blob: 78163d4b08bd65e68a54d75606c05f8afbb445b8 [file] [log] [blame]
Caitlin Sadowski33208342011-09-09 16:11:56 +00001//===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// A intra-procedural analysis for thread safety (e.g. deadlocks and race
11// conditions), based off of an annotation system.
12//
13// See http://gcc.gnu.org/wiki/ThreadSafetyAnnotation for the gcc version.
14//
15//===----------------------------------------------------------------------===//
16
17#include "clang/Analysis/Analyses/ThreadSafety.h"
Caitlin Sadowski33208342011-09-09 16:11:56 +000018#include "clang/Basic/SourceManager.h"
19#include "clang/Basic/SourceLocation.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/StmtCXX.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/Analysis/AnalysisContext.h"
25#include "clang/Analysis/CFG.h"
26#include "clang/Analysis/CFGStmtMap.h"
27#include "llvm/ADT/BitVector.h"
28#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/ImmutableMap.h"
30#include "llvm/ADT/PostOrderIterator.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/StringRef.h"
33#include <algorithm>
34#include <vector>
35
36using namespace clang;
37using namespace thread_safety;
38
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +000039// Helper functions
40static Expr *getParent(Expr *Exp) {
41 if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
42 return ME->getBase();
43 if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Exp))
44 return CE->getImplicitObjectArgument();
45 return 0;
46}
47
Caitlin Sadowski33208342011-09-09 16:11:56 +000048namespace {
49/// \brief Implements a set of CFGBlocks using a BitVector.
50///
51/// This class contains a minimal interface, primarily dictated by the SetType
52/// template parameter of the llvm::po_iterator template, as used with external
53/// storage. We also use this set to keep track of which CFGBlocks we visit
54/// during the analysis.
55class CFGBlockSet {
56 llvm::BitVector VisitedBlockIDs;
57
58public:
59 // po_iterator requires this iterator, but the only interface needed is the
60 // value_type typedef.
61 struct iterator {
62 typedef const CFGBlock *value_type;
63 };
64
65 CFGBlockSet() {}
66 CFGBlockSet(const CFG *G) : VisitedBlockIDs(G->getNumBlockIDs(), false) {}
67
68 /// \brief Set the bit associated with a particular CFGBlock.
69 /// This is the important method for the SetType template parameter.
70 bool insert(const CFGBlock *Block) {
71 // Note that insert() is called by po_iterator, which doesn't check to make
72 // sure that Block is non-null. Moreover, the CFGBlock iterator will
73 // occasionally hand out null pointers for pruned edges, so we catch those
74 // here.
75 if (Block == 0)
76 return false; // if an edge is trivially false.
77 if (VisitedBlockIDs.test(Block->getBlockID()))
78 return false;
79 VisitedBlockIDs.set(Block->getBlockID());
80 return true;
81 }
82
83 /// \brief Check if the bit for a CFGBlock has been already set.
84 /// This method is for tracking visited blocks in the main threadsafety loop.
85 /// Block must not be null.
86 bool alreadySet(const CFGBlock *Block) {
87 return VisitedBlockIDs.test(Block->getBlockID());
88 }
89};
90
91/// \brief We create a helper class which we use to iterate through CFGBlocks in
92/// the topological order.
93class TopologicallySortedCFG {
94 typedef llvm::po_iterator<const CFG*, CFGBlockSet, true> po_iterator;
95
96 std::vector<const CFGBlock*> Blocks;
97
98public:
99 typedef std::vector<const CFGBlock*>::reverse_iterator iterator;
100
101 TopologicallySortedCFG(const CFG *CFGraph) {
102 Blocks.reserve(CFGraph->getNumBlockIDs());
103 CFGBlockSet BSet(CFGraph);
104
105 for (po_iterator I = po_iterator::begin(CFGraph, BSet),
106 E = po_iterator::end(CFGraph, BSet); I != E; ++I) {
107 Blocks.push_back(*I);
108 }
109 }
110
111 iterator begin() {
112 return Blocks.rbegin();
113 }
114
115 iterator end() {
116 return Blocks.rend();
117 }
118};
119
120/// \brief A MutexID object uniquely identifies a particular mutex, and
121/// is built from an Expr* (i.e. calling a lock function).
122///
123/// Thread-safety analysis works by comparing lock expressions. Within the
124/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
125/// a particular mutex object at run-time. Subsequent occurrences of the same
126/// expression (where "same" means syntactic equality) will refer to the same
127/// run-time object if three conditions hold:
128/// (1) Local variables in the expression, such as "x" have not changed.
129/// (2) Values on the heap that affect the expression have not changed.
130/// (3) The expression involves only pure function calls.
131/// The current implementation assumes, but does not verify, that multiple uses
132/// of the same lock expression satisfies these criteria.
133///
134/// Clang introduces an additional wrinkle, which is that it is difficult to
135/// derive canonical expressions, or compare expressions directly for equality.
136/// Thus, we identify a mutex not by an Expr, but by the set of named
137/// declarations that are referenced by the Expr. In other words,
138/// x->foo->bar.mu will be a four element vector with the Decls for
139/// mu, bar, and foo, and x. The vector will uniquely identify the expression
140/// for all practical purposes.
141///
142/// Note we will need to perform substitution on "this" and function parameter
143/// names when constructing a lock expression.
144///
145/// For example:
146/// class C { Mutex Mu; void lock() EXCLUSIVE_LOCK_FUNCTION(this->Mu); };
147/// void myFunc(C *X) { ... X->lock() ... }
148/// The original expression for the mutex acquired by myFunc is "this->Mu", but
149/// "X" is substituted for "this" so we get X->Mu();
150///
151/// For another example:
152/// foo(MyList *L) EXCLUSIVE_LOCKS_REQUIRED(L->Mu) { ... }
153/// MyList *MyL;
154/// foo(MyL); // requires lock MyL->Mu to be held
155class MutexID {
156 SmallVector<NamedDecl*, 2> DeclSeq;
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000157 ThreadSafetyHandler &Handler;
Caitlin Sadowski33208342011-09-09 16:11:56 +0000158
159 /// Build a Decl sequence representing the lock from the given expression.
160 /// Recursive function that bottoms out when the final DeclRefExpr is reached.
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000161 void buildMutexID(Expr *Exp, Expr *Parent) {
Caitlin Sadowski33208342011-09-09 16:11:56 +0000162 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
163 NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
164 DeclSeq.push_back(ND);
165 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
166 NamedDecl *ND = ME->getMemberDecl();
167 DeclSeq.push_back(ND);
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000168 buildMutexID(ME->getBase(), Parent);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000169 } else if (isa<CXXThisExpr>(Exp)) {
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000170 if (!Parent)
171 return;
172 buildMutexID(Parent, 0);
173 } else if (CastExpr *CE = dyn_cast<CastExpr>(Exp))
174 buildMutexID(CE->getSubExpr(), Parent);
175 else
176 Handler.handleInvalidLockExp(Exp->getExprLoc());
Caitlin Sadowski33208342011-09-09 16:11:56 +0000177 }
178
179public:
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000180 MutexID(ThreadSafetyHandler &Handler, Expr *LExpr, Expr *ParentExpr)
181 : Handler(Handler) {
182 buildMutexID(LExpr, ParentExpr);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000183 assert(!DeclSeq.empty());
184 }
185
186 bool operator==(const MutexID &other) const {
187 return DeclSeq == other.DeclSeq;
188 }
189
190 bool operator!=(const MutexID &other) const {
191 return !(*this == other);
192 }
193
194 // SmallVector overloads Operator< to do lexicographic ordering. Note that
195 // we use pointer equality (and <) to compare NamedDecls. This means the order
196 // of MutexIDs in a lockset is nondeterministic. In order to output
197 // diagnostics in a deterministic ordering, we must order all diagnostics to
198 // output by SourceLocation when iterating through this lockset.
199 bool operator<(const MutexID &other) const {
200 return DeclSeq < other.DeclSeq;
201 }
202
203 /// \brief Returns the name of the first Decl in the list for a given MutexID;
204 /// e.g. the lock expression foo.bar() has name "bar".
205 /// The caret will point unambiguously to the lock expression, so using this
206 /// name in diagnostics is a way to get simple, and consistent, mutex names.
207 /// We do not want to output the entire expression text for security reasons.
208 StringRef getName() const {
209 return DeclSeq.front()->getName();
210 }
211
212 void Profile(llvm::FoldingSetNodeID &ID) const {
213 for (SmallVectorImpl<NamedDecl*>::const_iterator I = DeclSeq.begin(),
214 E = DeclSeq.end(); I != E; ++I) {
215 ID.AddPointer(*I);
216 }
217 }
218};
219
220/// \brief This is a helper class that stores info about the most recent
221/// accquire of a Lock.
222///
223/// The main body of the analysis maps MutexIDs to LockDatas.
224struct LockData {
225 SourceLocation AcquireLoc;
226
227 /// \brief LKind stores whether a lock is held shared or exclusively.
228 /// Note that this analysis does not currently support either re-entrant
229 /// locking or lock "upgrading" and "downgrading" between exclusive and
230 /// shared.
231 ///
232 /// FIXME: add support for re-entrant locking and lock up/downgrading
233 LockKind LKind;
234
235 LockData(SourceLocation AcquireLoc, LockKind LKind)
236 : AcquireLoc(AcquireLoc), LKind(LKind) {}
237
238 bool operator==(const LockData &other) const {
239 return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
240 }
241
242 bool operator!=(const LockData &other) const {
243 return !(*this == other);
244 }
245
246 void Profile(llvm::FoldingSetNodeID &ID) const {
247 ID.AddInteger(AcquireLoc.getRawEncoding());
248 ID.AddInteger(LKind);
249 }
250};
251
252/// A Lockset maps each MutexID (defined above) to information about how it has
253/// been locked.
254typedef llvm::ImmutableMap<MutexID, LockData> Lockset;
255
256/// \brief We use this class to visit different types of expressions in
257/// CFGBlocks, and build up the lockset.
258/// An expression may cause us to add or remove locks from the lockset, or else
259/// output error messages related to missing locks.
260/// FIXME: In future, we may be able to not inherit from a visitor.
261class BuildLockset : public StmtVisitor<BuildLockset> {
262 ThreadSafetyHandler &Handler;
263 Lockset LSet;
264 Lockset::Factory &LocksetFactory;
265
266 // Helper functions
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000267 void removeLock(SourceLocation UnlockLoc, Expr *LockExp, Expr *Parent);
268 void addLock(SourceLocation LockLoc, Expr *LockExp, Expr *Parent,
269 LockKind LK);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000270 const ValueDecl *getValueDecl(Expr *Exp);
271 void warnIfMutexNotHeld (const NamedDecl *D, Expr *Exp, AccessKind AK,
272 Expr *MutexExp, ProtectedOperationKind POK);
273 void checkAccess(Expr *Exp, AccessKind AK);
274 void checkDereference(Expr *Exp, AccessKind AK);
275
276 template <class AttrType>
277 void addLocksToSet(LockKind LK, Attr *Attr, CXXMemberCallExpr *Exp);
278
279 /// \brief Returns true if the lockset contains a lock, regardless of whether
280 /// the lock is held exclusively or shared.
281 bool locksetContains(MutexID Lock) const {
282 return LSet.lookup(Lock);
283 }
284
285 /// \brief Returns true if the lockset contains a lock with the passed in
286 /// locktype.
287 bool locksetContains(MutexID Lock, LockKind KindRequested) const {
288 const LockData *LockHeld = LSet.lookup(Lock);
289 return (LockHeld && KindRequested == LockHeld->LKind);
290 }
291
292 /// \brief Returns true if the lockset contains a lock with at least the
293 /// passed in locktype. So for example, if we pass in LK_Shared, this function
294 /// returns true if the lock is held LK_Shared or LK_Exclusive. If we pass in
295 /// LK_Exclusive, this function returns true if the lock is held LK_Exclusive.
296 bool locksetContainsAtLeast(MutexID Lock, LockKind KindRequested) const {
297 switch (KindRequested) {
298 case LK_Shared:
299 return locksetContains(Lock);
300 case LK_Exclusive:
301 return locksetContains(Lock, KindRequested);
302 }
303 }
304
305public:
306 BuildLockset(ThreadSafetyHandler &Handler, Lockset LS, Lockset::Factory &F)
307 : StmtVisitor<BuildLockset>(), Handler(Handler), LSet(LS),
308 LocksetFactory(F) {}
309
310 Lockset getLockset() {
311 return LSet;
312 }
313
314 void VisitUnaryOperator(UnaryOperator *UO);
315 void VisitBinaryOperator(BinaryOperator *BO);
316 void VisitCastExpr(CastExpr *CE);
317 void VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp);
318};
319
320/// \brief Add a new lock to the lockset, warning if the lock is already there.
321/// \param LockLoc The source location of the acquire
322/// \param LockExp The lock expression corresponding to the lock to be added
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000323void BuildLockset::addLock(SourceLocation LockLoc, Expr *LockExp, Expr *Parent,
Caitlin Sadowski33208342011-09-09 16:11:56 +0000324 LockKind LK) {
325 // FIXME: deal with acquired before/after annotations
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000326 MutexID Mutex(Handler, LockExp, Parent);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000327 LockData NewLock(LockLoc, LK);
328
329 // FIXME: Don't always warn when we have support for reentrant locks.
330 if (locksetContains(Mutex))
331 Handler.handleDoubleLock(Mutex.getName(), LockLoc);
332 LSet = LocksetFactory.add(LSet, Mutex, NewLock);
333}
334
335/// \brief Remove a lock from the lockset, warning if the lock is not there.
336/// \param LockExp The lock expression corresponding to the lock to be removed
337/// \param UnlockLoc The source location of the unlock (only used in error msg)
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000338void BuildLockset::removeLock(SourceLocation UnlockLoc, Expr *LockExp,
339 Expr *Parent) {
340 MutexID Mutex(Handler, LockExp, Parent);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000341
342 Lockset NewLSet = LocksetFactory.remove(LSet, Mutex);
343 if(NewLSet == LSet)
344 Handler.handleUnmatchedUnlock(Mutex.getName(), UnlockLoc);
345
346 LSet = NewLSet;
347}
348
349/// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
350const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
351 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
352 return DR->getDecl();
353
354 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
355 return ME->getMemberDecl();
356
357 return 0;
358}
359
360/// \brief Warn if the LSet does not contain a lock sufficient to protect access
361/// of at least the passed in AccessType.
362void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp,
363 AccessKind AK, Expr *MutexExp,
364 ProtectedOperationKind POK) {
365 LockKind LK = getLockKindFromAccessKind(AK);
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000366 Expr *Parent = getParent(Exp);
367 MutexID Mutex(Handler, MutexExp, Parent);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000368 if (!locksetContainsAtLeast(Mutex, LK))
369 Handler.handleMutexNotHeld(D, POK, Mutex.getName(), LK, Exp->getExprLoc());
370}
371
372
373/// \brief This method identifies variable dereferences and checks pt_guarded_by
374/// and pt_guarded_var annotations. Note that we only check these annotations
375/// at the time a pointer is dereferenced.
376/// FIXME: We need to check for other types of pointer dereferences
377/// (e.g. [], ->) and deal with them here.
378/// \param Exp An expression that has been read or written.
379void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) {
380 UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp);
381 if (!UO || UO->getOpcode() != clang::UO_Deref)
382 return;
383 Exp = UO->getSubExpr()->IgnoreParenCasts();
384
385 const ValueDecl *D = getValueDecl(Exp);
386 if(!D || !D->hasAttrs())
387 return;
388
389 if (D->getAttr<PtGuardedVarAttr>() && LSet.isEmpty())
390 Handler.handleNoMutexHeld(D, POK_VarDereference, AK, Exp->getExprLoc());
391
392 const AttrVec &ArgAttrs = D->getAttrs();
393 for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
394 if (PtGuardedByAttr *PGBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
395 warnIfMutexNotHeld(D, Exp, AK, PGBAttr->getArg(), POK_VarDereference);
396}
397
398/// \brief Checks guarded_by and guarded_var attributes.
399/// Whenever we identify an access (read or write) of a DeclRefExpr or
400/// MemberExpr, we need to check whether there are any guarded_by or
401/// guarded_var attributes, and make sure we hold the appropriate mutexes.
402void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) {
403 const ValueDecl *D = getValueDecl(Exp);
404 if(!D || !D->hasAttrs())
405 return;
406
407 if (D->getAttr<GuardedVarAttr>() && LSet.isEmpty())
408 Handler.handleNoMutexHeld(D, POK_VarAccess, AK, Exp->getExprLoc());
409
410 const AttrVec &ArgAttrs = D->getAttrs();
411 for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
412 if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
413 warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
414}
415
416/// \brief For unary operations which read and write a variable, we need to
417/// check whether we hold any required mutexes. Reads are checked in
418/// VisitCastExpr.
419void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
420 switch (UO->getOpcode()) {
421 case clang::UO_PostDec:
422 case clang::UO_PostInc:
423 case clang::UO_PreDec:
424 case clang::UO_PreInc: {
425 Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts();
426 checkAccess(SubExp, AK_Written);
427 checkDereference(SubExp, AK_Written);
428 break;
429 }
430 default:
431 break;
432 }
433}
434
435/// For binary operations which assign to a variable (writes), we need to check
436/// whether we hold any required mutexes.
437/// FIXME: Deal with non-primitive types.
438void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
439 if (!BO->isAssignmentOp())
440 return;
441 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
442 checkAccess(LHSExp, AK_Written);
443 checkDereference(LHSExp, AK_Written);
444}
445
446/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
447/// need to ensure we hold any required mutexes.
448/// FIXME: Deal with non-primitive types.
449void BuildLockset::VisitCastExpr(CastExpr *CE) {
450 if (CE->getCastKind() != CK_LValueToRValue)
451 return;
452 Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts();
453 checkAccess(SubExp, AK_Read);
454 checkDereference(SubExp, AK_Read);
455}
456
457/// \brief This function, parameterized by an attribute type, is used to add a
458/// set of locks specified as attribute arguments to the lockset.
459template <typename AttrType>
460void BuildLockset::addLocksToSet(LockKind LK, Attr *Attr,
461 CXXMemberCallExpr *Exp) {
462 typedef typename AttrType::args_iterator iterator_type;
463 SourceLocation ExpLocation = Exp->getExprLoc();
464 Expr *Parent = Exp->getImplicitObjectArgument();
465 AttrType *SpecificAttr = cast<AttrType>(Attr);
466
467 if (SpecificAttr->args_size() == 0) {
468 // The mutex held is the "this" object.
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000469 addLock(ExpLocation, Parent, Parent, LK);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000470 return;
471 }
472
473 for (iterator_type I = SpecificAttr->args_begin(),
474 E = SpecificAttr->args_end(); I != E; ++I)
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000475 addLock(ExpLocation, *I, Parent, LK);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000476}
477
478/// \brief When visiting CXXMemberCallExprs we need to examine the attributes on
479/// the method that is being called and add, remove or check locks in the
480/// lockset accordingly.
481///
482/// FIXME: For classes annotated with one of the guarded annotations, we need
483/// to treat const method calls as reads and non-const method calls as writes,
484/// and check that the appropriate locks are held. Non-const method calls with
485/// the same signature as const method calls can be also treated as reads.
486///
487/// FIXME: We need to also visit CallExprs to catch/check global functions.
488void BuildLockset::VisitCXXMemberCallExpr(CXXMemberCallExpr *Exp) {
489 NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
490
491 SourceLocation ExpLocation = Exp->getExprLoc();
492 Expr *Parent = Exp->getImplicitObjectArgument();
493
494 if(!D || !D->hasAttrs())
495 return;
496
497 AttrVec &ArgAttrs = D->getAttrs();
498 for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
499 Attr *Attr = ArgAttrs[i];
500 switch (Attr->getKind()) {
501 // When we encounter an exclusive lock function, we need to add the lock
502 // to our lockset with kind exclusive.
503 case attr::ExclusiveLockFunction:
504 addLocksToSet<ExclusiveLockFunctionAttr>(LK_Exclusive, Attr, Exp);
505 break;
506
507 // When we encounter a shared lock function, we need to add the lock
508 // to our lockset with kind shared.
509 case attr::SharedLockFunction:
510 addLocksToSet<SharedLockFunctionAttr>(LK_Shared, Attr, Exp);
511 break;
512
513 // When we encounter an unlock function, we need to remove unlocked
514 // mutexes from the lockset, and flag a warning if they are not there.
515 case attr::UnlockFunction: {
516 UnlockFunctionAttr *UFAttr = cast<UnlockFunctionAttr>(Attr);
517
518 if (UFAttr->args_size() == 0) { // The lock held is the "this" object.
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000519 removeLock(ExpLocation, Parent, Parent);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000520 break;
521 }
522
523 for (UnlockFunctionAttr::args_iterator I = UFAttr->args_begin(),
524 E = UFAttr->args_end(); I != E; ++I)
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000525 removeLock(ExpLocation, *I, Parent);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000526 break;
527 }
528
529 case attr::ExclusiveLocksRequired: {
530 // FIXME: Also use this attribute to add required locks to the initial
531 // lockset when processing a CFG for a function annotated with this
532 // attribute.
533 ExclusiveLocksRequiredAttr *ELRAttr =
534 cast<ExclusiveLocksRequiredAttr>(Attr);
535
536 for (ExclusiveLocksRequiredAttr::args_iterator
537 I = ELRAttr->args_begin(), E = ELRAttr->args_end(); I != E; ++I)
538 warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
539 break;
540 }
541
542 case attr::SharedLocksRequired: {
543 // FIXME: Also use this attribute to add required locks to the initial
544 // lockset when processing a CFG for a function annotated with this
545 // attribute.
546 SharedLocksRequiredAttr *SLRAttr = cast<SharedLocksRequiredAttr>(Attr);
547
548 for (SharedLocksRequiredAttr::args_iterator I = SLRAttr->args_begin(),
549 E = SLRAttr->args_end(); I != E; ++I)
550 warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
551 break;
552 }
553
554 case attr::LocksExcluded: {
555 LocksExcludedAttr *LEAttr = cast<LocksExcludedAttr>(Attr);
556 for (LocksExcludedAttr::args_iterator I = LEAttr->args_begin(),
557 E = LEAttr->args_end(); I != E; ++I) {
Caitlin Sadowskiff2f3f82011-09-09 16:21:55 +0000558 MutexID Mutex(Handler, *I, Parent);
Caitlin Sadowski33208342011-09-09 16:11:56 +0000559 if (locksetContains(Mutex))
560 Handler.handleFunExcludesLock(D->getName(), Mutex.getName(),
561 ExpLocation);
562 }
563 break;
564 }
565
566 case attr::LockReturned:
567 // FIXME: Deal with this attribute.
568 break;
569
570 // Ignore other (non thread-safety) attributes
571 default:
572 break;
573 }
574 }
575}
576
577} // end anonymous namespace
578
579/// \brief Flags a warning for each lock that is in LSet2 but not LSet1, or
580/// else mutexes that are held shared in one lockset and exclusive in the other.
581static Lockset warnIfNotInFirstSetOrNotSameKind(ThreadSafetyHandler &Handler,
582 const Lockset LSet1,
583 const Lockset LSet2,
584 Lockset Intersection,
585 Lockset::Factory &Fact) {
586 for (Lockset::iterator I = LSet2.begin(), E = LSet2.end(); I != E; ++I) {
587 const MutexID &LSet2Mutex = I.getKey();
588 const LockData &LSet2LockData = I.getData();
589 if (const LockData *LD = LSet1.lookup(LSet2Mutex)) {
590 if (LD->LKind != LSet2LockData.LKind) {
591 Handler.handleExclusiveAndShared(LSet2Mutex.getName(),
592 LSet2LockData.AcquireLoc,
593 LD->AcquireLoc);
594 if (LD->LKind != LK_Exclusive)
595 Intersection = Fact.add(Intersection, LSet2Mutex, LSet2LockData);
596 }
597 } else {
598 Handler.handleMutexHeldEndOfScope(LSet2Mutex.getName(),
599 LSet2LockData.AcquireLoc);
600 }
601 }
602 return Intersection;
603}
604
605
606/// \brief Compute the intersection of two locksets and issue warnings for any
607/// locks in the symmetric difference.
608///
609/// This function is used at a merge point in the CFG when comparing the lockset
610/// of each branch being merged. For example, given the following sequence:
611/// A; if () then B; else C; D; we need to check that the lockset after B and C
612/// are the same. In the event of a difference, we use the intersection of these
613/// two locksets at the start of D.
614static Lockset intersectAndWarn(ThreadSafetyHandler &Handler,
615 const Lockset LSet1, const Lockset LSet2,
616 Lockset::Factory &Fact) {
617 Lockset Intersection = LSet1;
618 Intersection = warnIfNotInFirstSetOrNotSameKind(Handler, LSet1, LSet2,
619 Intersection, Fact);
620
621 for (Lockset::iterator I = LSet1.begin(), E = LSet1.end(); I != E; ++I) {
622 if (!LSet2.contains(I.getKey())) {
623 const MutexID &Mutex = I.getKey();
624 const LockData &MissingLock = I.getData();
625 Handler.handleMutexHeldEndOfScope(Mutex.getName(),
626 MissingLock.AcquireLoc);
627 Intersection = Fact.remove(Intersection, Mutex);
628 }
629 }
630 return Intersection;
631}
632
633/// \brief Returns the location of the first Stmt in a Block.
634static SourceLocation getFirstStmtLocation(CFGBlock *Block) {
635 SourceLocation Loc;
636 for (CFGBlock::const_iterator BI = Block->begin(), BE = Block->end();
637 BI != BE; ++BI) {
638 if (const CFGStmt *CfgStmt = dyn_cast<CFGStmt>(&(*BI))) {
639 Loc = CfgStmt->getStmt()->getLocStart();
640 if (Loc.isValid()) return Loc;
641 }
642 }
643 if (Stmt *S = Block->getTerminator().getStmt()) {
644 Loc = S->getLocStart();
645 if (Loc.isValid()) return Loc;
646 }
647 return Loc;
648}
649
650/// \brief Warn about different locksets along backedges of loops.
651/// This function is called when we encounter a back edge. At that point,
652/// we need to verify that the lockset before taking the backedge is the
653/// same as the lockset before entering the loop.
654///
655/// \param LoopEntrySet Locks before starting the loop
656/// \param LoopReentrySet Locks in the last CFG block of the loop
657static void warnBackEdgeUnequalLocksets(ThreadSafetyHandler &Handler,
658 const Lockset LoopReentrySet,
659 const Lockset LoopEntrySet,
660 SourceLocation FirstLocInLoop,
661 Lockset::Factory &Fact) {
662 assert(FirstLocInLoop.isValid());
663 // Warn for locks held at the start of the loop, but not the end.
664 for (Lockset::iterator I = LoopEntrySet.begin(), E = LoopEntrySet.end();
665 I != E; ++I) {
666 if (!LoopReentrySet.contains(I.getKey())) {
667 // We report this error at the location of the first statement in a loop
668 Handler.handleNoLockLoopEntry(I.getKey().getName(), FirstLocInLoop);
669 }
670 }
671
672 // Warn for locks held at the end of the loop, but not at the start.
673 warnIfNotInFirstSetOrNotSameKind(Handler, LoopEntrySet, LoopReentrySet,
674 LoopReentrySet, Fact);
675}
676
677
678namespace clang { namespace thread_safety {
679/// \brief Check a function's CFG for thread-safety violations.
680///
681/// We traverse the blocks in the CFG, compute the set of mutexes that are held
682/// at the end of each block, and issue warnings for thread safety violations.
683/// Each block in the CFG is traversed exactly once.
684void runThreadSafetyAnalysis(AnalysisContext &AC,
685 ThreadSafetyHandler &Handler) {
686 CFG *CFGraph = AC.getCFG();
687 if (!CFGraph) return;
688 const Decl *D = AC.getDecl();
689 if (D && D->getAttr<NoThreadSafetyAnalysisAttr>()) return;
690
691 Lockset::Factory LocksetFactory;
692
693 // FIXME: Swith to SmallVector? Otherwise improve performance impact?
694 std::vector<Lockset> EntryLocksets(CFGraph->getNumBlockIDs(),
695 LocksetFactory.getEmptyMap());
696 std::vector<Lockset> ExitLocksets(CFGraph->getNumBlockIDs(),
697 LocksetFactory.getEmptyMap());
698
699 // We need to explore the CFG via a "topological" ordering.
700 // That way, we will be guaranteed to have information about required
701 // predecessor locksets when exploring a new block.
702 TopologicallySortedCFG SortedGraph(CFGraph);
703 CFGBlockSet VisitedBlocks(CFGraph);
704
705 for (TopologicallySortedCFG::iterator I = SortedGraph.begin(),
706 E = SortedGraph.end(); I!= E; ++I) {
707 const CFGBlock *CurrBlock = *I;
708 int CurrBlockID = CurrBlock->getBlockID();
709
710 VisitedBlocks.insert(CurrBlock);
711
712 // Use the default initial lockset in case there are no predecessors.
713 Lockset &Entryset = EntryLocksets[CurrBlockID];
714 Lockset &Exitset = ExitLocksets[CurrBlockID];
715
716 // Iterate through the predecessor blocks and warn if the lockset for all
717 // predecessors is not the same. We take the entry lockset of the current
718 // block to be the intersection of all previous locksets.
719 // FIXME: By keeping the intersection, we may output more errors in future
720 // for a lock which is not in the intersection, but was in the union. We
721 // may want to also keep the union in future. As an example, let's say
722 // the intersection contains Mutex L, and the union contains L and M.
723 // Later we unlock M. At this point, we would output an error because we
724 // never locked M; although the real error is probably that we forgot to
725 // lock M on all code paths. Conversely, let's say that later we lock M.
726 // In this case, we should compare against the intersection instead of the
727 // union because the real error is probably that we forgot to unlock M on
728 // all code paths.
729 bool LocksetInitialized = false;
730 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
731 PE = CurrBlock->pred_end(); PI != PE; ++PI) {
732
733 // if *PI -> CurrBlock is a back edge
734 if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
735 continue;
736
737 int PrevBlockID = (*PI)->getBlockID();
738 if (!LocksetInitialized) {
739 Entryset = ExitLocksets[PrevBlockID];
740 LocksetInitialized = true;
741 } else {
742 Entryset = intersectAndWarn(Handler, Entryset,
743 ExitLocksets[PrevBlockID], LocksetFactory);
744 }
745 }
746
747 BuildLockset LocksetBuilder(Handler, Entryset, LocksetFactory);
748 for (CFGBlock::const_iterator BI = CurrBlock->begin(),
749 BE = CurrBlock->end(); BI != BE; ++BI) {
750 if (const CFGStmt *CfgStmt = dyn_cast<CFGStmt>(&*BI))
751 LocksetBuilder.Visit(const_cast<Stmt*>(CfgStmt->getStmt()));
752 }
753 Exitset = LocksetBuilder.getLockset();
754
755 // For every back edge from CurrBlock (the end of the loop) to another block
756 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
757 // the one held at the beginning of FirstLoopBlock. We can look up the
758 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
759 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
760 SE = CurrBlock->succ_end(); SI != SE; ++SI) {
761
762 // if CurrBlock -> *SI is *not* a back edge
763 if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
764 continue;
765
766 CFGBlock *FirstLoopBlock = *SI;
767 SourceLocation FirstLoopLocation = getFirstStmtLocation(FirstLoopBlock);
768
769 assert(FirstLoopLocation.isValid());
770
771 // Fail gracefully in release code.
772 if (!FirstLoopLocation.isValid())
773 continue;
774
775 Lockset PreLoop = EntryLocksets[FirstLoopBlock->getBlockID()];
776 Lockset LoopEnd = ExitLocksets[CurrBlockID];
777 warnBackEdgeUnequalLocksets(Handler, LoopEnd, PreLoop, FirstLoopLocation,
778 LocksetFactory);
779 }
780 }
781
782 Lockset FinalLockset = ExitLocksets[CFGraph->getExit().getBlockID()];
783 if (!FinalLockset.isEmpty()) {
784 for (Lockset::iterator I=FinalLockset.begin(), E=FinalLockset.end();
785 I != E; ++I) {
786 const MutexID &Mutex = I.getKey();
787 const LockData &MissingLock = I.getData();
788
789 std::string FunName = "<unknown>";
790 if (const NamedDecl *ContextDecl = dyn_cast<NamedDecl>(AC.getDecl())) {
791 FunName = ContextDecl->getDeclName().getAsString();
792 }
793
794 Handler.handleNoUnlock(Mutex.getName(), FunName, MissingLock.AcquireLoc);
795 }
796 }
797}
798
799/// \brief Helper function that returns a LockKind required for the given level
800/// of access.
801LockKind getLockKindFromAccessKind(AccessKind AK) {
802 switch (AK) {
803 case AK_Read :
804 return LK_Shared;
805 case AK_Written :
806 return LK_Exclusive;
807 }
808}
809}} // end namespace clang::thread_safety