blob: 4d594532c3651a99f9f2ebb08147e4eacf135daa [file] [log] [blame]
Eli Benderskya108a652014-05-01 18:38:36 +00001//===-- SeparateConstOffsetFromGEP.cpp - ------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Loop unrolling may create many similar GEPs for array accesses.
11// e.g., a 2-level loop
12//
13// float a[32][32]; // global variable
14//
15// for (int i = 0; i < 2; ++i) {
16// for (int j = 0; j < 2; ++j) {
17// ...
18// ... = a[x + i][y + j];
19// ...
20// }
21// }
22//
23// will probably be unrolled to:
24//
25// gep %a, 0, %x, %y; load
26// gep %a, 0, %x, %y + 1; load
27// gep %a, 0, %x + 1, %y; load
28// gep %a, 0, %x + 1, %y + 1; load
29//
30// LLVM's GVN does not use partial redundancy elimination yet, and is thus
31// unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs
32// significant slowdown in targets with limited addressing modes. For instance,
33// because the PTX target does not support the reg+reg addressing mode, the
34// NVPTX backend emits PTX code that literally computes the pointer address of
35// each GEP, wasting tons of registers. It emits the following PTX for the
36// first load and similar PTX for other loads.
37//
38// mov.u32 %r1, %x;
39// mov.u32 %r2, %y;
40// mul.wide.u32 %rl2, %r1, 128;
41// mov.u64 %rl3, a;
42// add.s64 %rl4, %rl3, %rl2;
43// mul.wide.u32 %rl5, %r2, 4;
44// add.s64 %rl6, %rl4, %rl5;
45// ld.global.f32 %f1, [%rl6];
46//
47// To reduce the register pressure, the optimization implemented in this file
48// merges the common part of a group of GEPs, so we can compute each pointer
49// address by adding a simple offset to the common part, saving many registers.
50//
51// It works by splitting each GEP into a variadic base and a constant offset.
52// The variadic base can be computed once and reused by multiple GEPs, and the
53// constant offsets can be nicely folded into the reg+immediate addressing mode
54// (supported by most targets) without using any extra register.
55//
56// For instance, we transform the four GEPs and four loads in the above example
57// into:
58//
59// base = gep a, 0, x, y
60// load base
61// laod base + 1 * sizeof(float)
62// load base + 32 * sizeof(float)
63// load base + 33 * sizeof(float)
64//
65// Given the transformed IR, a backend that supports the reg+immediate
66// addressing mode can easily fold the pointer arithmetics into the loads. For
67// example, the NVPTX backend can easily fold the pointer arithmetics into the
68// ld.global.f32 instructions, and the resultant PTX uses much fewer registers.
69//
70// mov.u32 %r1, %tid.x;
71// mov.u32 %r2, %tid.y;
72// mul.wide.u32 %rl2, %r1, 128;
73// mov.u64 %rl3, a;
74// add.s64 %rl4, %rl3, %rl2;
75// mul.wide.u32 %rl5, %r2, 4;
76// add.s64 %rl6, %rl4, %rl5;
77// ld.global.f32 %f1, [%rl6]; // so far the same as unoptimized PTX
78// ld.global.f32 %f2, [%rl6+4]; // much better
79// ld.global.f32 %f3, [%rl6+128]; // much better
80// ld.global.f32 %f4, [%rl6+132]; // much better
81//
Hao Liu1d2a0612014-11-19 06:24:44 +000082// Another improvement enabled by the LowerGEP flag is to lower a GEP with
83// multiple indices to either multiple GEPs with a single index or arithmetic
84// operations (depending on whether the target uses alias analysis in codegen).
85// Such transformation can have following benefits:
86// (1) It can always extract constants in the indices of structure type.
87// (2) After such Lowering, there are more optimization opportunities such as
88// CSE, LICM and CGP.
89//
90// E.g. The following GEPs have multiple indices:
91// BB1:
92// %p = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 3
93// load %p
94// ...
95// BB2:
96// %p2 = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 2
97// load %p2
98// ...
99//
100// We can not do CSE for to the common part related to index "i64 %i". Lowering
101// GEPs can achieve such goals.
102// If the target does not use alias analysis in codegen, this pass will
103// lower a GEP with multiple indices into arithmetic operations:
104// BB1:
105// %1 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity
106// %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity
107// %3 = add i64 %1, %2 ; CSE opportunity
108// %4 = mul i64 %j1, length_of_struct
109// %5 = add i64 %3, %4
110// %6 = add i64 %3, struct_field_3 ; Constant offset
111// %p = inttoptr i64 %6 to i32*
112// load %p
113// ...
114// BB2:
115// %7 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity
116// %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity
117// %9 = add i64 %7, %8 ; CSE opportunity
118// %10 = mul i64 %j2, length_of_struct
119// %11 = add i64 %9, %10
120// %12 = add i64 %11, struct_field_2 ; Constant offset
121// %p = inttoptr i64 %12 to i32*
122// load %p2
123// ...
124//
125// If the target uses alias analysis in codegen, this pass will lower a GEP
126// with multiple indices into multiple GEPs with a single index:
127// BB1:
128// %1 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity
129// %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity
130// %3 = getelementptr i8* %1, i64 %2 ; CSE opportunity
131// %4 = mul i64 %j1, length_of_struct
132// %5 = getelementptr i8* %3, i64 %4
133// %6 = getelementptr i8* %5, struct_field_3 ; Constant offset
134// %p = bitcast i8* %6 to i32*
135// load %p
136// ...
137// BB2:
138// %7 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity
139// %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity
140// %9 = getelementptr i8* %7, i64 %8 ; CSE opportunity
141// %10 = mul i64 %j2, length_of_struct
142// %11 = getelementptr i8* %9, i64 %10
143// %12 = getelementptr i8* %11, struct_field_2 ; Constant offset
144// %p2 = bitcast i8* %12 to i32*
145// load %p2
146// ...
147//
148// Lowering GEPs can also benefit other passes such as LICM and CGP.
149// LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple
150// indices if one of the index is variant. If we lower such GEP into invariant
151// parts and variant parts, LICM can hoist/sink those invariant parts.
152// CGP (CodeGen Prepare) tries to sink address calculations that match the
153// target's addressing modes. A GEP with multiple indices may not match and will
154// not be sunk. If we lower such GEP into smaller parts, CGP may sink some of
155// them. So we end up with a better addressing mode.
156//
Eli Benderskya108a652014-05-01 18:38:36 +0000157//===----------------------------------------------------------------------===//
158
Jingyue Wu1238f342015-08-14 02:02:05 +0000159#include "llvm/Analysis/ScalarEvolution.h"
Lawrence Hucac0b892015-09-23 19:25:30 +0000160#include "llvm/Analysis/LoopInfo.h"
161#include "llvm/Analysis/MemoryBuiltins.h"
162#include "llvm/Analysis/TargetLibraryInfo.h"
Eli Benderskya108a652014-05-01 18:38:36 +0000163#include "llvm/Analysis/TargetTransformInfo.h"
164#include "llvm/Analysis/ValueTracking.h"
165#include "llvm/IR/Constants.h"
166#include "llvm/IR/DataLayout.h"
Jingyue Wuca321902015-05-14 23:53:19 +0000167#include "llvm/IR/Dominators.h"
Eli Benderskya108a652014-05-01 18:38:36 +0000168#include "llvm/IR/Instructions.h"
169#include "llvm/IR/LLVMContext.h"
170#include "llvm/IR/Module.h"
Jingyue Wu1238f342015-08-14 02:02:05 +0000171#include "llvm/IR/PatternMatch.h"
Eli Benderskya108a652014-05-01 18:38:36 +0000172#include "llvm/IR/Operator.h"
173#include "llvm/Support/CommandLine.h"
174#include "llvm/Support/raw_ostream.h"
175#include "llvm/Transforms/Scalar.h"
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000176#include "llvm/Transforms/Utils/Local.h"
Hao Liu1d2a0612014-11-19 06:24:44 +0000177#include "llvm/Target/TargetMachine.h"
178#include "llvm/Target/TargetSubtargetInfo.h"
179#include "llvm/IR/IRBuilder.h"
Eli Benderskya108a652014-05-01 18:38:36 +0000180
181using namespace llvm;
Jingyue Wu1238f342015-08-14 02:02:05 +0000182using namespace llvm::PatternMatch;
Eli Benderskya108a652014-05-01 18:38:36 +0000183
184static cl::opt<bool> DisableSeparateConstOffsetFromGEP(
185 "disable-separate-const-offset-from-gep", cl::init(false),
186 cl::desc("Do not separate the constant offset from a GEP instruction"),
187 cl::Hidden);
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000188// Setting this flag may emit false positives when the input module already
189// contains dead instructions. Therefore, we set it only in unit tests that are
190// free of dead code.
191static cl::opt<bool>
192 VerifyNoDeadCode("reassociate-geps-verify-no-dead-code", cl::init(false),
193 cl::desc("Verify this pass produces no dead code"),
194 cl::Hidden);
Eli Benderskya108a652014-05-01 18:38:36 +0000195
196namespace {
197
198/// \brief A helper class for separating a constant offset from a GEP index.
199///
200/// In real programs, a GEP index may be more complicated than a simple addition
201/// of something and a constant integer which can be trivially splitted. For
202/// example, to split ((a << 3) | 5) + b, we need to search deeper for the
Alp Tokerbeaca192014-05-15 01:52:21 +0000203/// constant offset, so that we can separate the index to (a << 3) + b and 5.
Eli Benderskya108a652014-05-01 18:38:36 +0000204///
205/// Therefore, this class looks into the expression that computes a given GEP
206/// index, and tries to find a constant integer that can be hoisted to the
207/// outermost level of the expression as an addition. Not every constant in an
208/// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a +
209/// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
210/// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
211class ConstantOffsetExtractor {
Jingyue Wuca321902015-05-14 23:53:19 +0000212public:
Hao Liu1d2a0612014-11-19 06:24:44 +0000213 /// Extracts a constant offset from the given GEP index. It returns the
Eli Benderskya108a652014-05-01 18:38:36 +0000214 /// new index representing the remainder (equal to the original index minus
Hao Liu1d2a0612014-11-19 06:24:44 +0000215 /// the constant offset), or nullptr if we cannot extract a constant offset.
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000216 /// \p Idx The given GEP index
217 /// \p GEP The given GEP
218 /// \p UserChainTail Outputs the tail of UserChain so that we can
219 /// garbage-collect unused instructions in UserChain.
Jingyue Wuca321902015-05-14 23:53:19 +0000220 static Value *Extract(Value *Idx, GetElementPtrInst *GEP,
221 User *&UserChainTail, const DominatorTree *DT);
Hao Liu1d2a0612014-11-19 06:24:44 +0000222 /// Looks for a constant offset from the given GEP index without extracting
223 /// it. It returns the numeric value of the extracted constant offset (0 if
224 /// failed). The meaning of the arguments are the same as Extract.
Jingyue Wuca321902015-05-14 23:53:19 +0000225 static int64_t Find(Value *Idx, GetElementPtrInst *GEP,
226 const DominatorTree *DT);
Eli Benderskya108a652014-05-01 18:38:36 +0000227
Jingyue Wuca321902015-05-14 23:53:19 +0000228private:
229 ConstantOffsetExtractor(Instruction *InsertionPt, const DominatorTree *DT)
230 : IP(InsertionPt), DL(InsertionPt->getModule()->getDataLayout()), DT(DT) {
231 }
Jingyue Wu84465472014-06-05 22:07:33 +0000232 /// Searches the expression that computes V for a non-zero constant C s.t.
233 /// V can be reassociated into the form V' + C. If the searching is
234 /// successful, returns C and update UserChain as a def-use chain from C to V;
235 /// otherwise, UserChain is empty.
Eli Benderskya108a652014-05-01 18:38:36 +0000236 ///
Jingyue Wu84465472014-06-05 22:07:33 +0000237 /// \p V The given expression
238 /// \p SignExtended Whether V will be sign-extended in the computation of the
239 /// GEP index
240 /// \p ZeroExtended Whether V will be zero-extended in the computation of the
241 /// GEP index
242 /// \p NonNegative Whether V is guaranteed to be non-negative. For example,
243 /// an index of an inbounds GEP is guaranteed to be
244 /// non-negative. Levaraging this, we can better split
245 /// inbounds GEPs.
246 APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative);
247 /// A helper function to look into both operands of a binary operator.
248 APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended,
249 bool ZeroExtended);
250 /// After finding the constant offset C from the GEP index I, we build a new
251 /// index I' s.t. I' + C = I. This function builds and returns the new
252 /// index I' according to UserChain produced by function "find".
253 ///
254 /// The building conceptually takes two steps:
255 /// 1) iteratively distribute s/zext towards the leaves of the expression tree
256 /// that computes I
257 /// 2) reassociate the expression tree to the form I' + C.
258 ///
259 /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute
260 /// sext to a, b and 5 so that we have
261 /// sext(a) + (sext(b) + 5).
262 /// Then, we reassociate it to
263 /// (sext(a) + sext(b)) + 5.
264 /// Given this form, we know I' is sext(a) + sext(b).
265 Value *rebuildWithoutConstOffset();
266 /// After the first step of rebuilding the GEP index without the constant
267 /// offset, distribute s/zext to the operands of all operators in UserChain.
268 /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) =>
269 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))).
270 ///
271 /// The function also updates UserChain to point to new subexpressions after
272 /// distributing s/zext. e.g., the old UserChain of the above example is
273 /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)),
274 /// and the new UserChain is
275 /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) ->
276 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))
277 ///
278 /// \p ChainIndex The index to UserChain. ChainIndex is initially
279 /// UserChain.size() - 1, and is decremented during
280 /// the recursion.
281 Value *distributeExtsAndCloneChain(unsigned ChainIndex);
282 /// Reassociates the GEP index to the form I' + C and returns I'.
283 Value *removeConstOffset(unsigned ChainIndex);
284 /// A helper function to apply ExtInsts, a list of s/zext, to value V.
285 /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function
286 /// returns "sext i32 (zext i16 V to i32) to i64".
287 Value *applyExts(Value *V);
Eli Benderskya108a652014-05-01 18:38:36 +0000288
Jingyue Wu84465472014-06-05 22:07:33 +0000289 /// A helper function that returns whether we can trace into the operands
290 /// of binary operator BO for a constant offset.
291 ///
292 /// \p SignExtended Whether BO is surrounded by sext
293 /// \p ZeroExtended Whether BO is surrounded by zext
294 /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound
295 /// array index.
296 bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO,
297 bool NonNegative);
Eli Benderskya108a652014-05-01 18:38:36 +0000298
299 /// The path from the constant offset to the old GEP index. e.g., if the GEP
300 /// index is "a * b + (c + 5)". After running function find, UserChain[0] will
301 /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
302 /// UserChain[2] will be the entire expression "a * b + (c + 5)".
303 ///
Jingyue Wu84465472014-06-05 22:07:33 +0000304 /// This path helps to rebuild the new GEP index.
Eli Benderskya108a652014-05-01 18:38:36 +0000305 SmallVector<User *, 8> UserChain;
Jingyue Wu84465472014-06-05 22:07:33 +0000306 /// A data structure used in rebuildWithoutConstOffset. Contains all
307 /// sext/zext instructions along UserChain.
308 SmallVector<CastInst *, 16> ExtInsts;
Eli Benderskya108a652014-05-01 18:38:36 +0000309 Instruction *IP; /// Insertion position of cloned instructions.
Jingyue Wuca321902015-05-14 23:53:19 +0000310 const DataLayout &DL;
311 const DominatorTree *DT;
Eli Benderskya108a652014-05-01 18:38:36 +0000312};
313
314/// \brief A pass that tries to split every GEP in the function into a variadic
Alp Tokerbeaca192014-05-15 01:52:21 +0000315/// base and a constant offset. It is a FunctionPass because searching for the
Eli Benderskya108a652014-05-01 18:38:36 +0000316/// constant offset may inspect other basic blocks.
317class SeparateConstOffsetFromGEP : public FunctionPass {
Jingyue Wuca321902015-05-14 23:53:19 +0000318public:
Eli Benderskya108a652014-05-01 18:38:36 +0000319 static char ID;
Hao Liu1d2a0612014-11-19 06:24:44 +0000320 SeparateConstOffsetFromGEP(const TargetMachine *TM = nullptr,
321 bool LowerGEP = false)
Jingyue Wuca321902015-05-14 23:53:19 +0000322 : FunctionPass(ID), DL(nullptr), DT(nullptr), TM(TM), LowerGEP(LowerGEP) {
Eli Benderskya108a652014-05-01 18:38:36 +0000323 initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry());
324 }
325
326 void getAnalysisUsage(AnalysisUsage &AU) const override {
Jingyue Wuca321902015-05-14 23:53:19 +0000327 AU.addRequired<DominatorTreeWrapperPass>();
Chandler Carruth2f1fd162015-08-17 02:08:17 +0000328 AU.addRequired<ScalarEvolutionWrapperPass>();
Chandler Carruth705b1852015-01-31 03:43:40 +0000329 AU.addRequired<TargetTransformInfoWrapperPass>();
Lawrence Hucac0b892015-09-23 19:25:30 +0000330 AU.addRequired<LoopInfoWrapperPass>();
Jingyue Wu6e091c82015-02-01 02:33:02 +0000331 AU.setPreservesCFG();
Lawrence Hucac0b892015-09-23 19:25:30 +0000332 AU.addRequired<TargetLibraryInfoWrapperPass>();
Eli Benderskya108a652014-05-01 18:38:36 +0000333 }
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000334
Jingyue Wuca321902015-05-14 23:53:19 +0000335 bool doInitialization(Module &M) override {
336 DL = &M.getDataLayout();
337 return false;
338 }
Eli Benderskya108a652014-05-01 18:38:36 +0000339 bool runOnFunction(Function &F) override;
340
Jingyue Wuca321902015-05-14 23:53:19 +0000341private:
Eli Benderskya108a652014-05-01 18:38:36 +0000342 /// Tries to split the given GEP into a variadic base and a constant offset,
343 /// and returns true if the splitting succeeds.
344 bool splitGEP(GetElementPtrInst *GEP);
Hao Liu1d2a0612014-11-19 06:24:44 +0000345 /// Lower a GEP with multiple indices into multiple GEPs with a single index.
346 /// Function splitGEP already split the original GEP into a variadic part and
347 /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
348 /// variadic part into a set of GEPs with a single index and applies
349 /// AccumulativeByteOffset to it.
350 /// \p Variadic The variadic part of the original GEP.
351 /// \p AccumulativeByteOffset The constant offset.
352 void lowerToSingleIndexGEPs(GetElementPtrInst *Variadic,
353 int64_t AccumulativeByteOffset);
354 /// Lower a GEP with multiple indices into ptrtoint+arithmetics+inttoptr form.
355 /// Function splitGEP already split the original GEP into a variadic part and
356 /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
357 /// variadic part into a set of arithmetic operations and applies
358 /// AccumulativeByteOffset to it.
359 /// \p Variadic The variadic part of the original GEP.
360 /// \p AccumulativeByteOffset The constant offset.
361 void lowerToArithmetics(GetElementPtrInst *Variadic,
362 int64_t AccumulativeByteOffset);
363 /// Finds the constant offset within each index and accumulates them. If
364 /// LowerGEP is true, it finds in indices of both sequential and structure
365 /// types, otherwise it only finds in sequential indices. The output
366 /// NeedsExtraction indicates whether we successfully find a non-zero constant
367 /// offset.
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000368 int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction);
369 /// Canonicalize array indices to pointer-size integers. This helps to
370 /// simplify the logic of splitting a GEP. For example, if a + b is a
371 /// pointer-size integer, we have
372 /// gep base, a + b = gep (gep base, a), b
373 /// However, this equality may not hold if the size of a + b is smaller than
374 /// the pointer size, because LLVM conceptually sign-extends GEP indices to
375 /// pointer size before computing the address
376 /// (http://llvm.org/docs/LangRef.html#id181).
377 ///
378 /// This canonicalization is very likely already done in clang and
379 /// instcombine. Therefore, the program will probably remain the same.
380 ///
Jingyue Wu5c7b1ae2014-06-08 23:49:34 +0000381 /// Returns true if the module changes.
382 ///
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000383 /// Verified in @i32_add in split-gep.ll
384 bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP);
Jingyue Wu1238f342015-08-14 02:02:05 +0000385 /// Optimize sext(a)+sext(b) to sext(a+b) when a+b can't sign overflow.
386 /// SeparateConstOffsetFromGEP distributes a sext to leaves before extracting
387 /// the constant offset. After extraction, it becomes desirable to reunion the
388 /// distributed sexts. For example,
389 ///
390 /// &a[sext(i +nsw (j +nsw 5)]
391 /// => distribute &a[sext(i) +nsw (sext(j) +nsw 5)]
392 /// => constant extraction &a[sext(i) + sext(j)] + 5
393 /// => reunion &a[sext(i +nsw j)] + 5
394 bool reuniteExts(Function &F);
395 /// A helper that reunites sexts in an instruction.
396 bool reuniteExts(Instruction *I);
397 /// Find the closest dominator of <Dominatee> that is equivalent to <Key>.
398 Instruction *findClosestMatchingDominator(const SCEV *Key,
399 Instruction *Dominatee);
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000400 /// Verify F is free of dead code.
401 void verifyNoDeadCode(Function &F);
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000402
Lawrence Hucac0b892015-09-23 19:25:30 +0000403 bool hasMoreThanOneUseInLoop(Value *v, Loop *L);
404 // Swap the index operand of two GEP.
405 void swapGEPOperand(GetElementPtrInst *First, GetElementPtrInst *Second);
406 // Check if it is safe to swap operand of two GEP.
407 bool isLegalToSwapOperand(GetElementPtrInst *First, GetElementPtrInst *Second,
408 Loop *CurLoop);
409
Jingyue Wuca321902015-05-14 23:53:19 +0000410 const DataLayout *DL;
Jingyue Wu1238f342015-08-14 02:02:05 +0000411 DominatorTree *DT;
412 ScalarEvolution *SE;
Hao Liu1d2a0612014-11-19 06:24:44 +0000413 const TargetMachine *TM;
Lawrence Hucac0b892015-09-23 19:25:30 +0000414
415 LoopInfo *LI;
416 TargetLibraryInfo *TLI;
Hao Liu1d2a0612014-11-19 06:24:44 +0000417 /// Whether to lower a GEP with multiple indices into arithmetic operations or
418 /// multiple GEPs with a single index.
419 bool LowerGEP;
Jingyue Wu1238f342015-08-14 02:02:05 +0000420 DenseMap<const SCEV *, SmallVector<Instruction *, 2>> DominatingExprs;
Eli Benderskya108a652014-05-01 18:38:36 +0000421};
422} // anonymous namespace
423
424char SeparateConstOffsetFromGEP::ID = 0;
425INITIALIZE_PASS_BEGIN(
426 SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
427 "Split GEPs to a variadic base and a constant offset for better CSE", false,
428 false)
Jingyue Wuca321902015-05-14 23:53:19 +0000429INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Chandler Carruth2f1fd162015-08-17 02:08:17 +0000430INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
Chandler Carruth705b1852015-01-31 03:43:40 +0000431INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
Lawrence Hucac0b892015-09-23 19:25:30 +0000432INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
433INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
Eli Benderskya108a652014-05-01 18:38:36 +0000434INITIALIZE_PASS_END(
435 SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
436 "Split GEPs to a variadic base and a constant offset for better CSE", false,
437 false)
438
Hao Liu1d2a0612014-11-19 06:24:44 +0000439FunctionPass *
440llvm::createSeparateConstOffsetFromGEPPass(const TargetMachine *TM,
441 bool LowerGEP) {
442 return new SeparateConstOffsetFromGEP(TM, LowerGEP);
Eli Benderskya108a652014-05-01 18:38:36 +0000443}
444
Jingyue Wu84465472014-06-05 22:07:33 +0000445bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended,
446 bool ZeroExtended,
447 BinaryOperator *BO,
448 bool NonNegative) {
449 // We only consider ADD, SUB and OR, because a non-zero constant found in
450 // expressions composed of these operations can be easily hoisted as a
451 // constant offset by reassociation.
452 if (BO->getOpcode() != Instruction::Add &&
453 BO->getOpcode() != Instruction::Sub &&
454 BO->getOpcode() != Instruction::Or) {
455 return false;
456 }
457
458 Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
459 // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS
460 // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS).
Jingyue Wuca321902015-05-14 23:53:19 +0000461 if (BO->getOpcode() == Instruction::Or &&
462 !haveNoCommonBitsSet(LHS, RHS, DL, nullptr, BO, DT))
Jingyue Wu84465472014-06-05 22:07:33 +0000463 return false;
464
465 // In addition, tracing into BO requires that its surrounding s/zext (if
466 // any) is distributable to both operands.
467 //
468 // Suppose BO = A op B.
469 // SignExtended | ZeroExtended | Distributable?
470 // --------------+--------------+----------------------------------
471 // 0 | 0 | true because no s/zext exists
472 // 0 | 1 | zext(BO) == zext(A) op zext(B)
473 // 1 | 0 | sext(BO) == sext(A) op sext(B)
474 // 1 | 1 | zext(sext(BO)) ==
475 // | | zext(sext(A)) op zext(sext(B))
Jingyue Wu01ceeb12014-06-08 20:19:38 +0000476 if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) {
Jingyue Wu84465472014-06-05 22:07:33 +0000477 // If a + b >= 0 and (a >= 0 or b >= 0), then
Jingyue Wu01ceeb12014-06-08 20:19:38 +0000478 // sext(a + b) = sext(a) + sext(b)
Jingyue Wu84465472014-06-05 22:07:33 +0000479 // even if the addition is not marked nsw.
480 //
481 // Leveraging this invarient, we can trace into an sext'ed inbound GEP
482 // index if the constant offset is non-negative.
483 //
484 // Verified in @sext_add in split-gep.ll.
485 if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) {
486 if (!ConstLHS->isNegative())
487 return true;
488 }
489 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) {
490 if (!ConstRHS->isNegative())
491 return true;
492 }
493 }
Jingyue Wu80a738d2014-05-27 18:00:00 +0000494
495 // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
496 // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
497 if (BO->getOpcode() == Instruction::Add ||
498 BO->getOpcode() == Instruction::Sub) {
Jingyue Wu84465472014-06-05 22:07:33 +0000499 if (SignExtended && !BO->hasNoSignedWrap())
500 return false;
501 if (ZeroExtended && !BO->hasNoUnsignedWrap())
502 return false;
Jingyue Wu80a738d2014-05-27 18:00:00 +0000503 }
504
Jingyue Wu84465472014-06-05 22:07:33 +0000505 return true;
Jingyue Wu80a738d2014-05-27 18:00:00 +0000506}
507
Jingyue Wu84465472014-06-05 22:07:33 +0000508APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO,
509 bool SignExtended,
510 bool ZeroExtended) {
511 // BO being non-negative does not shed light on whether its operands are
512 // non-negative. Clear the NonNegative flag here.
513 APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended,
514 /* NonNegative */ false);
Eli Benderskya108a652014-05-01 18:38:36 +0000515 // If we found a constant offset in the left operand, stop and return that.
516 // This shortcut might cause us to miss opportunities of combining the
517 // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
518 // However, such cases are probably already handled by -instcombine,
519 // given this pass runs after the standard optimizations.
520 if (ConstantOffset != 0) return ConstantOffset;
Jingyue Wu84465472014-06-05 22:07:33 +0000521 ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended,
522 /* NonNegative */ false);
Eli Benderskya108a652014-05-01 18:38:36 +0000523 // If U is a sub operator, negate the constant offset found in the right
524 // operand.
Jingyue Wu84465472014-06-05 22:07:33 +0000525 if (BO->getOpcode() == Instruction::Sub)
526 ConstantOffset = -ConstantOffset;
527 return ConstantOffset;
Eli Benderskya108a652014-05-01 18:38:36 +0000528}
529
Jingyue Wu84465472014-06-05 22:07:33 +0000530APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended,
531 bool ZeroExtended, bool NonNegative) {
532 // TODO(jingyue): We could trace into integer/pointer casts, such as
Eli Benderskya108a652014-05-01 18:38:36 +0000533 // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
534 // integers because it gives good enough results for our benchmarks.
Jingyue Wu84465472014-06-05 22:07:33 +0000535 unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
Eli Benderskya108a652014-05-01 18:38:36 +0000536
Jingyue Wu84465472014-06-05 22:07:33 +0000537 // We cannot do much with Values that are not a User, such as an Argument.
Eli Benderskya108a652014-05-01 18:38:36 +0000538 User *U = dyn_cast<User>(V);
Jingyue Wu84465472014-06-05 22:07:33 +0000539 if (U == nullptr) return APInt(BitWidth, 0);
Eli Benderskya108a652014-05-01 18:38:36 +0000540
Jingyue Wu84465472014-06-05 22:07:33 +0000541 APInt ConstantOffset(BitWidth, 0);
542 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Eli Benderskya108a652014-05-01 18:38:36 +0000543 // Hooray, we found it!
Jingyue Wu84465472014-06-05 22:07:33 +0000544 ConstantOffset = CI->getValue();
545 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
546 // Trace into subexpressions for more hoisting opportunities.
Jingyue Wuca321902015-05-14 23:53:19 +0000547 if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative))
Jingyue Wu84465472014-06-05 22:07:33 +0000548 ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended);
Jingyue Wu84465472014-06-05 22:07:33 +0000549 } else if (isa<SExtInst>(V)) {
550 ConstantOffset = find(U->getOperand(0), /* SignExtended */ true,
551 ZeroExtended, NonNegative).sext(BitWidth);
552 } else if (isa<ZExtInst>(V)) {
553 // As an optimization, we can clear the SignExtended flag because
554 // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll.
555 //
556 // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0.
Jingyue Wu84465472014-06-05 22:07:33 +0000557 ConstantOffset =
558 find(U->getOperand(0), /* SignExtended */ false,
559 /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth);
Eli Benderskya108a652014-05-01 18:38:36 +0000560 }
Jingyue Wu84465472014-06-05 22:07:33 +0000561
562 // If we found a non-zero constant offset, add it to the path for
563 // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't
564 // help this optimization.
Eli Benderskya108a652014-05-01 18:38:36 +0000565 if (ConstantOffset != 0)
566 UserChain.push_back(U);
567 return ConstantOffset;
568}
569
Jingyue Wu84465472014-06-05 22:07:33 +0000570Value *ConstantOffsetExtractor::applyExts(Value *V) {
571 Value *Current = V;
572 // ExtInsts is built in the use-def order. Therefore, we apply them to V
573 // in the reversed order.
574 for (auto I = ExtInsts.rbegin(), E = ExtInsts.rend(); I != E; ++I) {
575 if (Constant *C = dyn_cast<Constant>(Current)) {
576 // If Current is a constant, apply s/zext using ConstantExpr::getCast.
577 // ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt.
578 Current = ConstantExpr::getCast((*I)->getOpcode(), C, (*I)->getType());
579 } else {
580 Instruction *Ext = (*I)->clone();
581 Ext->setOperand(0, Current);
582 Ext->insertBefore(IP);
583 Current = Ext;
584 }
Eli Benderskya108a652014-05-01 18:38:36 +0000585 }
Jingyue Wu84465472014-06-05 22:07:33 +0000586 return Current;
Eli Benderskya108a652014-05-01 18:38:36 +0000587}
588
Jingyue Wu84465472014-06-05 22:07:33 +0000589Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() {
590 distributeExtsAndCloneChain(UserChain.size() - 1);
591 // Remove all nullptrs (used to be s/zext) from UserChain.
592 unsigned NewSize = 0;
Benjamin Kramer135f7352016-06-26 12:28:59 +0000593 for (User *I : UserChain) {
594 if (I != nullptr) {
595 UserChain[NewSize] = I;
Jingyue Wu84465472014-06-05 22:07:33 +0000596 NewSize++;
597 }
Eli Benderskya108a652014-05-01 18:38:36 +0000598 }
Jingyue Wu84465472014-06-05 22:07:33 +0000599 UserChain.resize(NewSize);
600 return removeConstOffset(UserChain.size() - 1);
Eli Benderskya108a652014-05-01 18:38:36 +0000601}
602
Jingyue Wu84465472014-06-05 22:07:33 +0000603Value *
604ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) {
605 User *U = UserChain[ChainIndex];
606 if (ChainIndex == 0) {
607 assert(isa<ConstantInt>(U));
608 // If U is a ConstantInt, applyExts will return a ConstantInt as well.
609 return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U));
610 }
Eli Benderskya108a652014-05-01 18:38:36 +0000611
Jingyue Wu84465472014-06-05 22:07:33 +0000612 if (CastInst *Cast = dyn_cast<CastInst>(U)) {
613 assert((isa<SExtInst>(Cast) || isa<ZExtInst>(Cast)) &&
614 "We only traced into two types of CastInst: sext and zext");
615 ExtInsts.push_back(Cast);
616 UserChain[ChainIndex] = nullptr;
617 return distributeExtsAndCloneChain(ChainIndex - 1);
618 }
619
620 // Function find only trace into BinaryOperator and CastInst.
621 BinaryOperator *BO = cast<BinaryOperator>(U);
622 // OpNo = which operand of BO is UserChain[ChainIndex - 1]
623 unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
624 Value *TheOther = applyExts(BO->getOperand(1 - OpNo));
625 Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1);
626
627 BinaryOperator *NewBO = nullptr;
628 if (OpNo == 0) {
629 NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther,
630 BO->getName(), IP);
631 } else {
632 NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain,
633 BO->getName(), IP);
634 }
635 return UserChain[ChainIndex] = NewBO;
Eli Benderskya108a652014-05-01 18:38:36 +0000636}
637
Jingyue Wu84465472014-06-05 22:07:33 +0000638Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
639 if (ChainIndex == 0) {
640 assert(isa<ConstantInt>(UserChain[ChainIndex]));
641 return ConstantInt::getNullValue(UserChain[ChainIndex]->getType());
642 }
Eli Benderskya108a652014-05-01 18:38:36 +0000643
Jingyue Wu84465472014-06-05 22:07:33 +0000644 BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]);
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000645 assert(BO->getNumUses() <= 1 &&
646 "distributeExtsAndCloneChain clones each BinaryOperator in "
647 "UserChain, so no one should be used more than "
648 "once");
649
Jingyue Wu84465472014-06-05 22:07:33 +0000650 unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
651 assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]);
652 Value *NextInChain = removeConstOffset(ChainIndex - 1);
653 Value *TheOther = BO->getOperand(1 - OpNo);
654
655 // If NextInChain is 0 and not the LHS of a sub, we can simplify the
656 // sub-expression to be just TheOther.
657 if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) {
658 if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0))
659 return TheOther;
660 }
661
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000662 BinaryOperator::BinaryOps NewOp = BO->getOpcode();
Jingyue Wu84465472014-06-05 22:07:33 +0000663 if (BO->getOpcode() == Instruction::Or) {
664 // Rebuild "or" as "add", because "or" may be invalid for the new
665 // epxression.
666 //
667 // For instance, given
668 // a | (b + 5) where a and b + 5 have no common bits,
669 // we can extract 5 as the constant offset.
670 //
671 // However, reusing the "or" in the new index would give us
672 // (a | b) + 5
673 // which does not equal a | (b + 5).
674 //
675 // Replacing the "or" with "add" is fine, because
676 // a | (b + 5) = a + (b + 5) = (a + b) + 5
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000677 NewOp = Instruction::Add;
Jingyue Wu84465472014-06-05 22:07:33 +0000678 }
679
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000680 BinaryOperator *NewBO;
681 if (OpNo == 0) {
682 NewBO = BinaryOperator::Create(NewOp, NextInChain, TheOther, "", IP);
683 } else {
684 NewBO = BinaryOperator::Create(NewOp, TheOther, NextInChain, "", IP);
685 }
686 NewBO->takeName(BO);
687 return NewBO;
Eli Benderskya108a652014-05-01 18:38:36 +0000688}
689
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000690Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP,
Jingyue Wuca321902015-05-14 23:53:19 +0000691 User *&UserChainTail,
692 const DominatorTree *DT) {
693 ConstantOffsetExtractor Extractor(GEP, DT);
Eli Benderskya108a652014-05-01 18:38:36 +0000694 // Find a non-zero constant offset first.
Jingyue Wu84465472014-06-05 22:07:33 +0000695 APInt ConstantOffset =
696 Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
697 GEP->isInBounds());
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000698 if (ConstantOffset == 0) {
699 UserChainTail = nullptr;
Hao Liu1d2a0612014-11-19 06:24:44 +0000700 return nullptr;
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000701 }
Hao Liu1d2a0612014-11-19 06:24:44 +0000702 // Separates the constant offset from the GEP index.
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000703 Value *IdxWithoutConstOffset = Extractor.rebuildWithoutConstOffset();
704 UserChainTail = Extractor.UserChain.back();
705 return IdxWithoutConstOffset;
Eli Benderskya108a652014-05-01 18:38:36 +0000706}
707
Jingyue Wuca321902015-05-14 23:53:19 +0000708int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP,
709 const DominatorTree *DT) {
Jingyue Wu84465472014-06-05 22:07:33 +0000710 // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
Jingyue Wuca321902015-05-14 23:53:19 +0000711 return ConstantOffsetExtractor(GEP, DT)
Jingyue Wu84465472014-06-05 22:07:33 +0000712 .find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
713 GEP->isInBounds())
714 .getSExtValue();
Eli Benderskya108a652014-05-01 18:38:36 +0000715}
716
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000717bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
718 GetElementPtrInst *GEP) {
719 bool Changed = false;
Jingyue Wuca321902015-05-14 23:53:19 +0000720 Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000721 gep_type_iterator GTI = gep_type_begin(*GEP);
722 for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
723 I != E; ++I, ++GTI) {
724 // Skip struct member indices which must be i32.
Peter Collingbourneab85225b2016-12-02 02:24:42 +0000725 if (GTI.isSequential()) {
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000726 if ((*I)->getType() != IntPtrTy) {
727 *I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP);
728 Changed = true;
729 }
730 }
731 }
732 return Changed;
733}
734
735int64_t
736SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
737 bool &NeedsExtraction) {
Eli Benderskya108a652014-05-01 18:38:36 +0000738 NeedsExtraction = false;
739 int64_t AccumulativeByteOffset = 0;
740 gep_type_iterator GTI = gep_type_begin(*GEP);
741 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
Peter Collingbourneab85225b2016-12-02 02:24:42 +0000742 if (GTI.isSequential()) {
Eli Benderskya108a652014-05-01 18:38:36 +0000743 // Tries to extract a constant offset from this GEP index.
744 int64_t ConstantOffset =
Jingyue Wuca321902015-05-14 23:53:19 +0000745 ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP, DT);
Eli Benderskya108a652014-05-01 18:38:36 +0000746 if (ConstantOffset != 0) {
747 NeedsExtraction = true;
748 // A GEP may have multiple indices. We accumulate the extracted
749 // constant offset to a byte offset, and later offset the remainder of
750 // the original GEP with this byte offset.
751 AccumulativeByteOffset +=
Jingyue Wuca321902015-05-14 23:53:19 +0000752 ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType());
Eli Benderskya108a652014-05-01 18:38:36 +0000753 }
Hao Liu1d2a0612014-11-19 06:24:44 +0000754 } else if (LowerGEP) {
Peter Collingbourneab85225b2016-12-02 02:24:42 +0000755 StructType *StTy = GTI.getStructType();
Hao Liu1d2a0612014-11-19 06:24:44 +0000756 uint64_t Field = cast<ConstantInt>(GEP->getOperand(I))->getZExtValue();
757 // Skip field 0 as the offset is always 0.
758 if (Field != 0) {
759 NeedsExtraction = true;
760 AccumulativeByteOffset +=
Jingyue Wuca321902015-05-14 23:53:19 +0000761 DL->getStructLayout(StTy)->getElementOffset(Field);
Hao Liu1d2a0612014-11-19 06:24:44 +0000762 }
Eli Benderskya108a652014-05-01 18:38:36 +0000763 }
764 }
765 return AccumulativeByteOffset;
766}
767
Hao Liu1d2a0612014-11-19 06:24:44 +0000768void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
769 GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) {
770 IRBuilder<> Builder(Variadic);
Jingyue Wuca321902015-05-14 23:53:19 +0000771 Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
Hao Liu1d2a0612014-11-19 06:24:44 +0000772
773 Type *I8PtrTy =
774 Builder.getInt8PtrTy(Variadic->getType()->getPointerAddressSpace());
775 Value *ResultPtr = Variadic->getOperand(0);
Lawrence Hucac0b892015-09-23 19:25:30 +0000776 Loop *L = LI->getLoopFor(Variadic->getParent());
777 // Check if the base is not loop invariant or used more than once.
778 bool isSwapCandidate =
779 L && L->isLoopInvariant(ResultPtr) &&
780 !hasMoreThanOneUseInLoop(ResultPtr, L);
781 Value *FirstResult = nullptr;
782
Hao Liu1d2a0612014-11-19 06:24:44 +0000783 if (ResultPtr->getType() != I8PtrTy)
784 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
785
786 gep_type_iterator GTI = gep_type_begin(*Variadic);
787 // Create an ugly GEP for each sequential index. We don't create GEPs for
788 // structure indices, as they are accumulated in the constant offset index.
789 for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
Peter Collingbourneab85225b2016-12-02 02:24:42 +0000790 if (GTI.isSequential()) {
Hao Liu1d2a0612014-11-19 06:24:44 +0000791 Value *Idx = Variadic->getOperand(I);
792 // Skip zero indices.
793 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
794 if (CI->isZero())
795 continue;
796
797 APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
Jingyue Wuca321902015-05-14 23:53:19 +0000798 DL->getTypeAllocSize(GTI.getIndexedType()));
Hao Liu1d2a0612014-11-19 06:24:44 +0000799 // Scale the index by element size.
800 if (ElementSize != 1) {
801 if (ElementSize.isPowerOf2()) {
802 Idx = Builder.CreateShl(
803 Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
804 } else {
805 Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
806 }
807 }
808 // Create an ugly GEP with a single index for each index.
David Blaikie93c54442015-04-03 19:41:44 +0000809 ResultPtr =
810 Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Idx, "uglygep");
Lawrence Hucac0b892015-09-23 19:25:30 +0000811 if (FirstResult == nullptr)
812 FirstResult = ResultPtr;
Hao Liu1d2a0612014-11-19 06:24:44 +0000813 }
814 }
815
816 // Create a GEP with the constant offset index.
817 if (AccumulativeByteOffset != 0) {
818 Value *Offset = ConstantInt::get(IntPtrTy, AccumulativeByteOffset);
David Blaikie93c54442015-04-03 19:41:44 +0000819 ResultPtr =
820 Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Offset, "uglygep");
Lawrence Hucac0b892015-09-23 19:25:30 +0000821 } else
822 isSwapCandidate = false;
823
824 // If we created a GEP with constant index, and the base is loop invariant,
825 // then we swap the first one with it, so LICM can move constant GEP out
826 // later.
Lawrence Hu84e6f1d2016-02-19 02:17:07 +0000827 GetElementPtrInst *FirstGEP = dyn_cast_or_null<GetElementPtrInst>(FirstResult);
828 GetElementPtrInst *SecondGEP = dyn_cast_or_null<GetElementPtrInst>(ResultPtr);
Lawrence Hucac0b892015-09-23 19:25:30 +0000829 if (isSwapCandidate && isLegalToSwapOperand(FirstGEP, SecondGEP, L))
830 swapGEPOperand(FirstGEP, SecondGEP);
831
Hao Liu1d2a0612014-11-19 06:24:44 +0000832 if (ResultPtr->getType() != Variadic->getType())
833 ResultPtr = Builder.CreateBitCast(ResultPtr, Variadic->getType());
834
835 Variadic->replaceAllUsesWith(ResultPtr);
836 Variadic->eraseFromParent();
837}
838
839void
840SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic,
841 int64_t AccumulativeByteOffset) {
842 IRBuilder<> Builder(Variadic);
Jingyue Wuca321902015-05-14 23:53:19 +0000843 Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
Hao Liu1d2a0612014-11-19 06:24:44 +0000844
845 Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy);
846 gep_type_iterator GTI = gep_type_begin(*Variadic);
847 // Create ADD/SHL/MUL arithmetic operations for each sequential indices. We
848 // don't create arithmetics for structure indices, as they are accumulated
849 // in the constant offset index.
850 for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
Peter Collingbourneab85225b2016-12-02 02:24:42 +0000851 if (GTI.isSequential()) {
Hao Liu1d2a0612014-11-19 06:24:44 +0000852 Value *Idx = Variadic->getOperand(I);
853 // Skip zero indices.
854 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
855 if (CI->isZero())
856 continue;
857
858 APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
Jingyue Wuca321902015-05-14 23:53:19 +0000859 DL->getTypeAllocSize(GTI.getIndexedType()));
Hao Liu1d2a0612014-11-19 06:24:44 +0000860 // Scale the index by element size.
861 if (ElementSize != 1) {
862 if (ElementSize.isPowerOf2()) {
863 Idx = Builder.CreateShl(
864 Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
865 } else {
866 Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
867 }
868 }
869 // Create an ADD for each index.
870 ResultPtr = Builder.CreateAdd(ResultPtr, Idx);
871 }
872 }
873
874 // Create an ADD for the constant offset index.
875 if (AccumulativeByteOffset != 0) {
876 ResultPtr = Builder.CreateAdd(
877 ResultPtr, ConstantInt::get(IntPtrTy, AccumulativeByteOffset));
878 }
879
880 ResultPtr = Builder.CreateIntToPtr(ResultPtr, Variadic->getType());
881 Variadic->replaceAllUsesWith(ResultPtr);
882 Variadic->eraseFromParent();
883}
884
Eli Benderskya108a652014-05-01 18:38:36 +0000885bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
886 // Skip vector GEPs.
887 if (GEP->getType()->isVectorTy())
888 return false;
889
890 // The backend can already nicely handle the case where all indices are
891 // constant.
892 if (GEP->hasAllConstantIndices())
893 return false;
894
Jingyue Wu0bdc0272014-07-16 23:25:00 +0000895 bool Changed = canonicalizeArrayIndicesToPointerSize(GEP);
Eli Benderskya108a652014-05-01 18:38:36 +0000896
Eli Benderskya108a652014-05-01 18:38:36 +0000897 bool NeedsExtraction;
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000898 int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction);
Eli Benderskya108a652014-05-01 18:38:36 +0000899
900 if (!NeedsExtraction)
901 return Changed;
Hao Liu1d2a0612014-11-19 06:24:44 +0000902 // If LowerGEP is disabled, before really splitting the GEP, check whether the
903 // backend supports the addressing mode we are about to produce. If no, this
904 // splitting probably won't be beneficial.
905 // If LowerGEP is enabled, even the extracted constant offset can not match
906 // the addressing mode, we can still do optimizations to other lowered parts
907 // of variable indices. Therefore, we don't check for addressing modes in that
908 // case.
909 if (!LowerGEP) {
Chandler Carruth705b1852015-01-31 03:43:40 +0000910 TargetTransformInfo &TTI =
Chandler Carruthfdb9c572015-02-01 12:01:35 +0000911 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
912 *GEP->getParent()->getParent());
Matt Arsenaulte81944f2015-06-07 20:17:44 +0000913 unsigned AddrSpace = GEP->getPointerAddressSpace();
Eduard Burtescu19eb0312016-01-19 17:28:00 +0000914 if (!TTI.isLegalAddressingMode(GEP->getResultElementType(),
Hao Liu1d2a0612014-11-19 06:24:44 +0000915 /*BaseGV=*/nullptr, AccumulativeByteOffset,
Matt Arsenaulte81944f2015-06-07 20:17:44 +0000916 /*HasBaseReg=*/true, /*Scale=*/0,
917 AddrSpace)) {
Hao Liu1d2a0612014-11-19 06:24:44 +0000918 return Changed;
919 }
Eli Benderskya108a652014-05-01 18:38:36 +0000920 }
921
Hao Liu1d2a0612014-11-19 06:24:44 +0000922 // Remove the constant offset in each sequential index. The resultant GEP
923 // computes the variadic base.
924 // Notice that we don't remove struct field indices here. If LowerGEP is
925 // disabled, a structure index is not accumulated and we still use the old
926 // one. If LowerGEP is enabled, a structure index is accumulated in the
927 // constant offset. LowerToSingleIndexGEPs or lowerToArithmetics will later
928 // handle the constant offset and won't need a new structure index.
Jingyue Wu48a5abe2014-06-08 20:15:45 +0000929 gep_type_iterator GTI = gep_type_begin(*GEP);
Eli Benderskya108a652014-05-01 18:38:36 +0000930 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
Peter Collingbourneab85225b2016-12-02 02:24:42 +0000931 if (GTI.isSequential()) {
Hao Liu1d2a0612014-11-19 06:24:44 +0000932 // Splits this GEP index into a variadic part and a constant offset, and
933 // uses the variadic part as the new index.
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000934 Value *OldIdx = GEP->getOperand(I);
935 User *UserChainTail;
936 Value *NewIdx =
Jingyue Wuca321902015-05-14 23:53:19 +0000937 ConstantOffsetExtractor::Extract(OldIdx, GEP, UserChainTail, DT);
Hao Liu1d2a0612014-11-19 06:24:44 +0000938 if (NewIdx != nullptr) {
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000939 // Switches to the index with the constant offset removed.
Eli Benderskya108a652014-05-01 18:38:36 +0000940 GEP->setOperand(I, NewIdx);
Jingyue Wuf763c3f2015-04-21 19:53:18 +0000941 // After switching to the new index, we can garbage-collect UserChain
942 // and the old index if they are not used.
943 RecursivelyDeleteTriviallyDeadInstructions(UserChainTail);
944 RecursivelyDeleteTriviallyDeadInstructions(OldIdx);
Eli Benderskya108a652014-05-01 18:38:36 +0000945 }
946 }
947 }
Hao Liu1d2a0612014-11-19 06:24:44 +0000948
Jingyue Wu84465472014-06-05 22:07:33 +0000949 // Clear the inbounds attribute because the new index may be off-bound.
950 // e.g.,
951 //
Jingyue Wu1238f342015-08-14 02:02:05 +0000952 // b = add i64 a, 5
953 // addr = gep inbounds float, float* p, i64 b
Jingyue Wu84465472014-06-05 22:07:33 +0000954 //
955 // is transformed to:
956 //
Jingyue Wu1238f342015-08-14 02:02:05 +0000957 // addr2 = gep float, float* p, i64 a ; inbounds removed
958 // addr = gep inbounds float, float* addr2, i64 5
Jingyue Wu84465472014-06-05 22:07:33 +0000959 //
960 // If a is -4, although the old index b is in bounds, the new index a is
961 // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
962 // inbounds keyword is not present, the offsets are added to the base
963 // address with silently-wrapping two's complement arithmetic".
964 // Therefore, the final code will be a semantically equivalent.
965 //
966 // TODO(jingyue): do some range analysis to keep as many inbounds as
967 // possible. GEPs with inbounds are more friendly to alias analysis.
Jingyue Wu13a80ea2015-08-13 18:48:49 +0000968 bool GEPWasInBounds = GEP->isInBounds();
Jingyue Wu84465472014-06-05 22:07:33 +0000969 GEP->setIsInBounds(false);
Eli Benderskya108a652014-05-01 18:38:36 +0000970
Hao Liu1d2a0612014-11-19 06:24:44 +0000971 // Lowers a GEP to either GEPs with a single index or arithmetic operations.
972 if (LowerGEP) {
973 // As currently BasicAA does not analyze ptrtoint/inttoptr, do not lower to
974 // arithmetic operations if the target uses alias analysis in codegen.
Eric Christophere38c8d42015-01-27 07:16:37 +0000975 if (TM && TM->getSubtargetImpl(*GEP->getParent()->getParent())->useAA())
Hao Liu1d2a0612014-11-19 06:24:44 +0000976 lowerToSingleIndexGEPs(GEP, AccumulativeByteOffset);
977 else
978 lowerToArithmetics(GEP, AccumulativeByteOffset);
979 return true;
980 }
981
982 // No need to create another GEP if the accumulative byte offset is 0.
983 if (AccumulativeByteOffset == 0)
984 return true;
985
Eli Benderskya108a652014-05-01 18:38:36 +0000986 // Offsets the base with the accumulative byte offset.
987 //
988 // %gep ; the base
989 // ... %gep ...
990 //
991 // => add the offset
992 //
993 // %gep2 ; clone of %gep
Jingyue Wubbb6e4a2014-05-23 18:39:40 +0000994 // %new.gep = gep %gep2, <offset / sizeof(*%gep)>
Eli Benderskya108a652014-05-01 18:38:36 +0000995 // %gep ; will be removed
996 // ... %gep ...
997 //
998 // => replace all uses of %gep with %new.gep and remove %gep
999 //
1000 // %gep2 ; clone of %gep
Jingyue Wubbb6e4a2014-05-23 18:39:40 +00001001 // %new.gep = gep %gep2, <offset / sizeof(*%gep)>
Eli Benderskya108a652014-05-01 18:38:36 +00001002 // ... %new.gep ...
1003 //
Jingyue Wubbb6e4a2014-05-23 18:39:40 +00001004 // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an
1005 // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep):
1006 // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the
1007 // type of %gep.
Eli Benderskya108a652014-05-01 18:38:36 +00001008 //
Jingyue Wubbb6e4a2014-05-23 18:39:40 +00001009 // %gep2 ; clone of %gep
1010 // %0 = bitcast %gep2 to i8*
1011 // %uglygep = gep %0, <offset>
1012 // %new.gep = bitcast %uglygep to <type of %gep>
1013 // ... %new.gep ...
Eli Benderskya108a652014-05-01 18:38:36 +00001014 Instruction *NewGEP = GEP->clone();
1015 NewGEP->insertBefore(GEP);
Eli Benderskya108a652014-05-01 18:38:36 +00001016
Jingyue Wufe72fce2014-10-25 18:34:03 +00001017 // Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned =
1018 // unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is
1019 // used with unsigned integers later.
1020 int64_t ElementTypeSizeOfGEP = static_cast<int64_t>(
Eduard Burtescu19eb0312016-01-19 17:28:00 +00001021 DL->getTypeAllocSize(GEP->getResultElementType()));
Jingyue Wuca321902015-05-14 23:53:19 +00001022 Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
Jingyue Wubbb6e4a2014-05-23 18:39:40 +00001023 if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
1024 // Very likely. As long as %gep is natually aligned, the byte offset we
1025 // extracted should be a multiple of sizeof(*%gep).
Jingyue Wufe72fce2014-10-25 18:34:03 +00001026 int64_t Index = AccumulativeByteOffset / ElementTypeSizeOfGEP;
David Blaikie741c8f82015-03-14 01:53:18 +00001027 NewGEP = GetElementPtrInst::Create(GEP->getResultElementType(), NewGEP,
1028 ConstantInt::get(IntPtrTy, Index, true),
1029 GEP->getName(), GEP);
Jingyue Wu13a80ea2015-08-13 18:48:49 +00001030 // Inherit the inbounds attribute of the original GEP.
1031 cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds);
Jingyue Wubbb6e4a2014-05-23 18:39:40 +00001032 } else {
1033 // Unlikely but possible. For example,
1034 // #pragma pack(1)
1035 // struct S {
1036 // int a[3];
1037 // int64 b[8];
1038 // };
1039 // #pragma pack()
1040 //
1041 // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After
1042 // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is
1043 // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of
1044 // sizeof(int64).
1045 //
1046 // Emit an uglygep in this case.
1047 Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(),
1048 GEP->getPointerAddressSpace());
1049 NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP);
1050 NewGEP = GetElementPtrInst::Create(
David Blaikie741c8f82015-03-14 01:53:18 +00001051 Type::getInt8Ty(GEP->getContext()), NewGEP,
1052 ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true), "uglygep",
1053 GEP);
Jingyue Wu13a80ea2015-08-13 18:48:49 +00001054 // Inherit the inbounds attribute of the original GEP.
1055 cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds);
Jingyue Wubbb6e4a2014-05-23 18:39:40 +00001056 if (GEP->getType() != I8PtrTy)
1057 NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP);
1058 }
1059
1060 GEP->replaceAllUsesWith(NewGEP);
Eli Benderskya108a652014-05-01 18:38:36 +00001061 GEP->eraseFromParent();
1062
1063 return true;
1064}
1065
1066bool SeparateConstOffsetFromGEP::runOnFunction(Function &F) {
Andrew Kayloraa641a52016-04-22 22:06:11 +00001067 if (skipFunction(F))
Jingyue Wu6c26bb62015-02-01 02:34:41 +00001068 return false;
1069
Eli Benderskya108a652014-05-01 18:38:36 +00001070 if (DisableSeparateConstOffsetFromGEP)
1071 return false;
1072
Jingyue Wuca321902015-05-14 23:53:19 +00001073 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Chandler Carruth2f1fd162015-08-17 02:08:17 +00001074 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
Lawrence Hucac0b892015-09-23 19:25:30 +00001075 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1076 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
Eli Benderskya108a652014-05-01 18:38:36 +00001077 bool Changed = false;
Benjamin Kramer135f7352016-06-26 12:28:59 +00001078 for (BasicBlock &B : F) {
1079 for (BasicBlock::iterator I = B.begin(), IE = B.end(); I != IE;)
Lawrence Hucac0b892015-09-23 19:25:30 +00001080 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I++))
Eli Benderskya108a652014-05-01 18:38:36 +00001081 Changed |= splitGEP(GEP);
Lawrence Hucac0b892015-09-23 19:25:30 +00001082 // No need to split GEP ConstantExprs because all its indices are constant
1083 // already.
Eli Benderskya108a652014-05-01 18:38:36 +00001084 }
Jingyue Wuf763c3f2015-04-21 19:53:18 +00001085
Jingyue Wu1238f342015-08-14 02:02:05 +00001086 Changed |= reuniteExts(F);
1087
Jingyue Wuf763c3f2015-04-21 19:53:18 +00001088 if (VerifyNoDeadCode)
1089 verifyNoDeadCode(F);
1090
Eli Benderskya108a652014-05-01 18:38:36 +00001091 return Changed;
1092}
Jingyue Wuf763c3f2015-04-21 19:53:18 +00001093
Jingyue Wu1238f342015-08-14 02:02:05 +00001094Instruction *SeparateConstOffsetFromGEP::findClosestMatchingDominator(
1095 const SCEV *Key, Instruction *Dominatee) {
1096 auto Pos = DominatingExprs.find(Key);
1097 if (Pos == DominatingExprs.end())
1098 return nullptr;
1099
1100 auto &Candidates = Pos->second;
1101 // Because we process the basic blocks in pre-order of the dominator tree, a
1102 // candidate that doesn't dominate the current instruction won't dominate any
1103 // future instruction either. Therefore, we pop it out of the stack. This
1104 // optimization makes the algorithm O(n).
1105 while (!Candidates.empty()) {
1106 Instruction *Candidate = Candidates.back();
1107 if (DT->dominates(Candidate, Dominatee))
1108 return Candidate;
1109 Candidates.pop_back();
1110 }
1111 return nullptr;
1112}
1113
1114bool SeparateConstOffsetFromGEP::reuniteExts(Instruction *I) {
1115 if (!SE->isSCEVable(I->getType()))
1116 return false;
1117
1118 // Dom: LHS+RHS
1119 // I: sext(LHS)+sext(RHS)
1120 // If Dom can't sign overflow and Dom dominates I, optimize I to sext(Dom).
1121 // TODO: handle zext
1122 Value *LHS = nullptr, *RHS = nullptr;
1123 if (match(I, m_Add(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS)))) ||
1124 match(I, m_Sub(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS))))) {
1125 if (LHS->getType() == RHS->getType()) {
1126 const SCEV *Key =
1127 SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
1128 if (auto *Dom = findClosestMatchingDominator(Key, I)) {
1129 Instruction *NewSExt = new SExtInst(Dom, I->getType(), "", I);
1130 NewSExt->takeName(I);
1131 I->replaceAllUsesWith(NewSExt);
1132 RecursivelyDeleteTriviallyDeadInstructions(I);
1133 return true;
1134 }
1135 }
1136 }
1137
1138 // Add I to DominatingExprs if it's an add/sub that can't sign overflow.
1139 if (match(I, m_NSWAdd(m_Value(LHS), m_Value(RHS))) ||
1140 match(I, m_NSWSub(m_Value(LHS), m_Value(RHS)))) {
1141 if (isKnownNotFullPoison(I)) {
1142 const SCEV *Key =
1143 SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
1144 DominatingExprs[Key].push_back(I);
1145 }
1146 }
1147 return false;
1148}
1149
1150bool SeparateConstOffsetFromGEP::reuniteExts(Function &F) {
1151 bool Changed = false;
1152 DominatingExprs.clear();
Daniel Berlin11da66f2016-08-19 22:18:38 +00001153 for (const auto Node : depth_first(DT)) {
1154 BasicBlock *BB = Node->getBlock();
1155 for (auto I = BB->begin(); I != BB->end(); ) {
1156 Instruction *Cur = &*I++;
1157 Changed |= reuniteExts(Cur);
1158 }
1159 }
Jingyue Wu1238f342015-08-14 02:02:05 +00001160 return Changed;
1161}
1162
Jingyue Wuf763c3f2015-04-21 19:53:18 +00001163void SeparateConstOffsetFromGEP::verifyNoDeadCode(Function &F) {
Benjamin Kramer135f7352016-06-26 12:28:59 +00001164 for (BasicBlock &B : F) {
1165 for (Instruction &I : B) {
Jingyue Wuf763c3f2015-04-21 19:53:18 +00001166 if (isInstructionTriviallyDead(&I)) {
1167 std::string ErrMessage;
1168 raw_string_ostream RSO(ErrMessage);
1169 RSO << "Dead instruction detected!\n" << I << "\n";
1170 llvm_unreachable(RSO.str().c_str());
1171 }
1172 }
1173 }
1174}
Lawrence Hucac0b892015-09-23 19:25:30 +00001175
1176bool SeparateConstOffsetFromGEP::isLegalToSwapOperand(
1177 GetElementPtrInst *FirstGEP, GetElementPtrInst *SecondGEP, Loop *CurLoop) {
1178 if (!FirstGEP || !FirstGEP->hasOneUse())
1179 return false;
1180
1181 if (!SecondGEP || FirstGEP->getParent() != SecondGEP->getParent())
1182 return false;
1183
1184 if (FirstGEP == SecondGEP)
1185 return false;
1186
1187 unsigned FirstNum = FirstGEP->getNumOperands();
1188 unsigned SecondNum = SecondGEP->getNumOperands();
1189 // Give up if the number of operands are not 2.
1190 if (FirstNum != SecondNum || FirstNum != 2)
1191 return false;
1192
1193 Value *FirstBase = FirstGEP->getOperand(0);
1194 Value *SecondBase = SecondGEP->getOperand(0);
1195 Value *FirstOffset = FirstGEP->getOperand(1);
1196 // Give up if the index of the first GEP is loop invariant.
1197 if (CurLoop->isLoopInvariant(FirstOffset))
1198 return false;
1199
1200 // Give up if base doesn't have same type.
1201 if (FirstBase->getType() != SecondBase->getType())
1202 return false;
1203
1204 Instruction *FirstOffsetDef = dyn_cast<Instruction>(FirstOffset);
1205
1206 // Check if the second operand of first GEP has constant coefficient.
1207 // For an example, for the following code, we won't gain anything by
1208 // hoisting the second GEP out because the second GEP can be folded away.
1209 // %scevgep.sum.ur159 = add i64 %idxprom48.ur, 256
1210 // %67 = shl i64 %scevgep.sum.ur159, 2
1211 // %uglygep160 = getelementptr i8* %65, i64 %67
1212 // %uglygep161 = getelementptr i8* %uglygep160, i64 -1024
1213
1214 // Skip constant shift instruction which may be generated by Splitting GEPs.
1215 if (FirstOffsetDef && FirstOffsetDef->isShift() &&
Craig Topper66059c92015-11-18 07:07:59 +00001216 isa<ConstantInt>(FirstOffsetDef->getOperand(1)))
Lawrence Hucac0b892015-09-23 19:25:30 +00001217 FirstOffsetDef = dyn_cast<Instruction>(FirstOffsetDef->getOperand(0));
1218
1219 // Give up if FirstOffsetDef is an Add or Sub with constant.
1220 // Because it may not profitable at all due to constant folding.
1221 if (FirstOffsetDef)
1222 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FirstOffsetDef)) {
1223 unsigned opc = BO->getOpcode();
1224 if ((opc == Instruction::Add || opc == Instruction::Sub) &&
Craig Topper66059c92015-11-18 07:07:59 +00001225 (isa<ConstantInt>(BO->getOperand(0)) ||
1226 isa<ConstantInt>(BO->getOperand(1))))
Lawrence Hucac0b892015-09-23 19:25:30 +00001227 return false;
1228 }
1229 return true;
1230}
1231
1232bool SeparateConstOffsetFromGEP::hasMoreThanOneUseInLoop(Value *V, Loop *L) {
1233 int UsesInLoop = 0;
1234 for (User *U : V->users()) {
1235 if (Instruction *User = dyn_cast<Instruction>(U))
1236 if (L->contains(User))
1237 if (++UsesInLoop > 1)
1238 return true;
1239 }
1240 return false;
1241}
1242
1243void SeparateConstOffsetFromGEP::swapGEPOperand(GetElementPtrInst *First,
1244 GetElementPtrInst *Second) {
1245 Value *Offset1 = First->getOperand(1);
1246 Value *Offset2 = Second->getOperand(1);
1247 First->setOperand(1, Offset2);
1248 Second->setOperand(1, Offset1);
1249
1250 // We changed p+o+c to p+c+o, p+c may not be inbound anymore.
1251 const DataLayout &DAL = First->getModule()->getDataLayout();
1252 APInt Offset(DAL.getPointerSizeInBits(
1253 cast<PointerType>(First->getType())->getAddressSpace()),
1254 0);
1255 Value *NewBase =
1256 First->stripAndAccumulateInBoundsConstantOffsets(DAL, Offset);
1257 uint64_t ObjectSize;
1258 if (!getObjectSize(NewBase, ObjectSize, DAL, TLI) ||
1259 Offset.ugt(ObjectSize)) {
1260 First->setIsInBounds(false);
1261 Second->setIsInBounds(false);
1262 } else
1263 First->setIsInBounds(true);
1264}