffset = FirstGEP->getOperand(1);
1244 // Give up if the index of the first GEP is loop invariant.
1245 if (CurLoop->isLoopInvariant(FirstOffset))
1246 return false;
1247
1248 // Give up if base doesn't have same type.
1249 if (FirstBase->getType() != SecondBase->getType())
1250 return false;
1251
1252 Instruction *FirstOffsetDef = dyn_cast<Instruction>(FirstOffset);
1253
1254 // Check if the second operand of first GEP has constant coefficient.
1255 // For an example, for the following code, we won't gain anything by
1256 // hoisting the second GEP out because the second GEP can be folded away.
1257 // %scevgep.sum.ur159 = add i64 %idxprom48.ur, 256
1258 // %67 = shl i64 %scevgep.sum.ur159, 2
1259 // %uglygep160 = getelementptr i8* %65, i64 %67
1260 // %uglygep161 = getelementptr i8* %uglygep160, i64 -1024
1261
1262 // Skip constant shift instruction which may be generated by Splitting GEPs.
1263 if (FirstOffsetDef && FirstOffsetDef->isShift() &&
Craig Topper66059c92015-11-18 07:07:59 +00001264 isa<ConstantInt>(FirstOffsetDef->getOperand(1)))
Lawrence Hucac0b892015-09-23 19:25:30 +00001265 FirstOffsetDef = dyn_cast<Instruction>(FirstOffsetDef->getOperand(0));
1266
1267 // Give up if FirstOffsetDef is an Add or Sub with constant.
1268 // Because it may not profitable at all due to constant folding.
1269 if (FirstOffsetDef)
1270 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FirstOffsetDef)) {
1271 unsigned opc = BO->getOpcode();
1272 if ((opc == Instruction::Add || opc == Instruction::Sub) &&
Craig Topper66059c92015-11-18 07:07:59 +00001273 (isa<ConstantInt>(BO->getOperand(0)) ||
1274 isa<ConstantInt>(BO->getOperand(1))))
Lawrence Hucac0b892015-09-23 19:25:30 +00001275 return false;
1276 }
1277 return true;
1278}
1279
1280bool SeparateConstOffsetFromGEP::hasMoreThanOneUseInLoop(Value *V, Loop *L) {
1281 int UsesInLoop = 0;
1282 for (User *U : V->users()) {
1283 if (Instruction *User = dyn_cast<Instruction>(U))
1284 if (L->contains(User))
1285 if (++UsesInLoop > 1)
1286 return true;
1287 }
1288 return false;
1289}
1290
1291void SeparateConstOffsetFromGEP::swapGEPOperand(GetElementPtrInst *First,
1292 GetElementPtrInst *Second) {
1293 Value *Offset1 = First->getOperand(1);
1294 Value *Offset2 = Second->getOperand(1);
1295 First->setOperand(1, Offset2);
1296 Second->setOperand(1, Offset1);
1297
1298 // We changed p+o+c to p+c+o, p+c may not be inbound anymore.
1299 const DataLayout &DAL = First->getModule()->getDataLayout();
Elena Demikhovsky945b7e52018-02-14 06:58:08 +00001300 APInt Offset(DAL.getIndexSizeInBits(
Lawrence Hucac0b892015-09-23 19:25:30 +00001301 cast<PointerType>(First->getType())->getAddressSpace()),
1302 0);
1303 Value *NewBase =
1304 First->stripAndAccumulateInBoundsConstantOffsets(DAL, Offset);
1305 uint64_t ObjectSize;
1306 if (!getObjectSize(NewBase, ObjectSize, DAL, TLI) ||
1307 Offset.ugt(ObjectSize)) {
1308 First->setIsInBounds(false);
1309 Second->setIsInBounds(false);
1310 } else
1311 First->setIsInBounds(true);
1312}