| Adhemerval Zanella | 8a595b1 | 2019-03-18 18:23:23 +0000 | [diff] [blame] | 1 | //===- AArch64ExpandImm.h - AArch64 Immediate Expansion -------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the AArch64ExpandImm stuff. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "AArch64.h" |
| 14 | #include "AArch64ExpandImm.h" |
| 15 | #include "MCTargetDesc/AArch64AddressingModes.h" |
| 16 | |
| 17 | namespace llvm { |
| 18 | |
| 19 | namespace AArch64_IMM { |
| 20 | |
| 21 | /// Helper function which extracts the specified 16-bit chunk from a |
| 22 | /// 64-bit value. |
| 23 | static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) { |
| 24 | assert(ChunkIdx < 4 && "Out of range chunk index specified!"); |
| 25 | |
| 26 | return (Imm >> (ChunkIdx * 16)) & 0xFFFF; |
| 27 | } |
| 28 | |
| 29 | /// Check whether the given 16-bit chunk replicated to full 64-bit width |
| 30 | /// can be materialized with an ORR instruction. |
| 31 | static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) { |
| 32 | Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk; |
| 33 | |
| 34 | return AArch64_AM::processLogicalImmediate(Chunk, 64, Encoding); |
| 35 | } |
| 36 | |
| 37 | /// Check for identical 16-bit chunks within the constant and if so |
| 38 | /// materialize them with a single ORR instruction. The remaining one or two |
| 39 | /// 16-bit chunks will be materialized with MOVK instructions. |
| 40 | /// |
| 41 | /// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order |
| 42 | /// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with |
| 43 | /// an ORR instruction. |
| 44 | static bool tryToreplicateChunks(uint64_t UImm, |
| 45 | SmallVectorImpl<ImmInsnModel> &Insn) { |
| 46 | using CountMap = DenseMap<uint64_t, unsigned>; |
| 47 | |
| 48 | CountMap Counts; |
| 49 | |
| 50 | // Scan the constant and count how often every chunk occurs. |
| 51 | for (unsigned Idx = 0; Idx < 4; ++Idx) |
| 52 | ++Counts[getChunk(UImm, Idx)]; |
| 53 | |
| 54 | // Traverse the chunks to find one which occurs more than once. |
| 55 | for (CountMap::const_iterator Chunk = Counts.begin(), End = Counts.end(); |
| 56 | Chunk != End; ++Chunk) { |
| 57 | const uint64_t ChunkVal = Chunk->first; |
| 58 | const unsigned Count = Chunk->second; |
| 59 | |
| 60 | uint64_t Encoding = 0; |
| 61 | |
| 62 | // We are looking for chunks which have two or three instances and can be |
| 63 | // materialized with an ORR instruction. |
| 64 | if ((Count != 2 && Count != 3) || !canUseOrr(ChunkVal, Encoding)) |
| 65 | continue; |
| 66 | |
| 67 | const bool CountThree = Count == 3; |
| 68 | |
| 69 | Insn.push_back({ AArch64::ORRXri, 0, Encoding }); |
| 70 | |
| 71 | unsigned ShiftAmt = 0; |
| 72 | uint64_t Imm16 = 0; |
| 73 | // Find the first chunk not materialized with the ORR instruction. |
| 74 | for (; ShiftAmt < 64; ShiftAmt += 16) { |
| 75 | Imm16 = (UImm >> ShiftAmt) & 0xFFFF; |
| 76 | |
| 77 | if (Imm16 != ChunkVal) |
| 78 | break; |
| 79 | } |
| 80 | |
| 81 | // Create the first MOVK instruction. |
| 82 | Insn.push_back({ AArch64::MOVKXi, Imm16, |
| 83 | AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt) }); |
| 84 | |
| 85 | // In case we have three instances the whole constant is now materialized |
| 86 | // and we can exit. |
| 87 | if (CountThree) |
| 88 | return true; |
| 89 | |
| 90 | // Find the remaining chunk which needs to be materialized. |
| 91 | for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) { |
| 92 | Imm16 = (UImm >> ShiftAmt) & 0xFFFF; |
| 93 | |
| 94 | if (Imm16 != ChunkVal) |
| 95 | break; |
| 96 | } |
| 97 | Insn.push_back({ AArch64::MOVKXi, Imm16, |
| 98 | AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt) }); |
| 99 | return true; |
| 100 | } |
| 101 | |
| 102 | return false; |
| 103 | } |
| 104 | |
| 105 | /// Check whether this chunk matches the pattern '1...0...'. This pattern |
| 106 | /// starts a contiguous sequence of ones if we look at the bits from the LSB |
| 107 | /// towards the MSB. |
| 108 | static bool isStartChunk(uint64_t Chunk) { |
| 109 | if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max()) |
| 110 | return false; |
| 111 | |
| 112 | return isMask_64(~Chunk); |
| 113 | } |
| 114 | |
| 115 | /// Check whether this chunk matches the pattern '0...1...' This pattern |
| 116 | /// ends a contiguous sequence of ones if we look at the bits from the LSB |
| 117 | /// towards the MSB. |
| 118 | static bool isEndChunk(uint64_t Chunk) { |
| 119 | if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max()) |
| 120 | return false; |
| 121 | |
| 122 | return isMask_64(Chunk); |
| 123 | } |
| 124 | |
| 125 | /// Clear or set all bits in the chunk at the given index. |
| 126 | static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) { |
| 127 | const uint64_t Mask = 0xFFFF; |
| 128 | |
| 129 | if (Clear) |
| 130 | // Clear chunk in the immediate. |
| 131 | Imm &= ~(Mask << (Idx * 16)); |
| 132 | else |
| 133 | // Set all bits in the immediate for the particular chunk. |
| 134 | Imm |= Mask << (Idx * 16); |
| 135 | |
| 136 | return Imm; |
| 137 | } |
| 138 | |
| 139 | /// Check whether the constant contains a sequence of contiguous ones, |
| 140 | /// which might be interrupted by one or two chunks. If so, materialize the |
| 141 | /// sequence of contiguous ones with an ORR instruction. |
| 142 | /// Materialize the chunks which are either interrupting the sequence or outside |
| 143 | /// of the sequence with a MOVK instruction. |
| 144 | /// |
| 145 | /// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk |
| 146 | /// which ends the sequence (0...1...). Then we are looking for constants which |
| 147 | /// contain at least one S and E chunk. |
| 148 | /// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|. |
| 149 | /// |
| 150 | /// We are also looking for constants like |S|A|B|E| where the contiguous |
| 151 | /// sequence of ones wraps around the MSB into the LSB. |
| 152 | static bool trySequenceOfOnes(uint64_t UImm, |
| 153 | SmallVectorImpl<ImmInsnModel> &Insn) { |
| 154 | const int NotSet = -1; |
| 155 | const uint64_t Mask = 0xFFFF; |
| 156 | |
| 157 | int StartIdx = NotSet; |
| 158 | int EndIdx = NotSet; |
| 159 | // Try to find the chunks which start/end a contiguous sequence of ones. |
| 160 | for (int Idx = 0; Idx < 4; ++Idx) { |
| 161 | int64_t Chunk = getChunk(UImm, Idx); |
| 162 | // Sign extend the 16-bit chunk to 64-bit. |
| 163 | Chunk = (Chunk << 48) >> 48; |
| 164 | |
| 165 | if (isStartChunk(Chunk)) |
| 166 | StartIdx = Idx; |
| 167 | else if (isEndChunk(Chunk)) |
| 168 | EndIdx = Idx; |
| 169 | } |
| 170 | |
| 171 | // Early exit in case we can't find a start/end chunk. |
| 172 | if (StartIdx == NotSet || EndIdx == NotSet) |
| 173 | return false; |
| 174 | |
| 175 | // Outside of the contiguous sequence of ones everything needs to be zero. |
| 176 | uint64_t Outside = 0; |
| 177 | // Chunks between the start and end chunk need to have all their bits set. |
| 178 | uint64_t Inside = Mask; |
| 179 | |
| 180 | // If our contiguous sequence of ones wraps around from the MSB into the LSB, |
| 181 | // just swap indices and pretend we are materializing a contiguous sequence |
| 182 | // of zeros surrounded by a contiguous sequence of ones. |
| 183 | if (StartIdx > EndIdx) { |
| 184 | std::swap(StartIdx, EndIdx); |
| 185 | std::swap(Outside, Inside); |
| 186 | } |
| 187 | |
| 188 | uint64_t OrrImm = UImm; |
| 189 | int FirstMovkIdx = NotSet; |
| 190 | int SecondMovkIdx = NotSet; |
| 191 | |
| 192 | // Find out which chunks we need to patch up to obtain a contiguous sequence |
| 193 | // of ones. |
| 194 | for (int Idx = 0; Idx < 4; ++Idx) { |
| 195 | const uint64_t Chunk = getChunk(UImm, Idx); |
| 196 | |
| 197 | // Check whether we are looking at a chunk which is not part of the |
| 198 | // contiguous sequence of ones. |
| 199 | if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) { |
| 200 | OrrImm = updateImm(OrrImm, Idx, Outside == 0); |
| 201 | |
| 202 | // Remember the index we need to patch. |
| 203 | if (FirstMovkIdx == NotSet) |
| 204 | FirstMovkIdx = Idx; |
| 205 | else |
| 206 | SecondMovkIdx = Idx; |
| 207 | |
| 208 | // Check whether we are looking a chunk which is part of the contiguous |
| 209 | // sequence of ones. |
| 210 | } else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) { |
| 211 | OrrImm = updateImm(OrrImm, Idx, Inside != Mask); |
| 212 | |
| 213 | // Remember the index we need to patch. |
| 214 | if (FirstMovkIdx == NotSet) |
| 215 | FirstMovkIdx = Idx; |
| 216 | else |
| 217 | SecondMovkIdx = Idx; |
| 218 | } |
| 219 | } |
| 220 | assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!"); |
| 221 | |
| 222 | // Create the ORR-immediate instruction. |
| 223 | uint64_t Encoding = 0; |
| 224 | AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding); |
| 225 | Insn.push_back({ AArch64::ORRXri, 0, Encoding }); |
| 226 | |
| 227 | const bool SingleMovk = SecondMovkIdx == NotSet; |
| 228 | Insn.push_back({ AArch64::MOVKXi, getChunk(UImm, FirstMovkIdx), |
| 229 | AArch64_AM::getShifterImm(AArch64_AM::LSL, |
| 230 | FirstMovkIdx * 16) }); |
| 231 | |
| 232 | // Early exit in case we only need to emit a single MOVK instruction. |
| 233 | if (SingleMovk) |
| 234 | return true; |
| 235 | |
| 236 | // Create the second MOVK instruction. |
| 237 | Insn.push_back({ AArch64::MOVKXi, getChunk(UImm, SecondMovkIdx), |
| 238 | AArch64_AM::getShifterImm(AArch64_AM::LSL, |
| 239 | SecondMovkIdx * 16) }); |
| 240 | |
| 241 | return true; |
| 242 | } |
| 243 | |
| 244 | /// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to a |
| 245 | /// MOVZ or MOVN of width BitSize followed by up to 3 MOVK instructions. |
| 246 | static inline void expandMOVImmSimple(uint64_t Imm, unsigned BitSize, |
| 247 | unsigned OneChunks, unsigned ZeroChunks, |
| 248 | SmallVectorImpl<ImmInsnModel> &Insn) { |
| 249 | const unsigned Mask = 0xFFFF; |
| 250 | |
| 251 | // Use a MOVZ or MOVN instruction to set the high bits, followed by one or |
| 252 | // more MOVK instructions to insert additional 16-bit portions into the |
| 253 | // lower bits. |
| 254 | bool isNeg = false; |
| 255 | |
| 256 | // Use MOVN to materialize the high bits if we have more all one chunks |
| 257 | // than all zero chunks. |
| 258 | if (OneChunks > ZeroChunks) { |
| 259 | isNeg = true; |
| 260 | Imm = ~Imm; |
| 261 | } |
| 262 | |
| 263 | unsigned FirstOpc; |
| 264 | if (BitSize == 32) { |
| 265 | Imm &= (1LL << 32) - 1; |
| 266 | FirstOpc = (isNeg ? AArch64::MOVNWi : AArch64::MOVZWi); |
| 267 | } else { |
| 268 | FirstOpc = (isNeg ? AArch64::MOVNXi : AArch64::MOVZXi); |
| 269 | } |
| 270 | unsigned Shift = 0; // LSL amount for high bits with MOVZ/MOVN |
| 271 | unsigned LastShift = 0; // LSL amount for last MOVK |
| 272 | if (Imm != 0) { |
| 273 | unsigned LZ = countLeadingZeros(Imm); |
| 274 | unsigned TZ = countTrailingZeros(Imm); |
| 275 | Shift = (TZ / 16) * 16; |
| 276 | LastShift = ((63 - LZ) / 16) * 16; |
| 277 | } |
| 278 | unsigned Imm16 = (Imm >> Shift) & Mask; |
| 279 | |
| 280 | Insn.push_back({ FirstOpc, Imm16, |
| 281 | AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) }); |
| 282 | |
| 283 | if (Shift == LastShift) |
| 284 | return; |
| 285 | |
| 286 | // If a MOVN was used for the high bits of a negative value, flip the rest |
| 287 | // of the bits back for use with MOVK. |
| 288 | if (isNeg) |
| 289 | Imm = ~Imm; |
| 290 | |
| 291 | unsigned Opc = (BitSize == 32 ? AArch64::MOVKWi : AArch64::MOVKXi); |
| 292 | while (Shift < LastShift) { |
| 293 | Shift += 16; |
| 294 | Imm16 = (Imm >> Shift) & Mask; |
| 295 | if (Imm16 == (isNeg ? Mask : 0)) |
| 296 | continue; // This 16-bit portion is already set correctly. |
| 297 | |
| 298 | Insn.push_back({ Opc, Imm16, |
| 299 | AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) }); |
| 300 | } |
| 301 | } |
| 302 | |
| 303 | /// Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more |
| 304 | /// real move-immediate instructions to synthesize the immediate. |
| 305 | void expandMOVImm(uint64_t Imm, unsigned BitSize, |
| 306 | SmallVectorImpl<ImmInsnModel> &Insn) { |
| 307 | const unsigned Mask = 0xFFFF; |
| 308 | |
| 309 | // Scan the immediate and count the number of 16-bit chunks which are either |
| 310 | // all ones or all zeros. |
| 311 | unsigned OneChunks = 0; |
| 312 | unsigned ZeroChunks = 0; |
| 313 | for (unsigned Shift = 0; Shift < BitSize; Shift += 16) { |
| 314 | const unsigned Chunk = (Imm >> Shift) & Mask; |
| 315 | if (Chunk == Mask) |
| 316 | OneChunks++; |
| 317 | else if (Chunk == 0) |
| 318 | ZeroChunks++; |
| 319 | } |
| 320 | |
| Eli Friedman | 92d0d13 | 2019-03-25 21:25:28 +0000 | [diff] [blame] | 321 | // Prefer MOVZ/MOVN over ORR because of the rules for the "mov" alias. |
| 322 | if ((BitSize / 16) - OneChunks <= 1 || (BitSize / 16) - ZeroChunks <= 1) { |
| 323 | expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn); |
| 324 | return; |
| 325 | } |
| Adhemerval Zanella | 8a595b1 | 2019-03-18 18:23:23 +0000 | [diff] [blame] | 326 | |
| 327 | // Try a single ORR. |
| 328 | uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize); |
| 329 | uint64_t Encoding; |
| 330 | if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) { |
| 331 | unsigned Opc = (BitSize == 32 ? AArch64::ORRWri : AArch64::ORRXri); |
| 332 | Insn.push_back({ Opc, 0, Encoding }); |
| 333 | return; |
| 334 | } |
| 335 | |
| 336 | // One to up three instruction sequences. |
| 337 | // |
| 338 | // Prefer MOVZ/MOVN followed by MOVK; it's more readable, and possibly the |
| 339 | // fastest sequence with fast literal generation. |
| 340 | if (OneChunks >= (BitSize / 16) - 2 || ZeroChunks >= (BitSize / 16) - 2) { |
| 341 | expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn); |
| 342 | return; |
| 343 | } |
| 344 | |
| 345 | assert(BitSize == 64 && "All 32-bit immediates can be expanded with a" |
| 346 | "MOVZ/MOVK pair"); |
| 347 | |
| 348 | // Try other two-instruction sequences. |
| 349 | |
| 350 | // 64-bit ORR followed by MOVK. |
| 351 | // We try to construct the ORR immediate in three different ways: either we |
| 352 | // zero out the chunk which will be replaced, we fill the chunk which will |
| 353 | // be replaced with ones, or we take the bit pattern from the other half of |
| 354 | // the 64-bit immediate. This is comprehensive because of the way ORR |
| 355 | // immediates are constructed. |
| 356 | for (unsigned Shift = 0; Shift < BitSize; Shift += 16) { |
| 357 | uint64_t ShiftedMask = (0xFFFFULL << Shift); |
| 358 | uint64_t ZeroChunk = UImm & ~ShiftedMask; |
| 359 | uint64_t OneChunk = UImm | ShiftedMask; |
| 360 | uint64_t RotatedImm = (UImm << 32) | (UImm >> 32); |
| 361 | uint64_t ReplicateChunk = ZeroChunk | (RotatedImm & ShiftedMask); |
| 362 | if (AArch64_AM::processLogicalImmediate(ZeroChunk, BitSize, Encoding) || |
| 363 | AArch64_AM::processLogicalImmediate(OneChunk, BitSize, Encoding) || |
| 364 | AArch64_AM::processLogicalImmediate(ReplicateChunk, BitSize, |
| 365 | Encoding)) { |
| 366 | // Create the ORR-immediate instruction. |
| 367 | Insn.push_back({ AArch64::ORRXri, 0, Encoding }); |
| 368 | |
| 369 | // Create the MOVK instruction. |
| 370 | const unsigned Imm16 = getChunk(UImm, Shift / 16); |
| 371 | Insn.push_back({ AArch64::MOVKXi, Imm16, |
| 372 | AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) }); |
| 373 | return; |
| 374 | } |
| 375 | } |
| 376 | |
| 377 | // FIXME: Add more two-instruction sequences. |
| 378 | |
| 379 | // Three instruction sequences. |
| 380 | // |
| 381 | // Prefer MOVZ/MOVN followed by two MOVK; it's more readable, and possibly |
| 382 | // the fastest sequence with fast literal generation. (If neither MOVK is |
| 383 | // part of a fast literal generation pair, it could be slower than the |
| 384 | // four-instruction sequence, but we won't worry about that for now.) |
| 385 | if (OneChunks || ZeroChunks) { |
| 386 | expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn); |
| 387 | return; |
| 388 | } |
| 389 | |
| 390 | // Check for identical 16-bit chunks within the constant and if so materialize |
| 391 | // them with a single ORR instruction. The remaining one or two 16-bit chunks |
| 392 | // will be materialized with MOVK instructions. |
| 393 | if (BitSize == 64 && tryToreplicateChunks(UImm, Insn)) |
| 394 | return; |
| 395 | |
| 396 | // Check whether the constant contains a sequence of contiguous ones, which |
| 397 | // might be interrupted by one or two chunks. If so, materialize the sequence |
| 398 | // of contiguous ones with an ORR instruction. Materialize the chunks which |
| 399 | // are either interrupting the sequence or outside of the sequence with a |
| 400 | // MOVK instruction. |
| 401 | if (BitSize == 64 && trySequenceOfOnes(UImm, Insn)) |
| 402 | return; |
| 403 | |
| 404 | // We found no possible two or three instruction sequence; use the general |
| 405 | // four-instruction sequence. |
| 406 | expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn); |
| 407 | } |
| 408 | |
| 409 | } // end namespace AArch64_AM |
| 410 | |
| 411 | } // end namespace llvm |