blob: 4a96e0ddca1676ac98a82f624b3daa3ef422bea5 [file] [log] [blame]
Eugene Zelenko5adb96c2017-10-26 00:55:39 +00001//===- SeparateConstOffsetFromGEP.cpp -------------------------------------===//
Eli Benderskya108a652014-05-01 18:38:36 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Loop unrolling may create many similar GEPs for array accesses.
11// e.g., a 2-level loop
12//
13// float a[32][32]; // global variable
14//
15// for (int i = 0; i < 2; ++i) {
16// for (int j = 0; j < 2; ++j) {
17// ...
18// ... = a[x + i][y + j];
19// ...
20// }
21// }
22//
23// will probably be unrolled to:
24//
25// gep %a, 0, %x, %y; load
26// gep %a, 0, %x, %y + 1; load
27// gep %a, 0, %x + 1, %y; load
28// gep %a, 0, %x + 1, %y + 1; load
29//
30// LLVM's GVN does not use partial redundancy elimination yet, and is thus
31// unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs
32// significant slowdown in targets with limited addressing modes. For instance,
33// because the PTX target does not support the reg+reg addressing mode, the
34// NVPTX backend emits PTX code that literally computes the pointer address of
35// each GEP, wasting tons of registers. It emits the following PTX for the
36// first load and similar PTX for other loads.
37//
38// mov.u32 %r1, %x;
39// mov.u32 %r2, %y;
40// mul.wide.u32 %rl2, %r1, 128;
41// mov.u64 %rl3, a;
42// add.s64 %rl4, %rl3, %rl2;
43// mul.wide.u32 %rl5, %r2, 4;
44// add.s64 %rl6, %rl4, %rl5;
45// ld.global.f32 %f1, [%rl6];
46//
47// To reduce the register pressure, the optimization implemented in this file
48// merges the common part of a group of GEPs, so we can compute each pointer
49// address by adding a simple offset to the common part, saving many registers.
50//
51// It works by splitting each GEP into a variadic base and a constant offset.
52// The variadic base can be computed once and reused by multiple GEPs, and the
53// constant offsets can be nicely folded into the reg+immediate addressing mode
54// (supported by most targets) without using any extra register.
55//
56// For instance, we transform the four GEPs and four loads in the above example
57// into:
58//
59// base = gep a, 0, x, y
60// load base
61// laod base + 1 * sizeof(float)
62// load base + 32 * sizeof(float)
63// load base + 33 * sizeof(float)
64//
65// Given the transformed IR, a backend that supports the reg+immediate
66// addressing mode can easily fold the pointer arithmetics into the loads. For
67// example, the NVPTX backend can easily fold the pointer arithmetics into the
68// ld.global.f32 instructions, and the resultant PTX uses much fewer registers.
69//
70// mov.u32 %r1, %tid.x;
71// mov.u32 %r2, %tid.y;
72// mul.wide.u32 %rl2, %r1, 128;
73// mov.u64 %rl3, a;
74// add.s64 %rl4, %rl3, %rl2;
75// mul.wide.u32 %rl5, %r2, 4;
76// add.s64 %rl6, %rl4, %rl5;
77// ld.global.f32 %f1, [%rl6]; // so far the same as unoptimized PTX
78// ld.global.f32 %f2, [%rl6+4]; // much better
79// ld.global.f32 %f3, [%rl6+128]; // much better
80// ld.global.f32 %f4, [%rl6+132]; // much better
81//
Hao Liu1d2a0612014-11-19 06:24:44 +000082// Another improvement enabled by the LowerGEP flag is to lower a GEP with
83// multiple indices to either multiple GEPs with a single index or arithmetic
84// operations (depending on whether the target uses alias analysis in codegen).
85// Such transformation can have following benefits:
86// (1) It can always extract constants in the indices of structure type.
87// (2) After such Lowering, there are more optimization opportunities such as
88// CSE, LICM and CGP.
89//
90// E.g. The following GEPs have multiple indices:
91// BB1:
92// %p = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 3
93// load %p
94// ...
95// BB2:
96// %p2 = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 2
97// load %p2
98// ...
99//
Haicheng Wu5b106ef2017-12-19 18:49:21 +0000100// We can not do CSE to the common part related to index "i64 %i". Lowering
Hao Liu1d2a0612014-11-19 06:24:44 +0000101// GEPs can achieve such goals.
102// If the target does not use alias analysis in codegen, this pass will
103// lower a GEP with multiple indices into arithmetic operations:
104// BB1:
105// %1 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity
106// %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity
107// %3 = add i64 %1, %2 ; CSE opportunity
108// %4 = mul i64 %j1, length_of_struct
109// %5 = add i64 %3, %4
110// %6 = add i64 %3, struct_field_3 ; Constant offset
111// %p = inttoptr i64 %6 to i32*
112// load %p
113// ...
114// BB2:
115// %7 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity
116// %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity
117// %9 = add i64 %7, %8 ; CSE opportunity
118// %10 = mul i64 %j2, length_of_struct
119// %11 = add i64 %9, %10
120// %12 = add i64 %11, struct_field_2 ; Constant offset
121// %p = inttoptr i64 %12 to i32*
122// load %p2
123// ...
124//
125// If the target uses alias analysis in codegen, this pass will lower a GEP
126// with multiple indices into multiple GEPs with a single index:
127// BB1:
128// %1 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity
129// %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity
130// %3 = getelementptr i8* %1, i64 %2 ; CSE opportunity
131// %4 = mul i64 %j1, length_of_struct
132// %5 = getelementptr i8* %3, i64 %4
133// %6 = getelementptr i8* %5, struct_field_3 ; Constant offset
134// %p = bitcast i8* %6 to i32*
135// load %p
136// ...
137// BB2:
138// %7 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity
139// %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity
140// %9 = getelementptr i8* %7, i64 %8 ; CSE opportunity
141// %10 = mul i64 %j2, length_of_struct
142// %11 = getelementptr i8* %9, i64 %10
143// %12 = getelementptr i8* %11, struct_field_2 ; Constant offset
144// %p2 = bitcast i8* %12 to i32*
145// load %p2
146// ...
147//
148// Lowering GEPs can also benefit other passes such as LICM and CGP.
149// LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple
150// indices if one of the index is variant. If we lower such GEP into invariant
151// parts and variant parts, LICM can hoist/sink those invariant parts.
152// CGP (CodeGen Prepare) tries to sink address calculations that match the
153// target's addressing modes. A GEP with multiple indices may not match and will
154// not be sunk. If we lower such GEP into smaller parts, CGP may sink some of
155// them. So we end up with a better addressing mode.
156//
Eli Benderskya108a652014-05-01 18:38:36 +0000157//===----------------------------------------------------------------------===//
158
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000159#include "llvm/ADT/APInt.h"
160#include "llvm/ADT/DenseMap.h"
161#include "llvm/ADT/DepthFirstIterator.h"
162#include "llvm/ADT/SmallVector.h"
Lawrence Hucac0b892015-09-23 19:25:30 +0000163#include "llvm/Analysis/LoopInfo.h"
164#include "llvm/Analysis/MemoryBuiltins.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +0000165#include "llvm/Analysis/ScalarEvolution.h"
Lawrence Hucac0b892015-09-23 19:25:30 +0000166#include "llvm/Analysis/TargetLibraryInfo.h"
Eli Benderskya108a652014-05-01 18:38:36 +0000167#include "llvm/Analysis/TargetTransformInfo.h"
168#include "llvm/Analysis/ValueTracking.h"
David Blaikieb3bde2e2017-11-17 01:07:10 +0000169#include "llvm/CodeGen/TargetSubtargetInfo.h"
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000170#include "llvm/IR/BasicBlock.h"
171#include "llvm/IR/Constant.h"
Eli Benderskya108a652014-05-01 18:38:36 +0000172#include "llvm/IR/Constants.h"
173#include "llvm/IR/DataLayout.h"
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000174#include "llvm/IR/DerivedTypes.h"
Jingyue Wuca321902015-05-14 23:53:19 +0000175#include "llvm/IR/Dominators.h"
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000176#include "llvm/IR/Function.h"
177#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +0000178#include "llvm/IR/IRBuilder.h"
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000179#include "llvm/IR/Instruction.h"
Eli Benderskya108a652014-05-01 18:38:36 +0000180#include "llvm/IR/Instructions.h"
Eli Benderskya108a652014-05-01 18:38:36 +0000181#include "llvm/IR/Module.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +0000182#include "llvm/IR/PatternMatch.h"
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000183#include "llvm/IR/Type.h"
184#include "llvm/IR/User.h"
185#include "llvm/IR/Value.h"
186#include "llvm/Pass.h"
187#include "llvm/Support/Casting.h"
Eli Benderskya108a652014-05-01 18:38:36 +0000188#include "llvm/Support/CommandLine.h"
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000189#include "llvm/Support/ErrorHandling.h"
Eli Benderskya108a652014-05-01 18:38:36 +0000190#include "llvm/Support/raw_ostream.h"
Hao Liu1d2a0612014-11-19 06:24:44 +0000191#include "llvm/Target/TargetMachine.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +0000192#include "llvm/Transforms/Scalar.h"
193#include "llvm/Transforms/Utils/Local.h"
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000194#include <cassert>
195#include <cstdint>
196#include <string>
Eli Benderskya108a652014-05-01 18:38:36 +0000197
198using namespace llvm;
Jingyue Wu1238f342015-08-14 02:02:05 +0000199using namespace llvm::PatternMatch;
Eli Benderskya108a652014-05-01 18:38:36 +0000200
201static cl::opt<bool> DisableSeparateConstOffsetFromGEP(
202 "disable-separate-const-offset-from-gep", cl::init(false),
203 cl::desc("Do not separate the constant offset from a GEP instruction"),
204 cl::Hidden);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000205
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000206// Setting this flag may emit false positives when the input module already
207// contains dead instructions. Therefore, we set it only in unit tests that are
208// free of dead code.
209static cl::opt<bool>
210 VerifyNoDeadCode("reassociate-geps-verify-no-dead-code", cl::init(false),
211 cl::desc("Verify this pass produces no dead code"),
212 cl::Hidden);
Eli Benderskya108a652014-05-01 18:38:36 +0000213
214namespace {
215
216/// \brief A helper class for separating a constant offset from a GEP index.
217///
218/// In real programs, a GEP index may be more complicated than a simple addition
219/// of something and a constant integer which can be trivially splitted. For
220/// example, to split ((a << 3) | 5) + b, we need to search deeper for the
Alp Tokerbeaca192014-05-15 01:52:21 +0000221/// constant offset, so that we can separate the index to (a << 3) + b and 5.
Eli Benderskya108a652014-05-01 18:38:36 +0000222///
223/// Therefore, this class looks into the expression that computes a given GEP
224/// index, and tries to find a constant integer that can be hoisted to the
225/// outermost level of the expression as an addition. Not every constant in an
226/// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a +
227/// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
228/// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
229class ConstantOffsetExtractor {
Jingyue Wuca321902015-05-14 23:53:19 +0000230public:
Hao Liu1d2a0612014-11-19 06:24:44 +0000231 /// Extracts a constant offset from the given GEP index. It returns the
Eli Benderskya108a652014-05-01 18:38:36 +0000232 /// new index representing the remainder (equal to the original index minus
Hao Liu1d2a0612014-11-19 06:24:44 +0000233 /// the constant offset), or nullptr if we cannot extract a constant offset.
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000234 /// \p Idx The given GEP index
235 /// \p GEP The given GEP
236 /// \p UserChainTail Outputs the tail of UserChain so that we can
237 /// garbage-collect unused instructions in UserChain.
Jingyue Wuca321902015-05-14 23:53:19 +0000238 static Value *Extract(Value *Idx, GetElementPtrInst *GEP,
239 User *&UserChainTail, const DominatorTree *DT);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000240
Hao Liu1d2a0612014-11-19 06:24:44 +0000241 /// Looks for a constant offset from the given GEP index without extracting
242 /// it. It returns the numeric value of the extracted constant offset (0 if
243 /// failed). The meaning of the arguments are the same as Extract.
Jingyue Wuca321902015-05-14 23:53:19 +0000244 static int64_t Find(Value *Idx, GetElementPtrInst *GEP,
245 const DominatorTree *DT);
Eli Benderskya108a652014-05-01 18:38:36 +0000246
Jingyue Wuca321902015-05-14 23:53:19 +0000247private:
248 ConstantOffsetExtractor(Instruction *InsertionPt, const DominatorTree *DT)
249 : IP(InsertionPt), DL(InsertionPt->getModule()->getDataLayout()), DT(DT) {
250 }
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000251
Jingyue Wu84465472014-06-05 22:07:33 +0000252 /// Searches the expression that computes V for a non-zero constant C s.t.
253 /// V can be reassociated into the form V' + C. If the searching is
254 /// successful, returns C and update UserChain as a def-use chain from C to V;
255 /// otherwise, UserChain is empty.
Eli Benderskya108a652014-05-01 18:38:36 +0000256 ///
Jingyue Wu84465472014-06-05 22:07:33 +0000257 /// \p V The given expression
258 /// \p SignExtended Whether V will be sign-extended in the computation of the
259 /// GEP index
260 /// \p ZeroExtended Whether V will be zero-extended in the computation of the
261 /// GEP index
262 /// \p NonNegative Whether V is guaranteed to be non-negative. For example,
263 /// an index of an inbounds GEP is guaranteed to be
264 /// non-negative. Levaraging this, we can better split
265 /// inbounds GEPs.
266 APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000267
Jingyue Wu84465472014-06-05 22:07:33 +0000268 /// A helper function to look into both operands of a binary operator.
269 APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended,
270 bool ZeroExtended);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000271
Jingyue Wu84465472014-06-05 22:07:33 +0000272 /// After finding the constant offset C from the GEP index I, we build a new
273 /// index I' s.t. I' + C = I. This function builds and returns the new
274 /// index I' according to UserChain produced by function "find".
275 ///
276 /// The building conceptually takes two steps:
277 /// 1) iteratively distribute s/zext towards the leaves of the expression tree
278 /// that computes I
279 /// 2) reassociate the expression tree to the form I' + C.
280 ///
281 /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute
282 /// sext to a, b and 5 so that we have
283 /// sext(a) + (sext(b) + 5).
284 /// Then, we reassociate it to
285 /// (sext(a) + sext(b)) + 5.
286 /// Given this form, we know I' is sext(a) + sext(b).
287 Value *rebuildWithoutConstOffset();
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000288
Jingyue Wu84465472014-06-05 22:07:33 +0000289 /// After the first step of rebuilding the GEP index without the constant
290 /// offset, distribute s/zext to the operands of all operators in UserChain.
291 /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) =>
292 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))).
293 ///
294 /// The function also updates UserChain to point to new subexpressions after
295 /// distributing s/zext. e.g., the old UserChain of the above example is
296 /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)),
297 /// and the new UserChain is
298 /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) ->
299 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))
300 ///
301 /// \p ChainIndex The index to UserChain. ChainIndex is initially
302 /// UserChain.size() - 1, and is decremented during
303 /// the recursion.
304 Value *distributeExtsAndCloneChain(unsigned ChainIndex);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000305
Jingyue Wu84465472014-06-05 22:07:33 +0000306 /// Reassociates the GEP index to the form I' + C and returns I'.
307 Value *removeConstOffset(unsigned ChainIndex);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000308
Jingyue Wu84465472014-06-05 22:07:33 +0000309 /// A helper function to apply ExtInsts, a list of s/zext, to value V.
310 /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function
311 /// returns "sext i32 (zext i16 V to i32) to i64".
312 Value *applyExts(Value *V);
Eli Benderskya108a652014-05-01 18:38:36 +0000313
Jingyue Wu84465472014-06-05 22:07:33 +0000314 /// A helper function that returns whether we can trace into the operands
315 /// of binary operator BO for a constant offset.
316 ///
317 /// \p SignExtended Whether BO is surrounded by sext
318 /// \p ZeroExtended Whether BO is surrounded by zext
319 /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound
320 /// array index.
321 bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO,
322 bool NonNegative);
Eli Benderskya108a652014-05-01 18:38:36 +0000323
324 /// The path from the constant offset to the old GEP index. e.g., if the GEP
325 /// index is "a * b + (c + 5)". After running function find, UserChain[0] will
326 /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
327 /// UserChain[2] will be the entire expression "a * b + (c + 5)".
328 ///
Jingyue Wu84465472014-06-05 22:07:33 +0000329 /// This path helps to rebuild the new GEP index.
Eli Benderskya108a652014-05-01 18:38:36 +0000330 SmallVector<User *, 8> UserChain;
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000331
Jingyue Wu84465472014-06-05 22:07:33 +0000332 /// A data structure used in rebuildWithoutConstOffset. Contains all
333 /// sext/zext instructions along UserChain.
334 SmallVector<CastInst *, 16> ExtInsts;
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000335
336 /// Insertion position of cloned instructions.
337 Instruction *IP;
338
Jingyue Wuca321902015-05-14 23:53:19 +0000339 const DataLayout &DL;
340 const DominatorTree *DT;
Eli Benderskya108a652014-05-01 18:38:36 +0000341};
342
343/// \brief A pass that tries to split every GEP in the function into a variadic
Alp Tokerbeaca192014-05-15 01:52:21 +0000344/// base and a constant offset. It is a FunctionPass because searching for the
Eli Benderskya108a652014-05-01 18:38:36 +0000345/// constant offset may inspect other basic blocks.
346class SeparateConstOffsetFromGEP : public FunctionPass {
Jingyue Wuca321902015-05-14 23:53:19 +0000347public:
Eli Benderskya108a652014-05-01 18:38:36 +0000348 static char ID;
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000349
Hao Liu1d2a0612014-11-19 06:24:44 +0000350 SeparateConstOffsetFromGEP(const TargetMachine *TM = nullptr,
351 bool LowerGEP = false)
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000352 : FunctionPass(ID), TM(TM), LowerGEP(LowerGEP) {
Eli Benderskya108a652014-05-01 18:38:36 +0000353 initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry());
354 }
355
356 void getAnalysisUsage(AnalysisUsage &AU) const override {
Jingyue Wuca321902015-05-14 23:53:19 +0000357 AU.addRequired<DominatorTreeWrapperPass>();
Chandler Carruth2f1fd162015-08-17 02:08:17 +0000358 AU.addRequired<ScalarEvolutionWrapperPass>();
Chandler Carruth705b1852015-01-31 03:43:40 +0000359 AU.addRequired<TargetTransformInfoWrapperPass>();
Lawrence Hucac0b892015-09-23 19:25:30 +0000360 AU.addRequired<LoopInfoWrapperPass>();
Jingyue Wu6e091c82015-02-01 02:33:02 +0000361 AU.setPreservesCFG();
Lawrence Hucac0b892015-09-23 19:25:30 +0000362 AU.addRequired<TargetLibraryInfoWrapperPass>();
Eli Benderskya108a652014-05-01 18:38:36 +0000363 }
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000364
Jingyue Wuca321902015-05-14 23:53:19 +0000365 bool doInitialization(Module &M) override {
366 DL = &M.getDataLayout();
367 return false;
368 }
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000369
Eli Benderskya108a652014-05-01 18:38:36 +0000370 bool runOnFunction(Function &F) override;
371
Jingyue Wuca321902015-05-14 23:53:19 +0000372private:
Eli Benderskya108a652014-05-01 18:38:36 +0000373 /// Tries to split the given GEP into a variadic base and a constant offset,
374 /// and returns true if the splitting succeeds.
375 bool splitGEP(GetElementPtrInst *GEP);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000376
Hao Liu1d2a0612014-11-19 06:24:44 +0000377 /// Lower a GEP with multiple indices into multiple GEPs with a single index.
378 /// Function splitGEP already split the original GEP into a variadic part and
379 /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
380 /// variadic part into a set of GEPs with a single index and applies
381 /// AccumulativeByteOffset to it.
382 /// \p Variadic The variadic part of the original GEP.
383 /// \p AccumulativeByteOffset The constant offset.
384 void lowerToSingleIndexGEPs(GetElementPtrInst *Variadic,
385 int64_t AccumulativeByteOffset);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000386
Hao Liu1d2a0612014-11-19 06:24:44 +0000387 /// Lower a GEP with multiple indices into ptrtoint+arithmetics+inttoptr form.
388 /// Function splitGEP already split the original GEP into a variadic part and
389 /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
390 /// variadic part into a set of arithmetic operations and applies
391 /// AccumulativeByteOffset to it.
392 /// \p Variadic The variadic part of the original GEP.
393 /// \p AccumulativeByteOffset The constant offset.
394 void lowerToArithmetics(GetElementPtrInst *Variadic,
395 int64_t AccumulativeByteOffset);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000396
Hao Liu1d2a0612014-11-19 06:24:44 +0000397 /// Finds the constant offset within each index and accumulates them. If
398 /// LowerGEP is true, it finds in indices of both sequential and structure
399 /// types, otherwise it only finds in sequential indices. The output
400 /// NeedsExtraction indicates whether we successfully find a non-zero constant
401 /// offset.
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000402 int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000403
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000404 /// Canonicalize array indices to pointer-size integers. This helps to
405 /// simplify the logic of splitting a GEP. For example, if a + b is a
406 /// pointer-size integer, we have
407 /// gep base, a + b = gep (gep base, a), b
408 /// However, this equality may not hold if the size of a + b is smaller than
409 /// the pointer size, because LLVM conceptually sign-extends GEP indices to
410 /// pointer size before computing the address
411 /// (http://llvm.org/docs/LangRef.html#id181).
412 ///
413 /// This canonicalization is very likely already done in clang and
414 /// instcombine. Therefore, the program will probably remain the same.
415 ///
Jingyue Wu5c7b1ae2014-06-08 23:49:34 +0000416 /// Returns true if the module changes.
417 ///
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000418 /// Verified in @i32_add in split-gep.ll
419 bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000420
Jingyue Wu1238f342015-08-14 02:02:05 +0000421 /// Optimize sext(a)+sext(b) to sext(a+b) when a+b can't sign overflow.
422 /// SeparateConstOffsetFromGEP distributes a sext to leaves before extracting
423 /// the constant offset. After extraction, it becomes desirable to reunion the
424 /// distributed sexts. For example,
425 ///
426 /// &a[sext(i +nsw (j +nsw 5)]
427 /// => distribute &a[sext(i) +nsw (sext(j) +nsw 5)]
428 /// => constant extraction &a[sext(i) + sext(j)] + 5
429 /// => reunion &a[sext(i +nsw j)] + 5
430 bool reuniteExts(Function &F);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000431
Jingyue Wu1238f342015-08-14 02:02:05 +0000432 /// A helper that reunites sexts in an instruction.
433 bool reuniteExts(Instruction *I);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000434
Jingyue Wu1238f342015-08-14 02:02:05 +0000435 /// Find the closest dominator of <Dominatee> that is equivalent to <Key>.
436 Instruction *findClosestMatchingDominator(const SCEV *Key,
437 Instruction *Dominatee);
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000438 /// Verify F is free of dead code.
439 void verifyNoDeadCode(Function &F);
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000440
Lawrence Hucac0b892015-09-23 19:25:30 +0000441 bool hasMoreThanOneUseInLoop(Value *v, Loop *L);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000442
Lawrence Hucac0b892015-09-23 19:25:30 +0000443 // Swap the index operand of two GEP.
444 void swapGEPOperand(GetElementPtrInst *First, GetElementPtrInst *Second);
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000445
Lawrence Hucac0b892015-09-23 19:25:30 +0000446 // Check if it is safe to swap operand of two GEP.
447 bool isLegalToSwapOperand(GetElementPtrInst *First, GetElementPtrInst *Second,
448 Loop *CurLoop);
449
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000450 const DataLayout *DL = nullptr;
451 DominatorTree *DT = nullptr;
Jingyue Wu1238f342015-08-14 02:02:05 +0000452 ScalarEvolution *SE;
Hao Liu1d2a0612014-11-19 06:24:44 +0000453 const TargetMachine *TM;
Lawrence Hucac0b892015-09-23 19:25:30 +0000454
455 LoopInfo *LI;
456 TargetLibraryInfo *TLI;
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000457
Hao Liu1d2a0612014-11-19 06:24:44 +0000458 /// Whether to lower a GEP with multiple indices into arithmetic operations or
459 /// multiple GEPs with a single index.
460 bool LowerGEP;
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000461
Jingyue Wu1238f342015-08-14 02:02:05 +0000462 DenseMap<const SCEV *, SmallVector<Instruction *, 2>> DominatingExprs;
Eli Benderskya108a652014-05-01 18:38:36 +0000463};
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000464
465} // end anonymous namespace
Eli Benderskya108a652014-05-01 18:38:36 +0000466
467char SeparateConstOffsetFromGEP::ID = 0;
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000468
Eli Benderskya108a652014-05-01 18:38:36 +0000469INITIALIZE_PASS_BEGIN(
470 SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
471 "Split GEPs to a variadic base and a constant offset for better CSE", false,
472 false)
Jingyue Wuca321902015-05-14 23:53:19 +0000473INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Chandler Carruth2f1fd162015-08-17 02:08:17 +0000474INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
Chandler Carruth705b1852015-01-31 03:43:40 +0000475INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
Lawrence Hucac0b892015-09-23 19:25:30 +0000476INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
477INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
Eli Benderskya108a652014-05-01 18:38:36 +0000478INITIALIZE_PASS_END(
479 SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
480 "Split GEPs to a variadic base and a constant offset for better CSE", false,
481 false)
482
Hao Liu1d2a0612014-11-19 06:24:44 +0000483FunctionPass *
484llvm::createSeparateConstOffsetFromGEPPass(const TargetMachine *TM,
485 bool LowerGEP) {
486 return new SeparateConstOffsetFromGEP(TM, LowerGEP);
Eli Benderskya108a652014-05-01 18:38:36 +0000487}
488
Jingyue Wu84465472014-06-05 22:07:33 +0000489bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended,
490 bool ZeroExtended,
491 BinaryOperator *BO,
492 bool NonNegative) {
493 // We only consider ADD, SUB and OR, because a non-zero constant found in
494 // expressions composed of these operations can be easily hoisted as a
495 // constant offset by reassociation.
496 if (BO->getOpcode() != Instruction::Add &&
497 BO->getOpcode() != Instruction::Sub &&
498 BO->getOpcode() != Instruction::Or) {
499 return false;
500 }
501
502 Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
503 // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS
504 // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS).
Jingyue Wuca321902015-05-14 23:53:19 +0000505 if (BO->getOpcode() == Instruction::Or &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000506 !haveNoCommonBitsSet(LHS, RHS, DL, nullptr, BO, DT))
Jingyue Wu84465472014-06-05 22:07:33 +0000507 return false;
508
509 // In addition, tracing into BO requires that its surrounding s/zext (if
510 // any) is distributable to both operands.
511 //
512 // Suppose BO = A op B.
513 // SignExtended | ZeroExtended | Distributable?
514 // --------------+--------------+----------------------------------
515 // 0 | 0 | true because no s/zext exists
516 // 0 | 1 | zext(BO) == zext(A) op zext(B)
517 // 1 | 0 | sext(BO) == sext(A) op sext(B)
518 // 1 | 1 | zext(sext(BO)) ==
519 // | | zext(sext(A)) op zext(sext(B))
Jingyue Wu01ceeb12014-06-08 20:19:38 +0000520 if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) {
Jingyue Wu84465472014-06-05 22:07:33 +0000521 // If a + b >= 0 and (a >= 0 or b >= 0), then
Jingyue Wu01ceeb12014-06-08 20:19:38 +0000522 // sext(a + b) = sext(a) + sext(b)
Jingyue Wu84465472014-06-05 22:07:33 +0000523 // even if the addition is not marked nsw.
524 //
525 // Leveraging this invarient, we can trace into an sext'ed inbound GEP
526 // index if the constant offset is non-negative.
527 //
528 // Verified in @sext_add in split-gep.ll.
529 if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) {
530 if (!ConstLHS->isNegative())
531 return true;
532 }
533 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) {
534 if (!ConstRHS->isNegative())
535 return true;
536 }
537 }
Jingyue Wu80a738d2014-05-27 18:00:00 +0000538
539 // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
540 // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
541 if (BO->getOpcode() == Instruction::Add ||
542 BO->getOpcode() == Instruction::Sub) {
Jingyue Wu84465472014-06-05 22:07:33 +0000543 if (SignExtended && !BO->hasNoSignedWrap())
544 return false;
545 if (ZeroExtended && !BO->hasNoUnsignedWrap())
546 return false;
Jingyue Wu80a738d2014-05-27 18:00:00 +0000547 }
548
Jingyue Wu84465472014-06-05 22:07:33 +0000549 return true;
Jingyue Wu80a738d2014-05-27 18:00:00 +0000550}
551
Jingyue Wu84465472014-06-05 22:07:33 +0000552APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO,
553 bool SignExtended,
554 bool ZeroExtended) {
555 // BO being non-negative does not shed light on whether its operands are
556 // non-negative. Clear the NonNegative flag here.
557 APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended,
558 /* NonNegative */ false);
Eli Benderskya108a652014-05-01 18:38:36 +0000559 // If we found a constant offset in the left operand, stop and return that.
560 // This shortcut might cause us to miss opportunities of combining the
561 // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
562 // However, such cases are probably already handled by -instcombine,
563 // given this pass runs after the standard optimizations.
564 if (ConstantOffset != 0) return ConstantOffset;
Jingyue Wu84465472014-06-05 22:07:33 +0000565 ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended,
566 /* NonNegative */ false);
Eli Benderskya108a652014-05-01 18:38:36 +0000567 // If U is a sub operator, negate the constant offset found in the right
568 // operand.
Jingyue Wu84465472014-06-05 22:07:33 +0000569 if (BO->getOpcode() == Instruction::Sub)
570 ConstantOffset = -ConstantOffset;
571 return ConstantOffset;
Eli Benderskya108a652014-05-01 18:38:36 +0000572}
573
Jingyue Wu84465472014-06-05 22:07:33 +0000574APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended,
575 bool ZeroExtended, bool NonNegative) {
576 // TODO(jingyue): We could trace into integer/pointer casts, such as
Eli Benderskya108a652014-05-01 18:38:36 +0000577 // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
578 // integers because it gives good enough results for our benchmarks.
Jingyue Wu84465472014-06-05 22:07:33 +0000579 unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
Eli Benderskya108a652014-05-01 18:38:36 +0000580
Jingyue Wu84465472014-06-05 22:07:33 +0000581 // We cannot do much with Values that are not a User, such as an Argument.
Eli Benderskya108a652014-05-01 18:38:36 +0000582 User *U = dyn_cast<User>(V);
Jingyue Wu84465472014-06-05 22:07:33 +0000583 if (U == nullptr) return APInt(BitWidth, 0);
Eli Benderskya108a652014-05-01 18:38:36 +0000584
Jingyue Wu84465472014-06-05 22:07:33 +0000585 APInt ConstantOffset(BitWidth, 0);
586 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Eli Benderskya108a652014-05-01 18:38:36 +0000587 // Hooray, we found it!
Jingyue Wu84465472014-06-05 22:07:33 +0000588 ConstantOffset = CI->getValue();
589 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
590 // Trace into subexpressions for more hoisting opportunities.
Jingyue Wuca321902015-05-14 23:53:19 +0000591 if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative))
Jingyue Wu84465472014-06-05 22:07:33 +0000592 ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended);
Jingyue Wu84465472014-06-05 22:07:33 +0000593 } else if (isa<SExtInst>(V)) {
594 ConstantOffset = find(U->getOperand(0), /* SignExtended */ true,
595 ZeroExtended, NonNegative).sext(BitWidth);
596 } else if (isa<ZExtInst>(V)) {
597 // As an optimization, we can clear the SignExtended flag because
598 // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll.
599 //
600 // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0.
Jingyue Wu84465472014-06-05 22:07:33 +0000601 ConstantOffset =
602 find(U->getOperand(0), /* SignExtended */ false,
603 /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth);
Eli Benderskya108a652014-05-01 18:38:36 +0000604 }
Jingyue Wu84465472014-06-05 22:07:33 +0000605
606 // If we found a non-zero constant offset, add it to the path for
607 // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't
608 // help this optimization.
Eli Benderskya108a652014-05-01 18:38:36 +0000609 if (ConstantOffset != 0)
610 UserChain.push_back(U);
611 return ConstantOffset;
612}
613
Jingyue Wu84465472014-06-05 22:07:33 +0000614Value *ConstantOffsetExtractor::applyExts(Value *V) {
615 Value *Current = V;
616 // ExtInsts is built in the use-def order. Therefore, we apply them to V
617 // in the reversed order.
618 for (auto I = ExtInsts.rbegin(), E = ExtInsts.rend(); I != E; ++I) {
619 if (Constant *C = dyn_cast<Constant>(Current)) {
620 // If Current is a constant, apply s/zext using ConstantExpr::getCast.
621 // ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt.
622 Current = ConstantExpr::getCast((*I)->getOpcode(), C, (*I)->getType());
623 } else {
624 Instruction *Ext = (*I)->clone();
625 Ext->setOperand(0, Current);
626 Ext->insertBefore(IP);
627 Current = Ext;
628 }
Eli Benderskya108a652014-05-01 18:38:36 +0000629 }
Jingyue Wu84465472014-06-05 22:07:33 +0000630 return Current;
Eli Benderskya108a652014-05-01 18:38:36 +0000631}
632
Jingyue Wu84465472014-06-05 22:07:33 +0000633Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() {
634 distributeExtsAndCloneChain(UserChain.size() - 1);
635 // Remove all nullptrs (used to be s/zext) from UserChain.
636 unsigned NewSize = 0;
Benjamin Kramer135f7352016-06-26 12:28:59 +0000637 for (User *I : UserChain) {
638 if (I != nullptr) {
639 UserChain[NewSize] = I;
Jingyue Wu84465472014-06-05 22:07:33 +0000640 NewSize++;
641 }
Eli Benderskya108a652014-05-01 18:38:36 +0000642 }
Jingyue Wu84465472014-06-05 22:07:33 +0000643 UserChain.resize(NewSize);
644 return removeConstOffset(UserChain.size() - 1);
Eli Benderskya108a652014-05-01 18:38:36 +0000645}
646
Jingyue Wu84465472014-06-05 22:07:33 +0000647Value *
648ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) {
649 User *U = UserChain[ChainIndex];
650 if (ChainIndex == 0) {
651 assert(isa<ConstantInt>(U));
652 // If U is a ConstantInt, applyExts will return a ConstantInt as well.
653 return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U));
654 }
Eli Benderskya108a652014-05-01 18:38:36 +0000655
Jingyue Wu84465472014-06-05 22:07:33 +0000656 if (CastInst *Cast = dyn_cast<CastInst>(U)) {
657 assert((isa<SExtInst>(Cast) || isa<ZExtInst>(Cast)) &&
658 "We only traced into two types of CastInst: sext and zext");
659 ExtInsts.push_back(Cast);
660 UserChain[ChainIndex] = nullptr;
661 return distributeExtsAndCloneChain(ChainIndex - 1);
662 }
663
664 // Function find only trace into BinaryOperator and CastInst.
665 BinaryOperator *BO = cast<BinaryOperator>(U);
666 // OpNo = which operand of BO is UserChain[ChainIndex - 1]
667 unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
668 Value *TheOther = applyExts(BO->getOperand(1 - OpNo));
669 Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1);
670
671 BinaryOperator *NewBO = nullptr;
672 if (OpNo == 0) {
673 NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther,
674 BO->getName(), IP);
675 } else {
676 NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain,
677 BO->getName(), IP);
678 }
679 return UserChain[ChainIndex] = NewBO;
Eli Benderskya108a652014-05-01 18:38:36 +0000680}
681
Jingyue Wu84465472014-06-05 22:07:33 +0000682Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
683 if (ChainIndex == 0) {
684 assert(isa<ConstantInt>(UserChain[ChainIndex]));
685 return ConstantInt::getNullValue(UserChain[ChainIndex]->getType());
686 }
Eli Benderskya108a652014-05-01 18:38:36 +0000687
Jingyue Wu84465472014-06-05 22:07:33 +0000688 BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]);
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000689 assert(BO->getNumUses() <= 1 &&
690 "distributeExtsAndCloneChain clones each BinaryOperator in "
691 "UserChain, so no one should be used more than "
692 "once");
693
Jingyue Wu84465472014-06-05 22:07:33 +0000694 unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
695 assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]);
696 Value *NextInChain = removeConstOffset(ChainIndex - 1);
697 Value *TheOther = BO->getOperand(1 - OpNo);
698
699 // If NextInChain is 0 and not the LHS of a sub, we can simplify the
700 // sub-expression to be just TheOther.
701 if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) {
702 if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0))
703 return TheOther;
704 }
705
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000706 BinaryOperator::BinaryOps NewOp = BO->getOpcode();
Jingyue Wu84465472014-06-05 22:07:33 +0000707 if (BO->getOpcode() == Instruction::Or) {
708 // Rebuild "or" as "add", because "or" may be invalid for the new
709 // epxression.
710 //
711 // For instance, given
712 // a | (b + 5) where a and b + 5 have no common bits,
713 // we can extract 5 as the constant offset.
714 //
715 // However, reusing the "or" in the new index would give us
716 // (a | b) + 5
717 // which does not equal a | (b + 5).
718 //
719 // Replacing the "or" with "add" is fine, because
720 // a | (b + 5) = a + (b + 5) = (a + b) + 5
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000721 NewOp = Instruction::Add;
Jingyue Wu84465472014-06-05 22:07:33 +0000722 }
723
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000724 BinaryOperator *NewBO;
725 if (OpNo == 0) {
726 NewBO = BinaryOperator::Create(NewOp, NextInChain, TheOther, "", IP);
727 } else {
728 NewBO = BinaryOperator::Create(NewOp, TheOther, NextInChain, "", IP);
729 }
730 NewBO->takeName(BO);
731 return NewBO;
Eli Benderskya108a652014-05-01 18:38:36 +0000732}
733
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000734Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP,
Jingyue Wuca321902015-05-14 23:53:19 +0000735 User *&UserChainTail,
736 const DominatorTree *DT) {
737 ConstantOffsetExtractor Extractor(GEP, DT);
Eli Benderskya108a652014-05-01 18:38:36 +0000738 // Find a non-zero constant offset first.
Jingyue Wu84465472014-06-05 22:07:33 +0000739 APInt ConstantOffset =
740 Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
741 GEP->isInBounds());
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000742 if (ConstantOffset == 0) {
743 UserChainTail = nullptr;
Hao Liu1d2a0612014-11-19 06:24:44 +0000744 return nullptr;
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000745 }
Hao Liu1d2a0612014-11-19 06:24:44 +0000746 // Separates the constant offset from the GEP index.
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000747 Value *IdxWithoutConstOffset = Extractor.rebuildWithoutConstOffset();
748 UserChainTail = Extractor.UserChain.back();
749 return IdxWithoutConstOffset;
Eli Benderskya108a652014-05-01 18:38:36 +0000750}
751
Jingyue Wuca321902015-05-14 23:53:19 +0000752int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP,
753 const DominatorTree *DT) {
Jingyue Wu84465472014-06-05 22:07:33 +0000754 // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
Jingyue Wuca321902015-05-14 23:53:19 +0000755 return ConstantOffsetExtractor(GEP, DT)
Jingyue Wu84465472014-06-05 22:07:33 +0000756 .find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
757 GEP->isInBounds())
758 .getSExtValue();
Eli Benderskya108a652014-05-01 18:38:36 +0000759}
760
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000761bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
762 GetElementPtrInst *GEP) {
763 bool Changed = false;
Jingyue Wuca321902015-05-14 23:53:19 +0000764 Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000765 gep_type_iterator GTI = gep_type_begin(*GEP);
766 for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
767 I != E; ++I, ++GTI) {
768 // Skip struct member indices which must be i32.
Peter Collingbourneab85225b2016-12-02 02:24:42 +0000769 if (GTI.isSequential()) {
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000770 if ((*I)->getType() != IntPtrTy) {
771 *I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP);
772 Changed = true;
773 }
774 }
775 }
776 return Changed;
777}
778
779int64_t
780SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
781 bool &NeedsExtraction) {
Eli Benderskya108a652014-05-01 18:38:36 +0000782 NeedsExtraction = false;
783 int64_t AccumulativeByteOffset = 0;
784 gep_type_iterator GTI = gep_type_begin(*GEP);
785 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
Peter Collingbourneab85225b2016-12-02 02:24:42 +0000786 if (GTI.isSequential()) {
Eli Benderskya108a652014-05-01 18:38:36 +0000787 // Tries to extract a constant offset from this GEP index.
788 int64_t ConstantOffset =
Jingyue Wuca321902015-05-14 23:53:19 +0000789 ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP, DT);
Eli Benderskya108a652014-05-01 18:38:36 +0000790 if (ConstantOffset != 0) {
791 NeedsExtraction = true;
792 // A GEP may have multiple indices. We accumulate the extracted
793 // constant offset to a byte offset, and later offset the remainder of
794 // the original GEP with this byte offset.
795 AccumulativeByteOffset +=
Jingyue Wuca321902015-05-14 23:53:19 +0000796 ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType());
Eli Benderskya108a652014-05-01 18:38:36 +0000797 }
Hao Liu1d2a0612014-11-19 06:24:44 +0000798 } else if (LowerGEP) {
Peter Collingbourneab85225b2016-12-02 02:24:42 +0000799 StructType *StTy = GTI.getStructType();
Hao Liu1d2a0612014-11-19 06:24:44 +0000800 uint64_t Field = cast<ConstantInt>(GEP->getOperand(I))->getZExtValue();
801 // Skip field 0 as the offset is always 0.
802 if (Field != 0) {
803 NeedsExtraction = true;
804 AccumulativeByteOffset +=
Jingyue Wuca321902015-05-14 23:53:19 +0000805 DL->getStructLayout(StTy)->getElementOffset(Field);
Hao Liu1d2a0612014-11-19 06:24:44 +0000806 }
Eli Benderskya108a652014-05-01 18:38:36 +0000807 }
808 }
809 return AccumulativeByteOffset;
810}
811
Hao Liu1d2a0612014-11-19 06:24:44 +0000812void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
813 GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) {
814 IRBuilder<> Builder(Variadic);
Jingyue Wuca321902015-05-14 23:53:19 +0000815 Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
Hao Liu1d2a0612014-11-19 06:24:44 +0000816
817 Type *I8PtrTy =
818 Builder.getInt8PtrTy(Variadic->getType()->getPointerAddressSpace());
819 Value *ResultPtr = Variadic->getOperand(0);
Lawrence Hucac0b892015-09-23 19:25:30 +0000820 Loop *L = LI->getLoopFor(Variadic->getParent());
821 // Check if the base is not loop invariant or used more than once.
822 bool isSwapCandidate =
823 L && L->isLoopInvariant(ResultPtr) &&
824 !hasMoreThanOneUseInLoop(ResultPtr, L);
825 Value *FirstResult = nullptr;
826
Hao Liu1d2a0612014-11-19 06:24:44 +0000827 if (ResultPtr->getType() != I8PtrTy)
828 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
829
830 gep_type_iterator GTI = gep_type_begin(*Variadic);
831 // Create an ugly GEP for each sequential index. We don't create GEPs for
832 // structure indices, as they are accumulated in the constant offset index.
833 for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
Peter Collingbourneab85225b2016-12-02 02:24:42 +0000834 if (GTI.isSequential()) {
Hao Liu1d2a0612014-11-19 06:24:44 +0000835 Value *Idx = Variadic->getOperand(I);
836 // Skip zero indices.
837 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
838 if (CI->isZero())
839 continue;
840
841 APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
Jingyue Wuca321902015-05-14 23:53:19 +0000842 DL->getTypeAllocSize(GTI.getIndexedType()));
Hao Liu1d2a0612014-11-19 06:24:44 +0000843 // Scale the index by element size.
844 if (ElementSize != 1) {
845 if (ElementSize.isPowerOf2()) {
846 Idx = Builder.CreateShl(
847 Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
848 } else {
849 Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
850 }
851 }
852 // Create an ugly GEP with a single index for each index.
David Blaikie93c54442015-04-03 19:41:44 +0000853 ResultPtr =
854 Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Idx, "uglygep");
Lawrence Hucac0b892015-09-23 19:25:30 +0000855 if (FirstResult == nullptr)
856 FirstResult = ResultPtr;
Hao Liu1d2a0612014-11-19 06:24:44 +0000857 }
858 }
859
860 // Create a GEP with the constant offset index.
861 if (AccumulativeByteOffset != 0) {
862 Value *Offset = ConstantInt::get(IntPtrTy, AccumulativeByteOffset);
David Blaikie93c54442015-04-03 19:41:44 +0000863 ResultPtr =
864 Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Offset, "uglygep");
Lawrence Hucac0b892015-09-23 19:25:30 +0000865 } else
866 isSwapCandidate = false;
867
868 // If we created a GEP with constant index, and the base is loop invariant,
869 // then we swap the first one with it, so LICM can move constant GEP out
870 // later.
Lawrence Hu84e6f1d2016-02-19 02:17:07 +0000871 GetElementPtrInst *FirstGEP = dyn_cast_or_null<GetElementPtrInst>(FirstResult);
872 GetElementPtrInst *SecondGEP = dyn_cast_or_null<GetElementPtrInst>(ResultPtr);
Lawrence Hucac0b892015-09-23 19:25:30 +0000873 if (isSwapCandidate && isLegalToSwapOperand(FirstGEP, SecondGEP, L))
874 swapGEPOperand(FirstGEP, SecondGEP);
875
Hao Liu1d2a0612014-11-19 06:24:44 +0000876 if (ResultPtr->getType() != Variadic->getType())
877 ResultPtr = Builder.CreateBitCast(ResultPtr, Variadic->getType());
878
879 Variadic->replaceAllUsesWith(ResultPtr);
880 Variadic->eraseFromParent();
881}
882
883void
884SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic,
885 int64_t AccumulativeByteOffset) {
886 IRBuilder<> Builder(Variadic);
Jingyue Wuca321902015-05-14 23:53:19 +0000887 Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
Hao Liu1d2a0612014-11-19 06:24:44 +0000888
889 Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy);
890 gep_type_iterator GTI = gep_type_begin(*Variadic);
891 // Create ADD/SHL/MUL arithmetic operations for each sequential indices. We
892 // don't create arithmetics for structure indices, as they are accumulated
893 // in the constant offset index.
894 for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
Peter Collingbourneab85225b2016-12-02 02:24:42 +0000895 if (GTI.isSequential()) {
Hao Liu1d2a0612014-11-19 06:24:44 +0000896 Value *Idx = Variadic->getOperand(I);
897 // Skip zero indices.
898 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
899 if (CI->isZero())
900 continue;
901
902 APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
Jingyue Wuca321902015-05-14 23:53:19 +0000903 DL->getTypeAllocSize(GTI.getIndexedType()));
Hao Liu1d2a0612014-11-19 06:24:44 +0000904 // Scale the index by element size.
905 if (ElementSize != 1) {
906 if (ElementSize.isPowerOf2()) {
907 Idx = Builder.CreateShl(
908 Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
909 } else {
910 Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
911 }
912 }
913 // Create an ADD for each index.
914 ResultPtr = Builder.CreateAdd(ResultPtr, Idx);
915 }
916 }
917
918 // Create an ADD for the constant offset index.
919 if (AccumulativeByteOffset != 0) {
920 ResultPtr = Builder.CreateAdd(
921 ResultPtr, ConstantInt::get(IntPtrTy, AccumulativeByteOffset));
922 }
923
924 ResultPtr = Builder.CreateIntToPtr(ResultPtr, Variadic->getType());
925 Variadic->replaceAllUsesWith(ResultPtr);
926 Variadic->eraseFromParent();
927}
928
Eli Benderskya108a652014-05-01 18:38:36 +0000929bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
930 // Skip vector GEPs.
931 if (GEP->getType()->isVectorTy())
932 return false;
933
934 // The backend can already nicely handle the case where all indices are
935 // constant.
936 if (GEP->hasAllConstantIndices())
937 return false;
938
Jingyue Wu0bdc0272014-07-16 23:25:00 +0000939 bool Changed = canonicalizeArrayIndicesToPointerSize(GEP);
Eli Benderskya108a652014-05-01 18:38:36 +0000940
Eli Benderskya108a652014-05-01 18:38:36 +0000941 bool NeedsExtraction;
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000942 int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction);
Eli Benderskya108a652014-05-01 18:38:36 +0000943
944 if (!NeedsExtraction)
945 return Changed;
Hao Liu1d2a0612014-11-19 06:24:44 +0000946 // If LowerGEP is disabled, before really splitting the GEP, check whether the
947 // backend supports the addressing mode we are about to produce. If no, this
948 // splitting probably won't be beneficial.
949 // If LowerGEP is enabled, even the extracted constant offset can not match
950 // the addressing mode, we can still do optimizations to other lowered parts
951 // of variable indices. Therefore, we don't check for addressing modes in that
952 // case.
953 if (!LowerGEP) {
Chandler Carruth705b1852015-01-31 03:43:40 +0000954 TargetTransformInfo &TTI =
Chandler Carruthfdb9c572015-02-01 12:01:35 +0000955 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
956 *GEP->getParent()->getParent());
Matt Arsenaulte81944f2015-06-07 20:17:44 +0000957 unsigned AddrSpace = GEP->getPointerAddressSpace();
Eduard Burtescu19eb0312016-01-19 17:28:00 +0000958 if (!TTI.isLegalAddressingMode(GEP->getResultElementType(),
Hao Liu1d2a0612014-11-19 06:24:44 +0000959 /*BaseGV=*/nullptr, AccumulativeByteOffset,
Matt Arsenaulte81944f2015-06-07 20:17:44 +0000960 /*HasBaseReg=*/true, /*Scale=*/0,
961 AddrSpace)) {
Hao Liu1d2a0612014-11-19 06:24:44 +0000962 return Changed;
963 }
Eli Benderskya108a652014-05-01 18:38:36 +0000964 }
965
Hao Liu1d2a0612014-11-19 06:24:44 +0000966 // Remove the constant offset in each sequential index. The resultant GEP
967 // computes the variadic base.
968 // Notice that we don't remove struct field indices here. If LowerGEP is
969 // disabled, a structure index is not accumulated and we still use the old
970 // one. If LowerGEP is enabled, a structure index is accumulated in the
971 // constant offset. LowerToSingleIndexGEPs or lowerToArithmetics will later
972 // handle the constant offset and won't need a new structure index.
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000973 gep_type_iterator GTI = gep_type_begin(*GEP);
Eli Benderskya108a652014-05-01 18:38:36 +0000974 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
Peter Collingbourneab85225b2016-12-02 02:24:42 +0000975 if (GTI.isSequential()) {
Hao Liu1d2a0612014-11-19 06:24:44 +0000976 // Splits this GEP index into a variadic part and a constant offset, and
977 // uses the variadic part as the new index.
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000978 Value *OldIdx = GEP->getOperand(I);
979 User *UserChainTail;
980 Value *NewIdx =
Jingyue Wuca321902015-05-14 23:53:19 +0000981 ConstantOffsetExtractor::Extract(OldIdx, GEP, UserChainTail, DT);
Hao Liu1d2a0612014-11-19 06:24:44 +0000982 if (NewIdx != nullptr) {
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000983 // Switches to the index with the constant offset removed.
Eli Benderskya108a652014-05-01 18:38:36 +0000984 GEP->setOperand(I, NewIdx);
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000985 // After switching to the new index, we can garbage-collect UserChain
986 // and the old index if they are not used.
987 RecursivelyDeleteTriviallyDeadInstructions(UserChainTail);
988 RecursivelyDeleteTriviallyDeadInstructions(OldIdx);
Eli Benderskya108a652014-05-01 18:38:36 +0000989 }
990 }
991 }
Hao Liu1d2a0612014-11-19 06:24:44 +0000992
Jingyue Wu84465472014-06-05 22:07:33 +0000993 // Clear the inbounds attribute because the new index may be off-bound.
994 // e.g.,
995 //
Jingyue Wu1238f342015-08-14 02:02:05 +0000996 // b = add i64 a, 5
997 // addr = gep inbounds float, float* p, i64 b
Jingyue Wu84465472014-06-05 22:07:33 +0000998 //
999 // is transformed to:
1000 //
Jingyue Wu1238f342015-08-14 02:02:05 +00001001 // addr2 = gep float, float* p, i64 a ; inbounds removed
1002 // addr = gep inbounds float, float* addr2, i64 5
Jingyue Wu84465472014-06-05 22:07:33 +00001003 //
1004 // If a is -4, although the old index b is in bounds, the new index a is
1005 // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
1006 // inbounds keyword is not present, the offsets are added to the base
1007 // address with silently-wrapping two's complement arithmetic".
1008 // Therefore, the final code will be a semantically equivalent.
1009 //
1010 // TODO(jingyue): do some range analysis to keep as many inbounds as
1011 // possible. GEPs with inbounds are more friendly to alias analysis.
Jingyue Wu13a80ea2015-08-13 18:48:49 +00001012 bool GEPWasInBounds = GEP->isInBounds();
Jingyue Wu84465472014-06-05 22:07:33 +00001013 GEP->setIsInBounds(false);
Eli Benderskya108a652014-05-01 18:38:36 +00001014
Hao Liu1d2a0612014-11-19 06:24:44 +00001015 // Lowers a GEP to either GEPs with a single index or arithmetic operations.
1016 if (LowerGEP) {
1017 // As currently BasicAA does not analyze ptrtoint/inttoptr, do not lower to
1018 // arithmetic operations if the target uses alias analysis in codegen.
Eric Christophere38c8d42015-01-27 07:16:37 +00001019 if (TM && TM->getSubtargetImpl(*GEP->getParent()->getParent())->useAA())
Hao Liu1d2a0612014-11-19 06:24:44 +00001020 lowerToSingleIndexGEPs(GEP, AccumulativeByteOffset);
1021 else
1022 lowerToArithmetics(GEP, AccumulativeByteOffset);
1023 return true;
1024 }
1025
1026 // No need to create another GEP if the accumulative byte offset is 0.
1027 if (AccumulativeByteOffset == 0)
1028 return true;
1029
Eli Benderskya108a652014-05-01 18:38:36 +00001030 // Offsets the base with the accumulative byte offset.
1031 //
1032 // %gep ; the base
1033 // ... %gep ...
1034 //
1035 // => add the offset
1036 //
1037 // %gep2 ; clone of %gep
Jingyue Wubbb6e4a2014-05-23 18:39:40 +00001038 // %new.gep = gep %gep2, <offset / sizeof(*%gep)>
Eli Benderskya108a652014-05-01 18:38:36 +00001039 // %gep ; will be removed
1040 // ... %gep ...
1041 //
1042 // => replace all uses of %gep with %new.gep and remove %gep
1043 //
1044 // %gep2 ; clone of %gep
Jingyue Wubbb6e4a2014-05-23 18:39:40 +00001045 // %new.gep = gep %gep2, <offset / sizeof(*%gep)>
Eli Benderskya108a652014-05-01 18:38:36 +00001046 // ... %new.gep ...
1047 //
Jingyue Wubbb6e4a2014-05-23 18:39:40 +00001048 // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an
1049 // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep):
1050 // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the
1051 // type of %gep.
Eli Benderskya108a652014-05-01 18:38:36 +00001052 //
Jingyue Wubbb6e4a2014-05-23 18:39:40 +00001053 // %gep2 ; clone of %gep
1054 // %0 = bitcast %gep2 to i8*
1055 // %uglygep = gep %0, <offset>
1056 // %new.gep = bitcast %uglygep to <type of %gep>
1057 // ... %new.gep ...
Eli Benderskya108a652014-05-01 18:38:36 +00001058 Instruction *NewGEP = GEP->clone();
1059 NewGEP->insertBefore(GEP);
Eli Benderskya108a652014-05-01 18:38:36 +00001060
Jingyue Wufe72fce2014-10-25 18:34:03 +00001061 // Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned =
1062 // unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is
1063 // used with unsigned integers later.
1064 int64_t ElementTypeSizeOfGEP = static_cast<int64_t>(
Eduard Burtescu19eb0312016-01-19 17:28:00 +00001065 DL->getTypeAllocSize(GEP->getResultElementType()));
Jingyue Wuca321902015-05-14 23:53:19 +00001066 Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
Jingyue Wubbb6e4a2014-05-23 18:39:40 +00001067 if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
1068 // Very likely. As long as %gep is natually aligned, the byte offset we
1069 // extracted should be a multiple of sizeof(*%gep).
Jingyue Wufe72fce2014-10-25 18:34:03 +00001070 int64_t Index = AccumulativeByteOffset / ElementTypeSizeOfGEP;
David Blaikie741c8f82015-03-14 01:53:18 +00001071 NewGEP = GetElementPtrInst::Create(GEP->getResultElementType(), NewGEP,
1072 ConstantInt::get(IntPtrTy, Index, true),
1073 GEP->getName(), GEP);
Marek Olsak8e7d1492018-01-31 20:17:52 +00001074 NewGEP->copyMetadata(*GEP);
Jingyue Wu13a80ea2015-08-13 18:48:49 +00001075 // Inherit the inbounds attribute of the original GEP.
1076 cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds);
Jingyue Wubbb6e4a2014-05-23 18:39:40 +00001077 } else {
1078 // Unlikely but possible. For example,
1079 // #pragma pack(1)
1080 // struct S {
1081 // int a[3];
1082 // int64 b[8];
1083 // };
1084 // #pragma pack()
1085 //
1086 // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After
1087 // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is
1088 // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of
1089 // sizeof(int64).
1090 //
1091 // Emit an uglygep in this case.
1092 Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(),
1093 GEP->getPointerAddressSpace());
1094 NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP);
1095 NewGEP = GetElementPtrInst::Create(
David Blaikie741c8f82015-03-14 01:53:18 +00001096 Type::getInt8Ty(GEP->getContext()), NewGEP,
1097 ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true), "uglygep",
1098 GEP);
Marek Olsak8e7d1492018-01-31 20:17:52 +00001099 NewGEP->copyMetadata(*GEP);
Jingyue Wu13a80ea2015-08-13 18:48:49 +00001100 // Inherit the inbounds attribute of the original GEP.
1101 cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds);
Jingyue Wubbb6e4a2014-05-23 18:39:40 +00001102 if (GEP->getType() != I8PtrTy)
1103 NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP);
1104 }
1105
1106 GEP->replaceAllUsesWith(NewGEP);
Eli Benderskya108a652014-05-01 18:38:36 +00001107 GEP->eraseFromParent();
1108
1109 return true;
1110}
1111
1112bool SeparateConstOffsetFromGEP::runOnFunction(Function &F) {
Andrew Kayloraa641a52016-04-22 22:06:11 +00001113 if (skipFunction(F))
Jingyue Wu6c26bb62015-02-01 02:34:41 +00001114 return false;
1115
Eli Benderskya108a652014-05-01 18:38:36 +00001116 if (DisableSeparateConstOffsetFromGEP)
1117 return false;
1118
Jingyue Wuca321902015-05-14 23:53:19 +00001119 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Chandler Carruth2f1fd162015-08-17 02:08:17 +00001120 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
Lawrence Hucac0b892015-09-23 19:25:30 +00001121 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1122 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
Eli Benderskya108a652014-05-01 18:38:36 +00001123 bool Changed = false;
Benjamin Kramer135f7352016-06-26 12:28:59 +00001124 for (BasicBlock &B : F) {
1125 for (BasicBlock::iterator I = B.begin(), IE = B.end(); I != IE;)
Lawrence Hucac0b892015-09-23 19:25:30 +00001126 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I++))
Eli Benderskya108a652014-05-01 18:38:36 +00001127 Changed |= splitGEP(GEP);
Lawrence Hucac0b892015-09-23 19:25:30 +00001128 // No need to split GEP ConstantExprs because all its indices are constant
1129 // already.
Eli Benderskya108a652014-05-01 18:38:36 +00001130 }
Jingyue Wuf763c3f2015-04-21 19:53:18 +00001131
Jingyue Wu1238f342015-08-14 02:02:05 +00001132 Changed |= reuniteExts(F);
1133
Jingyue Wuf763c3f2015-04-21 19:53:18 +00001134 if (VerifyNoDeadCode)
1135 verifyNoDeadCode(F);
1136
Eli Benderskya108a652014-05-01 18:38:36 +00001137 return Changed;
1138}
Jingyue Wuf763c3f2015-04-21 19:53:18 +00001139
Jingyue Wu1238f342015-08-14 02:02:05 +00001140Instruction *SeparateConstOffsetFromGEP::findClosestMatchingDominator(
1141 const SCEV *Key, Instruction *Dominatee) {
1142 auto Pos = DominatingExprs.find(Key);
1143 if (Pos == DominatingExprs.end())
1144 return nullptr;
1145
1146 auto &Candidates = Pos->second;
1147 // Because we process the basic blocks in pre-order of the dominator tree, a
1148 // candidate that doesn't dominate the current instruction won't dominate any
1149 // future instruction either. Therefore, we pop it out of the stack. This
1150 // optimization makes the algorithm O(n).
1151 while (!Candidates.empty()) {
1152 Instruction *Candidate = Candidates.back();
1153 if (DT->dominates(Candidate, Dominatee))
1154 return Candidate;
1155 Candidates.pop_back();
1156 }
1157 return nullptr;
1158}
1159
1160bool SeparateConstOffsetFromGEP::reuniteExts(Instruction *I) {
1161 if (!SE->isSCEVable(I->getType()))
1162 return false;
1163
1164 // Dom: LHS+RHS
1165 // I: sext(LHS)+sext(RHS)
1166 // If Dom can't sign overflow and Dom dominates I, optimize I to sext(Dom).
1167 // TODO: handle zext
1168 Value *LHS = nullptr, *RHS = nullptr;
1169 if (match(I, m_Add(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS)))) ||
1170 match(I, m_Sub(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS))))) {
1171 if (LHS->getType() == RHS->getType()) {
1172 const SCEV *Key =
1173 SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
1174 if (auto *Dom = findClosestMatchingDominator(Key, I)) {
1175 Instruction *NewSExt = new SExtInst(Dom, I->getType(), "", I);
1176 NewSExt->takeName(I);
1177 I->replaceAllUsesWith(NewSExt);
1178 RecursivelyDeleteTriviallyDeadInstructions(I);
1179 return true;
1180 }
1181 }
1182 }
1183
1184 // Add I to DominatingExprs if it's an add/sub that can't sign overflow.
1185 if (match(I, m_NSWAdd(m_Value(LHS), m_Value(RHS))) ||
1186 match(I, m_NSWSub(m_Value(LHS), m_Value(RHS)))) {
Sanjoy Das08989c72017-04-30 19:41:19 +00001187 if (programUndefinedIfFullPoison(I)) {
Jingyue Wu1238f342015-08-14 02:02:05 +00001188 const SCEV *Key =
1189 SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
1190 DominatingExprs[Key].push_back(I);
1191 }
1192 }
1193 return false;
1194}
1195
1196bool SeparateConstOffsetFromGEP::reuniteExts(Function &F) {
1197 bool Changed = false;
1198 DominatingExprs.clear();
Daniel Berlin11da66f2016-08-19 22:18:38 +00001199 for (const auto Node : depth_first(DT)) {
1200 BasicBlock *BB = Node->getBlock();
1201 for (auto I = BB->begin(); I != BB->end(); ) {
1202 Instruction *Cur = &*I++;
1203 Changed |= reuniteExts(Cur);
1204 }
1205 }
Jingyue Wu1238f342015-08-14 02:02:05 +00001206 return Changed;
1207}
1208
Jingyue Wuf763c3f2015-04-21 19:53:18 +00001209void SeparateConstOffsetFromGEP::verifyNoDeadCode(Function &F) {
Benjamin Kramer135f7352016-06-26 12:28:59 +00001210 for (BasicBlock &B : F) {
1211 for (Instruction &I : B) {
Jingyue Wuf763c3f2015-04-21 19:53:18 +00001212 if (isInstructionTriviallyDead(&I)) {
1213 std::string ErrMessage;
1214 raw_string_ostream RSO(ErrMessage);
1215 RSO << "Dead instruction detected!\n" << I << "\n";
1216 llvm_unreachable(RSO.str().c_str());
1217 }
1218 }
1219 }
1220}
Lawrence Hucac0b892015-09-23 19:25:30 +00001221
1222bool SeparateConstOffsetFromGEP::isLegalToSwapOperand(
1223 GetElementPtrInst *FirstGEP, GetElementPtrInst *SecondGEP, Loop *CurLoop) {
1224 if (!FirstGEP || !FirstGEP->hasOneUse())
1225 return false;
1226
1227 if (!SecondGEP || FirstGEP->getParent() != SecondGEP->getParent())
1228 return false;
1229
1230 if (FirstGEP == SecondGEP)
1231 return false;
1232
1233 unsigned FirstNum = FirstGEP->getNumOperands();
1234 unsigned SecondNum = SecondGEP->getNumOperands();
1235 // Give up if the number of operands are not 2.
1236 if (FirstNum != SecondNum || FirstNum != 2)
1237 return false;
1238
1239 Value *FirstBase = FirstGEP->getOperand(0);
1240 Value *SecondBase = SecondGEP->getOperand(0);
1241 Value *FirstOffset = FirstGEP->getOperand(1);
1242 // Give up if the index of the first GEP is loop invariant.
1243 if (CurLoop->isLoopInvariant(FirstOffset))
1244 return false;
1245
1246 // Give up if base doesn't have same type.
1247 if (FirstBase->getType() != SecondBase->getType())
1248 return false;
1249
1250 Instruction *FirstOffsetDef = dyn_cast<Instruction>(FirstOffset);
1251
1252 // Check if the second operand of first GEP has constant coefficient.
1253 // For an example, for the following code, we won't gain anything by
1254 // hoisting the second GEP out because the second GEP can be folded away.
1255 // %scevgep.sum.ur159 = add i64 %idxprom48.ur, 256
1256 // %67 = shl i64 %scevgep.sum.ur159, 2
1257 // %uglygep160 = getelementptr i8* %65, i64 %67
1258 // %uglygep161 = getelementptr i8* %uglygep160, i64 -1024
1259
1260 // Skip constant shift instruction which may be generated by Splitting GEPs.
1261 if (FirstOffsetDef && FirstOffsetDef->isShift() &&
Craig Topper66059c92015-11-18 07:07:59 +00001262 isa<ConstantInt>(FirstOffsetDef->getOperand(1)))
Lawrence Hucac0b892015-09-23 19:25:30 +00001263 FirstOffsetDef = dyn_cast<Instruction>(FirstOffsetDef->getOperand(0));
1264
1265 // Give up if FirstOffsetDef is an Add or Sub with constant.
1266 // Because it may not profitable at all due to constant folding.
1267 if (FirstOffsetDef)
1268 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FirstOffsetDef)) {
1269 unsigned opc = BO->getOpcode();
1270 if ((opc == Instruction::Add || opc == Instruction::Sub) &&
Craig Topper66059c92015-11-18 07:07:59 +00001271 (isa<ConstantInt>(BO->getOperand(0)) ||
1272 isa<ConstantInt>(BO->getOperand(1))))
Lawrence Hucac0b892015-09-23 19:25:30 +00001273 return false;
1274 }
1275 return true;
1276}
1277
1278bool SeparateConstOffsetFromGEP::hasMoreThanOneUseInLoop(Value *V, Loop *L) {
1279 int UsesInLoop = 0;
1280 for (User *U : V->users()) {
1281 if (Instruction *User = dyn_cast<Instruction>(U))
1282 if (L->contains(User))
1283 if (++UsesInLoop > 1)
1284 return true;
1285 }
1286 return false;
1287}
1288
1289void SeparateConstOffsetFromGEP::swapGEPOperand(GetElementPtrInst *First,
1290 GetElementPtrInst *Second) {
1291 Value *Offset1 = First->getOperand(1);
1292 Value *Offset2 = Second->getOperand(1);
1293 First->setOperand(1, Offset2);
1294 Second->setOperand(1, Offset1);
1295
1296 // We changed p+o+c to p+c+o, p+c may not be inbound anymore.
1297 const DataLayout &DAL = First->getModule()->getDataLayout();
1298 APInt Offset(DAL.getPointerSizeInBits(
1299 cast<PointerType>(First->getType())->getAddressSpace()),
1300 0);
1301 Value *NewBase =
1302 First->stripAndAccumulateInBoundsConstantOffsets(DAL, Offset);
1303 uint64_t ObjectSize;
1304 if (!getObjectSize(NewBase, ObjectSize, DAL, TLI) ||
1305 Offset.ugt(ObjectSize)) {
1306 First->setIsInBounds(false);
1307 Second->setIsInBounds(false);
1308 } else
1309 First->setIsInBounds(true);
1310}