blob: 02f9bb66a87d7476118cbddde0c557bb2d9baeda [file] [log] [blame]
Chris Lattnere47e4402007-06-01 18:02:12 +00001//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
Chris Lattnerb6984c42007-06-20 04:44:43 +000015#include "CodeGenModule.h"
Chris Lattnere47e4402007-06-01 18:02:12 +000016#include "clang/AST/AST.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
Chris Lattner4347e3692007-06-06 04:54:52 +000019#include "llvm/Function.h"
20#include "llvm/GlobalVariable.h"
Chris Lattnere47e4402007-06-01 18:02:12 +000021using namespace clang;
22using namespace CodeGen;
23
Chris Lattnerd7f58862007-06-02 05:24:33 +000024//===--------------------------------------------------------------------===//
Chris Lattnerf0106d22007-06-02 19:33:17 +000025// Miscellaneous Helper Methods
26//===--------------------------------------------------------------------===//
27
Chris Lattnere9a64532007-06-22 21:44:33 +000028/// CreateTempAlloca - This creates a alloca and inserts it into the entry
29/// block.
30llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty,
31 const char *Name) {
32 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
33}
Chris Lattner8394d792007-06-05 20:53:16 +000034
35/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
36/// expression and compare the result against zero, returning an Int1Ty value.
Chris Lattner23b7eb62007-06-15 23:05:46 +000037llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
Chris Lattner8394d792007-06-05 20:53:16 +000038 QualType Ty;
39 RValue Val = EmitExprWithUsualUnaryConversions(E, Ty);
40 return ConvertScalarValueToBool(Val, Ty);
41}
42
Chris Lattnere9a64532007-06-22 21:44:33 +000043/// EmitLoadOfComplex - Given an RValue reference for a complex, emit code to
44/// load the real and imaginary pieces, returning them as Real/Imag.
45void CodeGenFunction::EmitLoadOfComplex(RValue V,
46 llvm::Value *&Real, llvm::Value *&Imag){
47 llvm::Value *Ptr = V.getAggregateAddr();
48
49 llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
50 llvm::Constant *One = llvm::ConstantInt::get(llvm::Type::Int32Ty, 1);
51 llvm::Value *RealPtr = Builder.CreateGEP(Ptr, Zero, Zero, "realp");
52 llvm::Value *ImagPtr = Builder.CreateGEP(Ptr, Zero, One, "imagp");
53
54 // FIXME: Handle volatility.
55 Real = Builder.CreateLoad(RealPtr, "real");
56 Imag = Builder.CreateLoad(ImagPtr, "imag");
57}
58
59/// EmitStoreOfComplex - Store the specified real/imag parts into the
60/// specified value pointer.
61void CodeGenFunction::EmitStoreOfComplex(llvm::Value *Real, llvm::Value *Imag,
62 llvm::Value *ResPtr) {
63 llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
64 llvm::Constant *One = llvm::ConstantInt::get(llvm::Type::Int32Ty, 1);
65 llvm::Value *RealPtr = Builder.CreateGEP(ResPtr, Zero, Zero, "real");
66 llvm::Value *ImagPtr = Builder.CreateGEP(ResPtr, Zero, One, "imag");
67
68 // FIXME: Handle volatility.
69 Builder.CreateStore(Real, RealPtr);
70 Builder.CreateStore(Imag, ImagPtr);
71}
72
Chris Lattner8394d792007-06-05 20:53:16 +000073//===--------------------------------------------------------------------===//
74// Conversions
75//===--------------------------------------------------------------------===//
76
77/// EmitConversion - Convert the value specied by Val, whose type is ValTy, to
78/// the type specified by DstTy, following the rules of C99 6.3.
79RValue CodeGenFunction::EmitConversion(RValue Val, QualType ValTy,
Chris Lattnerf033c142007-06-22 19:05:19 +000080 QualType DstTy) {
Chris Lattner8394d792007-06-05 20:53:16 +000081 ValTy = ValTy.getCanonicalType();
82 DstTy = DstTy.getCanonicalType();
83 if (ValTy == DstTy) return Val;
Chris Lattner83b484b2007-06-06 04:39:08 +000084
85 // Handle conversions to bool first, they are special: comparisons against 0.
86 if (const BuiltinType *DestBT = dyn_cast<BuiltinType>(DstTy))
87 if (DestBT->getKind() == BuiltinType::Bool)
88 return RValue::get(ConvertScalarValueToBool(Val, ValTy));
Chris Lattner8394d792007-06-05 20:53:16 +000089
Chris Lattner83b484b2007-06-06 04:39:08 +000090 // Handle pointer conversions next: pointers can only be converted to/from
91 // other pointers and integers.
Chris Lattnercf106ab2007-06-06 04:05:39 +000092 if (isa<PointerType>(DstTy)) {
Chris Lattnerf033c142007-06-22 19:05:19 +000093 const llvm::Type *DestTy = ConvertType(DstTy);
Chris Lattnercf106ab2007-06-06 04:05:39 +000094
95 // The source value may be an integer, or a pointer.
96 assert(Val.isScalar() && "Can only convert from integer or pointer");
97 if (isa<llvm::PointerType>(Val.getVal()->getType()))
98 return RValue::get(Builder.CreateBitCast(Val.getVal(), DestTy, "conv"));
99 assert(ValTy->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
100 return RValue::get(Builder.CreatePtrToInt(Val.getVal(), DestTy, "conv"));
Chris Lattner83b484b2007-06-06 04:39:08 +0000101 }
102
103 if (isa<PointerType>(ValTy)) {
Chris Lattnercf106ab2007-06-06 04:05:39 +0000104 // Must be an ptr to int cast.
Chris Lattnerf033c142007-06-22 19:05:19 +0000105 const llvm::Type *DestTy = ConvertType(DstTy);
Chris Lattnercf106ab2007-06-06 04:05:39 +0000106 assert(isa<llvm::IntegerType>(DestTy) && "not ptr->int?");
107 return RValue::get(Builder.CreateIntToPtr(Val.getVal(), DestTy, "conv"));
Chris Lattner8394d792007-06-05 20:53:16 +0000108 }
Chris Lattner83b484b2007-06-06 04:39:08 +0000109
110 // Finally, we have the arithmetic types: real int/float and complex
111 // int/float. Handle real->real conversions first, they are the most
112 // common.
113 if (Val.isScalar() && DstTy->isRealType()) {
114 // We know that these are representable as scalars in LLVM, convert to LLVM
115 // types since they are easier to reason about.
Chris Lattner23b7eb62007-06-15 23:05:46 +0000116 llvm::Value *SrcVal = Val.getVal();
Chris Lattnerf033c142007-06-22 19:05:19 +0000117 const llvm::Type *DestTy = ConvertType(DstTy);
Chris Lattner83b484b2007-06-06 04:39:08 +0000118 if (SrcVal->getType() == DestTy) return Val;
119
Chris Lattner23b7eb62007-06-15 23:05:46 +0000120 llvm::Value *Result;
Chris Lattner83b484b2007-06-06 04:39:08 +0000121 if (isa<llvm::IntegerType>(SrcVal->getType())) {
122 bool InputSigned = ValTy->isSignedIntegerType();
123 if (isa<llvm::IntegerType>(DestTy))
124 Result = Builder.CreateIntCast(SrcVal, DestTy, InputSigned, "conv");
125 else if (InputSigned)
126 Result = Builder.CreateSIToFP(SrcVal, DestTy, "conv");
127 else
128 Result = Builder.CreateUIToFP(SrcVal, DestTy, "conv");
129 } else {
130 assert(SrcVal->getType()->isFloatingPoint() && "Unknown real conversion");
131 if (isa<llvm::IntegerType>(DestTy)) {
132 if (DstTy->isSignedIntegerType())
133 Result = Builder.CreateFPToSI(SrcVal, DestTy, "conv");
134 else
135 Result = Builder.CreateFPToUI(SrcVal, DestTy, "conv");
136 } else {
137 assert(DestTy->isFloatingPoint() && "Unknown real conversion");
138 if (DestTy->getTypeID() < SrcVal->getType()->getTypeID())
139 Result = Builder.CreateFPTrunc(SrcVal, DestTy, "conv");
140 else
141 Result = Builder.CreateFPExt(SrcVal, DestTy, "conv");
142 }
143 }
144 return RValue::get(Result);
145 }
146
147 assert(0 && "FIXME: We don't support complex conversions yet!");
Chris Lattner8394d792007-06-05 20:53:16 +0000148}
149
150
151/// ConvertScalarValueToBool - Convert the specified expression value to a
Chris Lattnerf0106d22007-06-02 19:33:17 +0000152/// boolean (i1) truth value. This is equivalent to "Val == 0".
Chris Lattner23b7eb62007-06-15 23:05:46 +0000153llvm::Value *CodeGenFunction::ConvertScalarValueToBool(RValue Val, QualType Ty){
Chris Lattnerf0106d22007-06-02 19:33:17 +0000154 Ty = Ty.getCanonicalType();
Chris Lattner23b7eb62007-06-15 23:05:46 +0000155 llvm::Value *Result;
Chris Lattnerf0106d22007-06-02 19:33:17 +0000156 if (const BuiltinType *BT = dyn_cast<BuiltinType>(Ty)) {
157 switch (BT->getKind()) {
158 default: assert(0 && "Unknown scalar value");
159 case BuiltinType::Bool:
160 Result = Val.getVal();
161 // Bool is already evaluated right.
162 assert(Result->getType() == llvm::Type::Int1Ty &&
163 "Unexpected bool value type!");
164 return Result;
Chris Lattnerb16f4552007-06-03 07:25:34 +0000165 case BuiltinType::Char_S:
166 case BuiltinType::Char_U:
Chris Lattnerf0106d22007-06-02 19:33:17 +0000167 case BuiltinType::SChar:
168 case BuiltinType::UChar:
169 case BuiltinType::Short:
170 case BuiltinType::UShort:
171 case BuiltinType::Int:
172 case BuiltinType::UInt:
173 case BuiltinType::Long:
174 case BuiltinType::ULong:
175 case BuiltinType::LongLong:
176 case BuiltinType::ULongLong:
177 // Code below handles simple integers.
178 break;
179 case BuiltinType::Float:
180 case BuiltinType::Double:
181 case BuiltinType::LongDouble: {
182 // Compare against 0.0 for fp scalars.
183 Result = Val.getVal();
Chris Lattner23b7eb62007-06-15 23:05:46 +0000184 llvm::Value *Zero = llvm::Constant::getNullValue(Result->getType());
Chris Lattnerf0106d22007-06-02 19:33:17 +0000185 // FIXME: llvm-gcc produces a une comparison: validate this is right.
186 Result = Builder.CreateFCmpUNE(Result, Zero, "tobool");
187 return Result;
188 }
Chris Lattnerf0106d22007-06-02 19:33:17 +0000189 }
Chris Lattnerc6395932007-06-22 20:56:16 +0000190 } else if (isa<PointerType>(Ty) ||
191 cast<TagType>(Ty)->getDecl()->getKind() == Decl::Enum) {
Chris Lattnerf0106d22007-06-02 19:33:17 +0000192 // Code below handles this fine.
Chris Lattnerc6395932007-06-22 20:56:16 +0000193 } else {
194 assert(isa<ComplexType>(Ty) && "Unknwon type!");
195 assert(0 && "FIXME: comparisons against complex not implemented yet");
Chris Lattnerf0106d22007-06-02 19:33:17 +0000196 }
197
198 // Usual case for integers, pointers, and enums: compare against zero.
199 Result = Val.getVal();
Chris Lattnera45c5af2007-06-02 19:47:04 +0000200
201 // Because of the type rules of C, we often end up computing a logical value,
202 // then zero extending it to int, then wanting it as a logical value again.
203 // Optimize this common case.
Chris Lattner23b7eb62007-06-15 23:05:46 +0000204 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Result)) {
Chris Lattnera45c5af2007-06-02 19:47:04 +0000205 if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
206 Result = ZI->getOperand(0);
207 ZI->eraseFromParent();
208 return Result;
209 }
210 }
211
Chris Lattner23b7eb62007-06-15 23:05:46 +0000212 llvm::Value *Zero = llvm::Constant::getNullValue(Result->getType());
Chris Lattnerf0106d22007-06-02 19:33:17 +0000213 return Builder.CreateICmpNE(Result, Zero, "tobool");
214}
215
Chris Lattnera45c5af2007-06-02 19:47:04 +0000216//===----------------------------------------------------------------------===//
Chris Lattnerd7f58862007-06-02 05:24:33 +0000217// LValue Expression Emission
Chris Lattnera45c5af2007-06-02 19:47:04 +0000218//===----------------------------------------------------------------------===//
Chris Lattnerd7f58862007-06-02 05:24:33 +0000219
Chris Lattner8394d792007-06-05 20:53:16 +0000220/// EmitLValue - Emit code to compute a designator that specifies the location
221/// of the expression.
222///
223/// This can return one of two things: a simple address or a bitfield
224/// reference. In either case, the LLVM Value* in the LValue structure is
225/// guaranteed to be an LLVM pointer type.
226///
227/// If this returns a bitfield reference, nothing about the pointee type of
228/// the LLVM value is known: For example, it may not be a pointer to an
229/// integer.
230///
231/// If this returns a normal address, and if the lvalue's C type is fixed
232/// size, this method guarantees that the returned pointer type will point to
233/// an LLVM type of the same size of the lvalue's type. If the lvalue has a
234/// variable length type, this is not possible.
235///
Chris Lattnerd7f58862007-06-02 05:24:33 +0000236LValue CodeGenFunction::EmitLValue(const Expr *E) {
237 switch (E->getStmtClass()) {
238 default:
Chris Lattner8394d792007-06-05 20:53:16 +0000239 fprintf(stderr, "Unimplemented lvalue expr!\n");
Chris Lattnerd7f58862007-06-02 05:24:33 +0000240 E->dump();
Chris Lattner08c4b9f2007-07-10 21:17:59 +0000241 return LValue::MakeAddr(llvm::UndefValue::get(
Chris Lattnerd7f58862007-06-02 05:24:33 +0000242 llvm::PointerType::get(llvm::Type::Int32Ty)));
243
244 case Expr::DeclRefExprClass: return EmitDeclRefLValue(cast<DeclRefExpr>(E));
Chris Lattner946aa312007-06-05 03:59:43 +0000245 case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
Chris Lattner4347e3692007-06-06 04:54:52 +0000246 case Expr::StringLiteralClass:
247 return EmitStringLiteralLValue(cast<StringLiteral>(E));
Chris Lattner8394d792007-06-05 20:53:16 +0000248
249 case Expr::UnaryOperatorClass:
250 return EmitUnaryOpLValue(cast<UnaryOperator>(E));
Chris Lattnerd9d2fb12007-06-08 23:31:14 +0000251 case Expr::ArraySubscriptExprClass:
252 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
Chris Lattnerd7f58862007-06-02 05:24:33 +0000253 }
254}
255
Chris Lattner8394d792007-06-05 20:53:16 +0000256/// EmitLoadOfLValue - Given an expression that represents a value lvalue,
257/// this method emits the address of the lvalue, then loads the result as an
258/// rvalue, returning the rvalue.
Chris Lattner9369a562007-06-29 16:31:29 +0000259RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) {
260 ExprType = ExprType.getCanonicalType();
Chris Lattner8394d792007-06-05 20:53:16 +0000261
Chris Lattner08c4b9f2007-07-10 21:17:59 +0000262 if (LV.isSimple()) {
263 llvm::Value *Ptr = LV.getAddress();
264 const llvm::Type *EltTy =
265 cast<llvm::PointerType>(Ptr->getType())->getElementType();
266
267 // Simple scalar l-value.
268 if (EltTy->isFirstClassType())
269 return RValue::get(Builder.CreateLoad(Ptr, "tmp"));
270
271 // Otherwise, we have an aggregate lvalue.
272 return RValue::getAggregate(Ptr);
273 }
Chris Lattner09153c02007-06-22 18:48:09 +0000274
Chris Lattner08c4b9f2007-07-10 21:17:59 +0000275 if (LV.isVectorElt()) {
276 llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(), "tmp");
277 return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
278 "vecext"));
279 }
Chris Lattner09153c02007-06-22 18:48:09 +0000280
Chris Lattner08c4b9f2007-07-10 21:17:59 +0000281 assert(0 && "Bitfield ref not impl!");
Chris Lattner8394d792007-06-05 20:53:16 +0000282}
283
Chris Lattner9369a562007-06-29 16:31:29 +0000284RValue CodeGenFunction::EmitLoadOfLValue(const Expr *E) {
285 return EmitLoadOfLValue(EmitLValue(E), E->getType());
286}
287
288
Chris Lattner8394d792007-06-05 20:53:16 +0000289/// EmitStoreThroughLValue - Store the specified rvalue into the specified
290/// lvalue, where both are guaranteed to the have the same type, and that type
291/// is 'Ty'.
292void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
293 QualType Ty) {
Chris Lattner08c4b9f2007-07-10 21:17:59 +0000294 if (Dst.isVectorElt()) {
295 // Read/modify/write the vector, inserting the new element.
296 // FIXME: Volatility.
297 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(), "tmp");
298 Vec = Builder.CreateInsertElement(Vec, Src.getVal(),
299 Dst.getVectorIdx(), "vecins");
300 Builder.CreateStore(Vec, Dst.getVectorAddr());
301 return;
302 }
303
304 assert(Dst.isSimple() && "FIXME: Don't support store to bitfield yet");
Chris Lattner8394d792007-06-05 20:53:16 +0000305
Chris Lattner09153c02007-06-22 18:48:09 +0000306 llvm::Value *DstAddr = Dst.getAddress();
307 if (Src.isScalar()) {
308 // FIXME: Handle volatility etc.
309 const llvm::Type *SrcTy = Src.getVal()->getType();
310 const llvm::Type *AddrTy =
311 cast<llvm::PointerType>(DstAddr->getType())->getElementType();
312
313 if (AddrTy != SrcTy)
314 DstAddr = Builder.CreateBitCast(DstAddr, llvm::PointerType::get(SrcTy),
315 "storetmp");
316 Builder.CreateStore(Src.getVal(), DstAddr);
317 return;
318 }
Chris Lattner8394d792007-06-05 20:53:16 +0000319
Chris Lattnere9a64532007-06-22 21:44:33 +0000320 // Don't use memcpy for complex numbers.
321 if (Ty->isComplexType()) {
322 llvm::Value *Real, *Imag;
323 EmitLoadOfComplex(Src, Real, Imag);
324 EmitStoreOfComplex(Real, Imag, Dst.getAddress());
325 return;
326 }
327
Chris Lattner09153c02007-06-22 18:48:09 +0000328 // Aggregate assignment turns into llvm.memcpy.
329 const llvm::Type *SBP = llvm::PointerType::get(llvm::Type::Int8Ty);
330 llvm::Value *SrcAddr = Src.getAggregateAddr();
331
332 if (DstAddr->getType() != SBP)
333 DstAddr = Builder.CreateBitCast(DstAddr, SBP, "tmp");
334 if (SrcAddr->getType() != SBP)
335 SrcAddr = Builder.CreateBitCast(SrcAddr, SBP, "tmp");
336
337 unsigned Align = 1; // FIXME: Compute type alignments.
338 unsigned Size = 1234; // FIXME: Compute type sizes.
339
340 // FIXME: Handle variable sized types.
341 const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth);
342 llvm::Value *SizeVal = llvm::ConstantInt::get(IntPtr, Size);
343
344 llvm::Value *MemCpyOps[4] = {
345 DstAddr, SrcAddr, SizeVal,llvm::ConstantInt::get(llvm::Type::Int32Ty, Align)
346 };
347
348 Builder.CreateCall(CGM.getMemCpyFn(), MemCpyOps, 4);
Chris Lattner8394d792007-06-05 20:53:16 +0000349}
350
Chris Lattnerd7f58862007-06-02 05:24:33 +0000351
352LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
353 const Decl *D = E->getDecl();
Chris Lattner53621a52007-06-13 20:44:40 +0000354 if (isa<BlockVarDecl>(D) || isa<ParmVarDecl>(D)) {
Chris Lattner23b7eb62007-06-15 23:05:46 +0000355 llvm::Value *V = LocalDeclMap[D];
Chris Lattnerd7f58862007-06-02 05:24:33 +0000356 assert(V && "BlockVarDecl not entered in LocalDeclMap?");
Chris Lattner08c4b9f2007-07-10 21:17:59 +0000357 return LValue::MakeAddr(V);
Chris Lattnerb6984c42007-06-20 04:44:43 +0000358 } else if (isa<FunctionDecl>(D) || isa<FileVarDecl>(D)) {
Chris Lattner08c4b9f2007-07-10 21:17:59 +0000359 return LValue::MakeAddr(CGM.GetAddrOfGlobalDecl(D));
Chris Lattnerd7f58862007-06-02 05:24:33 +0000360 }
361 assert(0 && "Unimp declref");
362}
Chris Lattnere47e4402007-06-01 18:02:12 +0000363
Chris Lattner8394d792007-06-05 20:53:16 +0000364LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
365 // __extension__ doesn't affect lvalue-ness.
366 if (E->getOpcode() == UnaryOperator::Extension)
367 return EmitLValue(E->getSubExpr());
368
369 assert(E->getOpcode() == UnaryOperator::Deref &&
370 "'*' is the only unary operator that produces an lvalue");
Chris Lattner08c4b9f2007-07-10 21:17:59 +0000371 return LValue::MakeAddr(EmitExpr(E->getSubExpr()).getVal());
Chris Lattner8394d792007-06-05 20:53:16 +0000372}
373
Chris Lattner4347e3692007-06-06 04:54:52 +0000374LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
375 assert(!E->isWide() && "FIXME: Wide strings not supported yet!");
376 const char *StrData = E->getStrData();
377 unsigned Len = E->getByteLength();
378
379 // FIXME: Can cache/reuse these within the module.
Chris Lattner23b7eb62007-06-15 23:05:46 +0000380 llvm::Constant *C=llvm::ConstantArray::get(std::string(StrData, StrData+Len));
Chris Lattner4347e3692007-06-06 04:54:52 +0000381
382 // Create a global variable for this.
Chris Lattner23b7eb62007-06-15 23:05:46 +0000383 C = new llvm::GlobalVariable(C->getType(), true,
384 llvm::GlobalValue::InternalLinkage,
Chris Lattner4347e3692007-06-06 04:54:52 +0000385 C, ".str", CurFn->getParent());
Chris Lattner23b7eb62007-06-15 23:05:46 +0000386 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
387 llvm::Constant *Zeros[] = { Zero, Zero };
388 C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
Chris Lattner08c4b9f2007-07-10 21:17:59 +0000389 return LValue::MakeAddr(C);
Chris Lattner4347e3692007-06-06 04:54:52 +0000390}
391
Chris Lattnerd9d2fb12007-06-08 23:31:14 +0000392LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
Chris Lattner08c4b9f2007-07-10 21:17:59 +0000393 // The index must always be a pointer or integer, neither of which is an
394 // aggregate. Emit it.
Chris Lattnerd9d2fb12007-06-08 23:31:14 +0000395 QualType IdxTy;
Chris Lattner23b7eb62007-06-15 23:05:46 +0000396 llvm::Value *Idx =
397 EmitExprWithUsualUnaryConversions(E->getIdx(), IdxTy).getVal();
Chris Lattnerd9d2fb12007-06-08 23:31:14 +0000398
Chris Lattner08c4b9f2007-07-10 21:17:59 +0000399 // If the base is a vector type, then we are forming a vector element lvalue
400 // with this subscript.
401 if (E->getBase()->getType()->isVectorType()) {
402 // Emit the vector as an lvalue to get its address.
403 LValue Base = EmitLValue(E->getBase());
404 assert(Base.isSimple() && "Can only subscript lvalue vectors here!");
405 // FIXME: This should properly sign/zero/extend or truncate Idx to i32.
406 return LValue::MakeVectorElt(Base.getAddress(), Idx);
407 }
408
409 // At this point, the base must be a pointer or integer, neither of which are
410 // aggregates. Emit it.
411 QualType BaseTy;
412 llvm::Value *Base =
413 EmitExprWithUsualUnaryConversions(E->getBase(), BaseTy).getVal();
414
Chris Lattnerd9d2fb12007-06-08 23:31:14 +0000415 // Usually the base is the pointer type, but sometimes it is the index.
416 // Canonicalize to have the pointer as the base.
417 if (isa<llvm::PointerType>(Idx->getType())) {
418 std::swap(Base, Idx);
419 std::swap(BaseTy, IdxTy);
420 }
421
422 // The pointer is now the base. Extend or truncate the index type to 32 or
423 // 64-bits.
424 bool IdxSigned = IdxTy->isSignedIntegerType();
Chris Lattner23b7eb62007-06-15 23:05:46 +0000425 unsigned IdxBitwidth = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
Chris Lattnerd9d2fb12007-06-08 23:31:14 +0000426 if (IdxBitwidth != LLVMPointerWidth)
Chris Lattner23b7eb62007-06-15 23:05:46 +0000427 Idx = Builder.CreateIntCast(Idx, llvm::IntegerType::get(LLVMPointerWidth),
Chris Lattnerd9d2fb12007-06-08 23:31:14 +0000428 IdxSigned, "idxprom");
429
430 // We know that the pointer points to a type of the correct size, unless the
431 // size is a VLA.
432 if (!E->getType()->isConstantSizeType())
433 assert(0 && "VLA idx not implemented");
Chris Lattner08c4b9f2007-07-10 21:17:59 +0000434 return LValue::MakeAddr(Builder.CreateGEP(Base, Idx, "arrayidx"));
Chris Lattnerd9d2fb12007-06-08 23:31:14 +0000435}
436
Chris Lattnere47e4402007-06-01 18:02:12 +0000437//===--------------------------------------------------------------------===//
438// Expression Emission
439//===--------------------------------------------------------------------===//
440
Chris Lattner8394d792007-06-05 20:53:16 +0000441RValue CodeGenFunction::EmitExpr(const Expr *E) {
Chris Lattnere47e4402007-06-01 18:02:12 +0000442 assert(E && "Null expression?");
443
444 switch (E->getStmtClass()) {
445 default:
Chris Lattner1fde0b32007-06-20 18:30:55 +0000446 fprintf(stderr, "Unimplemented expr!\n");
Chris Lattnere47e4402007-06-01 18:02:12 +0000447 E->dump();
Chris Lattner23b7eb62007-06-15 23:05:46 +0000448 return RValue::get(llvm::UndefValue::get(llvm::Type::Int32Ty));
Chris Lattnerd7f58862007-06-02 05:24:33 +0000449
450 // l-values.
Chris Lattner8394d792007-06-05 20:53:16 +0000451 case Expr::DeclRefExprClass:
Chris Lattnerf99b3f52007-06-11 03:52:52 +0000452 // DeclRef's of EnumConstantDecl's are simple rvalues.
453 if (const EnumConstantDecl *EC =
454 dyn_cast<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
Chris Lattner23b7eb62007-06-15 23:05:46 +0000455 return RValue::get(llvm::ConstantInt::get(EC->getInitVal()));
Chris Lattnerf99b3f52007-06-11 03:52:52 +0000456
457 // FALLTHROUGH
Chris Lattnerd9d2fb12007-06-08 23:31:14 +0000458 case Expr::ArraySubscriptExprClass:
Chris Lattner8394d792007-06-05 20:53:16 +0000459 return EmitLoadOfLValue(E);
Chris Lattner4347e3692007-06-06 04:54:52 +0000460 case Expr::StringLiteralClass:
461 return RValue::get(EmitLValue(E).getAddress());
Chris Lattnerd7f58862007-06-02 05:24:33 +0000462
463 // Leaf expressions.
464 case Expr::IntegerLiteralClass:
Chris Lattnere47e4402007-06-01 18:02:12 +0000465 return EmitIntegerLiteral(cast<IntegerLiteral>(E));
Chris Lattner2ada32e2007-07-09 23:03:16 +0000466 case Expr::FloatingLiteralClass:
467 return EmitFloatingLiteral(cast<FloatingLiteral>(E));
Chris Lattnerdb91b162007-06-02 00:16:28 +0000468
Chris Lattnerd7f58862007-06-02 05:24:33 +0000469 // Operators.
470 case Expr::ParenExprClass:
471 return EmitExpr(cast<ParenExpr>(E)->getSubExpr());
Chris Lattnerf0106d22007-06-02 19:33:17 +0000472 case Expr::UnaryOperatorClass:
473 return EmitUnaryOperator(cast<UnaryOperator>(E));
Chris Lattner8394d792007-06-05 20:53:16 +0000474 case Expr::CastExprClass:
475 return EmitCastExpr(cast<CastExpr>(E));
Chris Lattner2b228c92007-06-15 21:34:29 +0000476 case Expr::CallExprClass:
477 return EmitCallExpr(cast<CallExpr>(E));
Chris Lattnerd7f58862007-06-02 05:24:33 +0000478 case Expr::BinaryOperatorClass:
Chris Lattnerdb91b162007-06-02 00:16:28 +0000479 return EmitBinaryOperator(cast<BinaryOperator>(E));
Chris Lattnere47e4402007-06-01 18:02:12 +0000480 }
481
482}
483
Chris Lattner8394d792007-06-05 20:53:16 +0000484RValue CodeGenFunction::EmitIntegerLiteral(const IntegerLiteral *E) {
Chris Lattner23b7eb62007-06-15 23:05:46 +0000485 return RValue::get(llvm::ConstantInt::get(E->getValue()));
Chris Lattnere47e4402007-06-01 18:02:12 +0000486}
Chris Lattner2ada32e2007-07-09 23:03:16 +0000487RValue CodeGenFunction::EmitFloatingLiteral(const FloatingLiteral *E) {
488 return RValue::get(llvm::ConstantFP::get(ConvertType(E->getType()),
489 E->getValue()));
490}
Chris Lattnere47e4402007-06-01 18:02:12 +0000491
Chris Lattner8394d792007-06-05 20:53:16 +0000492RValue CodeGenFunction::EmitCastExpr(const CastExpr *E) {
493 QualType SrcTy;
494 RValue Src = EmitExprWithUsualUnaryConversions(E->getSubExpr(), SrcTy);
495
496 // If the destination is void, just evaluate the source.
497 if (E->getType()->isVoidType())
498 return RValue::getAggregate(0);
499
Chris Lattnerf033c142007-06-22 19:05:19 +0000500 return EmitConversion(Src, SrcTy, E->getType());
Chris Lattner8394d792007-06-05 20:53:16 +0000501}
Chris Lattnerf0106d22007-06-02 19:33:17 +0000502
Chris Lattner2b228c92007-06-15 21:34:29 +0000503RValue CodeGenFunction::EmitCallExpr(const CallExpr *E) {
504 QualType Ty;
Chris Lattner23b7eb62007-06-15 23:05:46 +0000505 llvm::Value *Callee =
506 EmitExprWithUsualUnaryConversions(E->getCallee(), Ty).getVal();
Chris Lattner2b228c92007-06-15 21:34:29 +0000507
Chris Lattner23b7eb62007-06-15 23:05:46 +0000508 llvm::SmallVector<llvm::Value*, 16> Args;
Chris Lattner2b228c92007-06-15 21:34:29 +0000509
510 // FIXME: Handle struct return.
511 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
512 RValue ArgVal = EmitExprWithUsualUnaryConversions(E->getArg(i), Ty);
513
514 if (ArgVal.isScalar())
515 Args.push_back(ArgVal.getVal());
516 else // Pass by-address. FIXME: Set attribute bit on call.
Chris Lattner09153c02007-06-22 18:48:09 +0000517 Args.push_back(ArgVal.getAggregateAddr());
Chris Lattner2b228c92007-06-15 21:34:29 +0000518 }
519
Chris Lattner23b7eb62007-06-15 23:05:46 +0000520 llvm::Value *V = Builder.CreateCall(Callee, &Args[0], Args.size());
Chris Lattner2b228c92007-06-15 21:34:29 +0000521 if (V->getType() != llvm::Type::VoidTy)
522 V->setName("call");
523
524 // FIXME: Struct return;
525 return RValue::get(V);
526}
527
528
Chris Lattner8394d792007-06-05 20:53:16 +0000529//===----------------------------------------------------------------------===//
530// Unary Operator Emission
531//===----------------------------------------------------------------------===//
532
533RValue CodeGenFunction::EmitExprWithUsualUnaryConversions(const Expr *E,
534 QualType &ResTy) {
Chris Lattner6db1fb82007-06-02 22:49:07 +0000535 ResTy = E->getType().getCanonicalType();
536
537 if (isa<FunctionType>(ResTy)) { // C99 6.3.2.1p4
538 // Functions are promoted to their address.
539 ResTy = getContext().getPointerType(ResTy);
Chris Lattner8394d792007-06-05 20:53:16 +0000540 return RValue::get(EmitLValue(E).getAddress());
Chris Lattner6db1fb82007-06-02 22:49:07 +0000541 } else if (const ArrayType *ary = dyn_cast<ArrayType>(ResTy)) {
542 // C99 6.3.2.1p3
543 ResTy = getContext().getPointerType(ary->getElementType());
544
545 // FIXME: For now we assume that all source arrays map to LLVM arrays. This
546 // will not true when we add support for VLAs.
547 llvm::Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays.
548
549 assert(isa<llvm::PointerType>(V->getType()) &&
550 isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
551 ->getElementType()) &&
552 "Doesn't support VLAs yet!");
553 llvm::Constant *Idx0 = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
Chris Lattner8394d792007-06-05 20:53:16 +0000554 return RValue::get(Builder.CreateGEP(V, Idx0, Idx0, "arraydecay"));
Chris Lattner6db1fb82007-06-02 22:49:07 +0000555 } else if (ResTy->isPromotableIntegerType()) { // C99 6.3.1.1p2
556 // FIXME: this probably isn't right, pending clarification from Steve.
557 llvm::Value *Val = EmitExpr(E).getVal();
558
Chris Lattner6db1fb82007-06-02 22:49:07 +0000559 // If the input is a signed integer, sign extend to the destination.
560 if (ResTy->isSignedIntegerType()) {
561 Val = Builder.CreateSExt(Val, LLVMIntTy, "promote");
562 } else {
563 // This handles unsigned types, including bool.
564 Val = Builder.CreateZExt(Val, LLVMIntTy, "promote");
565 }
566 ResTy = getContext().IntTy;
567
Chris Lattner8394d792007-06-05 20:53:16 +0000568 return RValue::get(Val);
Chris Lattner6db1fb82007-06-02 22:49:07 +0000569 }
570
571 // Otherwise, this is a float, double, int, struct, etc.
572 return EmitExpr(E);
573}
574
575
Chris Lattner8394d792007-06-05 20:53:16 +0000576RValue CodeGenFunction::EmitUnaryOperator(const UnaryOperator *E) {
Chris Lattnerf0106d22007-06-02 19:33:17 +0000577 switch (E->getOpcode()) {
578 default:
579 printf("Unimplemented unary expr!\n");
580 E->dump();
Chris Lattner23b7eb62007-06-15 23:05:46 +0000581 return RValue::get(llvm::UndefValue::get(llvm::Type::Int32Ty));
Chris Lattner8394d792007-06-05 20:53:16 +0000582 // FIXME: pre/post inc/dec
583 case UnaryOperator::AddrOf: return EmitUnaryAddrOf(E);
584 case UnaryOperator::Deref : return EmitLoadOfLValue(E);
585 case UnaryOperator::Plus : return EmitUnaryPlus(E);
586 case UnaryOperator::Minus : return EmitUnaryMinus(E);
587 case UnaryOperator::Not : return EmitUnaryNot(E);
588 case UnaryOperator::LNot : return EmitUnaryLNot(E);
589 // FIXME: SIZEOF/ALIGNOF(expr).
590 // FIXME: real/imag
591 case UnaryOperator::Extension: return EmitExpr(E->getSubExpr());
Chris Lattnerf0106d22007-06-02 19:33:17 +0000592 }
593}
594
Chris Lattner8394d792007-06-05 20:53:16 +0000595/// C99 6.5.3.2
596RValue CodeGenFunction::EmitUnaryAddrOf(const UnaryOperator *E) {
597 // The address of the operand is just its lvalue. It cannot be a bitfield.
598 return RValue::get(EmitLValue(E->getSubExpr()).getAddress());
599}
600
601RValue CodeGenFunction::EmitUnaryPlus(const UnaryOperator *E) {
602 // Unary plus just performs promotions on its arithmetic operand.
603 QualType Ty;
Chris Lattnerb48238182007-06-15 21:04:38 +0000604 return EmitExprWithUsualUnaryConversions(E->getSubExpr(), Ty);
Chris Lattner8394d792007-06-05 20:53:16 +0000605}
606
607RValue CodeGenFunction::EmitUnaryMinus(const UnaryOperator *E) {
608 // Unary minus performs promotions, then negates its arithmetic operand.
609 QualType Ty;
Chris Lattnerb48238182007-06-15 21:04:38 +0000610 RValue V = EmitExprWithUsualUnaryConversions(E->getSubExpr(), Ty);
Chris Lattnerf0106d22007-06-02 19:33:17 +0000611
Chris Lattner8394d792007-06-05 20:53:16 +0000612 if (V.isScalar())
613 return RValue::get(Builder.CreateNeg(V.getVal(), "neg"));
614
615 assert(0 && "FIXME: This doesn't handle complex operands yet");
616}
617
618RValue CodeGenFunction::EmitUnaryNot(const UnaryOperator *E) {
619 // Unary not performs promotions, then complements its integer operand.
620 QualType Ty;
Chris Lattnerb48238182007-06-15 21:04:38 +0000621 RValue V = EmitExprWithUsualUnaryConversions(E->getSubExpr(), Ty);
Chris Lattner8394d792007-06-05 20:53:16 +0000622
623 if (V.isScalar())
624 return RValue::get(Builder.CreateNot(V.getVal(), "neg"));
625
626 assert(0 && "FIXME: This doesn't handle integer complex operands yet (GNU)");
627}
628
629
630/// C99 6.5.3.3
631RValue CodeGenFunction::EmitUnaryLNot(const UnaryOperator *E) {
632 // Compare operand to zero.
Chris Lattner23b7eb62007-06-15 23:05:46 +0000633 llvm::Value *BoolVal = EvaluateExprAsBool(E->getSubExpr());
Chris Lattnerf0106d22007-06-02 19:33:17 +0000634
635 // Invert value.
Chris Lattnera45c5af2007-06-02 19:47:04 +0000636 // TODO: Could dynamically modify easy computations here. For example, if
637 // the operand is an icmp ne, turn into icmp eq.
Chris Lattnerf0106d22007-06-02 19:33:17 +0000638 BoolVal = Builder.CreateNot(BoolVal, "lnot");
639
640 // ZExt result to int.
Chris Lattner8394d792007-06-05 20:53:16 +0000641 return RValue::get(Builder.CreateZExt(BoolVal, LLVMIntTy, "lnot.ext"));
Chris Lattnerf0106d22007-06-02 19:33:17 +0000642}
643
Chris Lattnere47e4402007-06-01 18:02:12 +0000644
Chris Lattnerdb91b162007-06-02 00:16:28 +0000645//===--------------------------------------------------------------------===//
646// Binary Operator Emission
647//===--------------------------------------------------------------------===//
648
649// FIXME describe.
Chris Lattnercf250242007-06-03 02:02:44 +0000650QualType CodeGenFunction::
Chris Lattner8394d792007-06-05 20:53:16 +0000651EmitUsualArithmeticConversions(const BinaryOperator *E, RValue &LHS,
652 RValue &RHS) {
Chris Lattnerc18f9d12007-06-02 22:51:30 +0000653 QualType LHSType, RHSType;
654 LHS = EmitExprWithUsualUnaryConversions(E->getLHS(), LHSType);
655 RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), RHSType);
656
Chris Lattnercf250242007-06-03 02:02:44 +0000657 // If both operands have the same source type, we're done already.
658 if (LHSType == RHSType) return LHSType;
659
660 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
661 // The caller can deal with this (e.g. pointer + int).
662 if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
663 return LHSType;
664
665 // At this point, we have two different arithmetic types.
666
667 // Handle complex types first (C99 6.3.1.8p1).
668 if (LHSType->isComplexType() || RHSType->isComplexType()) {
669 assert(0 && "FIXME: complex types unimp");
670#if 0
671 // if we have an integer operand, the result is the complex type.
672 if (rhs->isIntegerType())
673 return lhs;
674 if (lhs->isIntegerType())
675 return rhs;
676 return Context.maxComplexType(lhs, rhs);
677#endif
678 }
679
680 // If neither operand is complex, they must be scalars.
681 llvm::Value *LHSV = LHS.getVal();
682 llvm::Value *RHSV = RHS.getVal();
683
684 // If the LLVM types are already equal, then they only differed in sign, or it
685 // was something like char/signed char or double/long double.
686 if (LHSV->getType() == RHSV->getType())
687 return LHSType;
688
689 // Now handle "real" floating types (i.e. float, double, long double).
690 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType()) {
691 // if we have an integer operand, the result is the real floating type, and
692 // the integer converts to FP.
693 if (RHSType->isIntegerType()) {
694 // Promote the RHS to an FP type of the LHS, with the sign following the
695 // RHS.
696 if (RHSType->isSignedIntegerType())
Chris Lattner8394d792007-06-05 20:53:16 +0000697 RHS = RValue::get(Builder.CreateSIToFP(RHSV,LHSV->getType(),"promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000698 else
Chris Lattner8394d792007-06-05 20:53:16 +0000699 RHS = RValue::get(Builder.CreateUIToFP(RHSV,LHSV->getType(),"promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000700 return LHSType;
701 }
702
703 if (LHSType->isIntegerType()) {
704 // Promote the LHS to an FP type of the RHS, with the sign following the
705 // LHS.
706 if (LHSType->isSignedIntegerType())
Chris Lattner8394d792007-06-05 20:53:16 +0000707 LHS = RValue::get(Builder.CreateSIToFP(LHSV,RHSV->getType(),"promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000708 else
Chris Lattner8394d792007-06-05 20:53:16 +0000709 LHS = RValue::get(Builder.CreateUIToFP(LHSV,RHSV->getType(),"promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000710 return RHSType;
711 }
712
713 // Otherwise, they are two FP types. Promote the smaller operand to the
714 // bigger result.
715 QualType BiggerType = ASTContext::maxFloatingType(LHSType, RHSType);
716
717 if (BiggerType == LHSType)
Chris Lattner8394d792007-06-05 20:53:16 +0000718 RHS = RValue::get(Builder.CreateFPExt(RHSV, LHSV->getType(), "promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000719 else
Chris Lattner8394d792007-06-05 20:53:16 +0000720 LHS = RValue::get(Builder.CreateFPExt(LHSV, RHSV->getType(), "promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000721 return BiggerType;
722 }
723
724 // Finally, we have two integer types that are different according to C. Do
725 // a sign or zero extension if needed.
726
727 // Otherwise, one type is smaller than the other.
728 QualType ResTy = ASTContext::maxIntegerType(LHSType, RHSType);
729
730 if (LHSType == ResTy) {
731 if (RHSType->isSignedIntegerType())
Chris Lattner8394d792007-06-05 20:53:16 +0000732 RHS = RValue::get(Builder.CreateSExt(RHSV, LHSV->getType(), "promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000733 else
Chris Lattner8394d792007-06-05 20:53:16 +0000734 RHS = RValue::get(Builder.CreateZExt(RHSV, LHSV->getType(), "promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000735 } else {
736 assert(RHSType == ResTy && "Unknown conversion");
737 if (LHSType->isSignedIntegerType())
Chris Lattner8394d792007-06-05 20:53:16 +0000738 LHS = RValue::get(Builder.CreateSExt(LHSV, RHSV->getType(), "promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000739 else
Chris Lattner8394d792007-06-05 20:53:16 +0000740 LHS = RValue::get(Builder.CreateZExt(LHSV, RHSV->getType(), "promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000741 }
742 return ResTy;
Chris Lattnerdb91b162007-06-02 00:16:28 +0000743}
744
Chris Lattnercd215f02007-06-29 16:52:55 +0000745/// EmitCompoundAssignmentOperands - Compound assignment operations (like +=)
746/// are strange in that the result of the operation is not the same type as the
747/// intermediate computation. This function emits the LHS and RHS operands of
748/// the compound assignment, promoting them to their common computation type.
749///
750/// Since the LHS is an lvalue, and the result is stored back through it, we
751/// return the lvalue as well as the LHS/RHS rvalues. On return, the LHS and
752/// RHS values are both in the computation type for the operator.
753void CodeGenFunction::
754EmitCompoundAssignmentOperands(const CompoundAssignOperator *E,
755 LValue &LHSLV, RValue &LHS, RValue &RHS) {
756 LHSLV = EmitLValue(E->getLHS());
757
758 // Load the LHS and RHS operands.
759 QualType LHSTy = E->getLHS()->getType();
760 LHS = EmitLoadOfLValue(LHSLV, LHSTy);
761 QualType RHSTy;
762 RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), RHSTy);
763
Chris Lattner47c247e2007-06-29 17:26:27 +0000764 // Shift operands do the usual unary conversions, but do not do the binary
765 // conversions.
766 if (E->isShiftAssignOp()) {
767 // FIXME: This is broken. Implicit conversions should be made explicit,
768 // so that this goes away. This causes us to reload the LHS.
769 LHS = EmitExprWithUsualUnaryConversions(E->getLHS(), LHSTy);
770 }
771
Chris Lattnercd215f02007-06-29 16:52:55 +0000772 // Convert the LHS and RHS to the common evaluation type.
773 LHS = EmitConversion(LHS, LHSTy, E->getComputationType());
774 RHS = EmitConversion(RHS, RHSTy, E->getComputationType());
775}
776
777/// EmitCompoundAssignmentResult - Given a result value in the computation type,
778/// truncate it down to the actual result type, store it through the LHS lvalue,
779/// and return it.
780RValue CodeGenFunction::
781EmitCompoundAssignmentResult(const CompoundAssignOperator *E,
782 LValue LHSLV, RValue ResV) {
783
784 // Truncate back to the destination type.
785 if (E->getComputationType() != E->getType())
786 ResV = EmitConversion(ResV, E->getComputationType(), E->getType());
787
788 // Store the result value into the LHS.
789 EmitStoreThroughLValue(ResV, LHSLV, E->getType());
790
791 // Return the result.
792 return ResV;
793}
794
Chris Lattnerdb91b162007-06-02 00:16:28 +0000795
Chris Lattner8394d792007-06-05 20:53:16 +0000796RValue CodeGenFunction::EmitBinaryOperator(const BinaryOperator *E) {
Chris Lattnercd215f02007-06-29 16:52:55 +0000797 RValue LHS, RHS;
Chris Lattnerdb91b162007-06-02 00:16:28 +0000798 switch (E->getOpcode()) {
799 default:
Chris Lattnerb25a9432007-06-29 17:03:06 +0000800 fprintf(stderr, "Unimplemented binary expr!\n");
Chris Lattnerdb91b162007-06-02 00:16:28 +0000801 E->dump();
Chris Lattner23b7eb62007-06-15 23:05:46 +0000802 return RValue::get(llvm::UndefValue::get(llvm::Type::Int32Ty));
Chris Lattnerb25a9432007-06-29 17:03:06 +0000803 case BinaryOperator::Mul:
804 EmitUsualArithmeticConversions(E, LHS, RHS);
805 return EmitMul(LHS, RHS, E->getType());
806 case BinaryOperator::Div:
807 EmitUsualArithmeticConversions(E, LHS, RHS);
808 return EmitDiv(LHS, RHS, E->getType());
809 case BinaryOperator::Rem:
810 EmitUsualArithmeticConversions(E, LHS, RHS);
811 return EmitRem(LHS, RHS, E->getType());
Chris Lattnercd215f02007-06-29 16:52:55 +0000812 case BinaryOperator::Add:
813 // FIXME: This doesn't handle ptr+int etc yet.
814 EmitUsualArithmeticConversions(E, LHS, RHS);
815 return EmitAdd(LHS, RHS, E->getType());
816 case BinaryOperator::Sub:
817 // FIXME: This doesn't handle ptr-int etc yet.
818 EmitUsualArithmeticConversions(E, LHS, RHS);
819 return EmitSub(LHS, RHS, E->getType());
Chris Lattner47c247e2007-06-29 17:26:27 +0000820 case BinaryOperator::Shl:
821 EmitShiftOperands(E, LHS, RHS);
822 return EmitShl(LHS, RHS, E->getType());
823 case BinaryOperator::Shr:
824 EmitShiftOperands(E, LHS, RHS);
825 return EmitShr(LHS, RHS, E->getType());
Chris Lattnerb25a9432007-06-29 17:03:06 +0000826 case BinaryOperator::And:
827 EmitUsualArithmeticConversions(E, LHS, RHS);
828 return EmitAnd(LHS, RHS, E->getType());
829 case BinaryOperator::Xor:
830 EmitUsualArithmeticConversions(E, LHS, RHS);
831 return EmitXor(LHS, RHS, E->getType());
832 case BinaryOperator::Or :
833 EmitUsualArithmeticConversions(E, LHS, RHS);
834 return EmitOr(LHS, RHS, E->getType());
Chris Lattner8394d792007-06-05 20:53:16 +0000835 case BinaryOperator::LAnd: return EmitBinaryLAnd(E);
836 case BinaryOperator::LOr: return EmitBinaryLOr(E);
Chris Lattner1fde0b32007-06-20 18:30:55 +0000837 case BinaryOperator::LT:
838 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_ULT,
839 llvm::ICmpInst::ICMP_SLT,
840 llvm::FCmpInst::FCMP_OLT);
841 case BinaryOperator::GT:
842 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_UGT,
843 llvm::ICmpInst::ICMP_SGT,
844 llvm::FCmpInst::FCMP_OGT);
845 case BinaryOperator::LE:
846 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_ULE,
847 llvm::ICmpInst::ICMP_SLE,
848 llvm::FCmpInst::FCMP_OLE);
849 case BinaryOperator::GE:
850 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_UGE,
851 llvm::ICmpInst::ICMP_SGE,
852 llvm::FCmpInst::FCMP_OGE);
853 case BinaryOperator::EQ:
854 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_EQ,
855 llvm::ICmpInst::ICMP_EQ,
856 llvm::FCmpInst::FCMP_OEQ);
857 case BinaryOperator::NE:
858 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_NE,
859 llvm::ICmpInst::ICMP_NE,
860 llvm::FCmpInst::FCMP_UNE);
Chris Lattnercd215f02007-06-29 16:52:55 +0000861 case BinaryOperator::Assign:
862 return EmitBinaryAssign(E);
863
Chris Lattnerb25a9432007-06-29 17:03:06 +0000864 case BinaryOperator::MulAssign: {
865 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
866 LValue LHSLV;
867 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
868 LHS = EmitMul(LHS, RHS, CAO->getComputationType());
869 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
870 }
871 case BinaryOperator::DivAssign: {
872 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
873 LValue LHSLV;
874 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
875 LHS = EmitDiv(LHS, RHS, CAO->getComputationType());
876 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
877 }
878 case BinaryOperator::RemAssign: {
879 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
880 LValue LHSLV;
881 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
882 LHS = EmitRem(LHS, RHS, CAO->getComputationType());
883 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
884 }
Chris Lattnercd215f02007-06-29 16:52:55 +0000885 case BinaryOperator::AddAssign: {
886 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
887 LValue LHSLV;
888 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
889 LHS = EmitAdd(LHS, RHS, CAO->getComputationType());
890 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
891 }
892 case BinaryOperator::SubAssign: {
893 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
894 LValue LHSLV;
895 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
896 LHS = EmitSub(LHS, RHS, CAO->getComputationType());
897 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
898 }
Chris Lattner47c247e2007-06-29 17:26:27 +0000899 case BinaryOperator::ShlAssign: {
900 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
901 LValue LHSLV;
902 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
903 LHS = EmitShl(LHS, RHS, CAO->getComputationType());
904 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
905 }
906 case BinaryOperator::ShrAssign: {
907 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
908 LValue LHSLV;
909 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
910 LHS = EmitShr(LHS, RHS, CAO->getComputationType());
911 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
912 }
Chris Lattnerb25a9432007-06-29 17:03:06 +0000913 case BinaryOperator::AndAssign: {
914 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
915 LValue LHSLV;
916 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
917 LHS = EmitAnd(LHS, RHS, CAO->getComputationType());
918 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
919 }
920 case BinaryOperator::OrAssign: {
921 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
922 LValue LHSLV;
923 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
924 LHS = EmitOr(LHS, RHS, CAO->getComputationType());
925 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
926 }
927 case BinaryOperator::XorAssign: {
928 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
929 LValue LHSLV;
930 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
931 LHS = EmitXor(LHS, RHS, CAO->getComputationType());
932 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
933 }
Chris Lattner8394d792007-06-05 20:53:16 +0000934 case BinaryOperator::Comma: return EmitBinaryComma(E);
Chris Lattnerdb91b162007-06-02 00:16:28 +0000935 }
936}
937
Chris Lattnerb25a9432007-06-29 17:03:06 +0000938RValue CodeGenFunction::EmitMul(RValue LHS, RValue RHS, QualType ResTy) {
Chris Lattner8394d792007-06-05 20:53:16 +0000939 if (LHS.isScalar())
940 return RValue::get(Builder.CreateMul(LHS.getVal(), RHS.getVal(), "mul"));
941
942 assert(0 && "FIXME: This doesn't handle complex operands yet");
943}
944
Chris Lattnerb25a9432007-06-29 17:03:06 +0000945RValue CodeGenFunction::EmitDiv(RValue LHS, RValue RHS, QualType ResTy) {
Chris Lattner8394d792007-06-05 20:53:16 +0000946 if (LHS.isScalar()) {
Chris Lattner23b7eb62007-06-15 23:05:46 +0000947 llvm::Value *RV;
Chris Lattner8394d792007-06-05 20:53:16 +0000948 if (LHS.getVal()->getType()->isFloatingPoint())
949 RV = Builder.CreateFDiv(LHS.getVal(), RHS.getVal(), "div");
Chris Lattnerb25a9432007-06-29 17:03:06 +0000950 else if (ResTy->isUnsignedIntegerType())
Chris Lattner8394d792007-06-05 20:53:16 +0000951 RV = Builder.CreateUDiv(LHS.getVal(), RHS.getVal(), "div");
952 else
953 RV = Builder.CreateSDiv(LHS.getVal(), RHS.getVal(), "div");
954 return RValue::get(RV);
955 }
956 assert(0 && "FIXME: This doesn't handle complex operands yet");
957}
958
Chris Lattnerb25a9432007-06-29 17:03:06 +0000959RValue CodeGenFunction::EmitRem(RValue LHS, RValue RHS, QualType ResTy) {
Chris Lattner8394d792007-06-05 20:53:16 +0000960 if (LHS.isScalar()) {
Chris Lattner23b7eb62007-06-15 23:05:46 +0000961 llvm::Value *RV;
Chris Lattner8394d792007-06-05 20:53:16 +0000962 // Rem in C can't be a floating point type: C99 6.5.5p2.
Chris Lattnerb25a9432007-06-29 17:03:06 +0000963 if (ResTy->isUnsignedIntegerType())
Chris Lattner8394d792007-06-05 20:53:16 +0000964 RV = Builder.CreateURem(LHS.getVal(), RHS.getVal(), "rem");
965 else
966 RV = Builder.CreateSRem(LHS.getVal(), RHS.getVal(), "rem");
967 return RValue::get(RV);
968 }
969
970 assert(0 && "FIXME: This doesn't handle complex operands yet");
971}
972
Chris Lattnercd215f02007-06-29 16:52:55 +0000973RValue CodeGenFunction::EmitAdd(RValue LHS, RValue RHS, QualType ResTy) {
Chris Lattner8394d792007-06-05 20:53:16 +0000974 if (LHS.isScalar())
975 return RValue::get(Builder.CreateAdd(LHS.getVal(), RHS.getVal(), "add"));
Chris Lattnercd215f02007-06-29 16:52:55 +0000976
Chris Lattnere9a64532007-06-22 21:44:33 +0000977 // Otherwise, this must be a complex number.
978 llvm::Value *LHSR, *LHSI, *RHSR, *RHSI;
979
980 EmitLoadOfComplex(LHS, LHSR, LHSI);
981 EmitLoadOfComplex(RHS, RHSR, RHSI);
982
983 llvm::Value *ResR = Builder.CreateAdd(LHSR, RHSR, "add.r");
984 llvm::Value *ResI = Builder.CreateAdd(LHSI, RHSI, "add.i");
985
Chris Lattnercd215f02007-06-29 16:52:55 +0000986 llvm::Value *Res = CreateTempAlloca(ConvertType(ResTy));
Chris Lattnere9a64532007-06-22 21:44:33 +0000987 EmitStoreOfComplex(ResR, ResI, Res);
988 return RValue::getAggregate(Res);
Chris Lattner8394d792007-06-05 20:53:16 +0000989}
990
Chris Lattnercd215f02007-06-29 16:52:55 +0000991RValue CodeGenFunction::EmitSub(RValue LHS, RValue RHS, QualType ResTy) {
Chris Lattner8394d792007-06-05 20:53:16 +0000992 if (LHS.isScalar())
993 return RValue::get(Builder.CreateSub(LHS.getVal(), RHS.getVal(), "sub"));
994
995 assert(0 && "FIXME: This doesn't handle complex operands yet");
Chris Lattner8394d792007-06-05 20:53:16 +0000996}
997
Chris Lattner47c247e2007-06-29 17:26:27 +0000998void CodeGenFunction::EmitShiftOperands(const BinaryOperator *E,
999 RValue &LHS, RValue &RHS) {
Chris Lattner8394d792007-06-05 20:53:16 +00001000 // For shifts, integer promotions are performed, but the usual arithmetic
1001 // conversions are not. The LHS and RHS need not have the same type.
Chris Lattner8394d792007-06-05 20:53:16 +00001002 QualType ResTy;
Chris Lattner47c247e2007-06-29 17:26:27 +00001003 LHS = EmitExprWithUsualUnaryConversions(E->getLHS(), ResTy);
1004 RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), ResTy);
1005}
Chris Lattner8394d792007-06-05 20:53:16 +00001006
Chris Lattner47c247e2007-06-29 17:26:27 +00001007
1008RValue CodeGenFunction::EmitShl(RValue LHSV, RValue RHSV, QualType ResTy) {
1009 llvm::Value *LHS = LHSV.getVal(), *RHS = RHSV.getVal();
1010
Chris Lattner8394d792007-06-05 20:53:16 +00001011 // LLVM requires the LHS and RHS to be the same type, promote or truncate the
1012 // RHS to the same size as the LHS.
1013 if (LHS->getType() != RHS->getType())
1014 RHS = Builder.CreateIntCast(RHS, LHS->getType(), false, "sh_prom");
1015
1016 return RValue::get(Builder.CreateShl(LHS, RHS, "shl"));
1017}
1018
Chris Lattner47c247e2007-06-29 17:26:27 +00001019RValue CodeGenFunction::EmitShr(RValue LHSV, RValue RHSV, QualType ResTy) {
1020 llvm::Value *LHS = LHSV.getVal(), *RHS = RHSV.getVal();
Chris Lattner8394d792007-06-05 20:53:16 +00001021
1022 // LLVM requires the LHS and RHS to be the same type, promote or truncate the
1023 // RHS to the same size as the LHS.
1024 if (LHS->getType() != RHS->getType())
1025 RHS = Builder.CreateIntCast(RHS, LHS->getType(), false, "sh_prom");
1026
Chris Lattner47c247e2007-06-29 17:26:27 +00001027 if (ResTy->isUnsignedIntegerType())
Chris Lattner8394d792007-06-05 20:53:16 +00001028 return RValue::get(Builder.CreateLShr(LHS, RHS, "shr"));
1029 else
1030 return RValue::get(Builder.CreateAShr(LHS, RHS, "shr"));
1031}
1032
Chris Lattner1fde0b32007-06-20 18:30:55 +00001033RValue CodeGenFunction::EmitBinaryCompare(const BinaryOperator *E,
1034 unsigned UICmpOpc, unsigned SICmpOpc,
1035 unsigned FCmpOpc) {
Chris Lattner273c63d2007-06-20 18:02:30 +00001036 RValue LHS, RHS;
1037 EmitUsualArithmeticConversions(E, LHS, RHS);
1038
1039 llvm::Value *Result;
1040 if (LHS.isScalar()) {
1041 if (LHS.getVal()->getType()->isFloatingPoint()) {
Chris Lattner1fde0b32007-06-20 18:30:55 +00001042 Result = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1043 LHS.getVal(), RHS.getVal(), "cmp");
1044 } else if (E->getLHS()->getType()->isUnsignedIntegerType()) {
1045 // FIXME: This check isn't right for "unsigned short < int" where ushort
1046 // promotes to int and does a signed compare.
1047 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1048 LHS.getVal(), RHS.getVal(), "cmp");
Chris Lattner273c63d2007-06-20 18:02:30 +00001049 } else {
Chris Lattner1fde0b32007-06-20 18:30:55 +00001050 // Signed integers and pointers.
1051 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1052 LHS.getVal(), RHS.getVal(), "cmp");
Chris Lattner273c63d2007-06-20 18:02:30 +00001053 }
1054 } else {
1055 // Struct/union/complex
1056 assert(0 && "Aggregate comparisons not implemented yet!");
1057 }
1058
1059 // ZExt result to int.
1060 return RValue::get(Builder.CreateZExt(Result, LLVMIntTy, "cmp.ext"));
1061}
1062
Chris Lattnerb25a9432007-06-29 17:03:06 +00001063RValue CodeGenFunction::EmitAnd(RValue LHS, RValue RHS, QualType ResTy) {
Chris Lattner8394d792007-06-05 20:53:16 +00001064 if (LHS.isScalar())
1065 return RValue::get(Builder.CreateAnd(LHS.getVal(), RHS.getVal(), "and"));
1066
1067 assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)");
1068}
1069
Chris Lattnerb25a9432007-06-29 17:03:06 +00001070RValue CodeGenFunction::EmitXor(RValue LHS, RValue RHS, QualType ResTy) {
Chris Lattner8394d792007-06-05 20:53:16 +00001071 if (LHS.isScalar())
1072 return RValue::get(Builder.CreateXor(LHS.getVal(), RHS.getVal(), "xor"));
1073
1074 assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)");
1075}
1076
Chris Lattnerb25a9432007-06-29 17:03:06 +00001077RValue CodeGenFunction::EmitOr(RValue LHS, RValue RHS, QualType ResTy) {
Chris Lattner8394d792007-06-05 20:53:16 +00001078 if (LHS.isScalar())
1079 return RValue::get(Builder.CreateOr(LHS.getVal(), RHS.getVal(), "or"));
1080
1081 assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)");
1082}
1083
1084RValue CodeGenFunction::EmitBinaryLAnd(const BinaryOperator *E) {
Chris Lattner23b7eb62007-06-15 23:05:46 +00001085 llvm::Value *LHSCond = EvaluateExprAsBool(E->getLHS());
Chris Lattner8394d792007-06-05 20:53:16 +00001086
Chris Lattner23b7eb62007-06-15 23:05:46 +00001087 llvm::BasicBlock *ContBlock = new llvm::BasicBlock("land_cont");
1088 llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("land_rhs");
Chris Lattner8394d792007-06-05 20:53:16 +00001089
Chris Lattner23b7eb62007-06-15 23:05:46 +00001090 llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
Chris Lattner8394d792007-06-05 20:53:16 +00001091 Builder.CreateCondBr(LHSCond, RHSBlock, ContBlock);
1092
1093 EmitBlock(RHSBlock);
Chris Lattner23b7eb62007-06-15 23:05:46 +00001094 llvm::Value *RHSCond = EvaluateExprAsBool(E->getRHS());
Chris Lattner8394d792007-06-05 20:53:16 +00001095
1096 // Reaquire the RHS block, as there may be subblocks inserted.
1097 RHSBlock = Builder.GetInsertBlock();
1098 EmitBlock(ContBlock);
1099
1100 // Create a PHI node. If we just evaluted the LHS condition, the result is
1101 // false. If we evaluated both, the result is the RHS condition.
Chris Lattner23b7eb62007-06-15 23:05:46 +00001102 llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "land");
Chris Lattner8394d792007-06-05 20:53:16 +00001103 PN->reserveOperandSpace(2);
Chris Lattner23b7eb62007-06-15 23:05:46 +00001104 PN->addIncoming(llvm::ConstantInt::getFalse(), OrigBlock);
Chris Lattner8394d792007-06-05 20:53:16 +00001105 PN->addIncoming(RHSCond, RHSBlock);
1106
1107 // ZExt result to int.
1108 return RValue::get(Builder.CreateZExt(PN, LLVMIntTy, "land.ext"));
1109}
1110
1111RValue CodeGenFunction::EmitBinaryLOr(const BinaryOperator *E) {
Chris Lattner23b7eb62007-06-15 23:05:46 +00001112 llvm::Value *LHSCond = EvaluateExprAsBool(E->getLHS());
Chris Lattner8394d792007-06-05 20:53:16 +00001113
Chris Lattner23b7eb62007-06-15 23:05:46 +00001114 llvm::BasicBlock *ContBlock = new llvm::BasicBlock("lor_cont");
1115 llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("lor_rhs");
Chris Lattner8394d792007-06-05 20:53:16 +00001116
Chris Lattner23b7eb62007-06-15 23:05:46 +00001117 llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
Chris Lattner8394d792007-06-05 20:53:16 +00001118 Builder.CreateCondBr(LHSCond, ContBlock, RHSBlock);
1119
1120 EmitBlock(RHSBlock);
Chris Lattner23b7eb62007-06-15 23:05:46 +00001121 llvm::Value *RHSCond = EvaluateExprAsBool(E->getRHS());
Chris Lattner8394d792007-06-05 20:53:16 +00001122
1123 // Reaquire the RHS block, as there may be subblocks inserted.
1124 RHSBlock = Builder.GetInsertBlock();
1125 EmitBlock(ContBlock);
1126
1127 // Create a PHI node. If we just evaluted the LHS condition, the result is
1128 // true. If we evaluated both, the result is the RHS condition.
Chris Lattner23b7eb62007-06-15 23:05:46 +00001129 llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "lor");
Chris Lattner8394d792007-06-05 20:53:16 +00001130 PN->reserveOperandSpace(2);
Chris Lattner23b7eb62007-06-15 23:05:46 +00001131 PN->addIncoming(llvm::ConstantInt::getTrue(), OrigBlock);
Chris Lattner8394d792007-06-05 20:53:16 +00001132 PN->addIncoming(RHSCond, RHSBlock);
1133
1134 // ZExt result to int.
1135 return RValue::get(Builder.CreateZExt(PN, LLVMIntTy, "lor.ext"));
1136}
1137
1138RValue CodeGenFunction::EmitBinaryAssign(const BinaryOperator *E) {
1139 LValue LHS = EmitLValue(E->getLHS());
1140
1141 QualType RHSTy;
1142 RValue RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), RHSTy);
1143
1144 // Convert the RHS to the type of the LHS.
Chris Lattnerf033c142007-06-22 19:05:19 +00001145 RHS = EmitConversion(RHS, RHSTy, E->getType());
Chris Lattner8394d792007-06-05 20:53:16 +00001146
1147 // Store the value into the LHS.
1148 EmitStoreThroughLValue(RHS, LHS, E->getType());
1149
1150 // Return the converted RHS.
1151 return RHS;
1152}
1153
Chris Lattner9369a562007-06-29 16:31:29 +00001154
Chris Lattner8394d792007-06-05 20:53:16 +00001155RValue CodeGenFunction::EmitBinaryComma(const BinaryOperator *E) {
1156 EmitExpr(E->getLHS());
1157 return EmitExpr(E->getRHS());
1158}