blob: 137ed9e8dae3060282bac52ebab0a96aad465641 [file] [log] [blame]
Misha Brukmanc501f552004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman76307852003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencercb84e432004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman76307852003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattner757528b0b2004-05-23 21:06:01 +000012
Misha Brukman76307852003-11-08 01:05:38 +000013<body>
Chris Lattner757528b0b2004-05-23 21:06:01 +000014
Chris Lattner48b383b02003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner2f7c9632001-06-06 20:29:01 +000016<ol>
Misha Brukman76307852003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnerd79749a2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattner0132aff2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000025 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000026 <li><a href="#functionstructure">Functions</a></li>
Anton Korobeynikov546ea7e2007-04-29 18:02:48 +000027 <li><a href="#aliasstructure">Aliases</a>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +000028 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel9eb525d2008-09-26 23:51:19 +000029 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen71183b62007-12-10 03:18:06 +000030 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000031 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencer50c723a2007-02-19 23:54:10 +000032 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000033 </ol>
34 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000035 <li><a href="#typesystem">Type System</a>
36 <ol>
Chris Lattner7824d182008-01-04 04:32:38 +000037 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +000038 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner48b383b02003-11-25 01:02:51 +000039 <ol>
Chris Lattner7824d182008-01-04 04:32:38 +000040 <li><a href="#t_floating">Floating Point Types</a></li>
41 <li><a href="#t_void">Void Type</a></li>
42 <li><a href="#t_label">Label Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000043 </ol>
44 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000045 <li><a href="#t_derived">Derived Types</a>
46 <ol>
Chris Lattner9a2e3cb2007-12-18 06:18:21 +000047 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000048 <li><a href="#t_array">Array Type</a></li>
Misha Brukman76307852003-11-08 01:05:38 +000049 <li><a href="#t_function">Function Type</a></li>
50 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000051 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth8df88e22006-12-08 17:13:00 +000052 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer404a3252007-02-15 03:07:05 +000053 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner37b6b092005-04-25 17:34:15 +000054 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000055 </ol>
56 </li>
57 </ol>
58 </li>
Chris Lattner6af02f32004-12-09 16:11:40 +000059 <li><a href="#constants">Constants</a>
Chris Lattner74d3f822004-12-09 17:30:23 +000060 <ol>
61 <li><a href="#simpleconstants">Simple Constants</a>
62 <li><a href="#aggregateconstants">Aggregate Constants</a>
63 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
64 <li><a href="#undefvalues">Undefined Values</a>
65 <li><a href="#constantexprs">Constant Expressions</a>
66 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000067 </li>
Chris Lattner98f013c2006-01-25 23:47:57 +000068 <li><a href="#othervalues">Other Values</a>
69 <ol>
70 <li><a href="#inlineasm">Inline Assembler Expressions</a>
71 </ol>
72 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000073 <li><a href="#instref">Instruction Reference</a>
74 <ol>
75 <li><a href="#terminators">Terminator Instructions</a>
76 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000077 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
78 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +000079 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
80 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000081 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner08b7d5b2004-10-16 18:04:13 +000082 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000083 </ol>
84 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000085 <li><a href="#binaryops">Binary Operations</a>
86 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000087 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
88 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
89 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer7e80b0b2006-10-26 06:15:43 +000090 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
91 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
92 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer7eb55b32006-11-02 01:53:59 +000093 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
94 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
95 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000096 </ol>
97 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000098 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
99 <ol>
Reid Spencer2ab01932007-02-02 13:57:07 +0000100 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
101 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
102 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000103 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000104 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000105 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000106 </ol>
107 </li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000108 <li><a href="#vectorops">Vector Operations</a>
109 <ol>
110 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
111 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
112 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000113 </ol>
114 </li>
Dan Gohmanb9d66602008-05-12 23:51:09 +0000115 <li><a href="#aggregateops">Aggregate Operations</a>
116 <ol>
117 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
118 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
119 </ol>
120 </li>
Chris Lattner6ab66722006-08-15 00:45:58 +0000121 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000122 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000123 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
124 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
125 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +0000126 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
127 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
128 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000129 </ol>
130 </li>
Reid Spencer97c5fa42006-11-08 01:18:52 +0000131 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000132 <ol>
133 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
134 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
135 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
136 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
137 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencer51b07252006-11-09 23:03:26 +0000138 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
139 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
140 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
141 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencerb7344ff2006-11-11 21:00:47 +0000142 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
143 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5b950642006-11-11 23:08:07 +0000144 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000145 </ol>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000146 <li><a href="#otherops">Other Operations</a>
147 <ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +0000148 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
149 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemand2195702008-05-12 19:01:56 +0000150 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
151 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000152 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnerb53c28d2004-03-12 05:50:16 +0000153 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000154 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattner33337472006-01-13 23:26:01 +0000155 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000156 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000157 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000158 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000159 </li>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000160 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000161 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000162 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
163 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000164 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
165 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
166 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000167 </ol>
168 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000169 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
170 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000171 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
172 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
173 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000174 </ol>
175 </li>
Chris Lattner3649c3a2004-02-14 04:08:35 +0000176 <li><a href="#int_codegen">Code Generator Intrinsics</a>
177 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000178 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
179 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
180 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
181 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
182 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
183 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
184 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswellaa1c3c12004-04-09 16:43:20 +0000185 </ol>
186 </li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000187 <li><a href="#int_libc">Standard C Library Intrinsics</a>
188 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000189 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
190 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
191 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
192 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
193 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohmanb6324c12007-10-15 20:30:11 +0000194 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
195 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000197 </ol>
198 </li>
Nate Begeman0f223bb2006-01-13 23:26:38 +0000199 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000200 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000201 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattnerb748c672006-01-16 22:34:14 +0000202 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
203 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
204 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencer5bf54c82007-04-11 23:23:49 +0000205 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
206 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000207 </ol>
208 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000209 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskey2211f492007-03-14 19:31:19 +0000210 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sands86e01192007-09-11 14:10:23 +0000211 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands644f9172007-07-27 12:58:54 +0000212 <ol>
213 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands644f9172007-07-27 12:58:54 +0000214 </ol>
215 </li>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +0000216 <li><a href="#int_atomics">Atomic intrinsics</a>
217 <ol>
Andrew Lenharth95528942008-02-21 06:45:13 +0000218 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
Mon P Wang6a490372008-06-25 08:15:39 +0000219 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
Andrew Lenharth95528942008-02-21 06:45:13 +0000220 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
Mon P Wang6a490372008-06-25 08:15:39 +0000221 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
222 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
223 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
224 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
225 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
226 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
227 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
228 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
229 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
230 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +0000231 </ol>
232 </li>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000233 <li><a href="#int_general">General intrinsics</a>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000234 <ol>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000235 <li><a href="#int_var_annotation">
Tanya Lattner08abc812007-09-22 00:01:26 +0000236 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000237 <li><a href="#int_annotation">
Tanya Lattner08abc812007-09-22 00:01:26 +0000238 <tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +0000239 <li><a href="#int_trap">
240 <tt>llvm.trap</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000241 </ol>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000242 </li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000243 </ol>
244 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000245</ol>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000246
247<div class="doc_author">
248 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
249 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman76307852003-11-08 01:05:38 +0000250</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000251
Chris Lattner2f7c9632001-06-06 20:29:01 +0000252<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000253<div class="doc_section"> <a name="abstract">Abstract </a></div>
254<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000255
Misha Brukman76307852003-11-08 01:05:38 +0000256<div class="doc_text">
Chris Lattner48b383b02003-11-25 01:02:51 +0000257<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling6e03f9a2008-08-05 22:29:16 +0000258LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattner67c37d12008-08-05 18:29:16 +0000259type safety, low-level operations, flexibility, and the capability of
260representing 'all' high-level languages cleanly. It is the common code
Chris Lattner48b383b02003-11-25 01:02:51 +0000261representation used throughout all phases of the LLVM compilation
262strategy.</p>
Misha Brukman76307852003-11-08 01:05:38 +0000263</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000264
Chris Lattner2f7c9632001-06-06 20:29:01 +0000265<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000266<div class="doc_section"> <a name="introduction">Introduction</a> </div>
267<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000268
Misha Brukman76307852003-11-08 01:05:38 +0000269<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000270
Chris Lattner48b383b02003-11-25 01:02:51 +0000271<p>The LLVM code representation is designed to be used in three
Gabor Greifa54634a2007-07-06 22:07:22 +0000272different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner48b383b02003-11-25 01:02:51 +0000273representation (suitable for fast loading by a Just-In-Time compiler),
274and as a human readable assembly language representation. This allows
275LLVM to provide a powerful intermediate representation for efficient
276compiler transformations and analysis, while providing a natural means
277to debug and visualize the transformations. The three different forms
278of LLVM are all equivalent. This document describes the human readable
279representation and notation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000280
John Criswell4a3327e2005-05-13 22:25:59 +0000281<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner48b383b02003-11-25 01:02:51 +0000282while being expressive, typed, and extensible at the same time. It
283aims to be a "universal IR" of sorts, by being at a low enough level
284that high-level ideas may be cleanly mapped to it (similar to how
285microprocessors are "universal IR's", allowing many source languages to
286be mapped to them). By providing type information, LLVM can be used as
287the target of optimizations: for example, through pointer analysis, it
288can be proven that a C automatic variable is never accessed outside of
289the current function... allowing it to be promoted to a simple SSA
290value instead of a memory location.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000291
Misha Brukman76307852003-11-08 01:05:38 +0000292</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000293
Chris Lattner2f7c9632001-06-06 20:29:01 +0000294<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000295<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000296
Misha Brukman76307852003-11-08 01:05:38 +0000297<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000298
Chris Lattner48b383b02003-11-25 01:02:51 +0000299<p>It is important to note that this document describes 'well formed'
300LLVM assembly language. There is a difference between what the parser
301accepts and what is considered 'well formed'. For example, the
302following instruction is syntactically okay, but not well formed:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000303
Bill Wendling3716c5d2007-05-29 09:04:49 +0000304<div class="doc_code">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000305<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000306%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattner757528b0b2004-05-23 21:06:01 +0000307</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000308</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000309
Chris Lattner48b383b02003-11-25 01:02:51 +0000310<p>...because the definition of <tt>%x</tt> does not dominate all of
311its uses. The LLVM infrastructure provides a verification pass that may
312be used to verify that an LLVM module is well formed. This pass is
John Criswell4a3327e2005-05-13 22:25:59 +0000313automatically run by the parser after parsing input assembly and by
Gabor Greifa54634a2007-07-06 22:07:22 +0000314the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner48b383b02003-11-25 01:02:51 +0000315by the verifier pass indicate bugs in transformation passes or input to
316the parser.</p>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000317</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000318
Chris Lattner87a3dbe2007-10-03 17:34:29 +0000319<!-- Describe the typesetting conventions here. -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000320
Chris Lattner2f7c9632001-06-06 20:29:01 +0000321<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +0000322<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000323<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000324
Misha Brukman76307852003-11-08 01:05:38 +0000325<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +0000326
Reid Spencerb23b65f2007-08-07 14:34:28 +0000327 <p>LLVM identifiers come in two basic types: global and local. Global
328 identifiers (functions, global variables) begin with the @ character. Local
329 identifiers (register names, types) begin with the % character. Additionally,
330 there are three different formats for identifiers, for different purposes:
Chris Lattner757528b0b2004-05-23 21:06:01 +0000331
Chris Lattner2f7c9632001-06-06 20:29:01 +0000332<ol>
Reid Spencerb23b65f2007-08-07 14:34:28 +0000333 <li>Named values are represented as a string of characters with their prefix.
334 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
335 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnerd79749a2004-12-09 16:36:40 +0000336 Identifiers which require other characters in their names can be surrounded
Reid Spencerb23b65f2007-08-07 14:34:28 +0000337 with quotes. In this way, anything except a <tt>&quot;</tt> character can
338 be used in a named value.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000339
Reid Spencerb23b65f2007-08-07 14:34:28 +0000340 <li>Unnamed values are represented as an unsigned numeric value with their
341 prefix. For example, %12, @2, %44.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000342
Reid Spencer8f08d802004-12-09 18:02:53 +0000343 <li>Constants, which are described in a <a href="#constants">section about
344 constants</a>, below.</li>
Misha Brukman76307852003-11-08 01:05:38 +0000345</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000346
Reid Spencerb23b65f2007-08-07 14:34:28 +0000347<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnerd79749a2004-12-09 16:36:40 +0000348don't need to worry about name clashes with reserved words, and the set of
349reserved words may be expanded in the future without penalty. Additionally,
350unnamed identifiers allow a compiler to quickly come up with a temporary
351variable without having to avoid symbol table conflicts.</p>
352
Chris Lattner48b383b02003-11-25 01:02:51 +0000353<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5b950642006-11-11 23:08:07 +0000354languages. There are keywords for different opcodes
355('<tt><a href="#i_add">add</a></tt>',
356 '<tt><a href="#i_bitcast">bitcast</a></tt>',
357 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000358href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnerd79749a2004-12-09 16:36:40 +0000359and others. These reserved words cannot conflict with variable names, because
Reid Spencerb23b65f2007-08-07 14:34:28 +0000360none of them start with a prefix character ('%' or '@').</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000361
362<p>Here is an example of LLVM code to multiply the integer variable
363'<tt>%X</tt>' by 8:</p>
364
Misha Brukman76307852003-11-08 01:05:38 +0000365<p>The easy way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000366
Bill Wendling3716c5d2007-05-29 09:04:49 +0000367<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000368<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000369%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnerd79749a2004-12-09 16:36:40 +0000370</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000371</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000372
Misha Brukman76307852003-11-08 01:05:38 +0000373<p>After strength reduction:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000374
Bill Wendling3716c5d2007-05-29 09:04:49 +0000375<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000376<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000377%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnerd79749a2004-12-09 16:36:40 +0000378</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000379</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000380
Misha Brukman76307852003-11-08 01:05:38 +0000381<p>And the hard way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000382
Bill Wendling3716c5d2007-05-29 09:04:49 +0000383<div class="doc_code">
Chris Lattnerd79749a2004-12-09 16:36:40 +0000384<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000385<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
386<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
387%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnerd79749a2004-12-09 16:36:40 +0000388</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000389</div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000390
Chris Lattner48b383b02003-11-25 01:02:51 +0000391<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
392important lexical features of LLVM:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000393
Chris Lattner2f7c9632001-06-06 20:29:01 +0000394<ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000395
396 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
397 line.</li>
398
399 <li>Unnamed temporaries are created when the result of a computation is not
400 assigned to a named value.</li>
401
Misha Brukman76307852003-11-08 01:05:38 +0000402 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000403
Misha Brukman76307852003-11-08 01:05:38 +0000404</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000405
John Criswell02fdc6f2005-05-12 16:52:32 +0000406<p>...and it also shows a convention that we follow in this document. When
Chris Lattnerd79749a2004-12-09 16:36:40 +0000407demonstrating instructions, we will follow an instruction with a comment that
408defines the type and name of value produced. Comments are shown in italic
409text.</p>
410
Misha Brukman76307852003-11-08 01:05:38 +0000411</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000412
413<!-- *********************************************************************** -->
414<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
415<!-- *********************************************************************** -->
416
417<!-- ======================================================================= -->
418<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
419</div>
420
421<div class="doc_text">
422
423<p>LLVM programs are composed of "Module"s, each of which is a
424translation unit of the input programs. Each module consists of
425functions, global variables, and symbol table entries. Modules may be
426combined together with the LLVM linker, which merges function (and
427global variable) definitions, resolves forward declarations, and merges
428symbol table entries. Here is an example of the "hello world" module:</p>
429
Bill Wendling3716c5d2007-05-29 09:04:49 +0000430<div class="doc_code">
Chris Lattner6af02f32004-12-09 16:11:40 +0000431<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattner2b0bf4f2007-06-12 17:00:26 +0000432<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
433 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000434
435<i>; External declaration of the puts function</i>
Chris Lattner2b0bf4f2007-06-12 17:00:26 +0000436<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000437
438<i>; Definition of main function</i>
Chris Lattner2b0bf4f2007-06-12 17:00:26 +0000439define i32 @main() { <i>; i32()* </i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000440 <i>; Convert [13x i8 ]* to i8 *...</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000441 %cast210 = <a
Chris Lattner2150cde2007-06-12 17:01:15 +0000442 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000443
444 <i>; Call puts function to write out the string to stdout...</i>
445 <a
Chris Lattner2b0bf4f2007-06-12 17:00:26 +0000446 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattner6af02f32004-12-09 16:11:40 +0000447 <a
Bill Wendling3716c5d2007-05-29 09:04:49 +0000448 href="#i_ret">ret</a> i32 0<br>}<br>
449</pre>
450</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000451
452<p>This example is made up of a <a href="#globalvars">global variable</a>
453named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
454function, and a <a href="#functionstructure">function definition</a>
455for "<tt>main</tt>".</p>
456
Chris Lattnerd79749a2004-12-09 16:36:40 +0000457<p>In general, a module is made up of a list of global values,
458where both functions and global variables are global values. Global values are
459represented by a pointer to a memory location (in this case, a pointer to an
460array of char, and a pointer to a function), and have one of the following <a
461href="#linkage">linkage types</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000462
Chris Lattnerd79749a2004-12-09 16:36:40 +0000463</div>
464
465<!-- ======================================================================= -->
466<div class="doc_subsection">
467 <a name="linkage">Linkage Types</a>
468</div>
469
470<div class="doc_text">
471
472<p>
473All Global Variables and Functions have one of the following types of linkage:
474</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000475
476<dl>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000477
Dale Johannesen4188aad2008-05-23 23:13:41 +0000478 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000479
480 <dd>Global values with internal linkage are only directly accessible by
481 objects in the current module. In particular, linking code into a module with
482 an internal global value may cause the internal to be renamed as necessary to
483 avoid collisions. Because the symbol is internal to the module, all
484 references can be updated. This corresponds to the notion of the
Chris Lattnere20b4702007-01-14 06:51:48 +0000485 '<tt>static</tt>' keyword in C.
Chris Lattner6af02f32004-12-09 16:11:40 +0000486 </dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000487
Chris Lattner6af02f32004-12-09 16:11:40 +0000488 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000489
Chris Lattnere20b4702007-01-14 06:51:48 +0000490 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
491 the same name when linkage occurs. This is typically used to implement
492 inline functions, templates, or other code which must be generated in each
493 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
494 allowed to be discarded.
Chris Lattner6af02f32004-12-09 16:11:40 +0000495 </dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000496
Dale Johannesen4188aad2008-05-23 23:13:41 +0000497 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
498
499 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
500 linkage, except that unreferenced <tt>common</tt> globals may not be
501 discarded. This is used for globals that may be emitted in multiple
502 translation units, but that are not guaranteed to be emitted into every
503 translation unit that uses them. One example of this is tentative
504 definitions in C, such as "<tt>int X;</tt>" at global scope.
505 </dd>
506
Chris Lattner6af02f32004-12-09 16:11:40 +0000507 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000508
Dale Johannesen4188aad2008-05-23 23:13:41 +0000509 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
510 that some targets may choose to emit different assembly sequences for them
511 for target-dependent reasons. This is used for globals that are declared
512 "weak" in C source code.
Chris Lattner6af02f32004-12-09 16:11:40 +0000513 </dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000514
Chris Lattner6af02f32004-12-09 16:11:40 +0000515 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000516
517 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
518 pointer to array type. When two global variables with appending linkage are
519 linked together, the two global arrays are appended together. This is the
520 LLVM, typesafe, equivalent of having the system linker append together
521 "sections" with identical names when .o files are linked.
Chris Lattner6af02f32004-12-09 16:11:40 +0000522 </dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000523
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000524 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Chris Lattner67c37d12008-08-05 18:29:16 +0000525 <dd>The semantics of this linkage follow the ELF object file model: the
526 symbol is weak until linked, if not linked, the symbol becomes null instead
527 of being an undefined reference.
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000528 </dd>
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000529
Chris Lattner6af02f32004-12-09 16:11:40 +0000530 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000531
532 <dd>If none of the above identifiers are used, the global is externally
533 visible, meaning that it participates in linkage and can be used to resolve
534 external symbol references.
Chris Lattner6af02f32004-12-09 16:11:40 +0000535 </dd>
Reid Spencer7972c472007-04-11 23:49:50 +0000536</dl>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000537
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000538 <p>
539 The next two types of linkage are targeted for Microsoft Windows platform
540 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattner67c37d12008-08-05 18:29:16 +0000541 DLLs (Dynamic Link Libraries).
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000542 </p>
543
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000544 <dl>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000545 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
546
547 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
548 or variable via a global pointer to a pointer that is set up by the DLL
549 exporting the symbol. On Microsoft Windows targets, the pointer name is
550 formed by combining <code>_imp__</code> and the function or variable name.
551 </dd>
552
553 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
554
555 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
556 pointer to a pointer in a DLL, so that it can be referenced with the
557 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
558 name is formed by combining <code>_imp__</code> and the function or variable
559 name.
560 </dd>
561
Chris Lattner6af02f32004-12-09 16:11:40 +0000562</dl>
563
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000564<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
Chris Lattner6af02f32004-12-09 16:11:40 +0000565variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
566variable and was linked with this one, one of the two would be renamed,
567preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
568external (i.e., lacking any linkage declarations), they are accessible
Reid Spencer92c671e2007-01-05 00:59:10 +0000569outside of the current module.</p>
570<p>It is illegal for a function <i>declaration</i>
571to have any linkage type other than "externally visible", <tt>dllimport</tt>,
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000572or <tt>extern_weak</tt>.</p>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000573<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
574linkages.
Chris Lattner6af02f32004-12-09 16:11:40 +0000575</div>
576
577<!-- ======================================================================= -->
578<div class="doc_subsection">
Chris Lattner0132aff2005-05-06 22:57:40 +0000579 <a name="callingconv">Calling Conventions</a>
580</div>
581
582<div class="doc_text">
583
584<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
585and <a href="#i_invoke">invokes</a> can all have an optional calling convention
586specified for the call. The calling convention of any pair of dynamic
587caller/callee must match, or the behavior of the program is undefined. The
588following calling conventions are supported by LLVM, and more may be added in
589the future:</p>
590
591<dl>
592 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
593
594 <dd>This calling convention (the default if no other calling convention is
595 specified) matches the target C calling conventions. This calling convention
John Criswell02fdc6f2005-05-12 16:52:32 +0000596 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencer72ba4992006-12-31 21:30:18 +0000597 prototype and implemented declaration of the function (as does normal C).
Chris Lattner0132aff2005-05-06 22:57:40 +0000598 </dd>
599
600 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
601
602 <dd>This calling convention attempts to make calls as fast as possible
603 (e.g. by passing things in registers). This calling convention allows the
604 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattner67c37d12008-08-05 18:29:16 +0000605 without having to conform to an externally specified ABI (Application Binary
606 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer2c6b8882008-05-14 09:17:12 +0000607 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
608 supported. This calling convention does not support varargs and requires the
609 prototype of all callees to exactly match the prototype of the function
610 definition.
Chris Lattner0132aff2005-05-06 22:57:40 +0000611 </dd>
612
613 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
614
615 <dd>This calling convention attempts to make code in the caller as efficient
616 as possible under the assumption that the call is not commonly executed. As
617 such, these calls often preserve all registers so that the call does not break
618 any live ranges in the caller side. This calling convention does not support
619 varargs and requires the prototype of all callees to exactly match the
620 prototype of the function definition.
621 </dd>
622
Chris Lattner573f64e2005-05-07 01:46:40 +0000623 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000624
625 <dd>Any calling convention may be specified by number, allowing
626 target-specific calling conventions to be used. Target specific calling
627 conventions start at 64.
628 </dd>
Chris Lattner573f64e2005-05-07 01:46:40 +0000629</dl>
Chris Lattner0132aff2005-05-06 22:57:40 +0000630
631<p>More calling conventions can be added/defined on an as-needed basis, to
632support pascal conventions or any other well-known target-independent
633convention.</p>
634
635</div>
636
637<!-- ======================================================================= -->
638<div class="doc_subsection">
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000639 <a name="visibility">Visibility Styles</a>
640</div>
641
642<div class="doc_text">
643
644<p>
645All Global Variables and Functions have one of the following visibility styles:
646</p>
647
648<dl>
649 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
650
Chris Lattner67c37d12008-08-05 18:29:16 +0000651 <dd>On targets that use the ELF object file format, default visibility means
652 that the declaration is visible to other
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000653 modules and, in shared libraries, means that the declared entity may be
654 overridden. On Darwin, default visibility means that the declaration is
655 visible to other modules. Default visibility corresponds to "external
656 linkage" in the language.
657 </dd>
658
659 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
660
661 <dd>Two declarations of an object with hidden visibility refer to the same
662 object if they are in the same shared object. Usually, hidden visibility
663 indicates that the symbol will not be placed into the dynamic symbol table,
664 so no other module (executable or shared library) can reference it
665 directly.
666 </dd>
667
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000668 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
669
670 <dd>On ELF, protected visibility indicates that the symbol will be placed in
671 the dynamic symbol table, but that references within the defining module will
672 bind to the local symbol. That is, the symbol cannot be overridden by another
673 module.
674 </dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000675</dl>
676
677</div>
678
679<!-- ======================================================================= -->
680<div class="doc_subsection">
Chris Lattner6af02f32004-12-09 16:11:40 +0000681 <a name="globalvars">Global Variables</a>
682</div>
683
684<div class="doc_text">
685
Chris Lattner5d5aede2005-02-12 19:30:21 +0000686<p>Global variables define regions of memory allocated at compilation time
Chris Lattner662c8722005-11-12 00:45:07 +0000687instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000688an explicit section to be placed in, and may have an optional explicit alignment
689specified. A variable may be defined as "thread_local", which means that it
690will not be shared by threads (each thread will have a separated copy of the
691variable). A variable may be defined as a global "constant," which indicates
692that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner5d5aede2005-02-12 19:30:21 +0000693optimization, allowing the global data to be placed in the read-only section of
694an executable, etc). Note that variables that need runtime initialization
John Criswell4c0cf7f2005-10-24 16:17:18 +0000695cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner5d5aede2005-02-12 19:30:21 +0000696
697<p>
698LLVM explicitly allows <em>declarations</em> of global variables to be marked
699constant, even if the final definition of the global is not. This capability
700can be used to enable slightly better optimization of the program, but requires
701the language definition to guarantee that optimizations based on the
702'constantness' are valid for the translation units that do not include the
703definition.
704</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000705
706<p>As SSA values, global variables define pointer values that are in
707scope (i.e. they dominate) all basic blocks in the program. Global
708variables always define a pointer to their "content" type because they
709describe a region of memory, and all memory objects in LLVM are
710accessed through pointers.</p>
711
Christopher Lamb308121c2007-12-11 09:31:00 +0000712<p>A global variable may be declared to reside in a target-specifc numbered
713address space. For targets that support them, address spaces may affect how
714optimizations are performed and/or what target instructions are used to access
Christopher Lamb25f50762007-12-12 08:44:39 +0000715the variable. The default address space is zero. The address space qualifier
716must precede any other attributes.</p>
Christopher Lamb308121c2007-12-11 09:31:00 +0000717
Chris Lattner662c8722005-11-12 00:45:07 +0000718<p>LLVM allows an explicit section to be specified for globals. If the target
719supports it, it will emit globals to the section specified.</p>
720
Chris Lattner54611b42005-11-06 08:02:57 +0000721<p>An explicit alignment may be specified for a global. If not present, or if
722the alignment is set to zero, the alignment of the global is set by the target
723to whatever it feels convenient. If an explicit alignment is specified, the
724global is forced to have at least that much alignment. All alignments must be
725a power of 2.</p>
726
Christopher Lamb308121c2007-12-11 09:31:00 +0000727<p>For example, the following defines a global in a numbered address space with
728an initializer, section, and alignment:</p>
Chris Lattner5760c502007-01-14 00:27:09 +0000729
Bill Wendling3716c5d2007-05-29 09:04:49 +0000730<div class="doc_code">
Chris Lattner5760c502007-01-14 00:27:09 +0000731<pre>
Christopher Lamb308121c2007-12-11 09:31:00 +0000732@G = constant float 1.0 addrspace(5), section "foo", align 4
Chris Lattner5760c502007-01-14 00:27:09 +0000733</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000734</div>
Chris Lattner5760c502007-01-14 00:27:09 +0000735
Chris Lattner6af02f32004-12-09 16:11:40 +0000736</div>
737
738
739<!-- ======================================================================= -->
740<div class="doc_subsection">
741 <a name="functionstructure">Functions</a>
742</div>
743
744<div class="doc_text">
745
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000746<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
747an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000748<a href="#visibility">visibility style</a>, an optional
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000749<a href="#callingconv">calling convention</a>, a return type, an optional
750<a href="#paramattrs">parameter attribute</a> for the return type, a function
751name, a (possibly empty) argument list (each with optional
Devang Patel7e9b05e2008-10-06 18:50:38 +0000752<a href="#paramattrs">parameter attributes</a>), optional
753<a href="#fnattrs">function attributes</a>, an optional section,
754an optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattnercbc4d2a2008-10-04 18:10:21 +0000755an opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000756
757LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
758optional <a href="#linkage">linkage type</a>, an optional
759<a href="#visibility">visibility style</a>, an optional
760<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000761<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen71183b62007-12-10 03:18:06 +0000762name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksendc5cafb2007-12-10 03:30:21 +0000763<a href="#gc">garbage collector name</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000764
Chris Lattner67c37d12008-08-05 18:29:16 +0000765<p>A function definition contains a list of basic blocks, forming the CFG
766(Control Flow Graph) for
Chris Lattner6af02f32004-12-09 16:11:40 +0000767the function. Each basic block may optionally start with a label (giving the
768basic block a symbol table entry), contains a list of instructions, and ends
769with a <a href="#terminators">terminator</a> instruction (such as a branch or
770function return).</p>
771
Chris Lattnera59fb102007-06-08 16:52:14 +0000772<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattner6af02f32004-12-09 16:11:40 +0000773executed on entrance to the function, and it is not allowed to have predecessor
774basic blocks (i.e. there can not be any branches to the entry block of a
775function). Because the block can have no predecessors, it also cannot have any
776<a href="#i_phi">PHI nodes</a>.</p>
777
Chris Lattner662c8722005-11-12 00:45:07 +0000778<p>LLVM allows an explicit section to be specified for functions. If the target
779supports it, it will emit functions to the section specified.</p>
780
Chris Lattner54611b42005-11-06 08:02:57 +0000781<p>An explicit alignment may be specified for a function. If not present, or if
782the alignment is set to zero, the alignment of the function is set by the target
783to whatever it feels convenient. If an explicit alignment is specified, the
784function is forced to have at least that much alignment. All alignments must be
785a power of 2.</p>
786
Devang Patel02256232008-10-07 17:48:33 +0000787 <h5>Syntax:</h5>
788
789<div class="doc_code">
Chris Lattner0ae02092008-10-13 16:55:18 +0000790<tt>
791define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
792 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
793 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
794 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
795 [<a href="#gc">gc</a>] { ... }
796</tt>
Devang Patel02256232008-10-07 17:48:33 +0000797</div>
798
Chris Lattner6af02f32004-12-09 16:11:40 +0000799</div>
800
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000801
802<!-- ======================================================================= -->
803<div class="doc_subsection">
804 <a name="aliasstructure">Aliases</a>
805</div>
806<div class="doc_text">
807 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov25b2e822008-03-22 08:36:14 +0000808 function, global variable, another alias or bitcast of global value). Aliases
809 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000810 optional <a href="#visibility">visibility style</a>.</p>
811
812 <h5>Syntax:</h5>
813
Bill Wendling3716c5d2007-05-29 09:04:49 +0000814<div class="doc_code">
Bill Wendling2d8b9a82007-05-29 09:42:13 +0000815<pre>
Duncan Sands7e99a942008-09-12 20:48:21 +0000816@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendling2d8b9a82007-05-29 09:42:13 +0000817</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000818</div>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000819
820</div>
821
822
823
Chris Lattner91c15c42006-01-23 23:23:47 +0000824<!-- ======================================================================= -->
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000825<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
826<div class="doc_text">
827 <p>The return type and each parameter of a function type may have a set of
828 <i>parameter attributes</i> associated with them. Parameter attributes are
829 used to communicate additional information about the result or parameters of
Duncan Sandsad0ea2d2007-11-27 13:23:08 +0000830 a function. Parameter attributes are considered to be part of the function,
831 not of the function type, so functions with different parameter attributes
832 can have the same function type.</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000833
Reid Spencercf7ebf52007-01-15 18:27:39 +0000834 <p>Parameter attributes are simple keywords that follow the type specified. If
835 multiple parameter attributes are needed, they are space separated. For
Bill Wendling3716c5d2007-05-29 09:04:49 +0000836 example:</p>
837
838<div class="doc_code">
839<pre>
Devang Patel9eb525d2008-09-26 23:51:19 +0000840declare i32 @printf(i8* noalias , ...)
Chris Lattnerd2597d72008-10-04 18:33:34 +0000841declare i32 @atoi(i8 zeroext)
842declare signext i8 @returns_signed_char()
Bill Wendling3716c5d2007-05-29 09:04:49 +0000843</pre>
844</div>
845
Duncan Sandsad0ea2d2007-11-27 13:23:08 +0000846 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
847 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000848
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000849 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000850 <dl>
Reid Spencer314e1cb2007-07-19 23:13:04 +0000851 <dt><tt>zeroext</tt></dt>
Chris Lattnerd2597d72008-10-04 18:33:34 +0000852 <dd>This indicates to the code generator that the parameter or return value
853 should be zero-extended to a 32-bit value by the caller (for a parameter)
854 or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000855
Reid Spencer314e1cb2007-07-19 23:13:04 +0000856 <dt><tt>signext</tt></dt>
Chris Lattnerd2597d72008-10-04 18:33:34 +0000857 <dd>This indicates to the code generator that the parameter or return value
858 should be sign-extended to a 32-bit value by the caller (for a parameter)
859 or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000860
Anton Korobeynikove8166852007-01-28 14:30:45 +0000861 <dt><tt>inreg</tt></dt>
Dale Johannesenc50ada22008-09-25 20:47:45 +0000862 <dd>This indicates that this parameter or return value should be treated
863 in a special target-dependent fashion during while emitting code for a
864 function call or return (usually, by putting it in a register as opposed
Chris Lattnerd2597d72008-10-04 18:33:34 +0000865 to memory, though some targets use it to distinguish between two different
866 kinds of registers). Use of this attribute is target-specific.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000867
Duncan Sands2a1d8ba2008-10-06 08:14:18 +0000868 <dt><tt><a name="byval">byval</a></tt></dt>
Chris Lattner352ab9b2008-01-15 04:34:22 +0000869 <dd>This indicates that the pointer parameter should really be passed by
870 value to the function. The attribute implies that a hidden copy of the
871 pointee is made between the caller and the callee, so the callee is unable
Chris Lattner1ca5c642008-08-05 18:21:08 +0000872 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner352ab9b2008-01-15 04:34:22 +0000873 pointer arguments. It is generally used to pass structs and arrays by
Duncan Sands2a1d8ba2008-10-06 08:14:18 +0000874 value, but is also valid on pointers to scalars. The copy is considered to
875 belong to the caller not the callee (for example,
876 <tt><a href="#readonly">readonly</a></tt> functions should not write to
Devang Patel7e9b05e2008-10-06 18:50:38 +0000877 <tt>byval</tt> parameters). This is not a valid attribute for return
878 values. </dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000879
Anton Korobeynikove8166852007-01-28 14:30:45 +0000880 <dt><tt>sret</tt></dt>
Duncan Sandsfa4b6732008-02-18 04:19:38 +0000881 <dd>This indicates that the pointer parameter specifies the address of a
882 structure that is the return value of the function in the source program.
Chris Lattnerd2597d72008-10-04 18:33:34 +0000883 This pointer must be guaranteed by the caller to be valid: loads and stores
884 to the structure may be assumed by the callee to not to trap. This may only
Devang Patel7e9b05e2008-10-06 18:50:38 +0000885 be applied to the first parameter. This is not a valid attribute for
886 return values. </dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000887
Zhou Sheng2444a9a2007-06-05 05:28:26 +0000888 <dt><tt>noalias</tt></dt>
Owen Anderson61101282008-02-18 04:09:01 +0000889 <dd>This indicates that the parameter does not alias any global or any other
890 parameter. The caller is responsible for ensuring that this is the case,
Devang Patel7e9b05e2008-10-06 18:50:38 +0000891 usually by placing the value in a stack allocation. This is not a valid
892 attribute for return values.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +0000893
Duncan Sands27e91592007-07-27 19:57:41 +0000894 <dt><tt>nest</tt></dt>
Duncan Sands825bde42008-07-08 09:27:25 +0000895 <dd>This indicates that the pointer parameter can be excised using the
Devang Patel7e9b05e2008-10-06 18:50:38 +0000896 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
897 attribute for return values.</dd>
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000898 </dl>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000899
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000900</div>
901
902<!-- ======================================================================= -->
Chris Lattner91c15c42006-01-23 23:23:47 +0000903<div class="doc_subsection">
Gordon Henriksen71183b62007-12-10 03:18:06 +0000904 <a name="gc">Garbage Collector Names</a>
905</div>
906
907<div class="doc_text">
908<p>Each function may specify a garbage collector name, which is simply a
909string.</p>
910
911<div class="doc_code"><pre
912>define void @f() gc "name" { ...</pre></div>
913
914<p>The compiler declares the supported values of <i>name</i>. Specifying a
915collector which will cause the compiler to alter its output in order to support
916the named garbage collection algorithm.</p>
917</div>
918
919<!-- ======================================================================= -->
920<div class="doc_subsection">
Devang Patel9eb525d2008-09-26 23:51:19 +0000921 <a name="fnattrs">Function Attributes</a>
Devang Patelcaacdba2008-09-04 23:05:13 +0000922</div>
923
924<div class="doc_text">
Devang Patel9eb525d2008-09-26 23:51:19 +0000925
926<p>Function attributes are set to communicate additional information about
927 a function. Function attributes are considered to be part of the function,
928 not of the function type, so functions with different parameter attributes
929 can have the same function type.</p>
930
931 <p>Function attributes are simple keywords that follow the type specified. If
932 multiple attributes are needed, they are space separated. For
933 example:</p>
Devang Patelcaacdba2008-09-04 23:05:13 +0000934
935<div class="doc_code">
Bill Wendlingb175fa42008-09-07 10:26:33 +0000936<pre>
Devang Patel9eb525d2008-09-26 23:51:19 +0000937define void @f() noinline { ... }
938define void @f() alwaysinline { ... }
939define void @f() alwaysinline optsize { ... }
940define void @f() optsize
Bill Wendlingb175fa42008-09-07 10:26:33 +0000941</pre>
Devang Patelcaacdba2008-09-04 23:05:13 +0000942</div>
943
Bill Wendlingb175fa42008-09-07 10:26:33 +0000944<dl>
Devang Patel9eb525d2008-09-26 23:51:19 +0000945<dt><tt>alwaysinline</tt></dt>
Chris Lattnerfbf60a42008-10-04 18:23:17 +0000946<dd>This attribute indicates that the inliner should attempt to inline this
947function into callers whenever possible, ignoring any active inlining size
948threshold for this caller.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +0000949
Devang Patel9eb525d2008-09-26 23:51:19 +0000950<dt><tt>noinline</tt></dt>
Chris Lattnerfbf60a42008-10-04 18:23:17 +0000951<dd>This attribute indicates that the inliner should never inline this function
Chris Lattner0625c282008-10-05 17:14:59 +0000952in any situation. This attribute may not be used together with the
Chris Lattnerfbf60a42008-10-04 18:23:17 +0000953<tt>alwaysinline</tt> attribute.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +0000954
Devang Patel9eb525d2008-09-26 23:51:19 +0000955<dt><tt>optsize</tt></dt>
Devang Patele9743902008-09-29 18:34:44 +0000956<dd>This attribute suggests that optimization passes and code generator passes
Chris Lattnerfbf60a42008-10-04 18:23:17 +0000957make choices that keep the code size of this function low, and otherwise do
958optimizations specifically to reduce code size.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +0000959
Devang Patel9eb525d2008-09-26 23:51:19 +0000960<dt><tt>noreturn</tt></dt>
Chris Lattnerfbf60a42008-10-04 18:23:17 +0000961<dd>This function attribute indicates that the function never returns normally.
962This produces undefined behavior at runtime if the function ever does
963dynamically return.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +0000964
965<dt><tt>nounwind</tt></dt>
Chris Lattnerfbf60a42008-10-04 18:23:17 +0000966<dd>This function attribute indicates that the function never returns with an
967unwind or exceptional control flow. If the function does unwind, its runtime
968behavior is undefined.</dd>
969
970<dt><tt>readnone</tt></dt>
Duncan Sands2a1d8ba2008-10-06 08:14:18 +0000971<dd>This attribute indicates that the function computes its result (or the
972exception it throws) based strictly on its arguments, without dereferencing any
973pointer arguments or otherwise accessing any mutable state (e.g. memory, control
974registers, etc) visible to caller functions. It does not write through any
975pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and
976never changes any state visible to callers.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +0000977
Duncan Sands2a1d8ba2008-10-06 08:14:18 +0000978<dt><tt><a name="readonly">readonly</a></tt></dt>
979<dd>This attribute indicates that the function does not write through any
980pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments)
981or otherwise modify any state (e.g. memory, control registers, etc) visible to
982caller functions. It may dereference pointer arguments and read state that may
983be set in the caller. A readonly function always returns the same value (or
984throws the same exception) when called with the same set of arguments and global
985state.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +0000986</dl>
987
Devang Patelcaacdba2008-09-04 23:05:13 +0000988</div>
989
990<!-- ======================================================================= -->
991<div class="doc_subsection">
Chris Lattner93564892006-04-08 04:40:53 +0000992 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner91c15c42006-01-23 23:23:47 +0000993</div>
994
995<div class="doc_text">
996<p>
997Modules may contain "module-level inline asm" blocks, which corresponds to the
998GCC "file scope inline asm" blocks. These blocks are internally concatenated by
999LLVM and treated as a single unit, but may be separated in the .ll file if
1000desired. The syntax is very simple:
1001</p>
1002
Bill Wendling3716c5d2007-05-29 09:04:49 +00001003<div class="doc_code">
1004<pre>
1005module asm "inline asm code goes here"
1006module asm "more can go here"
1007</pre>
1008</div>
Chris Lattner91c15c42006-01-23 23:23:47 +00001009
1010<p>The strings can contain any character by escaping non-printable characters.
1011 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1012 for the number.
1013</p>
1014
1015<p>
1016 The inline asm code is simply printed to the machine code .s file when
1017 assembly code is generated.
1018</p>
1019</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001020
Reid Spencer50c723a2007-02-19 23:54:10 +00001021<!-- ======================================================================= -->
1022<div class="doc_subsection">
1023 <a name="datalayout">Data Layout</a>
1024</div>
1025
1026<div class="doc_text">
1027<p>A module may specify a target specific data layout string that specifies how
Reid Spencer7972c472007-04-11 23:49:50 +00001028data is to be laid out in memory. The syntax for the data layout is simply:</p>
1029<pre> target datalayout = "<i>layout specification</i>"</pre>
1030<p>The <i>layout specification</i> consists of a list of specifications
1031separated by the minus sign character ('-'). Each specification starts with a
1032letter and may include other information after the letter to define some
1033aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencer50c723a2007-02-19 23:54:10 +00001034<dl>
1035 <dt><tt>E</tt></dt>
1036 <dd>Specifies that the target lays out data in big-endian form. That is, the
1037 bits with the most significance have the lowest address location.</dd>
1038 <dt><tt>e</tt></dt>
Chris Lattner67c37d12008-08-05 18:29:16 +00001039 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencer50c723a2007-02-19 23:54:10 +00001040 the bits with the least significance have the lowest address location.</dd>
1041 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1042 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1043 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1044 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1045 too.</dd>
1046 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1047 <dd>This specifies the alignment for an integer type of a given bit
1048 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1049 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1050 <dd>This specifies the alignment for a vector type of a given bit
1051 <i>size</i>.</dd>
1052 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1053 <dd>This specifies the alignment for a floating point type of a given bit
1054 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1055 (double).</dd>
1056 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1057 <dd>This specifies the alignment for an aggregate type of a given bit
1058 <i>size</i>.</dd>
1059</dl>
1060<p>When constructing the data layout for a given target, LLVM starts with a
1061default set of specifications which are then (possibly) overriden by the
1062specifications in the <tt>datalayout</tt> keyword. The default specifications
1063are given in this list:</p>
1064<ul>
1065 <li><tt>E</tt> - big endian</li>
1066 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1067 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1068 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1069 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1070 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattner67c37d12008-08-05 18:29:16 +00001071 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencer50c723a2007-02-19 23:54:10 +00001072 alignment of 64-bits</li>
1073 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1074 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1075 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1076 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1077 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1078</ul>
Chris Lattner1ca5c642008-08-05 18:21:08 +00001079<p>When LLVM is determining the alignment for a given type, it uses the
Reid Spencer50c723a2007-02-19 23:54:10 +00001080following rules:
1081<ol>
1082 <li>If the type sought is an exact match for one of the specifications, that
1083 specification is used.</li>
1084 <li>If no match is found, and the type sought is an integer type, then the
1085 smallest integer type that is larger than the bitwidth of the sought type is
1086 used. If none of the specifications are larger than the bitwidth then the the
1087 largest integer type is used. For example, given the default specifications
1088 above, the i7 type will use the alignment of i8 (next largest) while both
1089 i65 and i256 will use the alignment of i64 (largest specified).</li>
1090 <li>If no match is found, and the type sought is a vector type, then the
1091 largest vector type that is smaller than the sought vector type will be used
1092 as a fall back. This happens because <128 x double> can be implemented in
1093 terms of 64 <2 x double>, for example.</li>
1094</ol>
1095</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001096
Chris Lattner2f7c9632001-06-06 20:29:01 +00001097<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001098<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1099<!-- *********************************************************************** -->
Chris Lattner6af02f32004-12-09 16:11:40 +00001100
Misha Brukman76307852003-11-08 01:05:38 +00001101<div class="doc_text">
Chris Lattner6af02f32004-12-09 16:11:40 +00001102
Misha Brukman76307852003-11-08 01:05:38 +00001103<p>The LLVM type system is one of the most important features of the
Chris Lattner48b383b02003-11-25 01:02:51 +00001104intermediate representation. Being typed enables a number of
Chris Lattner67c37d12008-08-05 18:29:16 +00001105optimizations to be performed on the intermediate representation directly,
1106without having to do
Chris Lattner48b383b02003-11-25 01:02:51 +00001107extra analyses on the side before the transformation. A strong type
1108system makes it easier to read the generated code and enables novel
1109analyses and transformations that are not feasible to perform on normal
1110three address code representations.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +00001111
1112</div>
1113
Chris Lattner2f7c9632001-06-06 20:29:01 +00001114<!-- ======================================================================= -->
Chris Lattner7824d182008-01-04 04:32:38 +00001115<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner48b383b02003-11-25 01:02:51 +00001116Classifications</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001117<div class="doc_text">
Chris Lattner7824d182008-01-04 04:32:38 +00001118<p>The types fall into a few useful
Chris Lattner48b383b02003-11-25 01:02:51 +00001119classifications:</p>
Misha Brukmanc501f552004-03-01 17:47:27 +00001120
1121<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00001122 <tbody>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001123 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001124 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001125 <td><a href="#t_integer">integer</a></td>
Reid Spencer138249b2007-05-16 18:44:01 +00001126 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001127 </tr>
1128 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001129 <td><a href="#t_floating">floating point</a></td>
1130 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001131 </tr>
1132 <tr>
1133 <td><a name="t_firstclass">first class</a></td>
Chris Lattner7824d182008-01-04 04:32:38 +00001134 <td><a href="#t_integer">integer</a>,
1135 <a href="#t_floating">floating point</a>,
1136 <a href="#t_pointer">pointer</a>,
Dan Gohman08783a882008-06-18 18:42:13 +00001137 <a href="#t_vector">vector</a>,
Dan Gohmanb9d66602008-05-12 23:51:09 +00001138 <a href="#t_struct">structure</a>,
1139 <a href="#t_array">array</a>,
Dan Gohmanda52d212008-05-23 22:50:26 +00001140 <a href="#t_label">label</a>.
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001141 </td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001142 </tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001143 <tr>
1144 <td><a href="#t_primitive">primitive</a></td>
1145 <td><a href="#t_label">label</a>,
1146 <a href="#t_void">void</a>,
Chris Lattner7824d182008-01-04 04:32:38 +00001147 <a href="#t_floating">floating point</a>.</td>
1148 </tr>
1149 <tr>
1150 <td><a href="#t_derived">derived</a></td>
1151 <td><a href="#t_integer">integer</a>,
1152 <a href="#t_array">array</a>,
1153 <a href="#t_function">function</a>,
1154 <a href="#t_pointer">pointer</a>,
1155 <a href="#t_struct">structure</a>,
1156 <a href="#t_pstruct">packed structure</a>,
1157 <a href="#t_vector">vector</a>,
1158 <a href="#t_opaque">opaque</a>.
1159 </tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001160 </tbody>
Misha Brukman76307852003-11-08 01:05:38 +00001161</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001162
Chris Lattner48b383b02003-11-25 01:02:51 +00001163<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1164most important. Values of these types are the only ones which can be
1165produced by instructions, passed as arguments, or used as operands to
Dan Gohman34d1c0d2008-05-23 21:53:15 +00001166instructions.</p>
Misha Brukman76307852003-11-08 01:05:38 +00001167</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001168
Chris Lattner2f7c9632001-06-06 20:29:01 +00001169<!-- ======================================================================= -->
Chris Lattner7824d182008-01-04 04:32:38 +00001170<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner43542b32008-01-04 04:34:14 +00001171
Chris Lattner7824d182008-01-04 04:32:38 +00001172<div class="doc_text">
1173<p>The primitive types are the fundamental building blocks of the LLVM
1174system.</p>
1175
Chris Lattner43542b32008-01-04 04:34:14 +00001176</div>
1177
Chris Lattner7824d182008-01-04 04:32:38 +00001178<!-- _______________________________________________________________________ -->
1179<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1180
1181<div class="doc_text">
1182 <table>
1183 <tbody>
1184 <tr><th>Type</th><th>Description</th></tr>
1185 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1186 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1187 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1188 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1189 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1190 </tbody>
1191 </table>
1192</div>
1193
1194<!-- _______________________________________________________________________ -->
1195<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1196
1197<div class="doc_text">
1198<h5>Overview:</h5>
1199<p>The void type does not represent any value and has no size.</p>
1200
1201<h5>Syntax:</h5>
1202
1203<pre>
1204 void
1205</pre>
1206</div>
1207
1208<!-- _______________________________________________________________________ -->
1209<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1210
1211<div class="doc_text">
1212<h5>Overview:</h5>
1213<p>The label type represents code labels.</p>
1214
1215<h5>Syntax:</h5>
1216
1217<pre>
1218 label
1219</pre>
1220</div>
1221
1222
1223<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001224<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001225
Misha Brukman76307852003-11-08 01:05:38 +00001226<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001227
Chris Lattner48b383b02003-11-25 01:02:51 +00001228<p>The real power in LLVM comes from the derived types in the system.
1229This is what allows a programmer to represent arrays, functions,
1230pointers, and other useful types. Note that these derived types may be
1231recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001232
Misha Brukman76307852003-11-08 01:05:38 +00001233</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001234
Chris Lattner2f7c9632001-06-06 20:29:01 +00001235<!-- _______________________________________________________________________ -->
Reid Spencer138249b2007-05-16 18:44:01 +00001236<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1237
1238<div class="doc_text">
1239
1240<h5>Overview:</h5>
1241<p>The integer type is a very simple derived type that simply specifies an
1242arbitrary bit width for the integer type desired. Any bit width from 1 bit to
12432^23-1 (about 8 million) can be specified.</p>
1244
1245<h5>Syntax:</h5>
1246
1247<pre>
1248 iN
1249</pre>
1250
1251<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1252value.</p>
1253
1254<h5>Examples:</h5>
1255<table class="layout">
Chris Lattner9a2e3cb2007-12-18 06:18:21 +00001256 <tbody>
1257 <tr>
1258 <td><tt>i1</tt></td>
1259 <td>a single-bit integer.</td>
1260 </tr><tr>
1261 <td><tt>i32</tt></td>
1262 <td>a 32-bit integer.</td>
1263 </tr><tr>
1264 <td><tt>i1942652</tt></td>
1265 <td>a really big integer of over 1 million bits.</td>
Reid Spencer138249b2007-05-16 18:44:01 +00001266 </tr>
Chris Lattner9a2e3cb2007-12-18 06:18:21 +00001267 </tbody>
Reid Spencer138249b2007-05-16 18:44:01 +00001268</table>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001269</div>
Reid Spencer138249b2007-05-16 18:44:01 +00001270
1271<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001272<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001273
Misha Brukman76307852003-11-08 01:05:38 +00001274<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001275
Chris Lattner2f7c9632001-06-06 20:29:01 +00001276<h5>Overview:</h5>
Chris Lattner74d3f822004-12-09 17:30:23 +00001277
Misha Brukman76307852003-11-08 01:05:38 +00001278<p>The array type is a very simple derived type that arranges elements
Chris Lattner48b383b02003-11-25 01:02:51 +00001279sequentially in memory. The array type requires a size (number of
1280elements) and an underlying data type.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001281
Chris Lattner590645f2002-04-14 06:13:44 +00001282<h5>Syntax:</h5>
Chris Lattner74d3f822004-12-09 17:30:23 +00001283
1284<pre>
1285 [&lt;# elements&gt; x &lt;elementtype&gt;]
1286</pre>
1287
John Criswell02fdc6f2005-05-12 16:52:32 +00001288<p>The number of elements is a constant integer value; elementtype may
Chris Lattner48b383b02003-11-25 01:02:51 +00001289be any type with a size.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001290
Chris Lattner590645f2002-04-14 06:13:44 +00001291<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001292<table class="layout">
1293 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001294 <td class="left"><tt>[40 x i32]</tt></td>
1295 <td class="left">Array of 40 32-bit integer values.</td>
1296 </tr>
1297 <tr class="layout">
1298 <td class="left"><tt>[41 x i32]</tt></td>
1299 <td class="left">Array of 41 32-bit integer values.</td>
1300 </tr>
1301 <tr class="layout">
1302 <td class="left"><tt>[4 x i8]</tt></td>
1303 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001304 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001305</table>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001306<p>Here are some examples of multidimensional arrays:</p>
1307<table class="layout">
1308 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001309 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1310 <td class="left">3x4 array of 32-bit integer values.</td>
1311 </tr>
1312 <tr class="layout">
1313 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1314 <td class="left">12x10 array of single precision floating point values.</td>
1315 </tr>
1316 <tr class="layout">
1317 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1318 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001319 </tr>
1320</table>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001321
John Criswell4c0cf7f2005-10-24 16:17:18 +00001322<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1323length array. Normally, accesses past the end of an array are undefined in
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001324LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1325As a special case, however, zero length arrays are recognized to be variable
1326length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001327type "{ i32, [0 x float]}", for example.</p>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001328
Misha Brukman76307852003-11-08 01:05:38 +00001329</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001330
Chris Lattner2f7c9632001-06-06 20:29:01 +00001331<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001332<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001333<div class="doc_text">
Chris Lattnerda508ac2008-04-23 04:59:35 +00001334
Chris Lattner2f7c9632001-06-06 20:29:01 +00001335<h5>Overview:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001336
Chris Lattner48b383b02003-11-25 01:02:51 +00001337<p>The function type can be thought of as a function signature. It
Devang Patele3dfc1c2008-03-24 05:35:41 +00001338consists of a return type and a list of formal parameter types. The
Chris Lattnerda508ac2008-04-23 04:59:35 +00001339return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel9c1f8b12008-03-24 20:52:42 +00001340If the return type is a struct type then all struct elements must be of first
Chris Lattnerda508ac2008-04-23 04:59:35 +00001341class types, and the struct must have at least one element.</p>
Devang Pateld6cff512008-03-10 20:49:15 +00001342
Chris Lattner2f7c9632001-06-06 20:29:01 +00001343<h5>Syntax:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001344
1345<pre>
1346 &lt;returntype list&gt; (&lt;parameter list&gt;)
1347</pre>
1348
John Criswell4c0cf7f2005-10-24 16:17:18 +00001349<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukman20f9a622004-08-12 20:16:08 +00001350specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner5ed60612003-09-03 00:41:47 +00001351which indicates that the function takes a variable number of arguments.
1352Variable argument functions can access their arguments with the <a
Devang Pateld6cff512008-03-10 20:49:15 +00001353 href="#int_varargs">variable argument handling intrinsic</a> functions.
1354'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1355<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001356
Chris Lattner2f7c9632001-06-06 20:29:01 +00001357<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001358<table class="layout">
1359 <tr class="layout">
Reid Spencer58c08712006-12-31 07:18:34 +00001360 <td class="left"><tt>i32 (i32)</tt></td>
1361 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001362 </td>
Reid Spencer58c08712006-12-31 07:18:34 +00001363 </tr><tr class="layout">
Reid Spencer314e1cb2007-07-19 23:13:04 +00001364 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencer655dcc62006-12-31 07:20:23 +00001365 </tt></td>
Reid Spencer58c08712006-12-31 07:18:34 +00001366 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1367 an <tt>i16</tt> that should be sign extended and a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001368 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer58c08712006-12-31 07:18:34 +00001369 <tt>float</tt>.
1370 </td>
1371 </tr><tr class="layout">
1372 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1373 <td class="left">A vararg function that takes at least one
Reid Spencer3e628eb92007-01-04 16:43:23 +00001374 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer58c08712006-12-31 07:18:34 +00001375 which returns an integer. This is the signature for <tt>printf</tt> in
1376 LLVM.
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001377 </td>
Devang Patele3dfc1c2008-03-24 05:35:41 +00001378 </tr><tr class="layout">
1379 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Devang Patel8dec6c22008-03-24 18:10:52 +00001380 <td class="left">A function taking an <tt>i32></tt>, returning two
1381 <tt> i32 </tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patele3dfc1c2008-03-24 05:35:41 +00001382 </td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001383 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001384</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001385
Misha Brukman76307852003-11-08 01:05:38 +00001386</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001387<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001388<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001389<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00001390<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001391<p>The structure type is used to represent a collection of data members
1392together in memory. The packing of the field types is defined to match
1393the ABI of the underlying processor. The elements of a structure may
1394be any type that has a size.</p>
1395<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1396and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1397field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1398instruction.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001399<h5>Syntax:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001400<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001401<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001402<table class="layout">
1403 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00001404 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1405 <td class="left">A triple of three <tt>i32</tt> values</td>
1406 </tr><tr class="layout">
1407 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1408 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1409 second element is a <a href="#t_pointer">pointer</a> to a
1410 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1411 an <tt>i32</tt>.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001412 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001413</table>
Misha Brukman76307852003-11-08 01:05:38 +00001414</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001415
Chris Lattner2f7c9632001-06-06 20:29:01 +00001416<!-- _______________________________________________________________________ -->
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001417<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1418</div>
1419<div class="doc_text">
1420<h5>Overview:</h5>
1421<p>The packed structure type is used to represent a collection of data members
1422together in memory. There is no padding between fields. Further, the alignment
1423of a packed structure is 1 byte. The elements of a packed structure may
1424be any type that has a size.</p>
1425<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1426and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1427field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1428instruction.</p>
1429<h5>Syntax:</h5>
1430<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1431<h5>Examples:</h5>
1432<table class="layout">
1433 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00001434 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1435 <td class="left">A triple of three <tt>i32</tt> values</td>
1436 </tr><tr class="layout">
Bill Wendlingb175fa42008-09-07 10:26:33 +00001437 <td class="left">
1438<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen5819f182007-04-22 01:17:39 +00001439 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1440 second element is a <a href="#t_pointer">pointer</a> to a
1441 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1442 an <tt>i32</tt>.</td>
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001443 </tr>
1444</table>
1445</div>
1446
1447<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001448<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001449<div class="doc_text">
Chris Lattner590645f2002-04-14 06:13:44 +00001450<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001451<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb308121c2007-12-11 09:31:00 +00001452reference to another object, which must live in memory. Pointer types may have
1453an optional address space attribute defining the target-specific numbered
1454address space where the pointed-to object resides. The default address space is
1455zero.</p>
Chris Lattner590645f2002-04-14 06:13:44 +00001456<h5>Syntax:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001457<pre> &lt;type&gt; *<br></pre>
Chris Lattner590645f2002-04-14 06:13:44 +00001458<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001459<table class="layout">
1460 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001461 <td class="left"><tt>[4x i32]*</tt></td>
1462 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1463 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1464 </tr>
1465 <tr class="layout">
1466 <td class="left"><tt>i32 (i32 *) *</tt></td>
1467 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001468 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner747359f2007-12-19 05:04:11 +00001469 <tt>i32</tt>.</td>
1470 </tr>
1471 <tr class="layout">
1472 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1473 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1474 that resides in address space #5.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001475 </tr>
Misha Brukman76307852003-11-08 01:05:38 +00001476</table>
Misha Brukman76307852003-11-08 01:05:38 +00001477</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001478
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001479<!-- _______________________________________________________________________ -->
Reid Spencer404a3252007-02-15 03:07:05 +00001480<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001481<div class="doc_text">
Chris Lattner37b6b092005-04-25 17:34:15 +00001482
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001483<h5>Overview:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001484
Reid Spencer404a3252007-02-15 03:07:05 +00001485<p>A vector type is a simple derived type that represents a vector
1486of elements. Vector types are used when multiple primitive data
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001487are operated in parallel using a single instruction (SIMD).
Reid Spencer404a3252007-02-15 03:07:05 +00001488A vector type requires a size (number of
Chris Lattner330ce692005-11-10 01:44:22 +00001489elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer404a3252007-02-15 03:07:05 +00001490of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001491considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001492
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001493<h5>Syntax:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001494
1495<pre>
1496 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1497</pre>
1498
John Criswell4a3327e2005-05-13 22:25:59 +00001499<p>The number of elements is a constant integer value; elementtype may
Chris Lattnerc0f423a2007-01-15 01:54:13 +00001500be any integer or floating point type.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001501
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001502<h5>Examples:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001503
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001504<table class="layout">
1505 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001506 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1507 <td class="left">Vector of 4 32-bit integer values.</td>
1508 </tr>
1509 <tr class="layout">
1510 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1511 <td class="left">Vector of 8 32-bit floating-point values.</td>
1512 </tr>
1513 <tr class="layout">
1514 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1515 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001516 </tr>
1517</table>
Misha Brukman76307852003-11-08 01:05:38 +00001518</div>
1519
Chris Lattner37b6b092005-04-25 17:34:15 +00001520<!-- _______________________________________________________________________ -->
1521<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1522<div class="doc_text">
1523
1524<h5>Overview:</h5>
1525
1526<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksena699c4d2007-10-14 00:34:53 +00001527corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner37b6b092005-04-25 17:34:15 +00001528In LLVM, opaque types can eventually be resolved to any type (not just a
1529structure type).</p>
1530
1531<h5>Syntax:</h5>
1532
1533<pre>
1534 opaque
1535</pre>
1536
1537<h5>Examples:</h5>
1538
1539<table class="layout">
1540 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001541 <td class="left"><tt>opaque</tt></td>
1542 <td class="left">An opaque type.</td>
Chris Lattner37b6b092005-04-25 17:34:15 +00001543 </tr>
1544</table>
1545</div>
1546
1547
Chris Lattner74d3f822004-12-09 17:30:23 +00001548<!-- *********************************************************************** -->
1549<div class="doc_section"> <a name="constants">Constants</a> </div>
1550<!-- *********************************************************************** -->
1551
1552<div class="doc_text">
1553
1554<p>LLVM has several different basic types of constants. This section describes
1555them all and their syntax.</p>
1556
1557</div>
1558
1559<!-- ======================================================================= -->
Reid Spencer8f08d802004-12-09 18:02:53 +00001560<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001561
1562<div class="doc_text">
1563
1564<dl>
1565 <dt><b>Boolean constants</b></dt>
1566
1567 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencer36a15422007-01-12 03:35:51 +00001568 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattner74d3f822004-12-09 17:30:23 +00001569 </dd>
1570
1571 <dt><b>Integer constants</b></dt>
1572
Reid Spencer8f08d802004-12-09 18:02:53 +00001573 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencer3e628eb92007-01-04 16:43:23 +00001574 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattner74d3f822004-12-09 17:30:23 +00001575 integer types.
1576 </dd>
1577
1578 <dt><b>Floating point constants</b></dt>
1579
1580 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1581 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattner1429e6f2008-04-01 18:45:27 +00001582 notation (see below). The assembler requires the exact decimal value of
1583 a floating-point constant. For example, the assembler accepts 1.25 but
1584 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1585 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001586
1587 <dt><b>Null pointer constants</b></dt>
1588
John Criswelldfe6a862004-12-10 15:51:16 +00001589 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattner74d3f822004-12-09 17:30:23 +00001590 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1591
1592</dl>
1593
John Criswelldfe6a862004-12-10 15:51:16 +00001594<p>The one non-intuitive notation for constants is the optional hexadecimal form
Chris Lattner74d3f822004-12-09 17:30:23 +00001595of floating point constants. For example, the form '<tt>double
15960x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
15974.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencer8f08d802004-12-09 18:02:53 +00001598(and the only time that they are generated by the disassembler) is when a
1599floating point constant must be emitted but it cannot be represented as a
1600decimal floating point number. For example, NaN's, infinities, and other
1601special values are represented in their IEEE hexadecimal format so that
1602assembly and disassembly do not cause any bits to change in the constants.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001603
1604</div>
1605
1606<!-- ======================================================================= -->
1607<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1608</div>
1609
1610<div class="doc_text">
Chris Lattner455fc8c2005-03-07 22:13:59 +00001611<p>Aggregate constants arise from aggregation of simple constants
1612and smaller aggregate constants.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001613
1614<dl>
1615 <dt><b>Structure constants</b></dt>
1616
1617 <dd>Structure constants are represented with notation similar to structure
1618 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattnerbea11172007-12-25 20:34:52 +00001619 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1620 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattner455fc8c2005-03-07 22:13:59 +00001621 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattner74d3f822004-12-09 17:30:23 +00001622 types of elements must match those specified by the type.
1623 </dd>
1624
1625 <dt><b>Array constants</b></dt>
1626
1627 <dd>Array constants are represented with notation similar to array type
1628 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001629 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattner74d3f822004-12-09 17:30:23 +00001630 constants must have <a href="#t_array">array type</a>, and the number and
1631 types of elements must match those specified by the type.
1632 </dd>
1633
Reid Spencer404a3252007-02-15 03:07:05 +00001634 <dt><b>Vector constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00001635
Reid Spencer404a3252007-02-15 03:07:05 +00001636 <dd>Vector constants are represented with notation similar to vector type
Chris Lattner74d3f822004-12-09 17:30:23 +00001637 definitions (a comma separated list of elements, surrounded by
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001638 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen5819f182007-04-22 01:17:39 +00001639 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer404a3252007-02-15 03:07:05 +00001640 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattner74d3f822004-12-09 17:30:23 +00001641 match those specified by the type.
1642 </dd>
1643
1644 <dt><b>Zero initialization</b></dt>
1645
1646 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1647 value to zero of <em>any</em> type, including scalar and aggregate types.
1648 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell4c0cf7f2005-10-24 16:17:18 +00001649 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattner74d3f822004-12-09 17:30:23 +00001650 initializers.
1651 </dd>
1652</dl>
1653
1654</div>
1655
1656<!-- ======================================================================= -->
1657<div class="doc_subsection">
1658 <a name="globalconstants">Global Variable and Function Addresses</a>
1659</div>
1660
1661<div class="doc_text">
1662
1663<p>The addresses of <a href="#globalvars">global variables</a> and <a
1664href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswelldfe6a862004-12-10 15:51:16 +00001665constants. These constants are explicitly referenced when the <a
1666href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattner74d3f822004-12-09 17:30:23 +00001667href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1668file:</p>
1669
Bill Wendling3716c5d2007-05-29 09:04:49 +00001670<div class="doc_code">
Chris Lattner74d3f822004-12-09 17:30:23 +00001671<pre>
Chris Lattner00538a12007-06-06 18:28:13 +00001672@X = global i32 17
1673@Y = global i32 42
1674@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattner74d3f822004-12-09 17:30:23 +00001675</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001676</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001677
1678</div>
1679
1680<!-- ======================================================================= -->
Reid Spencer641f5c92004-12-09 18:13:12 +00001681<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001682<div class="doc_text">
Reid Spencer641f5c92004-12-09 18:13:12 +00001683 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswell4a3327e2005-05-13 22:25:59 +00001684 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer641f5c92004-12-09 18:13:12 +00001685 a constant is permitted.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001686
Reid Spencer641f5c92004-12-09 18:13:12 +00001687 <p>Undefined values indicate to the compiler that the program is well defined
1688 no matter what value is used, giving the compiler more freedom to optimize.
1689 </p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001690</div>
1691
1692<!-- ======================================================================= -->
1693<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1694</div>
1695
1696<div class="doc_text">
1697
1698<p>Constant expressions are used to allow expressions involving other constants
1699to be used as constants. Constant expressions may be of any <a
John Criswell4a3327e2005-05-13 22:25:59 +00001700href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattner74d3f822004-12-09 17:30:23 +00001701that does not have side effects (e.g. load and call are not supported). The
1702following is the syntax for constant expressions:</p>
1703
1704<dl>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001705 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1706 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattnerc0f423a2007-01-15 01:54:13 +00001707 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001708
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001709 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1710 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattnerc0f423a2007-01-15 01:54:13 +00001711 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001712
1713 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1714 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattnerc0f423a2007-01-15 01:54:13 +00001715 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001716
1717 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1718 <dd>Truncate a floating point constant to another floating point type. The
1719 size of CST must be larger than the size of TYPE. Both types must be
1720 floating point.</dd>
1721
1722 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1723 <dd>Floating point extend a constant to another type. The size of CST must be
1724 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1725
Reid Spencer753163d2007-07-31 14:40:14 +00001726 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001727 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemand4d45c22007-11-17 03:58:34 +00001728 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1729 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1730 of the same number of elements. If the value won't fit in the integer type,
1731 the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001732
Reid Spencer51b07252006-11-09 23:03:26 +00001733 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001734 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemand4d45c22007-11-17 03:58:34 +00001735 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1736 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1737 of the same number of elements. If the value won't fit in the integer type,
1738 the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001739
Reid Spencer51b07252006-11-09 23:03:26 +00001740 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001741 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemand4d45c22007-11-17 03:58:34 +00001742 constant. TYPE must be a scalar or vector floating point type. CST must be of
1743 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1744 of the same number of elements. If the value won't fit in the floating point
1745 type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001746
Reid Spencer51b07252006-11-09 23:03:26 +00001747 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001748 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemand4d45c22007-11-17 03:58:34 +00001749 constant. TYPE must be a scalar or vector floating point type. CST must be of
1750 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1751 of the same number of elements. If the value won't fit in the floating point
1752 type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001753
Reid Spencer5b950642006-11-11 23:08:07 +00001754 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1755 <dd>Convert a pointer typed constant to the corresponding integer constant
1756 TYPE must be an integer type. CST must be of pointer type. The CST value is
1757 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1758
1759 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1760 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1761 pointer type. CST must be of integer type. The CST value is zero extended,
1762 truncated, or unchanged to make it fit in a pointer size. This one is
1763 <i>really</i> dangerous!</dd>
1764
1765 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001766 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1767 identical (same number of bits). The conversion is done as if the CST value
1768 was stored to memory and read back as TYPE. In other words, no bits change
Reid Spencer5b950642006-11-11 23:08:07 +00001769 with this operator, just the type. This can be used for conversion of
Reid Spencer404a3252007-02-15 03:07:05 +00001770 vector types to any other type, as long as they have the same bit width. For
Dan Gohmanc05dca92008-09-08 16:45:59 +00001771 pointers it is only valid to cast to another pointer type. It is not valid
1772 to bitcast to or from an aggregate type.
Reid Spencer59b6b7d2006-11-08 01:11:31 +00001773 </dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001774
1775 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1776
1777 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1778 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1779 instruction, the index list may have zero or more indexes, which are required
1780 to make sense for the type of "CSTPTR".</dd>
1781
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00001782 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1783
1784 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer9965ee72006-12-04 19:23:19 +00001785 constants.</dd>
1786
1787 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1788 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1789
1790 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1791 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00001792
Nate Begemand2195702008-05-12 19:01:56 +00001793 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
1794 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
1795
1796 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
1797 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
1798
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00001799 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1800
1801 <dd>Perform the <a href="#i_extractelement">extractelement
1802 operation</a> on constants.
1803
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00001804 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1805
1806 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer9965ee72006-12-04 19:23:19 +00001807 operation</a> on constants.</dd>
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00001808
Chris Lattner016a0e52006-04-08 00:13:41 +00001809
1810 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1811
1812 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer9965ee72006-12-04 19:23:19 +00001813 operation</a> on constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00001814
Chris Lattner74d3f822004-12-09 17:30:23 +00001815 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1816
Reid Spencer641f5c92004-12-09 18:13:12 +00001817 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1818 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattner74d3f822004-12-09 17:30:23 +00001819 binary</a> operations. The constraints on operands are the same as those for
1820 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswell02fdc6f2005-05-12 16:52:32 +00001821 values are allowed).</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00001822</dl>
Chris Lattner74d3f822004-12-09 17:30:23 +00001823</div>
Chris Lattnerb1652612004-03-08 16:49:10 +00001824
Chris Lattner2f7c9632001-06-06 20:29:01 +00001825<!-- *********************************************************************** -->
Chris Lattner98f013c2006-01-25 23:47:57 +00001826<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1827<!-- *********************************************************************** -->
1828
1829<!-- ======================================================================= -->
1830<div class="doc_subsection">
1831<a name="inlineasm">Inline Assembler Expressions</a>
1832</div>
1833
1834<div class="doc_text">
1835
1836<p>
1837LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1838Module-Level Inline Assembly</a>) through the use of a special value. This
1839value represents the inline assembler as a string (containing the instructions
1840to emit), a list of operand constraints (stored as a string), and a flag that
1841indicates whether or not the inline asm expression has side effects. An example
1842inline assembler expression is:
1843</p>
1844
Bill Wendling3716c5d2007-05-29 09:04:49 +00001845<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00001846<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001847i32 (i32) asm "bswap $0", "=r,r"
Chris Lattner98f013c2006-01-25 23:47:57 +00001848</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001849</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00001850
1851<p>
1852Inline assembler expressions may <b>only</b> be used as the callee operand of
1853a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1854</p>
1855
Bill Wendling3716c5d2007-05-29 09:04:49 +00001856<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00001857<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001858%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattner98f013c2006-01-25 23:47:57 +00001859</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001860</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00001861
1862<p>
1863Inline asms with side effects not visible in the constraint list must be marked
1864as having side effects. This is done through the use of the
1865'<tt>sideeffect</tt>' keyword, like so:
1866</p>
1867
Bill Wendling3716c5d2007-05-29 09:04:49 +00001868<div class="doc_code">
Chris Lattner98f013c2006-01-25 23:47:57 +00001869<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001870call void asm sideeffect "eieio", ""()
Chris Lattner98f013c2006-01-25 23:47:57 +00001871</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001872</div>
Chris Lattner98f013c2006-01-25 23:47:57 +00001873
1874<p>TODO: The format of the asm and constraints string still need to be
1875documented here. Constraints on what can be done (e.g. duplication, moving, etc
Chris Lattnerd5528262008-10-04 18:36:02 +00001876need to be documented). This is probably best done by reference to another
1877document that covers inline asm from a holistic perspective.
Chris Lattner98f013c2006-01-25 23:47:57 +00001878</p>
1879
1880</div>
1881
1882<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001883<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1884<!-- *********************************************************************** -->
Chris Lattner74d3f822004-12-09 17:30:23 +00001885
Misha Brukman76307852003-11-08 01:05:38 +00001886<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001887
Chris Lattner48b383b02003-11-25 01:02:51 +00001888<p>The LLVM instruction set consists of several different
1889classifications of instructions: <a href="#terminators">terminator
John Criswell4a3327e2005-05-13 22:25:59 +00001890instructions</a>, <a href="#binaryops">binary instructions</a>,
1891<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner48b383b02003-11-25 01:02:51 +00001892 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1893instructions</a>.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001894
Misha Brukman76307852003-11-08 01:05:38 +00001895</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001896
Chris Lattner2f7c9632001-06-06 20:29:01 +00001897<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001898<div class="doc_subsection"> <a name="terminators">Terminator
1899Instructions</a> </div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001900
Misha Brukman76307852003-11-08 01:05:38 +00001901<div class="doc_text">
Chris Lattner74d3f822004-12-09 17:30:23 +00001902
Chris Lattner48b383b02003-11-25 01:02:51 +00001903<p>As mentioned <a href="#functionstructure">previously</a>, every
1904basic block in a program ends with a "Terminator" instruction, which
1905indicates which block should be executed after the current block is
1906finished. These terminator instructions typically yield a '<tt>void</tt>'
1907value: they produce control flow, not values (the one exception being
1908the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswelldfe6a862004-12-10 15:51:16 +00001909<p>There are six different terminator instructions: the '<a
Chris Lattner48b383b02003-11-25 01:02:51 +00001910 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1911instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner08b7d5b2004-10-16 18:04:13 +00001912the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1913 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1914 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001915
Misha Brukman76307852003-11-08 01:05:38 +00001916</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001917
Chris Lattner2f7c9632001-06-06 20:29:01 +00001918<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001919<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1920Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001921<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00001922<h5>Syntax:</h5>
Dan Gohmancc3132e2008-10-04 19:00:07 +00001923<pre>
1924 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner590645f2002-04-14 06:13:44 +00001925 ret void <i>; Return from void function</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001926</pre>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001927
Chris Lattner2f7c9632001-06-06 20:29:01 +00001928<h5>Overview:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001929
Dan Gohmancc3132e2008-10-04 19:00:07 +00001930<p>The '<tt>ret</tt>' instruction is used to return control flow (and
1931optionally a value) from a function back to the caller.</p>
John Criswell417228d2004-04-09 16:48:45 +00001932<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Dan Gohmancc3132e2008-10-04 19:00:07 +00001933returns a value and then causes control flow, and one that just causes
Chris Lattner48b383b02003-11-25 01:02:51 +00001934control flow to occur.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001935
Chris Lattner2f7c9632001-06-06 20:29:01 +00001936<h5>Arguments:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001937
Dan Gohmancc3132e2008-10-04 19:00:07 +00001938<p>The '<tt>ret</tt>' instruction optionally accepts a single argument,
1939the return value. The type of the return value must be a
1940'<a href="#t_firstclass">first class</a>' type.</p>
1941
1942<p>A function is not <a href="#wellformed">well formed</a> if
1943it it has a non-void return type and contains a '<tt>ret</tt>'
1944instruction with no return value or a return value with a type that
1945does not match its type, or if it has a void return type and contains
1946a '<tt>ret</tt>' instruction with a return value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001947
Chris Lattner2f7c9632001-06-06 20:29:01 +00001948<h5>Semantics:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001949
Chris Lattner48b383b02003-11-25 01:02:51 +00001950<p>When the '<tt>ret</tt>' instruction is executed, control flow
1951returns back to the calling function's context. If the caller is a "<a
John Criswell40db33f2004-06-25 15:16:57 +00001952 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner48b383b02003-11-25 01:02:51 +00001953the instruction after the call. If the caller was an "<a
1954 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswell02fdc6f2005-05-12 16:52:32 +00001955at the beginning of the "normal" destination block. If the instruction
Chris Lattner48b383b02003-11-25 01:02:51 +00001956returns a value, that value shall set the call or invoke instruction's
Dan Gohmancc3132e2008-10-04 19:00:07 +00001957return value.
Chris Lattnerda508ac2008-04-23 04:59:35 +00001958
Chris Lattner2f7c9632001-06-06 20:29:01 +00001959<h5>Example:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001960
1961<pre>
1962 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner590645f2002-04-14 06:13:44 +00001963 ret void <i>; Return from a void function</i>
Dan Gohmancc3132e2008-10-04 19:00:07 +00001964 ret { i32, i8 } { i32 4, i8 2 } <i>; Return an aggregate of values 4 and 2</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001965</pre>
Misha Brukman76307852003-11-08 01:05:38 +00001966</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001967<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00001968<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00001969<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00001970<h5>Syntax:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00001971<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001972</pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001973<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001974<p>The '<tt>br</tt>' instruction is used to cause control flow to
1975transfer to a different basic block in the current function. There are
1976two forms of this instruction, corresponding to a conditional branch
1977and an unconditional branch.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001978<h5>Arguments:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00001979<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencer36a15422007-01-12 03:35:51 +00001980single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencer50c723a2007-02-19 23:54:10 +00001981unconditional form of the '<tt>br</tt>' instruction takes a single
1982'<tt>label</tt>' value as a target.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001983<h5>Semantics:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00001984<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner48b383b02003-11-25 01:02:51 +00001985argument is evaluated. If the value is <tt>true</tt>, control flows
1986to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1987control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001988<h5>Example:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00001989<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001990 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman76307852003-11-08 01:05:38 +00001991</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001992<!-- _______________________________________________________________________ -->
Chris Lattnercf96c6c2004-02-24 04:54:45 +00001993<div class="doc_subsubsection">
1994 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1995</div>
1996
Misha Brukman76307852003-11-08 01:05:38 +00001997<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00001998<h5>Syntax:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00001999
2000<pre>
2001 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2002</pre>
2003
Chris Lattner2f7c9632001-06-06 20:29:01 +00002004<h5>Overview:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002005
2006<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
2007several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman76307852003-11-08 01:05:38 +00002008instruction, allowing a branch to occur to one of many possible
2009destinations.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002010
2011
Chris Lattner2f7c9632001-06-06 20:29:01 +00002012<h5>Arguments:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002013
2014<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2015comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
2016an array of pairs of comparison value constants and '<tt>label</tt>'s. The
2017table is not allowed to contain duplicate constant entries.</p>
2018
Chris Lattner2f7c9632001-06-06 20:29:01 +00002019<h5>Semantics:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002020
Chris Lattner48b383b02003-11-25 01:02:51 +00002021<p>The <tt>switch</tt> instruction specifies a table of values and
2022destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswellbcbb18c2004-06-25 16:05:06 +00002023table is searched for the given value. If the value is found, control flow is
2024transfered to the corresponding destination; otherwise, control flow is
2025transfered to the default destination.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002026
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002027<h5>Implementation:</h5>
2028
2029<p>Depending on properties of the target machine and the particular
2030<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswellbcbb18c2004-06-25 16:05:06 +00002031ways. For example, it could be generated as a series of chained conditional
2032branches or with a lookup table.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002033
2034<h5>Example:</h5>
2035
2036<pre>
2037 <i>; Emulate a conditional br instruction</i>
Reid Spencer36a15422007-01-12 03:35:51 +00002038 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002039 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002040
2041 <i>; Emulate an unconditional br instruction</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002042 switch i32 0, label %dest [ ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00002043
2044 <i>; Implement a jump table:</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002045 switch i32 %val, label %otherwise [ i32 0, label %onzero
2046 i32 1, label %onone
2047 i32 2, label %ontwo ]
Chris Lattner2f7c9632001-06-06 20:29:01 +00002048</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002049</div>
Chris Lattner0132aff2005-05-06 22:57:40 +00002050
Chris Lattner2f7c9632001-06-06 20:29:01 +00002051<!-- _______________________________________________________________________ -->
Chris Lattner0132aff2005-05-06 22:57:40 +00002052<div class="doc_subsubsection">
2053 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2054</div>
2055
Misha Brukman76307852003-11-08 01:05:38 +00002056<div class="doc_text">
Chris Lattner0132aff2005-05-06 22:57:40 +00002057
Chris Lattner2f7c9632001-06-06 20:29:01 +00002058<h5>Syntax:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002059
2060<pre>
Devang Patel02256232008-10-07 17:48:33 +00002061 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner6b7a0082006-05-14 18:23:06 +00002062 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattner0132aff2005-05-06 22:57:40 +00002063</pre>
2064
Chris Lattnera8292f32002-05-06 22:08:29 +00002065<h5>Overview:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002066
2067<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2068function, with the possibility of control flow transfer to either the
John Criswell02fdc6f2005-05-12 16:52:32 +00002069'<tt>normal</tt>' label or the
2070'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattner0132aff2005-05-06 22:57:40 +00002071"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2072"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswell02fdc6f2005-05-12 16:52:32 +00002073href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Dan Gohmancc3132e2008-10-04 19:00:07 +00002074continued at the dynamically nearest "exception" label.
Chris Lattner0132aff2005-05-06 22:57:40 +00002075
Chris Lattner2f7c9632001-06-06 20:29:01 +00002076<h5>Arguments:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002077
Misha Brukman76307852003-11-08 01:05:38 +00002078<p>This instruction requires several arguments:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00002079
Chris Lattner2f7c9632001-06-06 20:29:01 +00002080<ol>
Chris Lattner0132aff2005-05-06 22:57:40 +00002081 <li>
Duncan Sands16f122e2007-03-30 12:22:09 +00002082 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattner0132aff2005-05-06 22:57:40 +00002083 convention</a> the call should use. If none is specified, the call defaults
2084 to using C calling conventions.
2085 </li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00002086
2087 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
2088 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
2089 and '<tt>inreg</tt>' attributes are valid here.</li>
2090
Chris Lattner0132aff2005-05-06 22:57:40 +00002091 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2092 function value being invoked. In most cases, this is a direct function
2093 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2094 an arbitrary pointer to function value.
2095 </li>
2096
2097 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2098 function to be invoked. </li>
2099
2100 <li>'<tt>function args</tt>': argument list whose types match the function
2101 signature argument types. If the function signature indicates the function
2102 accepts a variable number of arguments, the extra arguments can be
2103 specified. </li>
2104
2105 <li>'<tt>normal label</tt>': the label reached when the called function
2106 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2107
2108 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2109 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2110
Devang Patel02256232008-10-07 17:48:33 +00002111 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patel7e9b05e2008-10-06 18:50:38 +00002112 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2113 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002114</ol>
Chris Lattner0132aff2005-05-06 22:57:40 +00002115
Chris Lattner2f7c9632001-06-06 20:29:01 +00002116<h5>Semantics:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002117
Misha Brukman76307852003-11-08 01:05:38 +00002118<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattner0132aff2005-05-06 22:57:40 +00002119href="#i_call">call</a></tt>' instruction in most regards. The primary
2120difference is that it establishes an association with a label, which is used by
2121the runtime library to unwind the stack.</p>
2122
2123<p>This instruction is used in languages with destructors to ensure that proper
2124cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2125exception. Additionally, this is important for implementation of
2126'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2127
Chris Lattner2f7c9632001-06-06 20:29:01 +00002128<h5>Example:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00002129<pre>
Nick Lewycky084ab472008-03-16 07:18:12 +00002130 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00002131 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewycky084ab472008-03-16 07:18:12 +00002132 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00002133 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002134</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002135</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002136
2137
Chris Lattner5ed60612003-09-03 00:41:47 +00002138<!-- _______________________________________________________________________ -->
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002139
Chris Lattner48b383b02003-11-25 01:02:51 +00002140<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2141Instruction</a> </div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002142
Misha Brukman76307852003-11-08 01:05:38 +00002143<div class="doc_text">
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002144
Chris Lattner5ed60612003-09-03 00:41:47 +00002145<h5>Syntax:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002146<pre>
2147 unwind
2148</pre>
2149
Chris Lattner5ed60612003-09-03 00:41:47 +00002150<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002151
2152<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2153at the first callee in the dynamic call stack which used an <a
2154href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2155primarily used to implement exception handling.</p>
2156
Chris Lattner5ed60612003-09-03 00:41:47 +00002157<h5>Semantics:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002158
Chris Lattnerfe8519c2008-04-19 21:01:16 +00002159<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002160immediately halt. The dynamic call stack is then searched for the first <a
2161href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2162execution continues at the "exceptional" destination block specified by the
2163<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2164dynamic call chain, undefined behavior results.</p>
Misha Brukman76307852003-11-08 01:05:38 +00002165</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00002166
2167<!-- _______________________________________________________________________ -->
2168
2169<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2170Instruction</a> </div>
2171
2172<div class="doc_text">
2173
2174<h5>Syntax:</h5>
2175<pre>
2176 unreachable
2177</pre>
2178
2179<h5>Overview:</h5>
2180
2181<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2182instruction is used to inform the optimizer that a particular portion of the
2183code is not reachable. This can be used to indicate that the code after a
2184no-return function cannot be reached, and other facts.</p>
2185
2186<h5>Semantics:</h5>
2187
2188<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2189</div>
2190
2191
2192
Chris Lattner2f7c9632001-06-06 20:29:01 +00002193<!-- ======================================================================= -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002194<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002195<div class="doc_text">
Chris Lattner48b383b02003-11-25 01:02:51 +00002196<p>Binary operators are used to do most of the computation in a
Chris Lattner81f92972008-04-01 18:47:32 +00002197program. They require two operands of the same type, execute an operation on them, and
John Criswelldfe6a862004-12-10 15:51:16 +00002198produce a single value. The operands might represent
Reid Spencer404a3252007-02-15 03:07:05 +00002199multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner81f92972008-04-01 18:47:32 +00002200The result value has the same type as its operands.</p>
Misha Brukman76307852003-11-08 01:05:38 +00002201<p>There are several different binary operators:</p>
Misha Brukman76307852003-11-08 01:05:38 +00002202</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002203<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002204<div class="doc_subsubsection">
2205 <a name="i_add">'<tt>add</tt>' Instruction</a>
2206</div>
2207
Misha Brukman76307852003-11-08 01:05:38 +00002208<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002209
Chris Lattner2f7c9632001-06-06 20:29:01 +00002210<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002211
2212<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002213 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002214</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002215
Chris Lattner2f7c9632001-06-06 20:29:01 +00002216<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002217
Misha Brukman76307852003-11-08 01:05:38 +00002218<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002219
Chris Lattner2f7c9632001-06-06 20:29:01 +00002220<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002221
2222<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2223 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2224 <a href="#t_vector">vector</a> values. Both arguments must have identical
2225 types.</p>
2226
Chris Lattner2f7c9632001-06-06 20:29:01 +00002227<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002228
Misha Brukman76307852003-11-08 01:05:38 +00002229<p>The value produced is the integer or floating point sum of the two
2230operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002231
Chris Lattner2f2427e2008-01-28 00:36:27 +00002232<p>If an integer sum has unsigned overflow, the result returned is the
2233mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2234the result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002235
Chris Lattner2f2427e2008-01-28 00:36:27 +00002236<p>Because LLVM integers use a two's complement representation, this
2237instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002238
Chris Lattner2f7c9632001-06-06 20:29:01 +00002239<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002240
2241<pre>
2242 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002243</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002244</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002245<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002246<div class="doc_subsubsection">
2247 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2248</div>
2249
Misha Brukman76307852003-11-08 01:05:38 +00002250<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002251
Chris Lattner2f7c9632001-06-06 20:29:01 +00002252<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002253
2254<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002255 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002256</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002257
Chris Lattner2f7c9632001-06-06 20:29:01 +00002258<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002259
Misha Brukman76307852003-11-08 01:05:38 +00002260<p>The '<tt>sub</tt>' instruction returns the difference of its two
2261operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002262
2263<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2264'<tt>neg</tt>' instruction present in most other intermediate
2265representations.</p>
2266
Chris Lattner2f7c9632001-06-06 20:29:01 +00002267<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002268
2269<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2270 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2271 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2272 types.</p>
2273
Chris Lattner2f7c9632001-06-06 20:29:01 +00002274<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002275
Chris Lattner48b383b02003-11-25 01:02:51 +00002276<p>The value produced is the integer or floating point difference of
2277the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002278
Chris Lattner2f2427e2008-01-28 00:36:27 +00002279<p>If an integer difference has unsigned overflow, the result returned is the
2280mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2281the result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002282
Chris Lattner2f2427e2008-01-28 00:36:27 +00002283<p>Because LLVM integers use a two's complement representation, this
2284instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002285
Chris Lattner2f7c9632001-06-06 20:29:01 +00002286<h5>Example:</h5>
Bill Wendling2d8b9a82007-05-29 09:42:13 +00002287<pre>
2288 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002289 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002290</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002291</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002292
Chris Lattner2f7c9632001-06-06 20:29:01 +00002293<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002294<div class="doc_subsubsection">
2295 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2296</div>
2297
Misha Brukman76307852003-11-08 01:05:38 +00002298<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002299
Chris Lattner2f7c9632001-06-06 20:29:01 +00002300<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002301<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002302</pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002303<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00002304<p>The '<tt>mul</tt>' instruction returns the product of its two
2305operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002306
Chris Lattner2f7c9632001-06-06 20:29:01 +00002307<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002308
2309<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2310href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2311or <a href="#t_vector">vector</a> values. Both arguments must have identical
2312types.</p>
2313
Chris Lattner2f7c9632001-06-06 20:29:01 +00002314<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002315
Chris Lattner48b383b02003-11-25 01:02:51 +00002316<p>The value produced is the integer or floating point product of the
Misha Brukman76307852003-11-08 01:05:38 +00002317two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002318
Chris Lattner2f2427e2008-01-28 00:36:27 +00002319<p>If the result of an integer multiplication has unsigned overflow,
2320the result returned is the mathematical result modulo
23212<sup>n</sup>, where n is the bit width of the result.</p>
2322<p>Because LLVM integers use a two's complement representation, and the
2323result is the same width as the operands, this instruction returns the
2324correct result for both signed and unsigned integers. If a full product
2325(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2326should be sign-extended or zero-extended as appropriate to the
2327width of the full product.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002328<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002329<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002330</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002331</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002332
Chris Lattner2f7c9632001-06-06 20:29:01 +00002333<!-- _______________________________________________________________________ -->
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002334<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2335</a></div>
2336<div class="doc_text">
2337<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002338<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002339</pre>
2340<h5>Overview:</h5>
2341<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2342operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002343
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002344<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002345
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002346<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002347<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2348values. Both arguments must have identical types.</p>
2349
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002350<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002351
Chris Lattner2f2427e2008-01-28 00:36:27 +00002352<p>The value produced is the unsigned integer quotient of the two operands.</p>
2353<p>Note that unsigned integer division and signed integer division are distinct
2354operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2355<p>Division by zero leads to undefined behavior.</p>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002356<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002357<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002358</pre>
2359</div>
2360<!-- _______________________________________________________________________ -->
2361<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2362</a> </div>
2363<div class="doc_text">
2364<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002365<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002366 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002367</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002368
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002369<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002370
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002371<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2372operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002373
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002374<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002375
2376<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2377<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2378values. Both arguments must have identical types.</p>
2379
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002380<h5>Semantics:</h5>
Chris Lattner1429e6f2008-04-01 18:45:27 +00002381<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner2f2427e2008-01-28 00:36:27 +00002382<p>Note that signed integer division and unsigned integer division are distinct
2383operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2384<p>Division by zero leads to undefined behavior. Overflow also leads to
2385undefined behavior; this is a rare case, but can occur, for example,
2386by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002387<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002388<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002389</pre>
2390</div>
2391<!-- _______________________________________________________________________ -->
2392<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner48b383b02003-11-25 01:02:51 +00002393Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002394<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00002395<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002396<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002397 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00002398</pre>
2399<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002400
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002401<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner48b383b02003-11-25 01:02:51 +00002402operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002403
Chris Lattner48b383b02003-11-25 01:02:51 +00002404<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002405
Jeff Cohen5819f182007-04-22 01:17:39 +00002406<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002407<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2408of floating point values. Both arguments must have identical types.</p>
2409
Chris Lattner48b383b02003-11-25 01:02:51 +00002410<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002411
Reid Spencer7e80b0b2006-10-26 06:15:43 +00002412<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002413
Chris Lattner48b383b02003-11-25 01:02:51 +00002414<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002415
2416<pre>
2417 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00002418</pre>
2419</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002420
Chris Lattner48b383b02003-11-25 01:02:51 +00002421<!-- _______________________________________________________________________ -->
Reid Spencer7eb55b32006-11-02 01:53:59 +00002422<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2423</div>
2424<div class="doc_text">
2425<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002426<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002427</pre>
2428<h5>Overview:</h5>
2429<p>The '<tt>urem</tt>' instruction returns the remainder from the
2430unsigned division of its two arguments.</p>
2431<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002432<p>The two arguments to the '<tt>urem</tt>' instruction must be
2433<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2434values. Both arguments must have identical types.</p>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002435<h5>Semantics:</h5>
2436<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattner1429e6f2008-04-01 18:45:27 +00002437This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner2f2427e2008-01-28 00:36:27 +00002438<p>Note that unsigned integer remainder and signed integer remainder are
2439distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2440<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002441<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002442<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002443</pre>
2444
2445</div>
2446<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002447<div class="doc_subsubsection">
2448 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2449</div>
2450
Chris Lattner48b383b02003-11-25 01:02:51 +00002451<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002452
Chris Lattner48b383b02003-11-25 01:02:51 +00002453<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002454
2455<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002456 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00002457</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002458
Chris Lattner48b383b02003-11-25 01:02:51 +00002459<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002460
Reid Spencer7eb55b32006-11-02 01:53:59 +00002461<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman08143e32007-11-05 23:35:22 +00002462signed division of its two operands. This instruction can also take
2463<a href="#t_vector">vector</a> versions of the values in which case
2464the elements must be integers.</p>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00002465
Chris Lattner48b383b02003-11-25 01:02:51 +00002466<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002467
Reid Spencer7eb55b32006-11-02 01:53:59 +00002468<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002469<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2470values. Both arguments must have identical types.</p>
2471
Chris Lattner48b383b02003-11-25 01:02:51 +00002472<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002473
Reid Spencer7eb55b32006-11-02 01:53:59 +00002474<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greif0f75ad02008-08-07 21:46:00 +00002475has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2476operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencer806ad6a2007-03-24 22:23:39 +00002477a value. For more information about the difference, see <a
Chris Lattner48b383b02003-11-25 01:02:51 +00002478 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencer806ad6a2007-03-24 22:23:39 +00002479Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencerdb3b93b2007-03-24 22:40:44 +00002480please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencer806ad6a2007-03-24 22:23:39 +00002481Wikipedia: modulo operation</a>.</p>
Chris Lattner2f2427e2008-01-28 00:36:27 +00002482<p>Note that signed integer remainder and unsigned integer remainder are
2483distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2484<p>Taking the remainder of a division by zero leads to undefined behavior.
2485Overflow also leads to undefined behavior; this is a rare case, but can occur,
2486for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2487(The remainder doesn't actually overflow, but this rule lets srem be
2488implemented using instructions that return both the result of the division
2489and the remainder.)</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00002490<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002491<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002492</pre>
2493
2494</div>
2495<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002496<div class="doc_subsubsection">
2497 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2498
Reid Spencer7eb55b32006-11-02 01:53:59 +00002499<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002500
Reid Spencer7eb55b32006-11-02 01:53:59 +00002501<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002502<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00002503</pre>
2504<h5>Overview:</h5>
2505<p>The '<tt>frem</tt>' instruction returns the remainder from the
2506division of its two operands.</p>
2507<h5>Arguments:</h5>
2508<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002509<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2510of floating point values. Both arguments must have identical types.</p>
2511
Reid Spencer7eb55b32006-11-02 01:53:59 +00002512<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002513
Chris Lattner1429e6f2008-04-01 18:45:27 +00002514<p>This instruction returns the <i>remainder</i> of a division.
2515The remainder has the same sign as the dividend.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002516
Reid Spencer7eb55b32006-11-02 01:53:59 +00002517<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002518
2519<pre>
2520 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00002521</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002522</div>
Robert Bocchino820bc75b2006-02-17 21:18:08 +00002523
Reid Spencer2ab01932007-02-02 13:57:07 +00002524<!-- ======================================================================= -->
2525<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2526Operations</a> </div>
2527<div class="doc_text">
2528<p>Bitwise binary operators are used to do various forms of
2529bit-twiddling in a program. They are generally very efficient
2530instructions and can commonly be strength reduced from other
Chris Lattner1429e6f2008-04-01 18:45:27 +00002531instructions. They require two operands of the same type, execute an operation on them,
2532and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer2ab01932007-02-02 13:57:07 +00002533</div>
2534
Reid Spencer04e259b2007-01-31 21:39:12 +00002535<!-- _______________________________________________________________________ -->
2536<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2537Instruction</a> </div>
2538<div class="doc_text">
2539<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002540<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002541</pre>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002542
Reid Spencer04e259b2007-01-31 21:39:12 +00002543<h5>Overview:</h5>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002544
Reid Spencer04e259b2007-01-31 21:39:12 +00002545<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2546the left a specified number of bits.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002547
Reid Spencer04e259b2007-01-31 21:39:12 +00002548<h5>Arguments:</h5>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002549
Reid Spencer04e259b2007-01-31 21:39:12 +00002550<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begemanfecbc8c2008-07-29 15:49:41 +00002551 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greif0f75ad02008-08-07 21:46:00 +00002552type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002553
Reid Spencer04e259b2007-01-31 21:39:12 +00002554<h5>Semantics:</h5>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002555
Gabor Greif0f75ad02008-08-07 21:46:00 +00002556<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2557where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
2558equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002559
Reid Spencer04e259b2007-01-31 21:39:12 +00002560<h5>Example:</h5><pre>
2561 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2562 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2563 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002564 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002565</pre>
2566</div>
2567<!-- _______________________________________________________________________ -->
2568<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2569Instruction</a> </div>
2570<div class="doc_text">
2571<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002572<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002573</pre>
2574
2575<h5>Overview:</h5>
2576<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen5819f182007-04-22 01:17:39 +00002577operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002578
2579<h5>Arguments:</h5>
2580<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begemanfecbc8c2008-07-29 15:49:41 +00002581<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greif0f75ad02008-08-07 21:46:00 +00002582type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002583
2584<h5>Semantics:</h5>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002585
Reid Spencer04e259b2007-01-31 21:39:12 +00002586<p>This instruction always performs a logical shift right operation. The most
2587significant bits of the result will be filled with zero bits after the
Gabor Greif0f75ad02008-08-07 21:46:00 +00002588shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
2589the number of bits in <tt>op1</tt>, the result is undefined.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002590
2591<h5>Example:</h5>
2592<pre>
2593 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2594 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2595 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2596 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002597 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002598</pre>
2599</div>
2600
Reid Spencer2ab01932007-02-02 13:57:07 +00002601<!-- _______________________________________________________________________ -->
Reid Spencer04e259b2007-01-31 21:39:12 +00002602<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2603Instruction</a> </div>
2604<div class="doc_text">
2605
2606<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002607<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002608</pre>
2609
2610<h5>Overview:</h5>
2611<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen5819f182007-04-22 01:17:39 +00002612operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002613
2614<h5>Arguments:</h5>
2615<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begemanfecbc8c2008-07-29 15:49:41 +00002616<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greif0f75ad02008-08-07 21:46:00 +00002617type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002618
2619<h5>Semantics:</h5>
2620<p>This instruction always performs an arithmetic shift right operation,
2621The most significant bits of the result will be filled with the sign bit
Gabor Greif0f75ad02008-08-07 21:46:00 +00002622of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
2623larger than the number of bits in <tt>op1</tt>, the result is undefined.
Chris Lattnerf0e50112007-10-03 21:01:14 +00002624</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00002625
2626<h5>Example:</h5>
2627<pre>
2628 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2629 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2630 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2631 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00002632 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00002633</pre>
2634</div>
2635
Chris Lattner2f7c9632001-06-06 20:29:01 +00002636<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002637<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2638Instruction</a> </div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002639
Misha Brukman76307852003-11-08 01:05:38 +00002640<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002641
Chris Lattner2f7c9632001-06-06 20:29:01 +00002642<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002643
2644<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002645 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002646</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002647
Chris Lattner2f7c9632001-06-06 20:29:01 +00002648<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002649
Chris Lattner48b383b02003-11-25 01:02:51 +00002650<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2651its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002652
Chris Lattner2f7c9632001-06-06 20:29:01 +00002653<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002654
2655<p>The two arguments to the '<tt>and</tt>' instruction must be
2656<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2657values. Both arguments must have identical types.</p>
2658
Chris Lattner2f7c9632001-06-06 20:29:01 +00002659<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00002660<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00002661<p> </p>
Bill Wendling5703c6e2008-09-07 10:29:20 +00002662<div>
Misha Brukman76307852003-11-08 01:05:38 +00002663<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00002664 <tbody>
2665 <tr>
2666 <td>In0</td>
2667 <td>In1</td>
2668 <td>Out</td>
2669 </tr>
2670 <tr>
2671 <td>0</td>
2672 <td>0</td>
2673 <td>0</td>
2674 </tr>
2675 <tr>
2676 <td>0</td>
2677 <td>1</td>
2678 <td>0</td>
2679 </tr>
2680 <tr>
2681 <td>1</td>
2682 <td>0</td>
2683 <td>0</td>
2684 </tr>
2685 <tr>
2686 <td>1</td>
2687 <td>1</td>
2688 <td>1</td>
2689 </tr>
2690 </tbody>
2691</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00002692</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002693<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002694<pre>
2695 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002696 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2697 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002698</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002699</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002700<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002701<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002702<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00002703<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002704<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002705</pre>
Chris Lattner48b383b02003-11-25 01:02:51 +00002706<h5>Overview:</h5>
2707<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2708or of its two operands.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002709<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002710
2711<p>The two arguments to the '<tt>or</tt>' instruction must be
2712<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2713values. Both arguments must have identical types.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002714<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00002715<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00002716<p> </p>
Bill Wendling5703c6e2008-09-07 10:29:20 +00002717<div>
Chris Lattner48b383b02003-11-25 01:02:51 +00002718<table border="1" cellspacing="0" cellpadding="4">
2719 <tbody>
2720 <tr>
2721 <td>In0</td>
2722 <td>In1</td>
2723 <td>Out</td>
2724 </tr>
2725 <tr>
2726 <td>0</td>
2727 <td>0</td>
2728 <td>0</td>
2729 </tr>
2730 <tr>
2731 <td>0</td>
2732 <td>1</td>
2733 <td>1</td>
2734 </tr>
2735 <tr>
2736 <td>1</td>
2737 <td>0</td>
2738 <td>1</td>
2739 </tr>
2740 <tr>
2741 <td>1</td>
2742 <td>1</td>
2743 <td>1</td>
2744 </tr>
2745 </tbody>
2746</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00002747</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002748<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002749<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2750 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2751 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002752</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002753</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002754<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00002755<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2756Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00002757<div class="doc_text">
Chris Lattner2f7c9632001-06-06 20:29:01 +00002758<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00002759<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002760</pre>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002761<h5>Overview:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00002762<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2763or of its two operands. The <tt>xor</tt> is used to implement the
2764"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002765<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002766<p>The two arguments to the '<tt>xor</tt>' instruction must be
2767<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2768values. Both arguments must have identical types.</p>
2769
Chris Lattner2f7c9632001-06-06 20:29:01 +00002770<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00002771
Misha Brukman76307852003-11-08 01:05:38 +00002772<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00002773<p> </p>
Bill Wendling5703c6e2008-09-07 10:29:20 +00002774<div>
Chris Lattner48b383b02003-11-25 01:02:51 +00002775<table border="1" cellspacing="0" cellpadding="4">
2776 <tbody>
2777 <tr>
2778 <td>In0</td>
2779 <td>In1</td>
2780 <td>Out</td>
2781 </tr>
2782 <tr>
2783 <td>0</td>
2784 <td>0</td>
2785 <td>0</td>
2786 </tr>
2787 <tr>
2788 <td>0</td>
2789 <td>1</td>
2790 <td>1</td>
2791 </tr>
2792 <tr>
2793 <td>1</td>
2794 <td>0</td>
2795 <td>1</td>
2796 </tr>
2797 <tr>
2798 <td>1</td>
2799 <td>1</td>
2800 <td>0</td>
2801 </tr>
2802 </tbody>
2803</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00002804</div>
Chris Lattner48b383b02003-11-25 01:02:51 +00002805<p> </p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002806<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002807<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2808 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2809 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2810 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002811</pre>
Misha Brukman76307852003-11-08 01:05:38 +00002812</div>
Chris Lattner54611b42005-11-06 08:02:57 +00002813
Chris Lattner2f7c9632001-06-06 20:29:01 +00002814<!-- ======================================================================= -->
Chris Lattner54611b42005-11-06 08:02:57 +00002815<div class="doc_subsection">
Chris Lattnerce83bff2006-04-08 23:07:04 +00002816 <a name="vectorops">Vector Operations</a>
2817</div>
2818
2819<div class="doc_text">
2820
2821<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen5819f182007-04-22 01:17:39 +00002822target-independent manner. These instructions cover the element-access and
Chris Lattnerce83bff2006-04-08 23:07:04 +00002823vector-specific operations needed to process vectors effectively. While LLVM
2824does directly support these vector operations, many sophisticated algorithms
2825will want to use target-specific intrinsics to take full advantage of a specific
2826target.</p>
2827
2828</div>
2829
2830<!-- _______________________________________________________________________ -->
2831<div class="doc_subsubsection">
2832 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2833</div>
2834
2835<div class="doc_text">
2836
2837<h5>Syntax:</h5>
2838
2839<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002840 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00002841</pre>
2842
2843<h5>Overview:</h5>
2844
2845<p>
2846The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer404a3252007-02-15 03:07:05 +00002847element from a vector at a specified index.
Chris Lattnerce83bff2006-04-08 23:07:04 +00002848</p>
2849
2850
2851<h5>Arguments:</h5>
2852
2853<p>
2854The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer404a3252007-02-15 03:07:05 +00002855value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattnerce83bff2006-04-08 23:07:04 +00002856an index indicating the position from which to extract the element.
2857The index may be a variable.</p>
2858
2859<h5>Semantics:</h5>
2860
2861<p>
2862The result is a scalar of the same type as the element type of
2863<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2864<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2865results are undefined.
2866</p>
2867
2868<h5>Example:</h5>
2869
2870<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002871 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00002872</pre>
2873</div>
2874
2875
2876<!-- _______________________________________________________________________ -->
2877<div class="doc_subsubsection">
2878 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2879</div>
2880
2881<div class="doc_text">
2882
2883<h5>Syntax:</h5>
2884
2885<pre>
Dan Gohman43ba0672008-05-12 23:38:42 +00002886 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00002887</pre>
2888
2889<h5>Overview:</h5>
2890
2891<p>
2892The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer404a3252007-02-15 03:07:05 +00002893element into a vector at a specified index.
Chris Lattnerce83bff2006-04-08 23:07:04 +00002894</p>
2895
2896
2897<h5>Arguments:</h5>
2898
2899<p>
2900The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer404a3252007-02-15 03:07:05 +00002901value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattnerce83bff2006-04-08 23:07:04 +00002902scalar value whose type must equal the element type of the first
2903operand. The third operand is an index indicating the position at
2904which to insert the value. The index may be a variable.</p>
2905
2906<h5>Semantics:</h5>
2907
2908<p>
Reid Spencer404a3252007-02-15 03:07:05 +00002909The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattnerce83bff2006-04-08 23:07:04 +00002910element values are those of <tt>val</tt> except at position
2911<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2912exceeds the length of <tt>val</tt>, the results are undefined.
2913</p>
2914
2915<h5>Example:</h5>
2916
2917<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002918 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00002919</pre>
2920</div>
2921
2922<!-- _______________________________________________________________________ -->
2923<div class="doc_subsubsection">
2924 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2925</div>
2926
2927<div class="doc_text">
2928
2929<h5>Syntax:</h5>
2930
2931<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002932 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00002933</pre>
2934
2935<h5>Overview:</h5>
2936
2937<p>
2938The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2939from two input vectors, returning a vector of the same type.
2940</p>
2941
2942<h5>Arguments:</h5>
2943
2944<p>
2945The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2946with types that match each other and types that match the result of the
2947instruction. The third argument is a shuffle mask, which has the same number
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002948of elements as the other vector type, but whose element type is always 'i32'.
Chris Lattnerce83bff2006-04-08 23:07:04 +00002949</p>
2950
2951<p>
2952The shuffle mask operand is required to be a constant vector with either
2953constant integer or undef values.
2954</p>
2955
2956<h5>Semantics:</h5>
2957
2958<p>
2959The elements of the two input vectors are numbered from left to right across
2960both of the vectors. The shuffle mask operand specifies, for each element of
2961the result vector, which element of the two input registers the result element
2962gets. The element selector may be undef (meaning "don't care") and the second
2963operand may be undef if performing a shuffle from only one vector.
2964</p>
2965
2966<h5>Example:</h5>
2967
2968<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002969 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen5819f182007-04-22 01:17:39 +00002970 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002971 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2972 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Chris Lattnerce83bff2006-04-08 23:07:04 +00002973</pre>
2974</div>
2975
Tanya Lattnerb138bbe2006-04-14 19:24:33 +00002976
Chris Lattnerce83bff2006-04-08 23:07:04 +00002977<!-- ======================================================================= -->
2978<div class="doc_subsection">
Dan Gohmanb9d66602008-05-12 23:51:09 +00002979 <a name="aggregateops">Aggregate Operations</a>
2980</div>
2981
2982<div class="doc_text">
2983
2984<p>LLVM supports several instructions for working with aggregate values.
2985</p>
2986
2987</div>
2988
2989<!-- _______________________________________________________________________ -->
2990<div class="doc_subsubsection">
2991 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
2992</div>
2993
2994<div class="doc_text">
2995
2996<h5>Syntax:</h5>
2997
2998<pre>
2999 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3000</pre>
3001
3002<h5>Overview:</h5>
3003
3004<p>
Dan Gohman35a835c2008-05-13 18:16:06 +00003005The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3006or array element from an aggregate value.
Dan Gohmanb9d66602008-05-12 23:51:09 +00003007</p>
3008
3009
3010<h5>Arguments:</h5>
3011
3012<p>
3013The first operand of an '<tt>extractvalue</tt>' instruction is a
3014value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohman35a835c2008-05-13 18:16:06 +00003015type. The operands are constant indices to specify which value to extract
Dan Gohman1ecaf452008-05-31 00:58:22 +00003016in a similar manner as indices in a
Dan Gohmanb9d66602008-05-12 23:51:09 +00003017'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3018</p>
3019
3020<h5>Semantics:</h5>
3021
3022<p>
3023The result is the value at the position in the aggregate specified by
3024the index operands.
3025</p>
3026
3027<h5>Example:</h5>
3028
3029<pre>
Dan Gohman1ecaf452008-05-31 00:58:22 +00003030 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003031</pre>
3032</div>
3033
3034
3035<!-- _______________________________________________________________________ -->
3036<div class="doc_subsubsection">
3037 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3038</div>
3039
3040<div class="doc_text">
3041
3042<h5>Syntax:</h5>
3043
3044<pre>
Dan Gohman1ecaf452008-05-31 00:58:22 +00003045 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003046</pre>
3047
3048<h5>Overview:</h5>
3049
3050<p>
3051The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohman35a835c2008-05-13 18:16:06 +00003052into a struct field or array element in an aggregate.
Dan Gohmanb9d66602008-05-12 23:51:09 +00003053</p>
3054
3055
3056<h5>Arguments:</h5>
3057
3058<p>
3059The first operand of an '<tt>insertvalue</tt>' instruction is a
3060value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3061The second operand is a first-class value to insert.
Dan Gohman34d1c0d2008-05-23 21:53:15 +00003062The following operands are constant indices
Dan Gohman1ecaf452008-05-31 00:58:22 +00003063indicating the position at which to insert the value in a similar manner as
Dan Gohman35a835c2008-05-13 18:16:06 +00003064indices in a
Dan Gohmanb9d66602008-05-12 23:51:09 +00003065'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3066The value to insert must have the same type as the value identified
Dan Gohman35a835c2008-05-13 18:16:06 +00003067by the indices.
Dan Gohmanb9d66602008-05-12 23:51:09 +00003068
3069<h5>Semantics:</h5>
3070
3071<p>
3072The result is an aggregate of the same type as <tt>val</tt>. Its
3073value is that of <tt>val</tt> except that the value at the position
Dan Gohman35a835c2008-05-13 18:16:06 +00003074specified by the indices is that of <tt>elt</tt>.
Dan Gohmanb9d66602008-05-12 23:51:09 +00003075</p>
3076
3077<h5>Example:</h5>
3078
3079<pre>
Dan Gohman88ce1a52008-06-23 15:26:37 +00003080 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00003081</pre>
3082</div>
3083
3084
3085<!-- ======================================================================= -->
3086<div class="doc_subsection">
Chris Lattner6ab66722006-08-15 00:45:58 +00003087 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner54611b42005-11-06 08:02:57 +00003088</div>
3089
Misha Brukman76307852003-11-08 01:05:38 +00003090<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003091
Chris Lattner48b383b02003-11-25 01:02:51 +00003092<p>A key design point of an SSA-based representation is how it
3093represents memory. In LLVM, no memory locations are in SSA form, which
3094makes things very simple. This section describes how to read, write,
John Criswelldfe6a862004-12-10 15:51:16 +00003095allocate, and free memory in LLVM.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003096
Misha Brukman76307852003-11-08 01:05:38 +00003097</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003098
Chris Lattner2f7c9632001-06-06 20:29:01 +00003099<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00003100<div class="doc_subsubsection">
3101 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3102</div>
3103
Misha Brukman76307852003-11-08 01:05:38 +00003104<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003105
Chris Lattner2f7c9632001-06-06 20:29:01 +00003106<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003107
3108<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003109 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003110</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00003111
Chris Lattner2f7c9632001-06-06 20:29:01 +00003112<h5>Overview:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003113
Chris Lattner48b383b02003-11-25 01:02:51 +00003114<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00003115heap and returns a pointer to it. The object is always allocated in the generic
3116address space (address space zero).</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003117
Chris Lattner2f7c9632001-06-06 20:29:01 +00003118<h5>Arguments:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003119
3120<p>The '<tt>malloc</tt>' instruction allocates
3121<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswella92e5862004-02-24 16:13:56 +00003122bytes of memory from the operating system and returns a pointer of the
Chris Lattner54611b42005-11-06 08:02:57 +00003123appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greifdd1fc982008-02-09 22:24:34 +00003124number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner1f17cce2008-04-02 00:38:26 +00003125If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greifdd1fc982008-02-09 22:24:34 +00003126be aligned to at least that boundary. If not specified, or if zero, the target can
3127choose to align the allocation on any convenient boundary.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003128
Misha Brukman76307852003-11-08 01:05:38 +00003129<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003130
Chris Lattner2f7c9632001-06-06 20:29:01 +00003131<h5>Semantics:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003132
Chris Lattner48b383b02003-11-25 01:02:51 +00003133<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Chris Lattnerfe8519c2008-04-19 21:01:16 +00003134a pointer is returned. The result of a zero byte allocattion is undefined. The
3135result is null if there is insufficient memory available.</p>
Misha Brukman76307852003-11-08 01:05:38 +00003136
Chris Lattner54611b42005-11-06 08:02:57 +00003137<h5>Example:</h5>
3138
3139<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003140 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner54611b42005-11-06 08:02:57 +00003141
Bill Wendling2d8b9a82007-05-29 09:42:13 +00003142 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3143 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3144 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3145 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3146 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003147</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003148</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003149
Chris Lattner2f7c9632001-06-06 20:29:01 +00003150<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00003151<div class="doc_subsubsection">
3152 <a name="i_free">'<tt>free</tt>' Instruction</a>
3153</div>
3154
Misha Brukman76307852003-11-08 01:05:38 +00003155<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003156
Chris Lattner2f7c9632001-06-06 20:29:01 +00003157<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003158
3159<pre>
3160 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003161</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00003162
Chris Lattner2f7c9632001-06-06 20:29:01 +00003163<h5>Overview:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003164
Chris Lattner48b383b02003-11-25 01:02:51 +00003165<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswell4a3327e2005-05-13 22:25:59 +00003166memory heap to be reallocated in the future.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003167
Chris Lattner2f7c9632001-06-06 20:29:01 +00003168<h5>Arguments:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003169
Chris Lattner48b383b02003-11-25 01:02:51 +00003170<p>'<tt>value</tt>' shall be a pointer value that points to a value
3171that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3172instruction.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003173
Chris Lattner2f7c9632001-06-06 20:29:01 +00003174<h5>Semantics:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003175
John Criswelldfe6a862004-12-10 15:51:16 +00003176<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattner0f103e12008-04-19 22:41:32 +00003177after this instruction executes. If the pointer is null, the operation
3178is a noop.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003179
Chris Lattner2f7c9632001-06-06 20:29:01 +00003180<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003181
3182<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003183 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
3184 free [4 x i8]* %array
Chris Lattner2f7c9632001-06-06 20:29:01 +00003185</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003186</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003187
Chris Lattner2f7c9632001-06-06 20:29:01 +00003188<!-- _______________________________________________________________________ -->
Chris Lattner54611b42005-11-06 08:02:57 +00003189<div class="doc_subsubsection">
3190 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3191</div>
3192
Misha Brukman76307852003-11-08 01:05:38 +00003193<div class="doc_text">
Chris Lattner54611b42005-11-06 08:02:57 +00003194
Chris Lattner2f7c9632001-06-06 20:29:01 +00003195<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003196
3197<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003198 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003199</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00003200
Chris Lattner2f7c9632001-06-06 20:29:01 +00003201<h5>Overview:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003202
Jeff Cohen5819f182007-04-22 01:17:39 +00003203<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3204currently executing function, to be automatically released when this function
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00003205returns to its caller. The object is always allocated in the generic address
3206space (address space zero).</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003207
Chris Lattner2f7c9632001-06-06 20:29:01 +00003208<h5>Arguments:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003209
John Criswelldfe6a862004-12-10 15:51:16 +00003210<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner48b383b02003-11-25 01:02:51 +00003211bytes of memory on the runtime stack, returning a pointer of the
Gabor Greifdd1fc982008-02-09 22:24:34 +00003212appropriate type to the program. If "NumElements" is specified, it is the
3213number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner1f17cce2008-04-02 00:38:26 +00003214If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greifdd1fc982008-02-09 22:24:34 +00003215to be aligned to at least that boundary. If not specified, or if zero, the target
3216can choose to align the allocation on any convenient boundary.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003217
Misha Brukman76307852003-11-08 01:05:38 +00003218<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003219
Chris Lattner2f7c9632001-06-06 20:29:01 +00003220<h5>Semantics:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003221
Chris Lattnerfe8519c2008-04-19 21:01:16 +00003222<p>Memory is allocated; a pointer is returned. The operation is undefiend if
3223there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner48b383b02003-11-25 01:02:51 +00003224memory is automatically released when the function returns. The '<tt>alloca</tt>'
3225instruction is commonly used to represent automatic variables that must
3226have an address available. When the function returns (either with the <tt><a
John Criswellc932bef2005-05-12 16:55:34 +00003227 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner1f17cce2008-04-02 00:38:26 +00003228instructions), the memory is reclaimed. Allocating zero bytes
3229is legal, but the result is undefined.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00003230
Chris Lattner2f7c9632001-06-06 20:29:01 +00003231<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00003232
3233<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003234 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
Bill Wendling3716c5d2007-05-29 09:04:49 +00003235 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3236 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003237 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003238</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003239</div>
Chris Lattner54611b42005-11-06 08:02:57 +00003240
Chris Lattner2f7c9632001-06-06 20:29:01 +00003241<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003242<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3243Instruction</a> </div>
Misha Brukman76307852003-11-08 01:05:38 +00003244<div class="doc_text">
Chris Lattner095735d2002-05-06 03:03:22 +00003245<h5>Syntax:</h5>
Christopher Lambbff50202007-04-21 08:16:25 +00003246<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner095735d2002-05-06 03:03:22 +00003247<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003248<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003249<h5>Arguments:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00003250<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell4c0cf7f2005-10-24 16:17:18 +00003251address from which to load. The pointer must point to a <a
Chris Lattner10ee9652004-06-03 22:57:15 +00003252 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell4c0cf7f2005-10-24 16:17:18 +00003253marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner48b383b02003-11-25 01:02:51 +00003254the number or order of execution of this <tt>load</tt> with other
3255volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3256instructions. </p>
Chris Lattner2a1993f2008-01-06 21:04:43 +00003257<p>
Chris Lattner1f17cce2008-04-02 00:38:26 +00003258The optional constant "align" argument specifies the alignment of the operation
Chris Lattner2a1993f2008-01-06 21:04:43 +00003259(that is, the alignment of the memory address). A value of 0 or an
3260omitted "align" argument means that the operation has the preferential
3261alignment for the target. It is the responsibility of the code emitter
3262to ensure that the alignment information is correct. Overestimating
3263the alignment results in an undefined behavior. Underestimating the
3264alignment may produce less efficient code. An alignment of 1 is always
3265safe.
3266</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003267<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003268<p>The location of memory pointed to is loaded.</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003269<h5>Examples:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003270<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003271 <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003272 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3273 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00003274</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003275</div>
Chris Lattner095735d2002-05-06 03:03:22 +00003276<!-- _______________________________________________________________________ -->
Chris Lattner48b383b02003-11-25 01:02:51 +00003277<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3278Instruction</a> </div>
Reid Spencera89fb182006-11-09 21:18:01 +00003279<div class="doc_text">
Chris Lattner095735d2002-05-06 03:03:22 +00003280<h5>Syntax:</h5>
Christopher Lambbff50202007-04-21 08:16:25 +00003281<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3282 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner095735d2002-05-06 03:03:22 +00003283</pre>
Chris Lattner095735d2002-05-06 03:03:22 +00003284<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003285<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003286<h5>Arguments:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00003287<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen5819f182007-04-22 01:17:39 +00003288to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner1f17cce2008-04-02 00:38:26 +00003289operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3290of the '<tt>&lt;value&gt;</tt>'
John Criswell4a3327e2005-05-13 22:25:59 +00003291operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner48b383b02003-11-25 01:02:51 +00003292optimizer is not allowed to modify the number or order of execution of
3293this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3294 href="#i_store">store</a></tt> instructions.</p>
Chris Lattner2a1993f2008-01-06 21:04:43 +00003295<p>
Chris Lattner1f17cce2008-04-02 00:38:26 +00003296The optional constant "align" argument specifies the alignment of the operation
Chris Lattner2a1993f2008-01-06 21:04:43 +00003297(that is, the alignment of the memory address). A value of 0 or an
3298omitted "align" argument means that the operation has the preferential
3299alignment for the target. It is the responsibility of the code emitter
3300to ensure that the alignment information is correct. Overestimating
3301the alignment results in an undefined behavior. Underestimating the
3302alignment may produce less efficient code. An alignment of 1 is always
3303safe.
3304</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00003305<h5>Semantics:</h5>
3306<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
3307at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner095735d2002-05-06 03:03:22 +00003308<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003309<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8830ffe2007-10-22 05:10:05 +00003310 store i32 3, i32* %ptr <i>; yields {void}</i>
3311 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00003312</pre>
Reid Spencer443460a2006-11-09 21:15:49 +00003313</div>
3314
Chris Lattner095735d2002-05-06 03:03:22 +00003315<!-- _______________________________________________________________________ -->
Chris Lattner33fd7022004-04-05 01:30:49 +00003316<div class="doc_subsubsection">
3317 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3318</div>
3319
Misha Brukman76307852003-11-08 01:05:38 +00003320<div class="doc_text">
Chris Lattner590645f2002-04-14 06:13:44 +00003321<h5>Syntax:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00003322<pre>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00003323 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattner33fd7022004-04-05 01:30:49 +00003324</pre>
3325
Chris Lattner590645f2002-04-14 06:13:44 +00003326<h5>Overview:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00003327
3328<p>
3329The '<tt>getelementptr</tt>' instruction is used to get the address of a
Matthijs Kooijman0e268272008-10-13 13:44:15 +00003330subelement of an aggregate data structure. It performs address calculation only
3331and does not access memory.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003332
Chris Lattner590645f2002-04-14 06:13:44 +00003333<h5>Arguments:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00003334
Matthijs Kooijman0e268272008-10-13 13:44:15 +00003335<p>The first argument is always a pointer, and forms the basis of the
3336calculation. The remaining arguments are indices, that indicate which of the
3337elements of the aggregate object are indexed. The interpretation of each index
3338is dependent on the type being indexed into. The first index always indexes the
3339pointer value given as the first argument, the second index indexes a value of
3340the type pointed to (not necessarily the value directly pointed to, since the
3341first index can be non-zero), etc. The first type indexed into must be a pointer
3342value, subsequent types can be arrays, vectors and structs. Note that subsequent
3343types being indexed into can never be pointers, since that would require loading
3344the pointer before continuing calculation.</p>
3345
3346<p>The type of each index argument depends on the type it is indexing into.
3347When indexing into a (packed) structure, only <tt>i32</tt> integer
3348<b>constants</b> are allowed. When indexing into an array, pointer or vector,
3349only integers of 32 or 64 bits are allowed (also non-constants). 32-bit values
3350will be sign extended to 64-bits if required.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003351
Chris Lattner48b383b02003-11-25 01:02:51 +00003352<p>For example, let's consider a C code fragment and how it gets
3353compiled to LLVM:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003354
Bill Wendling3716c5d2007-05-29 09:04:49 +00003355<div class="doc_code">
Chris Lattner33fd7022004-04-05 01:30:49 +00003356<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00003357struct RT {
3358 char A;
Chris Lattnera446f1b2007-05-29 15:43:56 +00003359 int B[10][20];
Bill Wendling3716c5d2007-05-29 09:04:49 +00003360 char C;
3361};
3362struct ST {
Chris Lattnera446f1b2007-05-29 15:43:56 +00003363 int X;
Bill Wendling3716c5d2007-05-29 09:04:49 +00003364 double Y;
3365 struct RT Z;
3366};
Chris Lattner33fd7022004-04-05 01:30:49 +00003367
Chris Lattnera446f1b2007-05-29 15:43:56 +00003368int *foo(struct ST *s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00003369 return &amp;s[1].Z.B[5][13];
3370}
Chris Lattner33fd7022004-04-05 01:30:49 +00003371</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00003372</div>
Chris Lattner33fd7022004-04-05 01:30:49 +00003373
Misha Brukman76307852003-11-08 01:05:38 +00003374<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003375
Bill Wendling3716c5d2007-05-29 09:04:49 +00003376<div class="doc_code">
Chris Lattner33fd7022004-04-05 01:30:49 +00003377<pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00003378%RT = type { i8 , [10 x [20 x i32]], i8 }
3379%ST = type { i32, double, %RT }
Chris Lattner33fd7022004-04-05 01:30:49 +00003380
Bill Wendling3716c5d2007-05-29 09:04:49 +00003381define i32* %foo(%ST* %s) {
3382entry:
3383 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3384 ret i32* %reg
3385}
Chris Lattner33fd7022004-04-05 01:30:49 +00003386</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00003387</div>
Chris Lattner33fd7022004-04-05 01:30:49 +00003388
Chris Lattner590645f2002-04-14 06:13:44 +00003389<h5>Semantics:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00003390
Misha Brukman76307852003-11-08 01:05:38 +00003391<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003392type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattner33fd7022004-04-05 01:30:49 +00003393}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003394the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3395i8 }</tt>' type, another structure. The third index indexes into the second
3396element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattner33fd7022004-04-05 01:30:49 +00003397array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003398'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3399to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003400
Chris Lattner48b383b02003-11-25 01:02:51 +00003401<p>Note that it is perfectly legal to index partially through a
3402structure, returning a pointer to an inner element. Because of this,
3403the LLVM code for the given testcase is equivalent to:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00003404
3405<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003406 define i32* %foo(%ST* %s) {
3407 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen5819f182007-04-22 01:17:39 +00003408 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3409 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003410 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3411 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3412 ret i32* %t5
Chris Lattner33fd7022004-04-05 01:30:49 +00003413 }
Chris Lattnera8292f32002-05-06 22:08:29 +00003414</pre>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00003415
3416<p>Note that it is undefined to access an array out of bounds: array and
3417pointer indexes must always be within the defined bounds of the array type.
Chris Lattner851b7712008-04-24 05:59:56 +00003418The one exception for this rule is zero length arrays. These arrays are
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00003419defined to be accessible as variable length arrays, which requires access
3420beyond the zero'th element.</p>
3421
Chris Lattner6ab66722006-08-15 00:45:58 +00003422<p>The getelementptr instruction is often confusing. For some more insight
3423into how it works, see <a href="GetElementPtr.html">the getelementptr
3424FAQ</a>.</p>
3425
Chris Lattner590645f2002-04-14 06:13:44 +00003426<h5>Example:</h5>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00003427
Chris Lattner33fd7022004-04-05 01:30:49 +00003428<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003429 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00003430 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
3431 <i>; yields i8*:vptr</i>
3432 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
3433 <i>; yields i8*:eptr</i>
3434 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Chris Lattner33fd7022004-04-05 01:30:49 +00003435</pre>
Chris Lattner33fd7022004-04-05 01:30:49 +00003436</div>
Reid Spencer443460a2006-11-09 21:15:49 +00003437
Chris Lattner2f7c9632001-06-06 20:29:01 +00003438<!-- ======================================================================= -->
Reid Spencer97c5fa42006-11-08 01:18:52 +00003439<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman76307852003-11-08 01:05:38 +00003440</div>
Misha Brukman76307852003-11-08 01:05:38 +00003441<div class="doc_text">
Reid Spencer97c5fa42006-11-08 01:18:52 +00003442<p>The instructions in this category are the conversion instructions (casting)
3443which all take a single operand and a type. They perform various bit conversions
3444on the operand.</p>
Misha Brukman76307852003-11-08 01:05:38 +00003445</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003446
Chris Lattnera8292f32002-05-06 22:08:29 +00003447<!-- _______________________________________________________________________ -->
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003448<div class="doc_subsubsection">
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003449 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3450</div>
3451<div class="doc_text">
3452
3453<h5>Syntax:</h5>
3454<pre>
3455 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3456</pre>
3457
3458<h5>Overview:</h5>
3459<p>
3460The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3461</p>
3462
3463<h5>Arguments:</h5>
3464<p>
3465The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3466be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattnerc0f423a2007-01-15 01:54:13 +00003467and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencer51b07252006-11-09 23:03:26 +00003468type. The bit size of <tt>value</tt> must be larger than the bit size of
3469<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003470
3471<h5>Semantics:</h5>
3472<p>
3473The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencer51b07252006-11-09 23:03:26 +00003474and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3475larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3476It will always truncate bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003477
3478<h5>Example:</h5>
3479<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003480 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencer36a15422007-01-12 03:35:51 +00003481 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3482 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003483</pre>
3484</div>
3485
3486<!-- _______________________________________________________________________ -->
3487<div class="doc_subsubsection">
3488 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3489</div>
3490<div class="doc_text">
3491
3492<h5>Syntax:</h5>
3493<pre>
3494 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3495</pre>
3496
3497<h5>Overview:</h5>
3498<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3499<tt>ty2</tt>.</p>
3500
3501
3502<h5>Arguments:</h5>
3503<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattnerc0f423a2007-01-15 01:54:13 +00003504<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3505also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencer51b07252006-11-09 23:03:26 +00003506<tt>value</tt> must be smaller than the bit size of the destination type,
3507<tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003508
3509<h5>Semantics:</h5>
3510<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerc87f3df2007-05-24 19:13:27 +00003511bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003512
Reid Spencer07c9c682007-01-12 15:46:11 +00003513<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003514
3515<h5>Example:</h5>
3516<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003517 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencer36a15422007-01-12 03:35:51 +00003518 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003519</pre>
3520</div>
3521
3522<!-- _______________________________________________________________________ -->
3523<div class="doc_subsubsection">
3524 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3525</div>
3526<div class="doc_text">
3527
3528<h5>Syntax:</h5>
3529<pre>
3530 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3531</pre>
3532
3533<h5>Overview:</h5>
3534<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3535
3536<h5>Arguments:</h5>
3537<p>
3538The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattnerc0f423a2007-01-15 01:54:13 +00003539<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3540also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencer51b07252006-11-09 23:03:26 +00003541<tt>value</tt> must be smaller than the bit size of the destination type,
3542<tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003543
3544<h5>Semantics:</h5>
3545<p>
3546The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3547bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerc87f3df2007-05-24 19:13:27 +00003548the type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003549
Reid Spencer36a15422007-01-12 03:35:51 +00003550<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003551
3552<h5>Example:</h5>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003553<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003554 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencer36a15422007-01-12 03:35:51 +00003555 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003556</pre>
3557</div>
3558
3559<!-- _______________________________________________________________________ -->
3560<div class="doc_subsubsection">
Reid Spencer2e2740d2006-11-09 21:48:10 +00003561 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3562</div>
3563
3564<div class="doc_text">
3565
3566<h5>Syntax:</h5>
3567
3568<pre>
3569 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3570</pre>
3571
3572<h5>Overview:</h5>
3573<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3574<tt>ty2</tt>.</p>
3575
3576
3577<h5>Arguments:</h5>
3578<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3579 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3580cast it to. The size of <tt>value</tt> must be larger than the size of
3581<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3582<i>no-op cast</i>.</p>
3583
3584<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00003585<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3586<a href="#t_floating">floating point</a> type to a smaller
3587<a href="#t_floating">floating point</a> type. If the value cannot fit within
3588the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00003589
3590<h5>Example:</h5>
3591<pre>
3592 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3593 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3594</pre>
3595</div>
3596
3597<!-- _______________________________________________________________________ -->
3598<div class="doc_subsubsection">
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003599 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3600</div>
3601<div class="doc_text">
3602
3603<h5>Syntax:</h5>
3604<pre>
3605 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3606</pre>
3607
3608<h5>Overview:</h5>
3609<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3610floating point value.</p>
3611
3612<h5>Arguments:</h5>
3613<p>The '<tt>fpext</tt>' instruction takes a
3614<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencer51b07252006-11-09 23:03:26 +00003615and a <a href="#t_floating">floating point</a> type to cast it to. The source
3616type must be smaller than the destination type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003617
3618<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00003619<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands16f122e2007-03-30 12:22:09 +00003620<a href="#t_floating">floating point</a> type to a larger
3621<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencer51b07252006-11-09 23:03:26 +00003622used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5b950642006-11-11 23:08:07 +00003623<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003624
3625<h5>Example:</h5>
3626<pre>
3627 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3628 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3629</pre>
3630</div>
3631
3632<!-- _______________________________________________________________________ -->
3633<div class="doc_subsubsection">
Reid Spencer2eadb532007-01-21 00:29:26 +00003634 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003635</div>
3636<div class="doc_text">
3637
3638<h5>Syntax:</h5>
3639<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00003640 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003641</pre>
3642
3643<h5>Overview:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00003644<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003645unsigned integer equivalent of type <tt>ty2</tt>.
3646</p>
3647
3648<h5>Arguments:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00003649<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemand4d45c22007-11-17 03:58:34 +00003650scalar or vector <a href="#t_floating">floating point</a> value, and a type
3651to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3652type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3653vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003654
3655<h5>Semantics:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00003656<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003657<a href="#t_floating">floating point</a> operand into the nearest (rounding
3658towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3659the results are undefined.</p>
3660
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003661<h5>Example:</h5>
3662<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00003663 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00003664 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer753163d2007-07-31 14:40:14 +00003665 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003666</pre>
3667</div>
3668
3669<!-- _______________________________________________________________________ -->
3670<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00003671 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003672</div>
3673<div class="doc_text">
3674
3675<h5>Syntax:</h5>
3676<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00003677 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003678</pre>
3679
3680<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00003681<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003682<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003683</p>
3684
Chris Lattnera8292f32002-05-06 22:08:29 +00003685<h5>Arguments:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00003686<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemand4d45c22007-11-17 03:58:34 +00003687scalar or vector <a href="#t_floating">floating point</a> value, and a type
3688to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3689type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3690vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003691
Chris Lattnera8292f32002-05-06 22:08:29 +00003692<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00003693<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003694<a href="#t_floating">floating point</a> operand into the nearest (rounding
3695towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3696the results are undefined.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003697
Chris Lattner70de6632001-07-09 00:26:23 +00003698<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003699<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00003700 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00003701 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003702 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003703</pre>
3704</div>
3705
3706<!-- _______________________________________________________________________ -->
3707<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00003708 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003709</div>
3710<div class="doc_text">
3711
3712<h5>Syntax:</h5>
3713<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00003714 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003715</pre>
3716
3717<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00003718<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003719integer and converts that value to the <tt>ty2</tt> type.</p>
3720
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003721<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00003722<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3723scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3724to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3725type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3726floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003727
3728<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00003729<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003730integer quantity and converts it to the corresponding floating point value. If
Jeff Cohenbeccb742007-04-22 14:56:37 +00003731the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003732
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003733<h5>Example:</h5>
3734<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003735 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohen222a8a42007-04-29 01:07:00 +00003736 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003737</pre>
3738</div>
3739
3740<!-- _______________________________________________________________________ -->
3741<div class="doc_subsubsection">
Reid Spencer51b07252006-11-09 23:03:26 +00003742 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003743</div>
3744<div class="doc_text">
3745
3746<h5>Syntax:</h5>
3747<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00003748 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003749</pre>
3750
3751<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00003752<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003753integer and converts that value to the <tt>ty2</tt> type.</p>
3754
3755<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00003756<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3757scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3758to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3759type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3760floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003761
3762<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00003763<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003764integer quantity and converts it to the corresponding floating point value. If
Jeff Cohenbeccb742007-04-22 14:56:37 +00003765the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003766
3767<h5>Example:</h5>
3768<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003769 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohen222a8a42007-04-29 01:07:00 +00003770 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003771</pre>
3772</div>
3773
3774<!-- _______________________________________________________________________ -->
3775<div class="doc_subsubsection">
Reid Spencerb7344ff2006-11-11 21:00:47 +00003776 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3777</div>
3778<div class="doc_text">
3779
3780<h5>Syntax:</h5>
3781<pre>
3782 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3783</pre>
3784
3785<h5>Overview:</h5>
3786<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3787the integer type <tt>ty2</tt>.</p>
3788
3789<h5>Arguments:</h5>
3790<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands16f122e2007-03-30 12:22:09 +00003791must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Reid Spencerb7344ff2006-11-11 21:00:47 +00003792<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3793
3794<h5>Semantics:</h5>
3795<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3796<tt>ty2</tt> by interpreting the pointer value as an integer and either
3797truncating or zero extending that value to the size of the integer type. If
3798<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3799<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohen222a8a42007-04-29 01:07:00 +00003800are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3801change.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00003802
3803<h5>Example:</h5>
3804<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00003805 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3806 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00003807</pre>
3808</div>
3809
3810<!-- _______________________________________________________________________ -->
3811<div class="doc_subsubsection">
3812 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3813</div>
3814<div class="doc_text">
3815
3816<h5>Syntax:</h5>
3817<pre>
3818 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3819</pre>
3820
3821<h5>Overview:</h5>
3822<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3823a pointer type, <tt>ty2</tt>.</p>
3824
3825<h5>Arguments:</h5>
Duncan Sands16f122e2007-03-30 12:22:09 +00003826<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencerb7344ff2006-11-11 21:00:47 +00003827value to cast, and a type to cast it to, which must be a
Anton Korobeynikova0554d92007-01-12 19:20:47 +00003828<a href="#t_pointer">pointer</a> type.
Reid Spencerb7344ff2006-11-11 21:00:47 +00003829
3830<h5>Semantics:</h5>
3831<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3832<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3833the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3834size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3835the size of a pointer then a zero extension is done. If they are the same size,
3836nothing is done (<i>no-op cast</i>).</p>
3837
3838<h5>Example:</h5>
3839<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00003840 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3841 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3842 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00003843</pre>
3844</div>
3845
3846<!-- _______________________________________________________________________ -->
3847<div class="doc_subsubsection">
Reid Spencer5b950642006-11-11 23:08:07 +00003848 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003849</div>
3850<div class="doc_text">
3851
3852<h5>Syntax:</h5>
3853<pre>
Reid Spencer5b950642006-11-11 23:08:07 +00003854 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003855</pre>
3856
3857<h5>Overview:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003858
Reid Spencer5b950642006-11-11 23:08:07 +00003859<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003860<tt>ty2</tt> without changing any bits.</p>
3861
3862<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003863
Reid Spencer5b950642006-11-11 23:08:07 +00003864<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohmanc05dca92008-09-08 16:45:59 +00003865a non-aggregate first class value, and a type to cast it to, which must also be
3866a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
3867<tt>value</tt>
Reid Spencere3db84c2007-01-09 20:08:58 +00003868and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003869type is a pointer, the destination type must also be a pointer. This
3870instruction supports bitwise conversion of vectors to integers and to vectors
3871of other types (as long as they have the same size).</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003872
3873<h5>Semantics:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00003874<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencerb7344ff2006-11-11 21:00:47 +00003875<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3876this conversion. The conversion is done as if the <tt>value</tt> had been
3877stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3878converted to other pointer types with this instruction. To convert pointers to
3879other types, use the <a href="#i_inttoptr">inttoptr</a> or
3880<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00003881
3882<h5>Example:</h5>
3883<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00003884 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003885 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3886 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
Chris Lattner70de6632001-07-09 00:26:23 +00003887</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003888</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00003889
Reid Spencer97c5fa42006-11-08 01:18:52 +00003890<!-- ======================================================================= -->
3891<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3892<div class="doc_text">
3893<p>The instructions in this category are the "miscellaneous"
3894instructions, which defy better classification.</p>
3895</div>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003896
3897<!-- _______________________________________________________________________ -->
3898<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3899</div>
3900<div class="doc_text">
3901<h5>Syntax:</h5>
Dan Gohmanc579d972008-09-09 01:02:47 +00003902<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003903</pre>
3904<h5>Overview:</h5>
Dan Gohmanc579d972008-09-09 01:02:47 +00003905<p>The '<tt>icmp</tt>' instruction returns a boolean value or
3906a vector of boolean values based on comparison
3907of its two integer, integer vector, or pointer operands.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003908<h5>Arguments:</h5>
3909<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohen222a8a42007-04-29 01:07:00 +00003910the condition code indicating the kind of comparison to perform. It is not
3911a value, just a keyword. The possible condition code are:
Reid Spencerc828a0e2006-11-18 21:50:54 +00003912<ol>
3913 <li><tt>eq</tt>: equal</li>
3914 <li><tt>ne</tt>: not equal </li>
3915 <li><tt>ugt</tt>: unsigned greater than</li>
3916 <li><tt>uge</tt>: unsigned greater or equal</li>
3917 <li><tt>ult</tt>: unsigned less than</li>
3918 <li><tt>ule</tt>: unsigned less or equal</li>
3919 <li><tt>sgt</tt>: signed greater than</li>
3920 <li><tt>sge</tt>: signed greater or equal</li>
3921 <li><tt>slt</tt>: signed less than</li>
3922 <li><tt>sle</tt>: signed less or equal</li>
3923</ol>
Chris Lattnerc0f423a2007-01-15 01:54:13 +00003924<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanc579d972008-09-09 01:02:47 +00003925<a href="#t_pointer">pointer</a>
3926or integer <a href="#t_vector">vector</a> typed.
3927They must also be identical types.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003928<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003929<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerc828a0e2006-11-18 21:50:54 +00003930the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanc579d972008-09-09 01:02:47 +00003931yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Reid Spencerc828a0e2006-11-18 21:50:54 +00003932<ol>
3933 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3934 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3935 </li>
3936 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3937 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3938 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00003939 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003940 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00003941 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003942 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00003943 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003944 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00003945 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003946 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00003947 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003948 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00003949 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003950 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00003951 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003952 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greif0f75ad02008-08-07 21:46:00 +00003953 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003954</ol>
3955<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohen222a8a42007-04-29 01:07:00 +00003956values are compared as if they were integers.</p>
Dan Gohmanc579d972008-09-09 01:02:47 +00003957<p>If the operands are integer vectors, then they are compared
3958element by element. The result is an <tt>i1</tt> vector with
3959the same number of elements as the values being compared.
3960Otherwise, the result is an <tt>i1</tt>.
3961</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003962
3963<h5>Example:</h5>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003964<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3965 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3966 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3967 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3968 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3969 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003970</pre>
3971</div>
3972
3973<!-- _______________________________________________________________________ -->
3974<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3975</div>
3976<div class="doc_text">
3977<h5>Syntax:</h5>
Dan Gohmanc579d972008-09-09 01:02:47 +00003978<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003979</pre>
3980<h5>Overview:</h5>
Dan Gohmanc579d972008-09-09 01:02:47 +00003981<p>The '<tt>fcmp</tt>' instruction returns a boolean value
3982or vector of boolean values based on comparison
3983of its operands.
3984<p>
3985If the operands are floating point scalars, then the result
3986type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
3987</p>
3988<p>If the operands are floating point vectors, then the result type
3989is a vector of boolean with the same number of elements as the
3990operands being compared.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003991<h5>Arguments:</h5>
3992<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohen222a8a42007-04-29 01:07:00 +00003993the condition code indicating the kind of comparison to perform. It is not
3994a value, just a keyword. The possible condition code are:
Reid Spencerc828a0e2006-11-18 21:50:54 +00003995<ol>
Reid Spencerf69acf32006-11-19 03:00:14 +00003996 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00003997 <li><tt>oeq</tt>: ordered and equal</li>
3998 <li><tt>ogt</tt>: ordered and greater than </li>
3999 <li><tt>oge</tt>: ordered and greater than or equal</li>
4000 <li><tt>olt</tt>: ordered and less than </li>
4001 <li><tt>ole</tt>: ordered and less than or equal</li>
4002 <li><tt>one</tt>: ordered and not equal</li>
4003 <li><tt>ord</tt>: ordered (no nans)</li>
4004 <li><tt>ueq</tt>: unordered or equal</li>
4005 <li><tt>ugt</tt>: unordered or greater than </li>
4006 <li><tt>uge</tt>: unordered or greater than or equal</li>
4007 <li><tt>ult</tt>: unordered or less than </li>
4008 <li><tt>ule</tt>: unordered or less than or equal</li>
4009 <li><tt>une</tt>: unordered or not equal</li>
4010 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004011 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004012</ol>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004013<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer02e0d1d2006-12-06 07:08:07 +00004014<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004015<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
4016either a <a href="#t_floating">floating point</a> type
4017or a <a href="#t_vector">vector</a> of floating point type.
4018They must have identical types.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004019<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004020<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanc579d972008-09-09 01:02:47 +00004021according to the condition code given as <tt>cond</tt>.
4022If the operands are vectors, then the vectors are compared
4023element by element.
4024Each comparison performed
4025always yields an <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerc828a0e2006-11-18 21:50:54 +00004026<ol>
4027 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004028 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004029 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004030 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004031 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004032 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004033 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004034 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004035 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004036 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004037 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004038 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greif0f75ad02008-08-07 21:46:00 +00004039 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004040 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4041 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004042 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004043 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004044 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004045 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004046 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004047 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004048 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004049 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004050 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004051 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greif0f75ad02008-08-07 21:46:00 +00004052 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00004053 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004054 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4055</ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004056
4057<h5>Example:</h5>
4058<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanc579d972008-09-09 01:02:47 +00004059 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4060 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4061 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00004062</pre>
4063</div>
4064
Reid Spencer97c5fa42006-11-08 01:18:52 +00004065<!-- _______________________________________________________________________ -->
Nate Begemand2195702008-05-12 19:01:56 +00004066<div class="doc_subsubsection">
4067 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4068</div>
4069<div class="doc_text">
4070<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004071<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begemand2195702008-05-12 19:01:56 +00004072</pre>
4073<h5>Overview:</h5>
4074<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4075element-wise comparison of its two integer vector operands.</p>
4076<h5>Arguments:</h5>
4077<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4078the condition code indicating the kind of comparison to perform. It is not
4079a value, just a keyword. The possible condition code are:
4080<ol>
4081 <li><tt>eq</tt>: equal</li>
4082 <li><tt>ne</tt>: not equal </li>
4083 <li><tt>ugt</tt>: unsigned greater than</li>
4084 <li><tt>uge</tt>: unsigned greater or equal</li>
4085 <li><tt>ult</tt>: unsigned less than</li>
4086 <li><tt>ule</tt>: unsigned less or equal</li>
4087 <li><tt>sgt</tt>: signed greater than</li>
4088 <li><tt>sge</tt>: signed greater or equal</li>
4089 <li><tt>slt</tt>: signed less than</li>
4090 <li><tt>sle</tt>: signed less or equal</li>
4091</ol>
Dan Gohmanc579d972008-09-09 01:02:47 +00004092<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begemand2195702008-05-12 19:01:56 +00004093<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4094<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004095<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemand2195702008-05-12 19:01:56 +00004096according to the condition code given as <tt>cond</tt>. The comparison yields a
4097<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4098identical type as the values being compared. The most significant bit in each
4099element is 1 if the element-wise comparison evaluates to true, and is 0
4100otherwise. All other bits of the result are undefined. The condition codes
4101are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
4102instruction</a>.
4103
4104<h5>Example:</h5>
4105<pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004106 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4107 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begemand2195702008-05-12 19:01:56 +00004108</pre>
4109</div>
4110
4111<!-- _______________________________________________________________________ -->
4112<div class="doc_subsubsection">
4113 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4114</div>
4115<div class="doc_text">
4116<h5>Syntax:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004117<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begemand2195702008-05-12 19:01:56 +00004118<h5>Overview:</h5>
4119<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4120element-wise comparison of its two floating point vector operands. The output
4121elements have the same width as the input elements.</p>
4122<h5>Arguments:</h5>
4123<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4124the condition code indicating the kind of comparison to perform. It is not
4125a value, just a keyword. The possible condition code are:
4126<ol>
4127 <li><tt>false</tt>: no comparison, always returns false</li>
4128 <li><tt>oeq</tt>: ordered and equal</li>
4129 <li><tt>ogt</tt>: ordered and greater than </li>
4130 <li><tt>oge</tt>: ordered and greater than or equal</li>
4131 <li><tt>olt</tt>: ordered and less than </li>
4132 <li><tt>ole</tt>: ordered and less than or equal</li>
4133 <li><tt>one</tt>: ordered and not equal</li>
4134 <li><tt>ord</tt>: ordered (no nans)</li>
4135 <li><tt>ueq</tt>: unordered or equal</li>
4136 <li><tt>ugt</tt>: unordered or greater than </li>
4137 <li><tt>uge</tt>: unordered or greater than or equal</li>
4138 <li><tt>ult</tt>: unordered or less than </li>
4139 <li><tt>ule</tt>: unordered or less than or equal</li>
4140 <li><tt>une</tt>: unordered or not equal</li>
4141 <li><tt>uno</tt>: unordered (either nans)</li>
4142 <li><tt>true</tt>: no comparison, always returns true</li>
4143</ol>
4144<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4145<a href="#t_floating">floating point</a> typed. They must also be identical
4146types.</p>
4147<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004148<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemand2195702008-05-12 19:01:56 +00004149according to the condition code given as <tt>cond</tt>. The comparison yields a
4150<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4151an identical number of elements as the values being compared, and each element
4152having identical with to the width of the floating point elements. The most
4153significant bit in each element is 1 if the element-wise comparison evaluates to
4154true, and is 0 otherwise. All other bits of the result are undefined. The
4155condition codes are evaluated identically to the
4156<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.
4157
4158<h5>Example:</h5>
4159<pre>
Chris Lattner0ae02092008-10-13 16:55:18 +00004160 <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4161 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt;
4162
4163 <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
4164 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt;
Nate Begemand2195702008-05-12 19:01:56 +00004165</pre>
4166</div>
4167
4168<!-- _______________________________________________________________________ -->
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004169<div class="doc_subsubsection">
4170 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4171</div>
4172
Reid Spencer97c5fa42006-11-08 01:18:52 +00004173<div class="doc_text">
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004174
Reid Spencer97c5fa42006-11-08 01:18:52 +00004175<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004176
Reid Spencer97c5fa42006-11-08 01:18:52 +00004177<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4178<h5>Overview:</h5>
4179<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4180the SSA graph representing the function.</p>
4181<h5>Arguments:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004182
Jeff Cohen222a8a42007-04-29 01:07:00 +00004183<p>The type of the incoming values is specified with the first type
Reid Spencer97c5fa42006-11-08 01:18:52 +00004184field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4185as arguments, with one pair for each predecessor basic block of the
4186current block. Only values of <a href="#t_firstclass">first class</a>
4187type may be used as the value arguments to the PHI node. Only labels
4188may be used as the label arguments.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004189
Reid Spencer97c5fa42006-11-08 01:18:52 +00004190<p>There must be no non-phi instructions between the start of a basic
4191block and the PHI instructions: i.e. PHI instructions must be first in
4192a basic block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004193
Reid Spencer97c5fa42006-11-08 01:18:52 +00004194<h5>Semantics:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004195
Jeff Cohen222a8a42007-04-29 01:07:00 +00004196<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4197specified by the pair corresponding to the predecessor basic block that executed
4198just prior to the current block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004199
Reid Spencer97c5fa42006-11-08 01:18:52 +00004200<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004201<pre>
4202Loop: ; Infinite loop that counts from 0 on up...
4203 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4204 %nextindvar = add i32 %indvar, 1
4205 br label %Loop
4206</pre>
Reid Spencer97c5fa42006-11-08 01:18:52 +00004207</div>
4208
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004209<!-- _______________________________________________________________________ -->
4210<div class="doc_subsubsection">
4211 <a name="i_select">'<tt>select</tt>' Instruction</a>
4212</div>
4213
4214<div class="doc_text">
4215
4216<h5>Syntax:</h5>
4217
4218<pre>
Dan Gohmanc579d972008-09-09 01:02:47 +00004219 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4220
4221 <i>selty</i> is either i1 or {&lt;N x i1&gt}
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004222</pre>
4223
4224<h5>Overview:</h5>
4225
4226<p>
4227The '<tt>select</tt>' instruction is used to choose one value based on a
4228condition, without branching.
4229</p>
4230
4231
4232<h5>Arguments:</h5>
4233
4234<p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004235The '<tt>select</tt>' instruction requires an 'i1' value or
4236a vector of 'i1' values indicating the
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004237condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanc579d972008-09-09 01:02:47 +00004238type. If the val1/val2 are vectors and
4239the condition is a scalar, then entire vectors are selected, not
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004240individual elements.
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004241</p>
4242
4243<h5>Semantics:</h5>
4244
4245<p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004246If the condition is an i1 and it evaluates to 1, the instruction returns the first
John Criswell88190562005-05-16 16:17:45 +00004247value argument; otherwise, it returns the second value argument.
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004248</p>
Dan Gohmanc579d972008-09-09 01:02:47 +00004249<p>
4250If the condition is a vector of i1, then the value arguments must
4251be vectors of the same size, and the selection is done element
4252by element.
4253</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004254
4255<h5>Example:</h5>
4256
4257<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00004258 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004259</pre>
4260</div>
4261
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00004262
4263<!-- _______________________________________________________________________ -->
4264<div class="doc_subsubsection">
Chris Lattnere23c1392005-05-06 05:47:36 +00004265 <a name="i_call">'<tt>call</tt>' Instruction</a>
4266</div>
4267
Misha Brukman76307852003-11-08 01:05:38 +00004268<div class="doc_text">
Chris Lattnere23c1392005-05-06 05:47:36 +00004269
Chris Lattner2f7c9632001-06-06 20:29:01 +00004270<h5>Syntax:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004271<pre>
Devang Patel02256232008-10-07 17:48:33 +00004272 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattnere23c1392005-05-06 05:47:36 +00004273</pre>
4274
Chris Lattner2f7c9632001-06-06 20:29:01 +00004275<h5>Overview:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004276
Misha Brukman76307852003-11-08 01:05:38 +00004277<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00004278
Chris Lattner2f7c9632001-06-06 20:29:01 +00004279<h5>Arguments:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004280
Misha Brukman76307852003-11-08 01:05:38 +00004281<p>This instruction requires several arguments:</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00004282
Chris Lattnera8292f32002-05-06 22:08:29 +00004283<ol>
Chris Lattner48b383b02003-11-25 01:02:51 +00004284 <li>
Chris Lattner0132aff2005-05-06 22:57:40 +00004285 <p>The optional "tail" marker indicates whether the callee function accesses
4286 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattnere23c1392005-05-06 05:47:36 +00004287 function call is eligible for tail call optimization. Note that calls may
4288 be marked "tail" even if they do not occur before a <a
4289 href="#i_ret"><tt>ret</tt></a> instruction.
Chris Lattner48b383b02003-11-25 01:02:51 +00004290 </li>
4291 <li>
Duncan Sands16f122e2007-03-30 12:22:09 +00004292 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattner0132aff2005-05-06 22:57:40 +00004293 convention</a> the call should use. If none is specified, the call defaults
4294 to using C calling conventions.
4295 </li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00004296
4297 <li>
4298 <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4299 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
4300 and '<tt>inreg</tt>' attributes are valid here.</p>
4301 </li>
4302
Chris Lattner0132aff2005-05-06 22:57:40 +00004303 <li>
Nick Lewyckya9b13d52007-09-08 13:57:50 +00004304 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4305 the type of the return value. Functions that return no value are marked
4306 <tt><a href="#t_void">void</a></tt>.</p>
4307 </li>
4308 <li>
4309 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4310 value being invoked. The argument types must match the types implied by
4311 this signature. This type can be omitted if the function is not varargs
4312 and if the function type does not return a pointer to a function.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00004313 </li>
4314 <li>
4315 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4316 be invoked. In most cases, this is a direct function invocation, but
4317 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswell88190562005-05-16 16:17:45 +00004318 to function value.</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00004319 </li>
4320 <li>
4321 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencerd845d162005-05-01 22:22:57 +00004322 function signature argument types. All arguments must be of
4323 <a href="#t_firstclass">first class</a> type. If the function signature
4324 indicates the function accepts a variable number of arguments, the extra
4325 arguments can be specified.</p>
Chris Lattner48b383b02003-11-25 01:02:51 +00004326 </li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00004327 <li>
Devang Patel02256232008-10-07 17:48:33 +00004328 <p>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patel7e9b05e2008-10-06 18:50:38 +00004329 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4330 '<tt>readnone</tt>' attributes are valid here.</p>
4331 </li>
Chris Lattnera8292f32002-05-06 22:08:29 +00004332</ol>
Chris Lattnere23c1392005-05-06 05:47:36 +00004333
Chris Lattner2f7c9632001-06-06 20:29:01 +00004334<h5>Semantics:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004335
Chris Lattner48b383b02003-11-25 01:02:51 +00004336<p>The '<tt>call</tt>' instruction is used to cause control flow to
4337transfer to a specified function, with its incoming arguments bound to
4338the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4339instruction in the called function, control flow continues with the
4340instruction after the function call, and the return value of the
Dan Gohmancc3132e2008-10-04 19:00:07 +00004341function is bound to the result argument.
Chris Lattnere23c1392005-05-06 05:47:36 +00004342
Chris Lattner2f7c9632001-06-06 20:29:01 +00004343<h5>Example:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00004344
4345<pre>
Nick Lewyckya9b13d52007-09-08 13:57:50 +00004346 %retval = call i32 @test(i32 %argc)
Chris Lattnerfb7c88d2008-03-21 17:24:17 +00004347 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4348 %X = tail call i32 @foo() <i>; yields i32</i>
4349 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4350 call void %foo(i8 97 signext)
Devang Pateld6cff512008-03-10 20:49:15 +00004351
4352 %struct.A = type { i32, i8 }
Devang Patel7e9b05e2008-10-06 18:50:38 +00004353 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmancc3132e2008-10-04 19:00:07 +00004354 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4355 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner6cbe8e92008-10-08 06:26:11 +00004356 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmaneefa7df2008-10-07 10:03:45 +00004357 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattnere23c1392005-05-06 05:47:36 +00004358</pre>
4359
Misha Brukman76307852003-11-08 01:05:38 +00004360</div>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004361
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004362<!-- _______________________________________________________________________ -->
Chris Lattner6a4a0492004-09-27 21:51:25 +00004363<div class="doc_subsubsection">
Chris Lattner33337472006-01-13 23:26:01 +00004364 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004365</div>
4366
Misha Brukman76307852003-11-08 01:05:38 +00004367<div class="doc_text">
Chris Lattner6a4a0492004-09-27 21:51:25 +00004368
Chris Lattner26ca62e2003-10-18 05:51:36 +00004369<h5>Syntax:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004370
4371<pre>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004372 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattner6a4a0492004-09-27 21:51:25 +00004373</pre>
4374
Chris Lattner26ca62e2003-10-18 05:51:36 +00004375<h5>Overview:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004376
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004377<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattner6a4a0492004-09-27 21:51:25 +00004378the "variable argument" area of a function call. It is used to implement the
4379<tt>va_arg</tt> macro in C.</p>
4380
Chris Lattner26ca62e2003-10-18 05:51:36 +00004381<h5>Arguments:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004382
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004383<p>This instruction takes a <tt>va_list*</tt> value and the type of
4384the argument. It returns a value of the specified argument type and
Jeff Cohen222a8a42007-04-29 01:07:00 +00004385increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004386actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004387
Chris Lattner26ca62e2003-10-18 05:51:36 +00004388<h5>Semantics:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004389
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004390<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4391type from the specified <tt>va_list</tt> and causes the
4392<tt>va_list</tt> to point to the next argument. For more information,
4393see the variable argument handling <a href="#int_varargs">Intrinsic
4394Functions</a>.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004395
4396<p>It is legal for this instruction to be called in a function which does not
4397take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman76307852003-11-08 01:05:38 +00004398function.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004399
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004400<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswell88190562005-05-16 16:17:45 +00004401href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattner6a4a0492004-09-27 21:51:25 +00004402argument.</p>
4403
Chris Lattner26ca62e2003-10-18 05:51:36 +00004404<h5>Example:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00004405
4406<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4407
Misha Brukman76307852003-11-08 01:05:38 +00004408</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004409
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004410<!-- *********************************************************************** -->
Chris Lattner48b383b02003-11-25 01:02:51 +00004411<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4412<!-- *********************************************************************** -->
Chris Lattner941515c2004-01-06 05:31:32 +00004413
Misha Brukman76307852003-11-08 01:05:38 +00004414<div class="doc_text">
Chris Lattnerfee11462004-02-12 17:01:32 +00004415
4416<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer4eefaab2007-04-01 08:04:23 +00004417well known names and semantics and are required to follow certain restrictions.
4418Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohen222a8a42007-04-29 01:07:00 +00004419language that does not require changing all of the transformations in LLVM when
Gabor Greifa54634a2007-07-06 22:07:22 +00004420adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00004421
John Criswell88190562005-05-16 16:17:45 +00004422<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohen222a8a42007-04-29 01:07:00 +00004423prefix is reserved in LLVM for intrinsic names; thus, function names may not
4424begin with this prefix. Intrinsic functions must always be external functions:
4425you cannot define the body of intrinsic functions. Intrinsic functions may
4426only be used in call or invoke instructions: it is illegal to take the address
4427of an intrinsic function. Additionally, because intrinsic functions are part
4428of the LLVM language, it is required if any are added that they be documented
4429here.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00004430
Chandler Carruth7132e002007-08-04 01:51:18 +00004431<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4432a family of functions that perform the same operation but on different data
4433types. Because LLVM can represent over 8 million different integer types,
4434overloading is used commonly to allow an intrinsic function to operate on any
4435integer type. One or more of the argument types or the result type can be
4436overloaded to accept any integer type. Argument types may also be defined as
4437exactly matching a previous argument's type or the result type. This allows an
4438intrinsic function which accepts multiple arguments, but needs all of them to
4439be of the same type, to only be overloaded with respect to a single argument or
4440the result.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00004441
Chandler Carruth7132e002007-08-04 01:51:18 +00004442<p>Overloaded intrinsics will have the names of its overloaded argument types
4443encoded into its function name, each preceded by a period. Only those types
4444which are overloaded result in a name suffix. Arguments whose type is matched
4445against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4446take an integer of any width and returns an integer of exactly the same integer
4447width. This leads to a family of functions such as
4448<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4449Only one type, the return type, is overloaded, and only one type suffix is
4450required. Because the argument's type is matched against the return type, it
4451does not require its own name suffix.</p>
Reid Spencer4eefaab2007-04-01 08:04:23 +00004452
4453<p>To learn how to add an intrinsic function, please see the
4454<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattnerfee11462004-02-12 17:01:32 +00004455</p>
4456
Misha Brukman76307852003-11-08 01:05:38 +00004457</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004458
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004459<!-- ======================================================================= -->
Chris Lattner941515c2004-01-06 05:31:32 +00004460<div class="doc_subsection">
4461 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4462</div>
4463
Misha Brukman76307852003-11-08 01:05:38 +00004464<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +00004465
Misha Brukman76307852003-11-08 01:05:38 +00004466<p>Variable argument support is defined in LLVM with the <a
Chris Lattner33337472006-01-13 23:26:01 +00004467 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner48b383b02003-11-25 01:02:51 +00004468intrinsic functions. These functions are related to the similarly
4469named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004470
Chris Lattner48b383b02003-11-25 01:02:51 +00004471<p>All of these functions operate on arguments that use a
4472target-specific value type "<tt>va_list</tt>". The LLVM assembly
4473language reference manual does not define what this type is, so all
Jeff Cohen222a8a42007-04-29 01:07:00 +00004474transformations should be prepared to handle these functions regardless of
4475the type used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004476
Chris Lattner30b868d2006-05-15 17:26:46 +00004477<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner48b383b02003-11-25 01:02:51 +00004478instruction and the variable argument handling intrinsic functions are
4479used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004480
Bill Wendling3716c5d2007-05-29 09:04:49 +00004481<div class="doc_code">
Chris Lattnerfee11462004-02-12 17:01:32 +00004482<pre>
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004483define i32 @test(i32 %X, ...) {
Chris Lattnerfee11462004-02-12 17:01:32 +00004484 ; Initialize variable argument processing
Jeff Cohen222a8a42007-04-29 01:07:00 +00004485 %ap = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004486 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004487 call void @llvm.va_start(i8* %ap2)
Chris Lattnerfee11462004-02-12 17:01:32 +00004488
4489 ; Read a single integer argument
Jeff Cohen222a8a42007-04-29 01:07:00 +00004490 %tmp = va_arg i8** %ap, i32
Chris Lattnerfee11462004-02-12 17:01:32 +00004491
4492 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohen222a8a42007-04-29 01:07:00 +00004493 %aq = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004494 %aq2 = bitcast i8** %aq to i8*
Jeff Cohen222a8a42007-04-29 01:07:00 +00004495 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004496 call void @llvm.va_end(i8* %aq2)
Chris Lattnerfee11462004-02-12 17:01:32 +00004497
4498 ; Stop processing of arguments.
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004499 call void @llvm.va_end(i8* %ap2)
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004500 ret i32 %tmp
Chris Lattnerfee11462004-02-12 17:01:32 +00004501}
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00004502
4503declare void @llvm.va_start(i8*)
4504declare void @llvm.va_copy(i8*, i8*)
4505declare void @llvm.va_end(i8*)
Chris Lattnerfee11462004-02-12 17:01:32 +00004506</pre>
Misha Brukman76307852003-11-08 01:05:38 +00004507</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004508
Bill Wendling3716c5d2007-05-29 09:04:49 +00004509</div>
4510
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004511<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00004512<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004513 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00004514</div>
4515
4516
Misha Brukman76307852003-11-08 01:05:38 +00004517<div class="doc_text">
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004518<h5>Syntax:</h5>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004519<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004520<h5>Overview:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004521<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
4522<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4523href="#i_va_arg">va_arg</a></tt>.</p>
4524
4525<h5>Arguments:</h5>
4526
4527<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
4528
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004529<h5>Semantics:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004530
4531<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
4532macro available in C. In a target-dependent way, it initializes the
Jeff Cohen222a8a42007-04-29 01:07:00 +00004533<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004534<tt>va_arg</tt> will produce the first variable argument passed to the function.
4535Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohen222a8a42007-04-29 01:07:00 +00004536last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004537
Misha Brukman76307852003-11-08 01:05:38 +00004538</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004539
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004540<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00004541<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004542 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00004543</div>
4544
Misha Brukman76307852003-11-08 01:05:38 +00004545<div class="doc_text">
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004546<h5>Syntax:</h5>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00004547<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004548<h5>Overview:</h5>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004549
Jeff Cohen222a8a42007-04-29 01:07:00 +00004550<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencer96a5f022007-04-04 02:42:35 +00004551which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner48b383b02003-11-25 01:02:51 +00004552or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004553
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004554<h5>Arguments:</h5>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004555
Jeff Cohen222a8a42007-04-29 01:07:00 +00004556<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004557
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004558<h5>Semantics:</h5>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004559
Misha Brukman76307852003-11-08 01:05:38 +00004560<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohen222a8a42007-04-29 01:07:00 +00004561macro available in C. In a target-dependent way, it destroys the
4562<tt>va_list</tt> element to which the argument points. Calls to <a
4563href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4564<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4565<tt>llvm.va_end</tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00004566
Misha Brukman76307852003-11-08 01:05:38 +00004567</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004568
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004569<!-- _______________________________________________________________________ -->
Chris Lattner941515c2004-01-06 05:31:32 +00004570<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004571 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner941515c2004-01-06 05:31:32 +00004572</div>
4573
Misha Brukman76307852003-11-08 01:05:38 +00004574<div class="doc_text">
Chris Lattner757528b0b2004-05-23 21:06:01 +00004575
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004576<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004577
4578<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00004579 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattner757528b0b2004-05-23 21:06:01 +00004580</pre>
4581
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004582<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004583
Jeff Cohen222a8a42007-04-29 01:07:00 +00004584<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4585from the source argument list to the destination argument list.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004586
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004587<h5>Arguments:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004588
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004589<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharth5305ea52005-06-22 20:38:11 +00004590The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00004591
Chris Lattner757528b0b2004-05-23 21:06:01 +00004592
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00004593<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004594
Jeff Cohen222a8a42007-04-29 01:07:00 +00004595<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4596macro available in C. In a target-dependent way, it copies the source
4597<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4598intrinsic is necessary because the <tt><a href="#int_va_start">
4599llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4600example, memory allocation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004601
Misha Brukman76307852003-11-08 01:05:38 +00004602</div>
Chris Lattner941515c2004-01-06 05:31:32 +00004603
Chris Lattnerfee11462004-02-12 17:01:32 +00004604<!-- ======================================================================= -->
4605<div class="doc_subsection">
Chris Lattner757528b0b2004-05-23 21:06:01 +00004606 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4607</div>
4608
4609<div class="doc_text">
4610
4611<p>
4612LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattner67c37d12008-08-05 18:29:16 +00004613Collection</a> (GC) requires the implementation and generation of these
4614intrinsics.
Reid Spencer96a5f022007-04-04 02:42:35 +00004615These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattner757528b0b2004-05-23 21:06:01 +00004616stack</a>, as well as garbage collector implementations that require <a
Reid Spencer96a5f022007-04-04 02:42:35 +00004617href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattner757528b0b2004-05-23 21:06:01 +00004618Front-ends for type-safe garbage collected languages should generate these
4619intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4620href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4621</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00004622
4623<p>The garbage collection intrinsics only operate on objects in the generic
4624 address space (address space zero).</p>
4625
Chris Lattner757528b0b2004-05-23 21:06:01 +00004626</div>
4627
4628<!-- _______________________________________________________________________ -->
4629<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004630 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004631</div>
4632
4633<div class="doc_text">
4634
4635<h5>Syntax:</h5>
4636
4637<pre>
Chris Lattner12477732007-09-21 17:30:40 +00004638 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattner757528b0b2004-05-23 21:06:01 +00004639</pre>
4640
4641<h5>Overview:</h5>
4642
John Criswelldfe6a862004-12-10 15:51:16 +00004643<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattner757528b0b2004-05-23 21:06:01 +00004644the code generator, and allows some metadata to be associated with it.</p>
4645
4646<h5>Arguments:</h5>
4647
4648<p>The first argument specifies the address of a stack object that contains the
4649root pointer. The second pointer (which must be either a constant or a global
4650value address) contains the meta-data to be associated with the root.</p>
4651
4652<h5>Semantics:</h5>
4653
Chris Lattner851b7712008-04-24 05:59:56 +00004654<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattner757528b0b2004-05-23 21:06:01 +00004655location. At compile-time, the code generator generates information to allow
Gordon Henriksenfb56bde2007-12-25 02:31:26 +00004656the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4657intrinsic may only be used in a function which <a href="#gc">specifies a GC
4658algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004659
4660</div>
4661
4662
4663<!-- _______________________________________________________________________ -->
4664<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004665 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004666</div>
4667
4668<div class="doc_text">
4669
4670<h5>Syntax:</h5>
4671
4672<pre>
Chris Lattner12477732007-09-21 17:30:40 +00004673 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattner757528b0b2004-05-23 21:06:01 +00004674</pre>
4675
4676<h5>Overview:</h5>
4677
4678<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4679locations, allowing garbage collector implementations that require read
4680barriers.</p>
4681
4682<h5>Arguments:</h5>
4683
Chris Lattnerf9228072006-03-14 20:02:51 +00004684<p>The second argument is the address to read from, which should be an address
4685allocated from the garbage collector. The first object is a pointer to the
4686start of the referenced object, if needed by the language runtime (otherwise
4687null).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004688
4689<h5>Semantics:</h5>
4690
4691<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4692instruction, but may be replaced with substantially more complex code by the
Gordon Henriksenfb56bde2007-12-25 02:31:26 +00004693garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4694may only be used in a function which <a href="#gc">specifies a GC
4695algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004696
4697</div>
4698
4699
4700<!-- _______________________________________________________________________ -->
4701<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004702 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004703</div>
4704
4705<div class="doc_text">
4706
4707<h5>Syntax:</h5>
4708
4709<pre>
Chris Lattner12477732007-09-21 17:30:40 +00004710 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattner757528b0b2004-05-23 21:06:01 +00004711</pre>
4712
4713<h5>Overview:</h5>
4714
4715<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4716locations, allowing garbage collector implementations that require write
4717barriers (such as generational or reference counting collectors).</p>
4718
4719<h5>Arguments:</h5>
4720
Chris Lattnerf9228072006-03-14 20:02:51 +00004721<p>The first argument is the reference to store, the second is the start of the
4722object to store it to, and the third is the address of the field of Obj to
4723store to. If the runtime does not require a pointer to the object, Obj may be
4724null.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004725
4726<h5>Semantics:</h5>
4727
4728<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4729instruction, but may be replaced with substantially more complex code by the
Gordon Henriksenfb56bde2007-12-25 02:31:26 +00004730garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4731may only be used in a function which <a href="#gc">specifies a GC
4732algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00004733
4734</div>
4735
4736
4737
4738<!-- ======================================================================= -->
4739<div class="doc_subsection">
Chris Lattner3649c3a2004-02-14 04:08:35 +00004740 <a name="int_codegen">Code Generator Intrinsics</a>
4741</div>
4742
4743<div class="doc_text">
4744<p>
4745These intrinsics are provided by LLVM to expose special features that may only
4746be implemented with code generator support.
4747</p>
4748
4749</div>
4750
4751<!-- _______________________________________________________________________ -->
4752<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004753 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00004754</div>
4755
4756<div class="doc_text">
4757
4758<h5>Syntax:</h5>
4759<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00004760 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00004761</pre>
4762
4763<h5>Overview:</h5>
4764
4765<p>
Chris Lattnerc1fb4262006-10-15 20:05:59 +00004766The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4767target-specific value indicating the return address of the current function
4768or one of its callers.
Chris Lattner3649c3a2004-02-14 04:08:35 +00004769</p>
4770
4771<h5>Arguments:</h5>
4772
4773<p>
4774The argument to this intrinsic indicates which function to return the address
4775for. Zero indicates the calling function, one indicates its caller, etc. The
4776argument is <b>required</b> to be a constant integer value.
4777</p>
4778
4779<h5>Semantics:</h5>
4780
4781<p>
4782The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4783the return address of the specified call frame, or zero if it cannot be
4784identified. The value returned by this intrinsic is likely to be incorrect or 0
4785for arguments other than zero, so it should only be used for debugging purposes.
4786</p>
4787
4788<p>
4789Note that calling this intrinsic does not prevent function inlining or other
Chris Lattner2e6eb5f2005-03-07 20:30:51 +00004790aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner3649c3a2004-02-14 04:08:35 +00004791source-language caller.
4792</p>
4793</div>
4794
4795
4796<!-- _______________________________________________________________________ -->
4797<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004798 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00004799</div>
4800
4801<div class="doc_text">
4802
4803<h5>Syntax:</h5>
4804<pre>
Chris Lattner12477732007-09-21 17:30:40 +00004805 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00004806</pre>
4807
4808<h5>Overview:</h5>
4809
4810<p>
Chris Lattnerc1fb4262006-10-15 20:05:59 +00004811The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4812target-specific frame pointer value for the specified stack frame.
Chris Lattner3649c3a2004-02-14 04:08:35 +00004813</p>
4814
4815<h5>Arguments:</h5>
4816
4817<p>
4818The argument to this intrinsic indicates which function to return the frame
4819pointer for. Zero indicates the calling function, one indicates its caller,
4820etc. The argument is <b>required</b> to be a constant integer value.
4821</p>
4822
4823<h5>Semantics:</h5>
4824
4825<p>
4826The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4827the frame address of the specified call frame, or zero if it cannot be
4828identified. The value returned by this intrinsic is likely to be incorrect or 0
4829for arguments other than zero, so it should only be used for debugging purposes.
4830</p>
4831
4832<p>
4833Note that calling this intrinsic does not prevent function inlining or other
Chris Lattner2e6eb5f2005-03-07 20:30:51 +00004834aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner3649c3a2004-02-14 04:08:35 +00004835source-language caller.
4836</p>
4837</div>
4838
Chris Lattnerc8a2c222005-02-28 19:24:19 +00004839<!-- _______________________________________________________________________ -->
4840<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004841 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner2f0f0012006-01-13 02:03:13 +00004842</div>
4843
4844<div class="doc_text">
4845
4846<h5>Syntax:</h5>
4847<pre>
Chris Lattner12477732007-09-21 17:30:40 +00004848 declare i8 *@llvm.stacksave()
Chris Lattner2f0f0012006-01-13 02:03:13 +00004849</pre>
4850
4851<h5>Overview:</h5>
4852
4853<p>
4854The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencer96a5f022007-04-04 02:42:35 +00004855the function stack, for use with <a href="#int_stackrestore">
Chris Lattner2f0f0012006-01-13 02:03:13 +00004856<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4857features like scoped automatic variable sized arrays in C99.
4858</p>
4859
4860<h5>Semantics:</h5>
4861
4862<p>
4863This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencer96a5f022007-04-04 02:42:35 +00004864href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner2f0f0012006-01-13 02:03:13 +00004865<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4866<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4867state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4868practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4869that were allocated after the <tt>llvm.stacksave</tt> was executed.
4870</p>
4871
4872</div>
4873
4874<!-- _______________________________________________________________________ -->
4875<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004876 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner2f0f0012006-01-13 02:03:13 +00004877</div>
4878
4879<div class="doc_text">
4880
4881<h5>Syntax:</h5>
4882<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00004883 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner2f0f0012006-01-13 02:03:13 +00004884</pre>
4885
4886<h5>Overview:</h5>
4887
4888<p>
4889The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4890the function stack to the state it was in when the corresponding <a
Reid Spencer96a5f022007-04-04 02:42:35 +00004891href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner2f0f0012006-01-13 02:03:13 +00004892useful for implementing language features like scoped automatic variable sized
4893arrays in C99.
4894</p>
4895
4896<h5>Semantics:</h5>
4897
4898<p>
Reid Spencer96a5f022007-04-04 02:42:35 +00004899See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner2f0f0012006-01-13 02:03:13 +00004900</p>
4901
4902</div>
4903
4904
4905<!-- _______________________________________________________________________ -->
4906<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004907 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00004908</div>
4909
4910<div class="doc_text">
4911
4912<h5>Syntax:</h5>
4913<pre>
Chris Lattner12477732007-09-21 17:30:40 +00004914 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattnerc8a2c222005-02-28 19:24:19 +00004915</pre>
4916
4917<h5>Overview:</h5>
4918
4919
4920<p>
4921The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswell88190562005-05-16 16:17:45 +00004922a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4923no
4924effect on the behavior of the program but can change its performance
Chris Lattnerff851072005-02-28 19:47:14 +00004925characteristics.
Chris Lattnerc8a2c222005-02-28 19:24:19 +00004926</p>
4927
4928<h5>Arguments:</h5>
4929
4930<p>
4931<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4932determining if the fetch should be for a read (0) or write (1), and
4933<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattnerd3e641c2005-03-07 20:31:38 +00004934locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattnerc8a2c222005-02-28 19:24:19 +00004935<tt>locality</tt> arguments must be constant integers.
4936</p>
4937
4938<h5>Semantics:</h5>
4939
4940<p>
4941This intrinsic does not modify the behavior of the program. In particular,
4942prefetches cannot trap and do not produce a value. On targets that support this
4943intrinsic, the prefetch can provide hints to the processor cache for better
4944performance.
4945</p>
4946
4947</div>
4948
Andrew Lenharthb4427912005-03-28 20:05:49 +00004949<!-- _______________________________________________________________________ -->
4950<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004951 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharthb4427912005-03-28 20:05:49 +00004952</div>
4953
4954<div class="doc_text">
4955
4956<h5>Syntax:</h5>
4957<pre>
Chris Lattner12477732007-09-21 17:30:40 +00004958 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharthb4427912005-03-28 20:05:49 +00004959</pre>
4960
4961<h5>Overview:</h5>
4962
4963
4964<p>
John Criswell88190562005-05-16 16:17:45 +00004965The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattner67c37d12008-08-05 18:29:16 +00004966(PC) in a region of
4967code to simulators and other tools. The method is target specific, but it is
4968expected that the marker will use exported symbols to transmit the PC of the
4969marker.
4970The marker makes no guarantees that it will remain with any specific instruction
4971after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb40261e2006-03-24 07:16:10 +00004972optimizations. The intended use is to be inserted after optimizations to allow
John Criswell88190562005-05-16 16:17:45 +00004973correlations of simulation runs.
Andrew Lenharthb4427912005-03-28 20:05:49 +00004974</p>
4975
4976<h5>Arguments:</h5>
4977
4978<p>
4979<tt>id</tt> is a numerical id identifying the marker.
4980</p>
4981
4982<h5>Semantics:</h5>
4983
4984<p>
4985This intrinsic does not modify the behavior of the program. Backends that do not
4986support this intrinisic may ignore it.
4987</p>
4988
4989</div>
4990
Andrew Lenharth01aa5632005-11-11 16:47:30 +00004991<!-- _______________________________________________________________________ -->
4992<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00004993 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00004994</div>
4995
4996<div class="doc_text">
4997
4998<h5>Syntax:</h5>
4999<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005000 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth01aa5632005-11-11 16:47:30 +00005001</pre>
5002
5003<h5>Overview:</h5>
5004
5005
5006<p>
5007The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5008counter register (or similar low latency, high accuracy clocks) on those targets
5009that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
5010As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
5011should only be used for small timings.
5012</p>
5013
5014<h5>Semantics:</h5>
5015
5016<p>
5017When directly supported, reading the cycle counter should not modify any memory.
5018Implementations are allowed to either return a application specific value or a
5019system wide value. On backends without support, this is lowered to a constant 0.
5020</p>
5021
5022</div>
5023
Chris Lattner3649c3a2004-02-14 04:08:35 +00005024<!-- ======================================================================= -->
5025<div class="doc_subsection">
Chris Lattnerfee11462004-02-12 17:01:32 +00005026 <a name="int_libc">Standard C Library Intrinsics</a>
5027</div>
5028
5029<div class="doc_text">
5030<p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005031LLVM provides intrinsics for a few important standard C library functions.
5032These intrinsics allow source-language front-ends to pass information about the
5033alignment of the pointer arguments to the code generator, providing opportunity
5034for more efficient code generation.
Chris Lattnerfee11462004-02-12 17:01:32 +00005035</p>
5036
5037</div>
5038
5039<!-- _______________________________________________________________________ -->
5040<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005041 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattnerfee11462004-02-12 17:01:32 +00005042</div>
5043
5044<div class="doc_text">
5045
5046<h5>Syntax:</h5>
5047<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005048 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005049 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005050 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005051 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerfee11462004-02-12 17:01:32 +00005052</pre>
5053
5054<h5>Overview:</h5>
5055
5056<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005057The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattnerfee11462004-02-12 17:01:32 +00005058location to the destination location.
5059</p>
5060
5061<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005062Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5063intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattnerfee11462004-02-12 17:01:32 +00005064</p>
5065
5066<h5>Arguments:</h5>
5067
5068<p>
5069The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner0c8b2592006-03-03 00:07:20 +00005070the source. The third argument is an integer argument
Chris Lattnerfee11462004-02-12 17:01:32 +00005071specifying the number of bytes to copy, and the fourth argument is the alignment
5072of the source and destination locations.
5073</p>
5074
Chris Lattner4c67c482004-02-12 21:18:15 +00005075<p>
5076If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattner5316e5d2006-03-04 00:02:10 +00005077the caller guarantees that both the source and destination pointers are aligned
5078to that boundary.
Chris Lattner4c67c482004-02-12 21:18:15 +00005079</p>
5080
Chris Lattnerfee11462004-02-12 17:01:32 +00005081<h5>Semantics:</h5>
5082
5083<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005084The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattnerfee11462004-02-12 17:01:32 +00005085location to the destination location, which are not allowed to overlap. It
5086copies "len" bytes of memory over. If the argument is known to be aligned to
5087some boundary, this can be specified as the fourth argument, otherwise it should
5088be set to 0 or 1.
5089</p>
5090</div>
5091
5092
Chris Lattnerf30152e2004-02-12 18:10:10 +00005093<!-- _______________________________________________________________________ -->
5094<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005095 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattnerf30152e2004-02-12 18:10:10 +00005096</div>
5097
5098<div class="doc_text">
5099
5100<h5>Syntax:</h5>
5101<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005102 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005103 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005104 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005105 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattnerf30152e2004-02-12 18:10:10 +00005106</pre>
5107
5108<h5>Overview:</h5>
5109
5110<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005111The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5112location to the destination location. It is similar to the
Chris Lattnerec564022008-01-06 19:51:52 +00005113'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattnerf30152e2004-02-12 18:10:10 +00005114</p>
5115
5116<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005117Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5118intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattnerf30152e2004-02-12 18:10:10 +00005119</p>
5120
5121<h5>Arguments:</h5>
5122
5123<p>
5124The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner0c8b2592006-03-03 00:07:20 +00005125the source. The third argument is an integer argument
Chris Lattnerf30152e2004-02-12 18:10:10 +00005126specifying the number of bytes to copy, and the fourth argument is the alignment
5127of the source and destination locations.
5128</p>
5129
Chris Lattner4c67c482004-02-12 21:18:15 +00005130<p>
5131If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattner5316e5d2006-03-04 00:02:10 +00005132the caller guarantees that the source and destination pointers are aligned to
5133that boundary.
Chris Lattner4c67c482004-02-12 21:18:15 +00005134</p>
5135
Chris Lattnerf30152e2004-02-12 18:10:10 +00005136<h5>Semantics:</h5>
5137
5138<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005139The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattnerf30152e2004-02-12 18:10:10 +00005140location to the destination location, which may overlap. It
5141copies "len" bytes of memory over. If the argument is known to be aligned to
5142some boundary, this can be specified as the fourth argument, otherwise it should
5143be set to 0 or 1.
5144</p>
5145</div>
5146
Chris Lattner941515c2004-01-06 05:31:32 +00005147
Chris Lattner3649c3a2004-02-14 04:08:35 +00005148<!-- _______________________________________________________________________ -->
5149<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005150 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005151</div>
5152
5153<div class="doc_text">
5154
5155<h5>Syntax:</h5>
5156<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005157 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005158 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005159 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005160 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005161</pre>
5162
5163<h5>Overview:</h5>
5164
5165<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005166The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner3649c3a2004-02-14 04:08:35 +00005167byte value.
5168</p>
5169
5170<p>
5171Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5172does not return a value, and takes an extra alignment argument.
5173</p>
5174
5175<h5>Arguments:</h5>
5176
5177<p>
5178The first argument is a pointer to the destination to fill, the second is the
Chris Lattner0c8b2592006-03-03 00:07:20 +00005179byte value to fill it with, the third argument is an integer
Chris Lattner3649c3a2004-02-14 04:08:35 +00005180argument specifying the number of bytes to fill, and the fourth argument is the
5181known alignment of destination location.
5182</p>
5183
5184<p>
5185If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattner5316e5d2006-03-04 00:02:10 +00005186the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner3649c3a2004-02-14 04:08:35 +00005187</p>
5188
5189<h5>Semantics:</h5>
5190
5191<p>
Chris Lattner0c8b2592006-03-03 00:07:20 +00005192The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5193the
Chris Lattner3649c3a2004-02-14 04:08:35 +00005194destination location. If the argument is known to be aligned to some boundary,
5195this can be specified as the fourth argument, otherwise it should be set to 0 or
51961.
5197</p>
5198</div>
5199
5200
Chris Lattner3b4f4372004-06-11 02:28:03 +00005201<!-- _______________________________________________________________________ -->
5202<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005203 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005204</div>
5205
5206<div class="doc_text">
5207
5208<h5>Syntax:</h5>
Dale Johannesendd89d272007-10-02 17:47:38 +00005209<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohmanb6324c12007-10-15 20:30:11 +00005210floating point or vector of floating point type. Not all targets support all
5211types however.
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005212<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00005213 declare float @llvm.sqrt.f32(float %Val)
5214 declare double @llvm.sqrt.f64(double %Val)
5215 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5216 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5217 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005218</pre>
5219
5220<h5>Overview:</h5>
5221
5222<p>
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00005223The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohmanb6324c12007-10-15 20:30:11 +00005224returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005225<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner00d7cb92008-01-29 07:00:44 +00005226negative numbers other than -0.0 (which allows for better optimization, because
5227there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5228defined to return -0.0 like IEEE sqrt.
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005229</p>
5230
5231<h5>Arguments:</h5>
5232
5233<p>
5234The argument and return value are floating point numbers of the same type.
5235</p>
5236
5237<h5>Semantics:</h5>
5238
5239<p>
Dan Gohman33988db2007-07-16 14:37:41 +00005240This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattner8a8f2e52005-07-21 01:29:16 +00005241floating point number.
5242</p>
5243</div>
5244
Chris Lattner33b73f92006-09-08 06:34:02 +00005245<!-- _______________________________________________________________________ -->
5246<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005247 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattner33b73f92006-09-08 06:34:02 +00005248</div>
5249
5250<div class="doc_text">
5251
5252<h5>Syntax:</h5>
Dale Johannesendd89d272007-10-02 17:47:38 +00005253<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohmanb6324c12007-10-15 20:30:11 +00005254floating point or vector of floating point type. Not all targets support all
5255types however.
Chris Lattner33b73f92006-09-08 06:34:02 +00005256<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00005257 declare float @llvm.powi.f32(float %Val, i32 %power)
5258 declare double @llvm.powi.f64(double %Val, i32 %power)
5259 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5260 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5261 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattner33b73f92006-09-08 06:34:02 +00005262</pre>
5263
5264<h5>Overview:</h5>
5265
5266<p>
5267The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5268specified (positive or negative) power. The order of evaluation of
Dan Gohmanb6324c12007-10-15 20:30:11 +00005269multiplications is not defined. When a vector of floating point type is
5270used, the second argument remains a scalar integer value.
Chris Lattner33b73f92006-09-08 06:34:02 +00005271</p>
5272
5273<h5>Arguments:</h5>
5274
5275<p>
5276The second argument is an integer power, and the first is a value to raise to
5277that power.
5278</p>
5279
5280<h5>Semantics:</h5>
5281
5282<p>
5283This function returns the first value raised to the second power with an
5284unspecified sequence of rounding operations.</p>
5285</div>
5286
Dan Gohmanb6324c12007-10-15 20:30:11 +00005287<!-- _______________________________________________________________________ -->
5288<div class="doc_subsubsection">
5289 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5290</div>
5291
5292<div class="doc_text">
5293
5294<h5>Syntax:</h5>
5295<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5296floating point or vector of floating point type. Not all targets support all
5297types however.
5298<pre>
5299 declare float @llvm.sin.f32(float %Val)
5300 declare double @llvm.sin.f64(double %Val)
5301 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5302 declare fp128 @llvm.sin.f128(fp128 %Val)
5303 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5304</pre>
5305
5306<h5>Overview:</h5>
5307
5308<p>
5309The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5310</p>
5311
5312<h5>Arguments:</h5>
5313
5314<p>
5315The argument and return value are floating point numbers of the same type.
5316</p>
5317
5318<h5>Semantics:</h5>
5319
5320<p>
5321This function returns the sine of the specified operand, returning the
5322same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmand0806a02007-10-17 18:05:13 +00005323conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005324</div>
5325
5326<!-- _______________________________________________________________________ -->
5327<div class="doc_subsubsection">
5328 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5329</div>
5330
5331<div class="doc_text">
5332
5333<h5>Syntax:</h5>
5334<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5335floating point or vector of floating point type. Not all targets support all
5336types however.
5337<pre>
5338 declare float @llvm.cos.f32(float %Val)
5339 declare double @llvm.cos.f64(double %Val)
5340 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5341 declare fp128 @llvm.cos.f128(fp128 %Val)
5342 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5343</pre>
5344
5345<h5>Overview:</h5>
5346
5347<p>
5348The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5349</p>
5350
5351<h5>Arguments:</h5>
5352
5353<p>
5354The argument and return value are floating point numbers of the same type.
5355</p>
5356
5357<h5>Semantics:</h5>
5358
5359<p>
5360This function returns the cosine of the specified operand, returning the
5361same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmand0806a02007-10-17 18:05:13 +00005362conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005363</div>
5364
5365<!-- _______________________________________________________________________ -->
5366<div class="doc_subsubsection">
5367 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5368</div>
5369
5370<div class="doc_text">
5371
5372<h5>Syntax:</h5>
5373<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5374floating point or vector of floating point type. Not all targets support all
5375types however.
5376<pre>
5377 declare float @llvm.pow.f32(float %Val, float %Power)
5378 declare double @llvm.pow.f64(double %Val, double %Power)
5379 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5380 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5381 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5382</pre>
5383
5384<h5>Overview:</h5>
5385
5386<p>
5387The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5388specified (positive or negative) power.
5389</p>
5390
5391<h5>Arguments:</h5>
5392
5393<p>
5394The second argument is a floating point power, and the first is a value to
5395raise to that power.
5396</p>
5397
5398<h5>Semantics:</h5>
5399
5400<p>
5401This function returns the first value raised to the second power,
5402returning the
5403same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmand0806a02007-10-17 18:05:13 +00005404conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00005405</div>
5406
Chris Lattner33b73f92006-09-08 06:34:02 +00005407
Andrew Lenharth1d463522005-05-03 18:01:48 +00005408<!-- ======================================================================= -->
5409<div class="doc_subsection">
Nate Begeman0f223bb2006-01-13 23:26:38 +00005410 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005411</div>
5412
5413<div class="doc_text">
5414<p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00005415LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005416These allow efficient code generation for some algorithms.
5417</p>
5418
5419</div>
5420
5421<!-- _______________________________________________________________________ -->
5422<div class="doc_subsubsection">
Reid Spencer96a5f022007-04-04 02:42:35 +00005423 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman0f223bb2006-01-13 23:26:38 +00005424</div>
5425
5426<div class="doc_text">
5427
5428<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005429<p>This is an overloaded intrinsic function. You can use bswap on any integer
Chandler Carruth7132e002007-08-04 01:51:18 +00005430type that is an even number of bytes (i.e. BitWidth % 16 == 0).
Nate Begeman0f223bb2006-01-13 23:26:38 +00005431<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005432 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5433 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5434 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman0f223bb2006-01-13 23:26:38 +00005435</pre>
5436
5437<h5>Overview:</h5>
5438
5439<p>
Reid Spencerf361c4f2007-04-02 02:25:19 +00005440The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer4eefaab2007-04-01 08:04:23 +00005441values with an even number of bytes (positive multiple of 16 bits). These are
5442useful for performing operations on data that is not in the target's native
5443byte order.
Nate Begeman0f223bb2006-01-13 23:26:38 +00005444</p>
5445
5446<h5>Semantics:</h5>
5447
5448<p>
Chandler Carruth7132e002007-08-04 01:51:18 +00005449The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005450and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5451intrinsic returns an i32 value that has the four bytes of the input i32
5452swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth7132e002007-08-04 01:51:18 +00005453i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5454<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer4eefaab2007-04-01 08:04:23 +00005455additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman0f223bb2006-01-13 23:26:38 +00005456</p>
5457
5458</div>
5459
5460<!-- _______________________________________________________________________ -->
5461<div class="doc_subsubsection">
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00005462 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005463</div>
5464
5465<div class="doc_text">
5466
5467<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005468<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
5469width. Not all targets support all bit widths however.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005470<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005471 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
5472 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005473 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00005474 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5475 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00005476</pre>
5477
5478<h5>Overview:</h5>
5479
5480<p>
Chris Lattner069b5bd2006-01-16 22:38:59 +00005481The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5482value.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005483</p>
5484
5485<h5>Arguments:</h5>
5486
5487<p>
Chris Lattner573f64e2005-05-07 01:46:40 +00005488The only argument is the value to be counted. The argument may be of any
Reid Spencer3e628eb92007-01-04 16:43:23 +00005489integer type. The return type must match the argument type.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005490</p>
5491
5492<h5>Semantics:</h5>
5493
5494<p>
5495The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5496</p>
5497</div>
5498
5499<!-- _______________________________________________________________________ -->
5500<div class="doc_subsubsection">
Chris Lattnerb748c672006-01-16 22:34:14 +00005501 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +00005502</div>
5503
5504<div class="doc_text">
5505
5506<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005507<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
5508integer bit width. Not all targets support all bit widths however.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005509<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005510 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5511 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005512 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00005513 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5514 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00005515</pre>
5516
5517<h5>Overview:</h5>
5518
5519<p>
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00005520The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5521leading zeros in a variable.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005522</p>
5523
5524<h5>Arguments:</h5>
5525
5526<p>
Chris Lattner573f64e2005-05-07 01:46:40 +00005527The only argument is the value to be counted. The argument may be of any
Reid Spencer3e628eb92007-01-04 16:43:23 +00005528integer type. The return type must match the argument type.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005529</p>
5530
5531<h5>Semantics:</h5>
5532
5533<p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005534The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5535in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005536of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharth1d463522005-05-03 18:01:48 +00005537</p>
5538</div>
Chris Lattner3b4f4372004-06-11 02:28:03 +00005539
5540
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005541
5542<!-- _______________________________________________________________________ -->
5543<div class="doc_subsubsection">
Chris Lattnerb748c672006-01-16 22:34:14 +00005544 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005545</div>
5546
5547<div class="doc_text">
5548
5549<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005550<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
5551integer bit width. Not all targets support all bit widths however.
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005552<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005553 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5554 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005555 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00005556 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5557 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005558</pre>
5559
5560<h5>Overview:</h5>
5561
5562<p>
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00005563The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5564trailing zeros.
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005565</p>
5566
5567<h5>Arguments:</h5>
5568
5569<p>
5570The only argument is the value to be counted. The argument may be of any
Reid Spencer3e628eb92007-01-04 16:43:23 +00005571integer type. The return type must match the argument type.
Chris Lattnerefa20fa2005-05-15 19:39:26 +00005572</p>
5573
5574<h5>Semantics:</h5>
5575
5576<p>
5577The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5578in a variable. If the src == 0 then the result is the size in bits of the type
5579of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5580</p>
5581</div>
5582
Reid Spencer8a5799f2007-04-01 08:27:01 +00005583<!-- _______________________________________________________________________ -->
5584<div class="doc_subsubsection">
Reid Spencerea2945e2007-04-10 02:51:31 +00005585 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencer8bc7d952007-04-01 19:00:37 +00005586</div>
5587
5588<div class="doc_text">
5589
5590<h5>Syntax:</h5>
Reid Spencerea2945e2007-04-10 02:51:31 +00005591<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Reid Spencer8bc7d952007-04-01 19:00:37 +00005592on any integer bit width.
5593<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005594 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5595 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencer8bc7d952007-04-01 19:00:37 +00005596</pre>
5597
5598<h5>Overview:</h5>
Reid Spencerea2945e2007-04-10 02:51:31 +00005599<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencer8bc7d952007-04-01 19:00:37 +00005600range of bits from an integer value and returns them in the same bit width as
5601the original value.</p>
5602
5603<h5>Arguments:</h5>
5604<p>The first argument, <tt>%val</tt> and the result may be integer types of
5605any bit width but they must have the same bit width. The second and third
Reid Spencer96a5f022007-04-04 02:42:35 +00005606arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencer8bc7d952007-04-01 19:00:37 +00005607
5608<h5>Semantics:</h5>
Reid Spencerea2945e2007-04-10 02:51:31 +00005609<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencer96a5f022007-04-04 02:42:35 +00005610of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5611<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5612operates in forward mode.</p>
5613<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5614right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencer8bc7d952007-04-01 19:00:37 +00005615only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5616<ol>
5617 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5618 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5619 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5620 to determine the number of bits to retain.</li>
5621 <li>A mask of the retained bits is created by shifting a -1 value.</li>
5622 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
5623</ol>
Reid Spencer70845c02007-05-14 16:14:57 +00005624<p>In reverse mode, a similar computation is made except that the bits are
5625returned in the reverse order. So, for example, if <tt>X</tt> has the value
5626<tt>i16 0x0ACF (101011001111)</tt> and we apply
5627<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5628<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencer8bc7d952007-04-01 19:00:37 +00005629</div>
5630
Reid Spencer5bf54c82007-04-11 23:23:49 +00005631<div class="doc_subsubsection">
5632 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5633</div>
5634
5635<div class="doc_text">
5636
5637<h5>Syntax:</h5>
5638<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
5639on any integer bit width.
5640<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00005641 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5642 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencer5bf54c82007-04-11 23:23:49 +00005643</pre>
5644
5645<h5>Overview:</h5>
5646<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5647of bits in an integer value with another integer value. It returns the integer
5648with the replaced bits.</p>
5649
5650<h5>Arguments:</h5>
5651<p>The first argument, <tt>%val</tt> and the result may be integer types of
5652any bit width but they must have the same bit width. <tt>%val</tt> is the value
5653whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5654integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5655type since they specify only a bit index.</p>
5656
5657<h5>Semantics:</h5>
5658<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5659of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5660<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5661operates in forward mode.</p>
5662<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5663truncating it down to the size of the replacement area or zero extending it
5664up to that size.</p>
5665<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5666are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5667in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
5668to the <tt>%hi</tt>th bit.
Reid Spencer146281c2007-05-14 16:50:20 +00005669<p>In reverse mode, a similar computation is made except that the bits are
5670reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
5671<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
Reid Spencer5bf54c82007-04-11 23:23:49 +00005672<h5>Examples:</h5>
5673<pre>
Reid Spencerc70afc32007-04-12 01:03:03 +00005674 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencer146281c2007-05-14 16:50:20 +00005675 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5676 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5677 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerc70afc32007-04-12 01:03:03 +00005678 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencer7972c472007-04-11 23:49:50 +00005679</pre>
Reid Spencer5bf54c82007-04-11 23:23:49 +00005680</div>
5681
Chris Lattner941515c2004-01-06 05:31:32 +00005682<!-- ======================================================================= -->
5683<div class="doc_subsection">
5684 <a name="int_debugger">Debugger Intrinsics</a>
5685</div>
5686
5687<div class="doc_text">
5688<p>
5689The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
5690are described in the <a
5691href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
5692Debugging</a> document.
5693</p>
5694</div>
5695
5696
Jim Laskey2211f492007-03-14 19:31:19 +00005697<!-- ======================================================================= -->
5698<div class="doc_subsection">
5699 <a name="int_eh">Exception Handling Intrinsics</a>
5700</div>
5701
5702<div class="doc_text">
5703<p> The LLVM exception handling intrinsics (which all start with
5704<tt>llvm.eh.</tt> prefix), are described in the <a
5705href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5706Handling</a> document. </p>
5707</div>
5708
Tanya Lattnercb1b9602007-06-15 20:50:54 +00005709<!-- ======================================================================= -->
5710<div class="doc_subsection">
Duncan Sands86e01192007-09-11 14:10:23 +00005711 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands644f9172007-07-27 12:58:54 +00005712</div>
5713
5714<div class="doc_text">
5715<p>
Duncan Sands86e01192007-09-11 14:10:23 +00005716 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands644f9172007-07-27 12:58:54 +00005717 the <tt>nest</tt> attribute, from a function. The result is a callable
5718 function pointer lacking the nest parameter - the caller does not need
5719 to provide a value for it. Instead, the value to use is stored in
5720 advance in a "trampoline", a block of memory usually allocated
5721 on the stack, which also contains code to splice the nest value into the
5722 argument list. This is used to implement the GCC nested function address
5723 extension.
5724</p>
5725<p>
5726 For example, if the function is
5727 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling252570f2007-09-22 09:23:55 +00005728 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands644f9172007-07-27 12:58:54 +00005729<pre>
Duncan Sands86e01192007-09-11 14:10:23 +00005730 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5731 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5732 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5733 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands644f9172007-07-27 12:58:54 +00005734</pre>
Bill Wendling252570f2007-09-22 09:23:55 +00005735 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5736 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands644f9172007-07-27 12:58:54 +00005737</div>
5738
5739<!-- _______________________________________________________________________ -->
5740<div class="doc_subsubsection">
5741 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5742</div>
5743<div class="doc_text">
5744<h5>Syntax:</h5>
5745<pre>
Duncan Sands86e01192007-09-11 14:10:23 +00005746declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands644f9172007-07-27 12:58:54 +00005747</pre>
5748<h5>Overview:</h5>
5749<p>
Duncan Sands86e01192007-09-11 14:10:23 +00005750 This fills the memory pointed to by <tt>tramp</tt> with code
5751 and returns a function pointer suitable for executing it.
Duncan Sands644f9172007-07-27 12:58:54 +00005752</p>
5753<h5>Arguments:</h5>
5754<p>
5755 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5756 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5757 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsf2bcd372007-08-22 23:39:54 +00005758 intrinsic. Note that the size and the alignment are target-specific - LLVM
5759 currently provides no portable way of determining them, so a front-end that
5760 generates this intrinsic needs to have some target-specific knowledge.
5761 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands644f9172007-07-27 12:58:54 +00005762</p>
5763<h5>Semantics:</h5>
5764<p>
5765 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sands86e01192007-09-11 14:10:23 +00005766 dependent code, turning it into a function. A pointer to this function is
5767 returned, but needs to be bitcast to an
Duncan Sands644f9172007-07-27 12:58:54 +00005768 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sands86e01192007-09-11 14:10:23 +00005769 before being called. The new function's signature is the same as that of
5770 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5771 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5772 of pointer type. Calling the new function is equivalent to calling
5773 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5774 missing <tt>nest</tt> argument. If, after calling
5775 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5776 modified, then the effect of any later call to the returned function pointer is
5777 undefined.
Duncan Sands644f9172007-07-27 12:58:54 +00005778</p>
5779</div>
5780
5781<!-- ======================================================================= -->
5782<div class="doc_subsection">
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00005783 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
5784</div>
5785
5786<div class="doc_text">
5787<p>
5788 These intrinsic functions expand the "universal IR" of LLVM to represent
5789 hardware constructs for atomic operations and memory synchronization. This
5790 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattner67c37d12008-08-05 18:29:16 +00005791 is aimed at a low enough level to allow any programming models or APIs
5792 (Application Programming Interfaces) which
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00005793 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
5794 hardware behavior. Just as hardware provides a "universal IR" for source
5795 languages, it also provides a starting point for developing a "universal"
5796 atomic operation and synchronization IR.
5797</p>
5798<p>
5799 These do <em>not</em> form an API such as high-level threading libraries,
5800 software transaction memory systems, atomic primitives, and intrinsic
5801 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
5802 application libraries. The hardware interface provided by LLVM should allow
5803 a clean implementation of all of these APIs and parallel programming models.
5804 No one model or paradigm should be selected above others unless the hardware
5805 itself ubiquitously does so.
5806
5807</p>
5808</div>
5809
5810<!-- _______________________________________________________________________ -->
5811<div class="doc_subsubsection">
5812 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5813</div>
5814<div class="doc_text">
5815<h5>Syntax:</h5>
5816<pre>
5817declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
5818i1 &lt;device&gt; )
5819
5820</pre>
5821<h5>Overview:</h5>
5822<p>
5823 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5824 specific pairs of memory access types.
5825</p>
5826<h5>Arguments:</h5>
5827<p>
5828 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
5829 The first four arguments enables a specific barrier as listed below. The fith
5830 argument specifies that the barrier applies to io or device or uncached memory.
5831
5832</p>
5833 <ul>
5834 <li><tt>ll</tt>: load-load barrier</li>
5835 <li><tt>ls</tt>: load-store barrier</li>
5836 <li><tt>sl</tt>: store-load barrier</li>
5837 <li><tt>ss</tt>: store-store barrier</li>
5838 <li><tt>device</tt>: barrier applies to device and uncached memory also.
5839 </ul>
5840<h5>Semantics:</h5>
5841<p>
5842 This intrinsic causes the system to enforce some ordering constraints upon
5843 the loads and stores of the program. This barrier does not indicate
5844 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5845 which they occur. For any of the specified pairs of load and store operations
5846 (f.ex. load-load, or store-load), all of the first operations preceding the
5847 barrier will complete before any of the second operations succeeding the
5848 barrier begin. Specifically the semantics for each pairing is as follows:
5849</p>
5850 <ul>
5851 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5852 after the barrier begins.</li>
5853
5854 <li><tt>ls</tt>: All loads before the barrier must complete before any
5855 store after the barrier begins.</li>
5856 <li><tt>ss</tt>: All stores before the barrier must complete before any
5857 store after the barrier begins.</li>
5858 <li><tt>sl</tt>: All stores before the barrier must complete before any
5859 load after the barrier begins.</li>
5860 </ul>
5861<p>
5862 These semantics are applied with a logical "and" behavior when more than one
5863 is enabled in a single memory barrier intrinsic.
5864</p>
5865<p>
5866 Backends may implement stronger barriers than those requested when they do not
5867 support as fine grained a barrier as requested. Some architectures do not
5868 need all types of barriers and on such architectures, these become noops.
5869</p>
5870<h5>Example:</h5>
5871<pre>
5872%ptr = malloc i32
5873 store i32 4, %ptr
5874
5875%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5876 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5877 <i>; guarantee the above finishes</i>
5878 store i32 8, %ptr <i>; before this begins</i>
5879</pre>
5880</div>
5881
Andrew Lenharth95528942008-02-21 06:45:13 +00005882<!-- _______________________________________________________________________ -->
5883<div class="doc_subsubsection">
Mon P Wang6a490372008-06-25 08:15:39 +00005884 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharth95528942008-02-21 06:45:13 +00005885</div>
5886<div class="doc_text">
5887<h5>Syntax:</h5>
5888<p>
Mon P Wang2c839d42008-07-30 04:36:53 +00005889 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
5890 any integer bit width and for different address spaces. Not all targets
5891 support all bit widths however.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00005892
5893<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00005894declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
5895declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
5896declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
5897declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00005898
5899</pre>
5900<h5>Overview:</h5>
5901<p>
5902 This loads a value in memory and compares it to a given value. If they are
5903 equal, it stores a new value into the memory.
5904</p>
5905<h5>Arguments:</h5>
5906<p>
Mon P Wang6a490372008-06-25 08:15:39 +00005907 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharth95528942008-02-21 06:45:13 +00005908 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
5909 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
5910 this integer type. While any bit width integer may be used, targets may only
5911 lower representations they support in hardware.
5912
5913</p>
5914<h5>Semantics:</h5>
5915<p>
5916 This entire intrinsic must be executed atomically. It first loads the value
5917 in memory pointed to by <tt>ptr</tt> and compares it with the value
5918 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
5919 loaded value is yielded in all cases. This provides the equivalent of an
5920 atomic compare-and-swap operation within the SSA framework.
5921</p>
5922<h5>Examples:</h5>
5923
5924<pre>
5925%ptr = malloc i32
5926 store i32 4, %ptr
5927
5928%val1 = add i32 4, 4
Mon P Wang2c839d42008-07-30 04:36:53 +00005929%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharth95528942008-02-21 06:45:13 +00005930 <i>; yields {i32}:result1 = 4</i>
5931%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5932%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5933
5934%val2 = add i32 1, 1
Mon P Wang2c839d42008-07-30 04:36:53 +00005935%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00005936 <i>; yields {i32}:result2 = 8</i>
5937%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
5938
5939%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
5940</pre>
5941</div>
5942
5943<!-- _______________________________________________________________________ -->
5944<div class="doc_subsubsection">
5945 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
5946</div>
5947<div class="doc_text">
5948<h5>Syntax:</h5>
5949
5950<p>
5951 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
5952 integer bit width. Not all targets support all bit widths however.</p>
5953<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00005954declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
5955declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
5956declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
5957declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00005958
5959</pre>
5960<h5>Overview:</h5>
5961<p>
5962 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
5963 the value from memory. It then stores the value in <tt>val</tt> in the memory
5964 at <tt>ptr</tt>.
5965</p>
5966<h5>Arguments:</h5>
5967
5968<p>
Mon P Wang6a490372008-06-25 08:15:39 +00005969 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharth95528942008-02-21 06:45:13 +00005970 <tt>val</tt> argument and the result must be integers of the same bit width.
5971 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
5972 integer type. The targets may only lower integer representations they
5973 support.
5974</p>
5975<h5>Semantics:</h5>
5976<p>
5977 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
5978 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
5979 equivalent of an atomic swap operation within the SSA framework.
5980
5981</p>
5982<h5>Examples:</h5>
5983<pre>
5984%ptr = malloc i32
5985 store i32 4, %ptr
5986
5987%val1 = add i32 4, 4
Mon P Wang2c839d42008-07-30 04:36:53 +00005988%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharth95528942008-02-21 06:45:13 +00005989 <i>; yields {i32}:result1 = 4</i>
5990%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5991%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5992
5993%val2 = add i32 1, 1
Mon P Wang2c839d42008-07-30 04:36:53 +00005994%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00005995 <i>; yields {i32}:result2 = 8</i>
5996
5997%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
5998%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
5999</pre>
6000</div>
6001
6002<!-- _______________________________________________________________________ -->
6003<div class="doc_subsubsection">
Mon P Wang6a490372008-06-25 08:15:39 +00006004 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharth95528942008-02-21 06:45:13 +00006005
6006</div>
6007<div class="doc_text">
6008<h5>Syntax:</h5>
6009<p>
Mon P Wang6a490372008-06-25 08:15:39 +00006010 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharth95528942008-02-21 06:45:13 +00006011 integer bit width. Not all targets support all bit widths however.</p>
6012<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006013declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6014declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6015declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6016declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharth95528942008-02-21 06:45:13 +00006017
6018</pre>
6019<h5>Overview:</h5>
6020<p>
6021 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6022 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6023</p>
6024<h5>Arguments:</h5>
6025<p>
6026
6027 The intrinsic takes two arguments, the first a pointer to an integer value
6028 and the second an integer value. The result is also an integer value. These
6029 integer types can have any bit width, but they must all have the same bit
6030 width. The targets may only lower integer representations they support.
6031</p>
6032<h5>Semantics:</h5>
6033<p>
6034 This intrinsic does a series of operations atomically. It first loads the
6035 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6036 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6037</p>
6038
6039<h5>Examples:</h5>
6040<pre>
6041%ptr = malloc i32
6042 store i32 4, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006043%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006044 <i>; yields {i32}:result1 = 4</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006045%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006046 <i>; yields {i32}:result2 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006047%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharth95528942008-02-21 06:45:13 +00006048 <i>; yields {i32}:result3 = 10</i>
Mon P Wang6a490372008-06-25 08:15:39 +00006049%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharth95528942008-02-21 06:45:13 +00006050</pre>
6051</div>
6052
Mon P Wang6a490372008-06-25 08:15:39 +00006053<!-- _______________________________________________________________________ -->
6054<div class="doc_subsubsection">
6055 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6056
6057</div>
6058<div class="doc_text">
6059<h5>Syntax:</h5>
6060<p>
6061 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wang2c839d42008-07-30 04:36:53 +00006062 any integer bit width and for different address spaces. Not all targets
6063 support all bit widths however.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006064<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006065declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6066declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6067declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6068declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006069
6070</pre>
6071<h5>Overview:</h5>
6072<p>
6073 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6074 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6075</p>
6076<h5>Arguments:</h5>
6077<p>
6078
6079 The intrinsic takes two arguments, the first a pointer to an integer value
6080 and the second an integer value. The result is also an integer value. These
6081 integer types can have any bit width, but they must all have the same bit
6082 width. The targets may only lower integer representations they support.
6083</p>
6084<h5>Semantics:</h5>
6085<p>
6086 This intrinsic does a series of operations atomically. It first loads the
6087 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6088 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6089</p>
6090
6091<h5>Examples:</h5>
6092<pre>
6093%ptr = malloc i32
6094 store i32 8, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006095%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang6a490372008-06-25 08:15:39 +00006096 <i>; yields {i32}:result1 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006097%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang6a490372008-06-25 08:15:39 +00006098 <i>; yields {i32}:result2 = 4</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006099%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang6a490372008-06-25 08:15:39 +00006100 <i>; yields {i32}:result3 = 2</i>
6101%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6102</pre>
6103</div>
6104
6105<!-- _______________________________________________________________________ -->
6106<div class="doc_subsubsection">
6107 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6108 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6109 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6110 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6111
6112</div>
6113<div class="doc_text">
6114<h5>Syntax:</h5>
6115<p>
6116 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6117 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wang2c839d42008-07-30 04:36:53 +00006118 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6119 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00006120<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006121declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6122declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6123declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6124declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006125
6126</pre>
6127
6128<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006129declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6130declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6131declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6132declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006133
6134</pre>
6135
6136<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006137declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6138declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6139declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6140declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006141
6142</pre>
6143
6144<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006145declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6146declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6147declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6148declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006149
6150</pre>
6151<h5>Overview:</h5>
6152<p>
6153 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6154 the value stored in memory at <tt>ptr</tt>. It yields the original value
6155 at <tt>ptr</tt>.
6156</p>
6157<h5>Arguments:</h5>
6158<p>
6159
6160 These intrinsics take two arguments, the first a pointer to an integer value
6161 and the second an integer value. The result is also an integer value. These
6162 integer types can have any bit width, but they must all have the same bit
6163 width. The targets may only lower integer representations they support.
6164</p>
6165<h5>Semantics:</h5>
6166<p>
6167 These intrinsics does a series of operations atomically. They first load the
6168 value stored at <tt>ptr</tt>. They then do the bitwise operation
6169 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6170 value stored at <tt>ptr</tt>.
6171</p>
6172
6173<h5>Examples:</h5>
6174<pre>
6175%ptr = malloc i32
6176 store i32 0x0F0F, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006177%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6a490372008-06-25 08:15:39 +00006178 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006179%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6a490372008-06-25 08:15:39 +00006180 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006181%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6a490372008-06-25 08:15:39 +00006182 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006183%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6a490372008-06-25 08:15:39 +00006184 <i>; yields {i32}:result3 = FF</i>
6185%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6186</pre>
6187</div>
6188
6189
6190<!-- _______________________________________________________________________ -->
6191<div class="doc_subsubsection">
6192 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6193 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6194 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6195 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6196
6197</div>
6198<div class="doc_text">
6199<h5>Syntax:</h5>
6200<p>
6201 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6202 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wang2c839d42008-07-30 04:36:53 +00006203 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6204 address spaces. Not all targets
Mon P Wang6a490372008-06-25 08:15:39 +00006205 support all bit widths however.</p>
6206<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006207declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6208declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6209declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6210declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006211
6212</pre>
6213
6214<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006215declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6216declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6217declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6218declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006219
6220</pre>
6221
6222<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006223declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6224declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6225declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6226declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006227
6228</pre>
6229
6230<pre>
Mon P Wang2c839d42008-07-30 04:36:53 +00006231declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6232declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6233declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6234declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6a490372008-06-25 08:15:39 +00006235
6236</pre>
6237<h5>Overview:</h5>
6238<p>
6239 These intrinsics takes the signed or unsigned minimum or maximum of
6240 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6241 original value at <tt>ptr</tt>.
6242</p>
6243<h5>Arguments:</h5>
6244<p>
6245
6246 These intrinsics take two arguments, the first a pointer to an integer value
6247 and the second an integer value. The result is also an integer value. These
6248 integer types can have any bit width, but they must all have the same bit
6249 width. The targets may only lower integer representations they support.
6250</p>
6251<h5>Semantics:</h5>
6252<p>
6253 These intrinsics does a series of operations atomically. They first load the
6254 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6255 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6256 the original value stored at <tt>ptr</tt>.
6257</p>
6258
6259<h5>Examples:</h5>
6260<pre>
6261%ptr = malloc i32
6262 store i32 7, %ptr
Mon P Wang2c839d42008-07-30 04:36:53 +00006263%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang6a490372008-06-25 08:15:39 +00006264 <i>; yields {i32}:result0 = 7</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006265%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang6a490372008-06-25 08:15:39 +00006266 <i>; yields {i32}:result1 = -2</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006267%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang6a490372008-06-25 08:15:39 +00006268 <i>; yields {i32}:result2 = 8</i>
Mon P Wang2c839d42008-07-30 04:36:53 +00006269%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang6a490372008-06-25 08:15:39 +00006270 <i>; yields {i32}:result3 = 8</i>
6271%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6272</pre>
6273</div>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00006274
6275<!-- ======================================================================= -->
6276<div class="doc_subsection">
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006277 <a name="int_general">General Intrinsics</a>
6278</div>
6279
6280<div class="doc_text">
6281<p> This class of intrinsics is designed to be generic and has
6282no specific purpose. </p>
6283</div>
6284
6285<!-- _______________________________________________________________________ -->
6286<div class="doc_subsubsection">
6287 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6288</div>
6289
6290<div class="doc_text">
6291
6292<h5>Syntax:</h5>
6293<pre>
Tanya Lattnerbed1d4d2007-06-18 23:42:37 +00006294 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006295</pre>
6296
6297<h5>Overview:</h5>
6298
6299<p>
6300The '<tt>llvm.var.annotation</tt>' intrinsic
6301</p>
6302
6303<h5>Arguments:</h5>
6304
6305<p>
Tanya Lattnerbed1d4d2007-06-18 23:42:37 +00006306The first argument is a pointer to a value, the second is a pointer to a
6307global string, the third is a pointer to a global string which is the source
6308file name, and the last argument is the line number.
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006309</p>
6310
6311<h5>Semantics:</h5>
6312
6313<p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00006314This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006315This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00006316annotations. These have no other defined use, they are ignored by code
6317generation and optimization.
6318</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00006319</div>
6320
Tanya Lattner293c0372007-09-21 22:59:12 +00006321<!-- _______________________________________________________________________ -->
6322<div class="doc_subsubsection">
Tanya Lattner0186a652007-09-21 23:57:59 +00006323 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattner293c0372007-09-21 22:59:12 +00006324</div>
6325
6326<div class="doc_text">
6327
6328<h5>Syntax:</h5>
Tanya Lattner23dbd572007-09-21 23:56:27 +00006329<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6330any integer bit width.
6331</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00006332<pre>
Tanya Lattnercf3e26f2007-09-22 00:03:01 +00006333 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6334 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6335 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6336 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6337 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner293c0372007-09-21 22:59:12 +00006338</pre>
6339
6340<h5>Overview:</h5>
Tanya Lattner23dbd572007-09-21 23:56:27 +00006341
6342<p>
6343The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattner293c0372007-09-21 22:59:12 +00006344</p>
6345
6346<h5>Arguments:</h5>
6347
6348<p>
6349The first argument is an integer value (result of some expression),
6350the second is a pointer to a global string, the third is a pointer to a global
6351string which is the source file name, and the last argument is the line number.
Tanya Lattner23dbd572007-09-21 23:56:27 +00006352It returns the value of the first argument.
Tanya Lattner293c0372007-09-21 22:59:12 +00006353</p>
6354
6355<h5>Semantics:</h5>
6356
6357<p>
6358This intrinsic allows annotations to be put on arbitrary expressions
6359with arbitrary strings. This can be useful for special purpose optimizations
6360that want to look for these annotations. These have no other defined use, they
6361are ignored by code generation and optimization.
6362</div>
Jim Laskey2211f492007-03-14 19:31:19 +00006363
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00006364<!-- _______________________________________________________________________ -->
6365<div class="doc_subsubsection">
6366 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6367</div>
6368
6369<div class="doc_text">
6370
6371<h5>Syntax:</h5>
6372<pre>
6373 declare void @llvm.trap()
6374</pre>
6375
6376<h5>Overview:</h5>
6377
6378<p>
6379The '<tt>llvm.trap</tt>' intrinsic
6380</p>
6381
6382<h5>Arguments:</h5>
6383
6384<p>
6385None
6386</p>
6387
6388<h5>Semantics:</h5>
6389
6390<p>
6391This intrinsics is lowered to the target dependent trap instruction. If the
6392target does not have a trap instruction, this intrinsic will be lowered to the
6393call of the abort() function.
6394</p>
6395</div>
6396
Chris Lattner2f7c9632001-06-06 20:29:01 +00006397<!-- *********************************************************************** -->
Chris Lattner2f7c9632001-06-06 20:29:01 +00006398<hr>
Misha Brukmanc501f552004-03-01 17:47:27 +00006399<address>
6400 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
6401 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
6402 <a href="http://validator.w3.org/check/referer"><img
Chris Lattnerb8f816e2008-01-04 04:33:49 +00006403 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00006404
6405 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencerca058542006-03-14 05:39:39 +00006406 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmanc501f552004-03-01 17:47:27 +00006407 Last modified: $Date$
6408</address>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00006409
Misha Brukman76307852003-11-08 01:05:38 +00006410</body>
6411</html>